
Hierarchical and Hybrid Organizational Structures in
Open-Source Software Projects: A Longitudinal Study

MITCHELL JOBLIN, Saarland University & Siemens, Germany
BARBARA ECKL-GANSER, University of Passau, Germany
THOMAS BOCK, Saarland University, Saarland Informatics Campus, Germany
ANGELIKA SCHMID, IBM, Germany
JANET SIEGMUND, Chemnitz University of Technology, Germany
SVEN APEL, Saarland University, Saarland Informatics Campus, Germany

Despite the absence of a formal process and a central command-and-control structure, developer organization
in open-source software (OSS) projects is far from being a purely random process. Prior work indicates
that, over time, highly successful OSS projects develop a hybrid organizational structure that comprises a
hierarchical part and a non-hierarchical part. This suggests that hierarchical organization is not necessarily a
global organizing principle and that a fundamentally different principle is at play below the lowest positions in
the hierarchy. Given the vast proportion of developers are in the non-hierarchical part, we seek to understand
the interplay between these two fundamentally differently organized groups, how this hybrid structure
evolves, and the trajectory individual developers take through these structures over the course of their
participation. We conducted a longitudinal study of the full histories of 20 popular OSS projects, modeling
their organizational structures as networks of developers connected by communication ties and characterizing
developers’ positions in terms of hierarchical (sub)structures in these networks. We observed a number of
notable trends and patterns in the subject projects: (1) hierarchy is a pervasive structural feature of developer
networks of OSS projects; (2) OSS projects tend to form hybrid organizational structures, consisting of a
hierarchical and a non-hierarchical part; and (3) the positional trajectory of a developer starts loosely connected
in the non-hierarchical part and then tightly integrate into the hierarchical part, which is associated with
acquisition of experience (tenure), in addition to coordination and coding activities. Our study (a) provides a
methodological basis for further investigations of hierarchy formation, (b) suggests a number of hypotheses
on prevalent organizational patterns and trends in OSS projects to be addressed in further work, and (c) may
ultimately guide the governance of organizational structures.

CCS Concepts: • Software and its engineering → Software creation and management; Collaboration
in software development; Open source model.

Additional Key Words and Phrases: open-source software projects, developer networks, organizational
structure, hierarchy

ACM Reference Format:
Mitchell Joblin, Barbara Eckl-Ganser, Thomas Bock, Angelika Schmid, Janet Siegmund, and Sven Apel. 2022.
Hierarchical and Hybrid Organizational Structures in Open-Source Software Projects: A Longitudinal Study.
ACM Trans. Softw. Eng. Methodol. , (October 2022), 29 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

Authors’ addresses: Mitchell Joblin, Saarland University & Siemens, Germany; Barbara Eckl-Ganser, University of Passau,
Germany; Thomas Bock, Saarland University, Saarland Informatics Campus, Germany; Angelika Schmid, IBM, Germany;
Janet Siegmund, Chemnitz University of Technology, Germany; Sven Apel, Saarland University, Saarland Informatics
Campus, Germany.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
1049-331X/2022/10-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: October 2022.

HTTPS://ORCID.ORG/0000-0001-6906-3489
HTTPS://ORCID.ORG/0000-0002-9274-3666
HTTPS://ORCID.ORG/0000-0003-3687-2233
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://orcid.org/0000-0001-6906-3489
https://orcid.org/0000-0002-9274-3666
https://orcid.org/0000-0003-3687-2233
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Mitchell Joblin, Barbara Eckl-Ganser, Thomas Bock, Angelika Schmid, Janet Siegmund, and Sven Apel

developer on top
of the hierarchy

developer lower
in the hierarchy

Fig. 1. Even without formal process or mandated developer roles, hierarchical structure emerges in OSS
projects, with few developers on top of the hierarchy (blue, big smileys) and many developers lower in or
even outside the hierarchy (gray, small smileys) [25].

1 INTRODUCTION
Many software systems are developed either as open-source software (OSS) or rely on OSS libraries,
frameworks, etc. [47]. OSS developers actively contribute to an OSS project by means of coding
and by issuing and discussing bug reports, feature requests, etc. OSS developers typically organize
in a decentralized and self-organized manner [4]. Despite the absence of a formal process and a
central command-and-control structure, prior studies have shown that developer organization is far
from being a purely random process. Studies of developer organization based on network models
have been accumulating growing evidence that multiple organizing principles are simultaneously
at play [4, 25–27]. Two important organizing principles are: (1) the probability that a randomly
selected developer has : connections to other developers in the network is described by a power
law—the scale-freeness principle—and (2) developers organize into densely connected groups—the
community principle. It has been shown that, to simultaneously reconcile these two principles
under one roof, the groups must arrange according to a hierarchy (see Fig. 1) [39]. Hierarchical
organization induces a dependence between the number of connections to a developer (node
degree) and the density of local connections (clustering coefficient), which can be used to test for
the presence of hierarchy [39].

Recently, Joblin et al. [26] found indications that, over time, highly successful OSS projects develop
a hybrid organizational structure that comprises a hierarchical part and a non-hierarchical part. This
observation is consistent with previous findings reported in the literature [11, 33] and is intriguing
for two reasons: (1) it implies that hierarchical organization is not necessarily a global organizing
principle and that a fundamentally different principle is at play below the lowest positions in the
hierarchy; (2) the vast majority of developers often occupy non-hierarchically organized positions in
the developer network. In this vein, previous work suggests a connection between role stratification
and the emergence of organizational structure [26]. Role stratification is the process of the emergence
of developer roles arising from differences in the developers’ behavior. Role stratification limits
coordination overhead and improves information flow, this way, influencing project quality and
performance [18, 26, 28, 36, 45, 46]. In particular, Joblin et al. [25] provide evidence that developer
roles and hierarchy in developer networks are connected such that core developers occupy upper
positions in the hierarchy and peripheral developers occupy lower positions [25], where core developers
play an essential role in developing the system architecture, programming, and forming the general
leadership structure, with long-term involvement, and (2) peripheral developers help with bug fixes
or small enhancements, with irregular or short-term involvement.

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: October 2022.

Hierarchical and Hybrid Organizational Structures in Open-Source Software Projects: A Longitudinal Study 3

Given the influential role of developers in the hierarchical part and the vast majority of developers
in the non-hierarchical part, it is important to understand the interactions within and between
these differently organized groups. To this end, we want to learn whether the hybrid structure
is universal and how it evolves with project lifecycles. In addition, we adopt the perspective of
individual developers and investigate how they traverse through the organizational structure
from on-boarding to off-boarding, how their support contacts (i.e., co-developers) are structurally
distributed within the organization, and how tenure and programming activity relate to their
structural position. An improved understanding of these aspects is important for two main reasons:
(1) it provides insight into the organizational mechanisms that large successful OSS projects use to
manage coordination and communication, which is ultimately useful for any large-scale, globally
distributed software development project; (2) our insights lay the foundation to derive measures that
encourage a project towards known successful organizational structures to increase the likelihood
of success. On the one hand, hierarchy has certain functional advantages when it comes to efficiency,
but the lack of information channel redundancy makes it vulnerable in volatile conditions (e.g.,
high developer turnover). On the other hand, non-hierarchical structures with lots of built-in
redundancy tend to be robust to volatile conditions, but are less efficient. By better understanding
the dynamics and relationships between parts of the project that are organized differently, we can
begin to understand which organizational structures are ideal given the behavior of members or
groups and how they interact with each other. For example, it is plausible that newly on-boarded
developers (which are likely more volatile) would not be ideal candidates to be positioned higher in
a hierarchy, but rather begin outside the hierarchy and then become members of the hierarchical
part over a period of time once it is clear they are a consistent contributor.

To address these questions, we conduct a longitudinal study on 20 popular OSS projects of
various application domains and sizes with a total of 831 6-months snapshots. We explore their
organizational structure as a network of developers who are connected by communication ties [29].
Based on these developer networks, we divide the set of developers into a hierarchical and non-
hierarchical part and explore its evolutionary trends (RQ1), we track the neighborhood of individual
developers to understand their placement and progression in the hierarchy (RQ2, RQ3), and we
characterize the roles of developers in the hierarchy with information on tenure and activity (RQ4).

In our study, we make a number of notable observations, including that (1) hierarchy is a
pervasive structural feature of developer networks of OSS projects, (2) OSS projects tend to form
hybrid organizational structures, consisting of a hierarchical and a non-hierarchical part, and (3) the
positional trajectory of a developer is to start loosely connected in the non-hierarchical part and
then tightly integrate into the hierarchical part, which is associated with acquisition of experience
(tenure), in addition to coordination and coding activities. Furthermore, our study (a) provides a
methodological basis for further investigations of hierarchy formation, (b) suggests a number of
hypotheses on prevalent organizational patterns and trends in OSS projects to be addressed in
further work, and (c) may ultimately help to guide the governance of organizational structures.

In summary, we make the following contributions:
• insights regarding the presence and evolution of hierarchical and hybrid organizational struc-

tures in OSS projects and a method to identify these structures;
• findings regarding the nature of the relationship between members of the hierarchical and

non-hierarchical parts;
• a comparison of the developers in the hierarchical and non-hierarchical parts regarding tenure

and activity level;
• a discussion of practical implications and hypotheses that shall guide further research;
• full access to our analysis scripts and results on a supplementary website:

https://hierarchypaper.bitbucket.io/public/ and https://zenodo.org/record/7199267.

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: October 2022.

https://hierarchypaper.bitbucket.io/public/
https://zenodo.org/record/7199267

4 Mitchell Joblin, Barbara Eckl-Ganser, Thomas Bock, Angelika Schmid, Janet Siegmund, and Sven Apel

Fig. 2. Three networks with the corresponding clustering coefficient 28 = 2 · =8/(:8 · (:8 − 1)) for node E1 in
descending order according to clustering coefficient (left to right).

2 BACKGROUND & RELATED WORK
In this section, we provide general background information and related work on network hierarchy
and other network concepts. Thereafter, we discuss related work on developer networks specifically.

2.1 Network Analysis
A network is an object consisting of a set of nodes and a set of binary relations or links between
the nodes. The most common type of network is the homogeneous, undirected, and unweighted
network which consists of only one type of node, the link implies a symmetric relationship, and
each link is defined to have equivalent magnitude. We use this network type in our study. Given
a network, there exists a suite of analysis metrics for studying its properties. Two fundamental
node-level metrics are the degree and clustering coefficient. A node’s degree is defined to be the
number of links it appears in. For example, in Fig. 2, the node labeled E1 has a degree of four.
While the node degree captures information between a node and its immediate neighborhood, the
node clustering coefficient captures information about how members of a node’s neighborhood are
connected to each other. More specifically, the clustering coefficient is the ratio of existing links
to all possible links among a node’s direct neighbors. The clustering coefficient 28 is defined as
2 · =8/(:8 · (:8 − 1)), with =8 being the number of links between the :8 neighbors of node E8 . A fully
connected subgraph has a clustering coefficient of 1. Nodes with only one neighbor have a degree
of 1, but no valid clustering coefficient. Examples of various networks and corresponding clustering
coefficients are illustrated in Fig. 2.

Depending on the underlying organizational principles that influence the formation of links
in a network, the types of structural features the networks posses can differ significantly. For
example, if the existence of each link is determined purely by chance (i.e., by flipping an unbiased
coin where heads corresponds to a link and tails does not) then an Erdős and Rényi (ER) random
network is generated as shown in Fig. 3 (left) [13]. Due to the independent formation of each link,
these networks lack higher-order structure (e.g., communities or hierarchy). To achieve a departure
from these purely random network structures, an underlying organizing principle must induce a
dependence between the links. For example, if groups of nodes exist such that forming links among
members of the same group is more likely than forming links with members of different groups,
then higher-order structure in the form of communities arises [14]. Some real-world networks
are also known to be scale-free, which implies that the degree distribution of nodes follows a
power-law distribution [35]. One way this property occurs is through a dependence between degree
and the probability of link formation, such that nodes with a higher degree are more likely to
gain new links than a node with a lower degree, which is known as preferential attachment [35].

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: October 2022.

Hierarchical and Hybrid Organizational Structures in Open-Source Software Projects: A Longitudinal Study 5

ER Random Network Hierarchical Network

Fig. 3. Random network (left) and hierarchical network (right) and below a scatter plot of node degree :
versus clustering coefficient � (:) for each network.

A third example of non-random structure is hierarchy. Hierarchical structure in networks can be
achieved by inducing a dependence between the clustering coefficient and the degree [39]. Network
hierarchy manifests as local clustering within a global tree-like arrangement of these clusters,
which is shown in Fig. 3 (right). Due to the stochastic nature of complex networks, the concept
of hierarchy differs slightly from a strict hierarchy which forbids relationship between entities at
the same layer. It should be noted that hierarchy is distinct from community and core/periphery
structures which do not require a dependence between the clustering coefficient and degree [39].

2.2 Developer Networks
For studying socio-technical aspects of software development, networks are used to represent
relationships between developers induced by their development activities. Typically, networks are
constructed by considering information from the version control system by extracting relationships
from the commit activity [7–9, 25–27, 31, 34], from communication activity through issue trackers
or mailing lists [4, 20, 49], or a combination of both [3, 5, 30].

Network representations of software projects have proven to be a powerful abstraction in
numerous applications. Wolf et al. [49] showed that developer networks can successfully predict
the occurrence of build failures. Multiple studies have demonstrated that developer networks can
successfully predict software defects [3, 32] and Nagappan et al. [34] found that organizational
metrics are even more predictive of software quality factors than traditional source code metrics.
Shin et al. [41] showed that developer activity metrics extracted from networks are predictive
of security vulnerabilities. When it comes to developers roles, Joblin et al. [25] found that the
structural position of developers within the network is reflective of developer perception. These
studies show evidence that developer networks contain rich structure that is related to several
highly relevant socio-technical dimensions of a software project. Inspired by these results, our

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: October 2022.

6 Mitchell Joblin, Barbara Eckl-Ganser, Thomas Bock, Angelika Schmid, Janet Siegmund, and Sven Apel

primary focus is on achieving a deeper understanding what fundamental structures exist, how they
evolve with time, and how developers embed within them.

Determining whether developer networks’ link formation is driven primarily by a purely random
process or by non-random organizational principles has received some attention. Bird et al. [4]
identified that developer communication networks contain a latent community structure that is
consistent with non-random link formation. Similarly, in developer networks constructed from
commit activity, Joblin et al. [27] found that developers form communities that are statistically
significant and align with developer’s perception of team collaboration. The scale-free property also
appears to be pervasive among projects that achieve sustained long-term growth and there is initial
evidence of hierarchy existing in OSS projects [26]. Given that hierarchy functions as a unifying
principle of two other important structures, communities and scale-freeness, it is imperative to
better understand the role hierarchy plays is OSS projects.

3 RESEARCH QUESTIONS
Before we describe our method, we discuss the research questions that motivated us to develop the
method in the first place.

RQ1: Are there patterns in terms of structure and evolution that exist in OSS projects
with respect to hierarchy?
Hierarchy and role stratification emerge in times of project growth and increased coordination
overhead [21, 45, 50], and organizational structure is closely related to project sustainability and
scalability [51]. As a consequence, the fundamental organizing principles at play must evolve
throughout the project life cycle. It remains an open question, however, whether hierarchical,
non-hierarchical, and hybrid structures are a pervasive phenomenon governing organization in
OSS projects and at which points in the project lifecycle these structures exist. Answering RQ1
sheds light on hierarchy and hybrid structure as a global network property that co-evolves with the
different project phases and growth regimes. Since each type of organizational structure exhibits
certain strengths and weaknesses, by knowing what organizational structures exist and when, we
would be able to asses whether the observed structures make appropriate accommodations to the
current project conditions.

RQ2: How does an individual developer’s position in the hierarchy change over time?
While the perspective of RQ1 is rather global, we now peer through the lens of individual devel-
opers to understand their personal journey through the organizational structure. Similar to the
organizational structure of a project, the roles of developers evolve along with their activity in
the project [52]. Understanding the social dynamics in OSS projects requires understanding the
relationship between on-boarding of developers and their later roles [6, 54] and the determinants of
the chances to reach an influential position [10, 53]. In our study, we look for typical “trajectories”
of developers through a project’s hierarchy. Clearly, different roles imply different experience levels,
consistency of involvement, and level of commitment. Since certain organizational structures are
not well suited for high volatility (e.g., hierarchy), the inconsistent involvement exhibited by some
roles posses a risk, unless the roles are organized differently. By answering this question, we are
able to observe how large-scale and successful OSS projects integrate new developers and how
their progression is reflected in their structural position. This information is useful to identify
problematic on-boarding, off-boarding, and developmental progression practices occurring in a
project and apply corrective measures to ensure a higher probability of success.

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: October 2022.

Hierarchical and Hybrid Organizational Structures in Open-Source Software Projects: A Longitudinal Study 7

RQ3: How are a developer’s contacts distributed over the organizational structure of an
OSS project?
One way how network hierarchy can benefit project quality and success is through improved
communication and information flow. Consequently, it is important to understandwho a developer’s
social contacts and cooperation partners are. Canfora et al. [6] investigated who is responsible for
on-boarding new community members in OSS projects. They found that whether a developer’s
first contact is an isolated or a well-integrated community member has an important influence
on information flow and knowledge sharing. Afsar and Badir [1] and Zhou and Mockus [55]
provide more evidence for knowledge sharing of colleagues and especially newcomers during
their on-boarding phase. Steinmacher et al. [42] analyze the extent to which social contacts into
the group of an OSS community’s core developers simplify on-boarding into new projects. We
expect that developers who communicate early with other developers from the top of the hierarchy
will eventually rise in the hierarchy, which we will verify by tracking their positions in the
hierarchy over time.

RQ4: How do tenure and programming activity of developers affect their position in the
project’s organizational structure?
Since different positions in the organizational structure enable different functions, in a healthy
project, the position a developer has should ideally support the developer’s role and should not
expose the project to unnecessary risk. In OSS projects, important developers are often responsible
for both, coordination and the bulk of the programming work [12, 40, 50]. By analyzing e-mail
data and data from issue trackers in combination with commit data, we are able to investigate
the relationship of coordination and programming tasks with respect to a developer’s position
in the hierarchical structure of the project. The entire process usually takes time: Developers
become core developers and project leaders only with sufficient experience in the project [2, 54].
In combination, these aspects may explain why tenure has only a weak relation to the number
of code contributions: The number of code contributions increases only in the starting phase of
a project and caps after around three years [52]. It is beneficial to understand the relationship
between function and structural position in large-scale OSS projects, because it helps us to establish
practices that are conducive to successful outcomes. For example, if developers with primarily
coordination tasks are positioned outside of the hierarchy, that could be an indication that there is
a mismatch between the function and structural position. In that case, policies and practices should
be revised to induce a healthier project structure.

4 METHOD
We now introduce the details for constructing developer networks and the corresponding statistical
methods used to identify the hierarchical and non-hierarchical developer portions.

4.1 Data Extraction & Construction of Developer Networks
To create developer networks from OSS projects, we extract link structure based on e-mail commu-
nication on the developer mailing list of the project or based on issue discussions on issue trackers
corresponding to the project. We downloaded developer mailing lists from the mailing list archive
Gmane1 and retrieved GitHub issue discussions from GitHub’s REST API2 for issue comments,

1http://gmane.org/
2https://docs.github.com/en/rest/

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: October 2022.

http://gmane.org/
https://docs.github.com/en/rest/

8 Mitchell Joblin, Barbara Eckl-Ganser, Thomas Bock, Angelika Schmid, Janet Siegmund, and Sven Apel

review comments, and pull-request comments.3 For the extraction of background information
about developers and their commits in an OSS project, we use Codeface4, which includes, beside
mining of software repositories and mailing lists, entity matching between the developers in the
version control system and the senders and receivers of e-mails or issue discussions.

The developer networks contain only a single node type, denoting a developer, and a single link
type, denoting a communication activity, that is, e-mail communication for mail networks and issue
communication for issue networks. We define a link to exist between a pair of developers when
both have contributed, at least, one e-mail to a common e-mail thread on the mailing list or made a
comment 5 to, at least, one common issue. E-mails relating to a common thread can be trivially
grouped on the basis of a unique thread identifier, issue comments are automatically related to an
issue when extracting them from GitHub’s API. Links are undirected and have no weight attribute.
Note that the hierarchy measure that we use is defined on undirected networks [39]. To build and
analyze the developer networks, we use the library coronet6 [23].

We capture the temporal dimension of the project history by applying a sliding window approach
to produce a sequence of networks [26]. This means, the communication activity used to construct
a developer network spans a time range of six months and the sliding windows overlap by 50% (i.e.,
an overlap of three months) to allow for smooth transitions between adjacent windows. This choice
balances between fluctuation and noise in short time ranges (prohibiting us from observing any
non-spurious patterns, plus randomly losing communication activity that happens across time
range borders) and losing detail in long ranges due to aggregation [31].

4.2 Typical Structure and Evolution (RQ1)
For each network, we visualize, per analyzed time range, the hierarchical position of all developers
in one plot, as shown in Fig. 4. The plot shows the values :8 (G axis, logarithmic scale) and 28 (~ axis,
logarithmic scale) for every developer 8 for one time range. The right side of the dashed line shows
the relationship between 28 and :8 that is typical for a hierarchical network: a linear relationship
with negative slope [39]. To the left of the dashed line, the relationship appears fundamentally
different in that there is certainly no linear relationship and even appears to be no relationship. The
absence of a linear relationship with a negative slope indicates that hierarchical organization is not
present and is consistent with the random graph introduced in Fig. 3. Determining the hierarchical
and non-hierarchical parts corresponds to identifying a breakpoint between the linearly related
segment and remaining unrelated segment (i.e., identifying an optimal position for the dotted line
in Fig. 4). Fig. 5 illustrates the decision space for this problem, where each vertical line corresponds
to a candidate breakpoint. Our method for automating the identification of this breakpoint relies on
a mixed approach of human labeling and combinatorial optimization. The human labeling is used
to learn rules for trimming the candidate space, making the combinatorial optimization procedure
more efficient. As a secondary use of the human labeled data, we test how well our automated
method generalizes to decisions made by human annotators that were not used to find parameters
for the method.

3As previous research has shown that GitHub issue data could be distorted by bots that automatically comment on issues
but are not human beings [16, 48], we used the tool BoDeGHa [15] to remove comments created by bots from the issue
discussions.
4https://github.com/se-sic/codeface/
5We also treat the initial comment authored by the issue creator as a comment, as well as pull-request review comments
and all their replies.
6https://github.com/se-sic/coronet/

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: October 2022.

https://github.com/se-sic/codeface/
https://github.com/se-sic/coronet/

Hierarchical and Hybrid Organizational Structures in Open-Source Software Projects: A Longitudinal Study 9

−2.0

−1.0

0.0

1.0 2.0 3.0 4.0 5.0

lo
g

cl
us

te
r c

oe
ffi

ci
en

t

Hierarchical PartNon-Hierarchical Part

(A) Percentage of Nodes

(C) Variance

(B) Angle

log degree

Fig. 4. The plot shows the node degree and clustering coefficient of all developers who were active in this
time range. Each dot represents one developer. There is a division into a hierarchical and a non-hierarchical
part (dashed line). We mark variance (C), angle (B), and percentage of nodes in the hierarchical part (A).

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●●●

●

● ● ●●●●

●

● ●●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●● ●

●

●

●

● ●●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●●

●

●● ●●●●

●

●

●

●●

●

●● ●●● ●●● ●

●

●● ●●●●

●

●

●

1234567891011121314151617181920

−2.0

−1.5

−1.0

−0.5

0.0

1 2 3 4 5
log node degree

lo
g

cl
us

te
r c

oe
ffi

ci
en

t

Fig. 5. The figure shows the hierarchy of one time slot of LLVM (2008-06 to 2008-12). Each vertical line denotes
one possible split into a hierarchical part and a non-hierarchical part.

4.2.1 Manual Data Labeling. We used human annotation to obtain labels for 289 randomly selected
developer networks from a subset of our subject projects (see Sec. 5.1). In this case, a labeled data
point corresponds to a network and the position of a breakpoint for decomposing the network into
hierarchical and non-hierarchical parts. The division into a hierarchical and non-hierarchical part
was done in a consensus vote based on visual inspection by three of the authors, no specialized
domain knowledge was required for this task. As no bias should be introduced into this judgement,
no information on the project and its members was used during the process.

To perform this labeling task, human annotators were shown a figure with 20 candidate break-
points (see Fig. 5) and asked to select one. We formed candidate groups by dividing the range of node
degrees into 20 buckets (intervals) of equal length 11 ..120. This choice provided a reasonable com-
promise between granularity and computational cost. The first candidate group for the hierarchical
part contained the developers in the bucket with the highest node degrees (11), with a minimum
of two developers. The second candidate group contained developers of the two buckets with the
highest node degrees (11 ∪ 12), and the developers of the remaining 18 buckets (

⋃
8=3..20 18) for the

non-hierarchical part. This continued until all developers are included in the candidate group for
the hierarchical part, resulting in 20 candidate groups in total. The annotation instructions indicated
that the breakpoint should be chosen such that points to the right exhibit a linear relationship with
a negative slope and points to the left do not. Each network to be labeled was shown to multiple
annotators and an average was taken to reduce error. For the example in Fig. 5, the annotators
chose the buckets 110, 111, and 113.

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: October 2022.

10 Mitchell Joblin, Barbara Eckl-Ganser, Thomas Bock, Angelika Schmid, Janet Siegmund, and Sven Apel

We used 80% (231) of the labeled examples for fitting parameters in our automated method,
described in detail below. The remaining 20% (58) of the labeled examples were used to test the
agreement between our automated method and human annotators on networks not used during
parameter fitting. The results indicate that the automated method and human annotation differ on
average by 10% (i.e., an error of two buckets). For the example in Fig. 5, our automated method
(which we describe in what follows) selects 113.

4.2.2 Combinatorial Optimization. The following describes our automated method for determining
the hierarchical and non-hierarchical parts.

Step 1 (Compute metrics of the candidate groups). To choose the optimal split of the developers
into a hierarchical and a non-hierarchical part, we start from 20 equally-sized candidate groups,
which was a reasonable compromise between granularity and computational cost for our data set.
Three metrics (also visualized in Fig. 4 as dashed line and arrows) for every candidate group served
as input to an optimization procedure:
(A) the percentage of nodes of the hierarchical part (perc);
(B) the angle between regression line (red solid line in Fig. 4) and G axis (angle);
(C) and the residual variance of the regression fit (var).
The percentage of developers in the hierarchical part (perc) is defined as the number of develop-
ers (black dots) to the right of the dashed line divided by the number of all developers in the plot (all
developers in the time range with two or more interactions). The solid line is the fitted regression
line from a least-squares single linear regression of the log clustering coefficient on the log node
degree. The angle between this line and the G axis (the bent arrow) is related to the hierarchical
part, such that a higher angle indicates a stronger hierarchical structure [26, 39]. If this angle is
zero, no hierarchy is present. The goal is to find the largest possible angle. We compute the residual
variance (var) for the hierarchical part of the candidate group as the average squared deviation
of the black dots right of the dashed line (illustrated by the double-sided arrows in Fig. 4). The
regression line should be as close to each black dot (developer) as possible. Thus, the variance
should be as low as possible. As result of Step 1, we know perc, angle, and var for each of the
20 candidate groups.

Step 2 (Apply thresholds to candidate groups). We aim at identifying the most suitable set of
developers comprising the hierarchical part. To this end, the decision on whether to keep a candidate
group or not is based on thresholds that we determined from the manual data labeling (as described
above in Sec. 4.2.1), which we have performed on a sample of our subject projects, to filter degenerate
cases (e.g., a large variance that blurs the hierarchical structure). Hence, based on all the selected
buckets that resulted from the manual data labeling, we computed the following thresholds, which
we now apply to all candidate groups:
(A) the hierarchical part must contain, at least, 5% of the developers (?4A2 > 5%);
(B) the angle between the G axis and the regression line must be, at least, 35◦ (0=6;4 > 35◦);
(C) and the residual variance of the regression fit must be smaller than 0.5 (E0A < 0.5).

All candidate groups that satisfy these three minimum requirements are the input for the third
step. Formally, we denote the set of remaining candidate groups for time range C ∈ 1..) as (C .

Step 3 (Selection of optimal candidate group). We select one of the candidate groups B ∈ (C per
time range that best describes the hierarchical and the (remaining) non-hierarchical part. To this
end, we compute (=

⋃
C ∈1..) (C , the union of the sets of candidate groups of all time ranges per

project. As the range of the three criteria varies from project to project, we first standardized the
values from Step 2 project-wise by subtracting the project-specific means of the criteria (Equ. (1))

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: October 2022.

Hierarchical and Hybrid Organizational Structures in Open-Source Software Projects: A Longitudinal Study 11

−1.0

−0.5

0.0

0.0 0.5 1.0
standardized degree

st
an

da
rd

iz
ed

 c
lu

st
er

 c
oe

ffi
ci

en
t

5
10
15
20

time steps

5

10

15
count

Fig. 6. The considered developer of the project Node.js (developer 874) starts in the non-hierarchical part
(dark blue triangle) with a low number of contacts and a high clustering coefficient. Later, the developer
moves to the hierarchical part, having many contacts and a low clustering coefficient, until the developer
leaves the project (light blue rectangle). The color of the big rectangles in the background denotes the count
of how many time ranges the developer has held a certain position; the darker the rectangle, the longer the
developer has held the position.

and by dividing by the standard deviation of the criteria, (Equ. (2)). If<B represents any of the
three measures for candidate group B ∈ (in time range C ∈ 1, . . . ,) , and # = |(| is the number of
all candidate groups for one project across all time ranges, the calculus is:

< =
1
#

·
(∑
B ∈ (

<B

)
(1)

B3 =

√√√
1

− 1
·
(∑
B ∈ (

(<B −<)2
)

(2)

<std
B =

<B −<

B3
. (3)

This results in a standardized percentage measure percstdB , angle anglestdB , and residual variance
varstdB . To solve the optimization problem of finding the best candidate group, we use the three
standardized measures. We aggregate them by computing a weighted sum, giving higher priority
(three times) to the percentage of developers in the hierarchical part. We determined this priority
based on the manual data labeling, which we have performed on a sample of our subject projects.
Then, one candidate B ∈ (C is selected per time range C ∈ 1..) , such that the weighted sum of the
three criteria is maximal:

argmaxB∈(C (3 · percstdB + anglestdB − varstdB) (4)

This way, our method favors high values for criteria (A) and (B), but penalizes high values for
criterion (C). This procedure results in one split per time range and project. Algorithm 1 summarizes
the described steps. More details and examples are available on the supplementary website.

4.3 Change of Position in Hierarchy (RQ2)
To address RQ2, we track how a developer’s position in the organizational structure changes over
time. For this purpose, we normalize the clustering coefficient and node degree to analyze the
position independent of the network size (i.e., number of developers) over the entire project history.

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: October 2022.

12 Mitchell Joblin, Barbara Eckl-Ganser, Thomas Bock, Angelika Schmid, Janet Siegmund, and Sven Apel

Algorithm 1: Divide developers into a hierarchical and a non-hierarchical part
Data: networks netC for each time range C ∈ 1..)
Result: developers BC of the hierarchical part
for C ∈ 1..) do

foreach developer 8 in netC do B compute basic statistics
:8 := node degree of 8
=8 := number of links between neighbors of 8
28 := 2 · =8/(:8 · (:8 − 1)) B clustering coefficient

end
divide range of log(:8) into 20 buckets 11 ..120
B := 11, (C := {B}
for I ∈ 2..20 do B compute candidate groups (C for hierarchy

B := B ∪ 1I , (C := (C ∪ {B}
end
for B ∈ (C do B Step 1

compute percB , angleB , and varB
if ¬(percB > 0.05 ∧ angleB > 35◦ ∧ varB < 0.5) then

(C := (C \ {B} B Step 2

end
end

end
(:=

⋃
C ∈1..) (C B Step 3

for B ∈ (do
compute standardized values varstdB , percstdB , anglestdB

end
for C ∈ 1..) do B selection of optimal candidate group BC

BC = argmaxB∈(C (3 · percstdB + anglestdB − varstdB)
end
return {BC | C ∈ 1..) }

The clustering coefficient ranges between [0, 1], so its log ranges from −∞ to 0. To track the position
of individual developers in the hierarchy, we compare their position across different networks.
To prevent distorting effects, we normalize the node degree and clustering coefficient across the
networks of the project’s history. We normalize the smallest clustering coefficient over a time range
and project to a value of −1, by dividing all log clustering coefficients by the absolute value of the
smallest log clustering coefficient. This way, the developer with the highest node degree and the
lowest clustering coefficient of a time range is always on the same position in the hierarchy plot,
irrespective of the network size. The closer the normalized clustering coefficient is to −1, the more
important is the respective developer’s role as hub. The log node degree is a positive number. We
normalize it to a value in [0, 1] by dividing all log node degrees by the highest log node degree in
the given time range. Thus, the developer with the highest node degree has a normalized degree of 1
(see Fig. 6).

We describe the developer’s change of position as changes in the developer’s normalized position
in the organizational structure. In Fig. 6, we show such a change with a trajectory and a heat map
for a developer of the project Node.js. The considered developer starts (dark blue triangle) with
a low node degree and a high clustering coefficient. Then, the developer’s node degree increases
while the clustering coefficient decreases (movement to the hierarchical part), until the developer
reaches a very high position (bottom right of the plot) in the project community, which is stable

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: October 2022.

Hierarchical and Hybrid Organizational Structures in Open-Source Software Projects: A Longitudinal Study 13

t= 1 t=2 time

high degree,
high cluster
coefficient

high degree,
low cluster
coefficient

Core Developer Core Dev.'s neighbor Other Developer

Fig. 7. Neighborhood of a selected developer (blue node) and corresponding neighbors (grey nodes) at two
different time ranges.

for several time ranges. Thus, the developer has acquired many neighbors who do not interact a lot
with each other, until the developer leaves the project (light blue rectangle).

We restrict our analysis to the 10 most active developers per project, as understanding the typical
contribution and activity cycle of them allows us to analyze the on- and off-boarding process of
socially active developers. To detect the 10 most active developers, we compute the total number of
interaction partners per developer over the project history. To achieve a more complete perspective,
we also select 10 developers randomly and analyze their changes of position. In addition, we also
provide descriptive statistics for the selected developers (number of commits, number of e-mails
or issue comments, respectively, the number of active time periods and how many of these time
periods the developer was part of the hierarchical part), to give an impression of their activity.

4.4 Developers’ Neighborhood (RQ3)
For RQ3, we extract the direct neighbors (i.e., first-order neighborhood) of the developers selected
in RQ2 and analyze the distribution of the neighbors regarding their position in the hierarchical
or non-hierarchical part. Since the networks evolve with time, each neighborhood set is indexed
by time as well (see Fig. 7). Based on how the networks are constructed, a neighbor is a developer
who participated in, at least, one common communication activity (e-mail thread for mail networks
or issue discussion for issue networks, respectively) within the six-months period on which the
network has been constructed.

4.5 Tenure and Programming Activity (RQ4)
To answer RQ4, we compute tenure as the time between the first communication activity of a
developer and the end date of the current time range for all developers. The end date of the
time range represents the passed time for all developers, including the new developers in this
time range. We compute the number of files edited by each developer within a time range and
represent the results with scatter plots; we extract the number of edited files per developers from
the version control system of the projects. For both, tenure and programming activity, we compare
the developers of within and outside the hierarchy, globally as well as their trends over time.
We use a one-tailed, unpaired Mann-Whitney U test for the global comparisons and report the
corresponding ? values as well as Cliff’s Delta 3 , which quantifies the effect size corresponding to
the statistical test.

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: October 2022.

14 Mitchell Joblin, Barbara Eckl-Ganser, Thomas Bock, Angelika Schmid, Janet Siegmund, and Sven Apel

Table 1. Overview of subject projects

Project Date1 # Global2 # Max2 # Min2 # First2 # Last2 kLOC3 Project Domain

Django 2005–2017 4 458 601 139 174 139 657 Web application framework
FFmpeg 2002–2017 5 668 531 213 213 285 1 431 Video/audio conversion
GCC 2000–2018 9 086 1 295 2 2 262 10 988 C compiler suite
git 2004–2017 9 151 951 2 2 579 742 Version control
LLVM 2002–2017 6 230 982 2 27 2 2 883 Compiler framework
ownCloud 2009–2018 1 487 389 26 26 30 588 File hosting
QEMU 2003–2016 7 131 781 38 38 551 1 430 Visualization software
Qt 2008–2018 1 312 358 3 11 145 7 461 GUI toolkit
U-Boot 2000–2017 7 684 735 9 9 449 1 942 Boot loader
Wine 2002–2017 3 436 424 12 298 12 4 864 Compatibility layer

Angular 2014–2020 22 304 4 248 5 5 2 177 1 050 Web development platform
Atom 2012–2020 20 646 3 655 8 8 626 242 Text editor
Bootstrap 2011–2021 23 602 3 413 631 1 782 631 132 Web front-end framework
Electron 2013–2020 15 017 2 139 15 15 1 622 225 Application framework
Flutter 2015–2020 33 800 11 493 27 27 10 325 1 145 UI development kit
Moby 2013–2020 27 777 4 691 386 386 1 151 1 636 Software containerization
Node.js 2014–2020 12 165 2 197 865 1 422 865 7 234 JavaScript runtime
React 2013–2020 15 220 2 062 135 135 958 402 JavaScript library
TypeScript 2014–2020 17 703 3 165 491 491 2 573 3 350 JavaScript language
webpack 2012–2020 12 324 2 199 9 9 814 200 Bundler for modules
1 Date: time period of availability of mailing data (upper ten projects) and issue data (lower ten projects)
2 # Global: number of active developers; # Max, # Min: maximal and minimal number of active developers (incl.
developers with 1 or 0 contacts) in a time range; # First, # Last: number of active developers in first and last range

3 kLOC: number of lines of code (LOC) in thousands, including comments and blank lines

5 LONGITUDINAL STUDY
To answer our research questions, we conducted an exploratory, longitudinal study on 20 popular
and widely-used OSS projects.

5.1 Subject Projects
For our study, we selected 20 subject projects. Since OSS projects are of different age and use a wide
array of communication channels [43], we focus on projects that either use a mailing list or an issue
tracker as their main communication channel, from which we construct developer networks. Half
of our subject projects uses a mailing list as their main communication channel, and the other half
of them mainly uses GitHub issues; none of our subject projects uses both communication channels
simultaneously. Both kinds of communication channels that we investigate, developer mailing lists
and GitHub issues, are used for public, technical discussions among developers and for reviewing
code changes (in terms of patches on mailing lists, in terms of pull requests on GitHub issues).
Hence, both communication channels contain similar content and are used for similar purposes,
which is why only either of the channels is used in each of our subject projects.

We cover projects from various domains (including compilers and virtualization software),
programming languages (e.g., C, Python, JavaScript), and sizes (from 132 kLOC to 10 988 kLOC;
see Table 1). To reduce bias due to noisy and incorrect data, we limited our selection of projects:
For projects with publicly accessible mailing lists, we only select projects that have already been
studied in the related literature [5, 25–27]. For the selection of projects that use the GitHub issue
tracker, we considered the list of most starred GitHub projects in 2020.7

7https://www.attosol.com/top-50-projects-on-github-2020/

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: October 2022.

https://www.attosol.com/top-50-projects-on-github-2020/

Hierarchical and Hybrid Organizational Structures in Open-Source Software Projects: A Longitudinal Study 15

0

500

1000

0 20 40 60
time steps

nu
m

be
r

of
 d

ev
el

op
er

s

0%

25%

50%

75%

100%

0 20 40 60
time steps

pe
rc

en
t b

y
nu

m
be

r
of

 c
on

ta
ct

s

Perc. 0 contacts Perc. 1 contact Perc. >1 contact

0%

25%

50%

75%

100%

20 40 60
time steps

 mean:0.15, median:0.16

po
rt

io
n

of
 d

ev
el

op
er

s
in

 h
ie

ra
rc

hy

Fig. 8. Project GCC shows a typical evolution pattern: The number of developers increases, and after a certain
period of time, the number decreases (left). The fraction of developers with no, one, or more than one contacts
becomes stable (middle). The fraction of developers in the hierarchical part slowly increases (right).

5.2 Results
In this section, we summarize and discuss the most important results and observations of our study,
and we derive a number of hypotheses to guide further work. As we generated a large amount
of data, we present only selected cases and representative figures here (e.g., we use only results
from the 6-month time ranges since they are most illustrative). The remaining data are available
on the paper’s supplementary website (SW). In what follows, we include links to the plots on the
supplementary website in braces after the project’s name. For example, (GiF) links to the plot of the
programmer activity’s analysis for project git of the form [abbreviation for project, (number of
developer), abbreviation for analysis], directly leading to the specific plots.

Table 1 shows the maximum and minimum number of developers, as well as the number of
developers at a project’s start and end times. In all projects, the number of developers increases,
reaches a peak, and then decreases. An exception is project Wine (WiA). There, we observe only
a decrease. The typical behavior happens in four patterns: (1) a slow and steady increase is fol-
lowed by a short decrease (Electron (EA), LLVM (LA), QEMU (QeA), and React (RA)); (2) a steeper
increase is followed by a slower and smooth decrease (with possible bumps), for Angular (AnA),
Atom (AtA), Django (DA), GCC (GcA), Moby (MA), Node.js (NA), ownCloud (OA), Qt (QtA), and web-
pack (WeA); (3) increase, decrease, increase: Bootstrap (BA), FFmpeg (FfA), and git (GiA); (4) only
increase: Flutter (FlA), TypeScript (TA), and U-Boot (UA). An example for the most frequent pat-
tern (2) is GCC (Fig. 8 (left)).

5.2.1 Typical Structure and Evolution (RQ1).

Results. With an increasing number of developers, the proportion of developers in the hierarchi-
cal part decreases in most projects; and, with a decreasing number of developers, the proportion of
developers in the hierarchical part increases (Angular (AnA), Atom (AtA), Bootstrap (BA), Elec-
tron (EA), Flutter (FlA), GCC (GcA), git (GiA), LLVM (LA), Moby (MA), Node.js (NA), ownCloud (OA),
Qt (QtA), QEMU (QeA), React (RA), TypeScript (TA), U-Boot (UA), and webpack (WeA)). We illustrate
this in Fig. 8 (right) for GCC: The percentage of developers in the hierarchical part grows from 7%
to 25%, while the developers’ number falls from around 1 300 developers to around 260 developers.
For the projects FFmpeg (FfA) and Django (DA), the portion of the hierarchy and the number of
developers is independent of each other. The portion of hierarchy of Wine (WiA) is mainly stable,
but in the end, we find an increase of the portion.

Only in a low number of the analyzed time ranges, we do not find a hierarchical structure:
Angular (AnH) (range 1), Atom (AtH) (range 1), Flutter (FlH) (ranges 16 and 17), GCC (GcH) (ranges
1, 2, and 3), git (GiH) (ranges 1 and 2), ownCloud (OH) (range 31), Qt (QtH) (ranges 1–6), U-Boot (UH)
(range 1), webpack (WeH) (range 1), and Wine (WiH) (range 61). This mostly happens in the very

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: October 2022.

https://hierarchypaper.bitbucket.io/public/
https://hierarchypaper.bitbucket.io/public/m-projects/git/6months/mail/edited-files/git-mail-number-of-edited-files.pdf
https://hierarchypaper.bitbucket.io/public/m-projects/wine/6months/mail/aggregation-hierarchy-criteria/wine-mail-aggregation_criteria-weight3changedHierarchy.pdf
https://hierarchypaper.bitbucket.io/public/i-projects/electron/6months/issue/aggregation-hierarchy-criteria/electron-issue-aggregation_criteria-weight3changedHierarchy.pdf
https://hierarchypaper.bitbucket.io/public/m-projects/llvm/6months/mail/aggregation-hierarchy-criteria/llvm-mail-aggregation_criteria-weight3changedHierarchy.pdf
https://hierarchypaper.bitbucket.io/public/m-projects/qemu/6months/mail/aggregation-hierarchy-criteria/qemu-mail-aggregation_criteria-weight3changedHierarchy.pdf
https://hierarchypaper.bitbucket.io/public/i-projects/react/6months/issue/aggregation-hierarchy-criteria/react-issue-aggregation_criteria-weight3changedHierarchy.pdf
https://hierarchypaper.bitbucket.io/public/i-projects/angular/6months/issue/aggregation-hierarchy-criteria/angular-issue-aggregation_criteria-weight3changedHierarchy.pdf
https://hierarchypaper.bitbucket.io/public/i-projects/atom/6months/issue/aggregation-hierarchy-criteria/atom-issue-aggregation_criteria-weight3changedHierarchy.pdf
https://hierarchypaper.bitbucket.io/public/m-projects/django/6months/mail/aggregation-hierarchy-criteria/django-mail-aggregation_criteria-weight3changedHierarchy.pdf
https://hierarchypaper.bitbucket.io/public/m-projects/gcc/6months/mail/aggregation-hierarchy-criteria/gcc-mail-aggregation_criteria-weight3changedHierarchy.pdf
https://hierarchypaper.bitbucket.io/public/i-projects/moby/6months/issue/aggregation-hierarchy-criteria/moby-issue-aggregation_criteria-weight3changedHierarchy.pdf
https://hierarchypaper.bitbucket.io/public/i-projects/nodejs/6months/issue/aggregation-hierarchy-criteria/nodejs-issue-aggregation_criteria-weight3changedHierarchy.pdf
https://hierarchypaper.bitbucket.io/public/m-projects/owncloud/6months/mail/aggregation-hierarchy-criteria/owncloud-mail-aggregation_criteria-weight3changedHierarchy.pdf
https://hierarchypaper.bitbucket.io/public/m-projects/qt/6months/mail/aggregation-hierarchy-criteria/qt-mail-aggregation_criteria-weight3changedHierarchy.pdf
https://hierarchypaper.bitbucket.io/public/i-projects/webpack/6months/issue/aggregation-hierarchy-criteria/webpack-issue-aggregation_criteria-weight3changedHierarchy.pdf
https://hierarchypaper.bitbucket.io/public/i-projects/bootstrap/6months/issue/aggregation-hierarchy-criteria/bootstrap-issue-aggregation_criteria-weight3changedHierarchy.pdf
https://hierarchypaper.bitbucket.io/public/m-projects/ffmpeg/6months/mail/aggregation-hierarchy-criteria/ffmpeg-mail-aggregation_criteria-weight3changedHierarchy.pdf
https://hierarchypaper.bitbucket.io/public/m-projects/git/6months/mail/aggregation-hierarchy-criteria/git-mail-aggregation_criteria-weight3changedHierarchy.pdf
https://hierarchypaper.bitbucket.io/public/i-projects/flutter/6months/issue/aggregation-hierarchy-criteria/flutter-issue-aggregation_criteria-weight3changedHierarchy.pdf
https://hierarchypaper.bitbucket.io/public/i-projects/typescript/6months/issue/aggregation-hierarchy-criteria/typescript-issue-aggregation_criteria-weight3changedHierarchy.pdf
https://hierarchypaper.bitbucket.io/public/m-projects/uboot/6months/mail/aggregation-hierarchy-criteria/uboot-mail-aggregation_criteria-weight3changedHierarchy.pdf
https://hierarchypaper.bitbucket.io/public/i-projects/angular/6months/issue/aggregation-hierarchy-criteria/angular-issue-aggregation_criteria-weight3changedHierarchy.pdf
https://hierarchypaper.bitbucket.io/public/i-projects/atom/6months/issue/aggregation-hierarchy-criteria/atom-issue-aggregation_criteria-weight3changedHierarchy.pdf
https://hierarchypaper.bitbucket.io/public/i-projects/bootstrap/6months/issue/aggregation-hierarchy-criteria/bootstrap-issue-aggregation_criteria-weight3changedHierarchy.pdf
https://hierarchypaper.bitbucket.io/public/i-projects/electron/6months/issue/aggregation-hierarchy-criteria/electron-issue-aggregation_criteria-weight3changedHierarchy.pdf
https://hierarchypaper.bitbucket.io/public/i-projects/flutter/6months/issue/aggregation-hierarchy-criteria/flutter-issue-aggregation_criteria-weight3changedHierarchy.pdf
https://hierarchypaper.bitbucket.io/public/m-projects/gcc/6months/mail/aggregation-hierarchy-criteria/gcc-mail-aggregation_criteria-weight3changedHierarchy.pdf
https://hierarchypaper.bitbucket.io/public/m-projects/git/6months/mail/aggregation-hierarchy-criteria/git-mail-aggregation_criteria-weight3changedHierarchy.pdf
https://hierarchypaper.bitbucket.io/public/m-projects/llvm/6months/mail/aggregation-hierarchy-criteria/llvm-mail-aggregation_criteria-weight3changedHierarchy.pdf
https://hierarchypaper.bitbucket.io/public/i-projects/moby/6months/issue/aggregation-hierarchy-criteria/moby-issue-aggregation_criteria-weight3changedHierarchy.pdf
https://hierarchypaper.bitbucket.io/public/i-projects/nodejs/6months/issue/aggregation-hierarchy-criteria/nodejs-issue-aggregation_criteria-weight3changedHierarchy.pdf
https://hierarchypaper.bitbucket.io/public/m-projects/owncloud/6months/mail/aggregation-hierarchy-criteria/owncloud-mail-aggregation_criteria-weight3changedHierarchy.pdf
https://hierarchypaper.bitbucket.io/public/m-projects/qt/6months/mail/aggregation-hierarchy-criteria/qt-mail-aggregation_criteria-weight3changedHierarchy.pdf
https://hierarchypaper.bitbucket.io/public/m-projects/qemu/6months/mail/aggregation-hierarchy-criteria/qemu-mail-aggregation_criteria-weight3changedHierarchy.pdf
https://hierarchypaper.bitbucket.io/public/i-projects/react/6months/issue/aggregation-hierarchy-criteria/react-issue-aggregation_criteria-weight3changedHierarchy.pdf
https://hierarchypaper.bitbucket.io/public/i-projects/typescript/6months/issue/aggregation-hierarchy-criteria/typescript-issue-aggregation_criteria-weight3changedHierarchy.pdf
https://hierarchypaper.bitbucket.io/public/m-projects/uboot/6months/mail/aggregation-hierarchy-criteria/uboot-mail-aggregation_criteria-weight3changedHierarchy.pdf
https://hierarchypaper.bitbucket.io/public/i-projects/webpack/6months/issue/aggregation-hierarchy-criteria/webpack-issue-aggregation_criteria-weight3changedHierarchy.pdf
https://hierarchypaper.bitbucket.io/public/m-projects/ffmpeg/6months/mail/aggregation-hierarchy-criteria/ffmpeg-mail-aggregation_criteria-weight3changedHierarchy.pdf
https://hierarchypaper.bitbucket.io/public/m-projects/django/6months/mail/aggregation-hierarchy-criteria/django-mail-aggregation_criteria-weight3changedHierarchy.pdf
https://hierarchypaper.bitbucket.io/public/m-projects/wine/6months/mail/aggregation-hierarchy-criteria/wine-mail-aggregation_criteria-weight3changedHierarchy.pdf
https://hierarchypaper.bitbucket.io/public/i-projects/angular/6months/issue/hierarchical-structure/angular-issue-selected_hierarchical-structure-weight3-changedHierarchy.pdf
https://hierarchypaper.bitbucket.io/public/i-projects/atom/6months/issue/hierarchical-structure/atom-issue-selected_hierarchical-structure-weight3-changedHierarchy.pdf
https://hierarchypaper.bitbucket.io/public/i-projects/flutter/6months/issue/hierarchical-structure/flutter-issue-selected_hierarchical-structure-weight3-changedHierarchy.pdf
https://hierarchypaper.bitbucket.io/public/m-projects/gcc/6months/mail/hierarchical-structure/gcc-mail-selected_hierarchical-structure-weight3-changedHierarchy.pdf
https://hierarchypaper.bitbucket.io/public/m-projects/git/6months/mail/hierarchical-structure/git-mail-selected_hierarchical-structure-weight3-changedHierarchy.pdf
https://hierarchypaper.bitbucket.io/public/m-projects/owncloud/6months/mail/hierarchical-structure/owncloud-mail-selected_hierarchical-structure-weight3-changedHierarchy.pdf
https://hierarchypaper.bitbucket.io/public/m-projects/qt/6months/mail/hierarchical-structure/qt-mail-selected_hierarchical-structure-weight3-changedHierarchy.pdf
https://hierarchypaper.bitbucket.io/public/m-projects/uboot/6months/mail/hierarchical-structure/uboot-mail-selected_hierarchical-structure-weight3-changedHierarchy.pdf
https://hierarchypaper.bitbucket.io/public/i-projects/webpack/6months/issue/hierarchical-structure/webpack-issue-selected_hierarchical-structure-weight3-changedHierarchy.pdf
https://hierarchypaper.bitbucket.io/public/m-projects/wine/6months/mail/hierarchical-structure/wine-mail-selected_hierarchical-structure-weight3-changedHierarchy.pdf

16 Mitchell Joblin, Barbara Eckl-Ganser, Thomas Bock, Angelika Schmid, Janet Siegmund, and Sven Apel

11

−4.0

−3.0

−2.0

−1.0

0.0

2.0 4.0 6.0
log degree

 0 contacts: 7.3 %, 1 contact: 22.4 %, >1 contact: 70.4 %

lo
g

cl
us

te
r

co
ef

fic
ie

nt

25: 2020−01−18 to 2020−07−19

Fig. 9. Hierarchical structure of the 25th analyzed 6-month time range of project Angular: The plot shows,
on a logarithmic scale, the node degree and clustering coefficient of all developers who participated in the
issue discussions of this time range. We identified a hierarchical structure (to the right of the dashed line).

first time ranges of a project, where only very few developers are communicating yet, ending up in
a loosely connected network where most developers have less than three connections to others.

Nonetheless, for almost all ranges of the above stated projects and all ranges for the projects
Bootstrap (BH), Django (DH), Electron (EH), FFmpeg (FfH), LLVM (LH), Moby (MH), Node.js (NH),
Qemu (QeH), React (RH), and TypeScript (TH), we are able to identify a hierarchical structure for all
analyzed time ranges. To provide an example, we show the hierarchical part of project Angular in
Fig. 9 (to the right of the dashed line). Over time, the residual variance of the regression fit and the
angle between regression line and G axis (see Sec. 4.2.2) stay relatively stable for each project.

Answering RQ1, we observe the presence of a hierarchical part for all analyzed projects. A per-
vasive phenomenon is that the proportion of developers in the hierarchy changes over time: At
the beginning, when projects have few developers, almost all developers tend to be positioned
within the hierarchical part; as the project matures and grows, the vast majority of developers
exist outside of a hierarchy (up to 90%). Thus, we see evidence of temporal patterns that indicate
a fundamental shift in the organizing principles at play in OSS projects. The fundamental shift is
from hierarchy as a global organizing principle at an early project stage to a local hierarchical
part with the vast majority not hierarchically organized in later project stages.

Discussion. As we were able to identify a hierarchical structure in almost all time ranges for all
subject projects, independent of the number of developers and independent of the communication
channel (issue tracker or mailing list), our method on decomposing developer networks into a
hierarchical and a non-hierarchical part is generalizable to projects of different sizes, different ages,
different domains, and different communication channels. Our findings support previous indications
that successful OSS projects develop a hybrid organizational structure composed of a hierarchical
and a non-hierarchical part, with most of the developers being part of the non-hierarchical part.

The presence of a hierarchical part tends to be unaffected by variations in the numbers of
developers of a project; variation tends to be limited to fluctuations in its relative size as the project
matures. Developers who enter or leave the hierarchical part change its composition. Despite this
developer turnover, the slow change in residual variance and in the angle between the regression
line (red solid line in Fig. 9) and the G-axis over time, as indicators for stable hierarchical structure,
suggests that the subject projects have a stable organizational structure. This finding is in line with
the hypothesis that the hierarchical part is principally responsible for coordination supporting
information exchange [25]. In this case, one would indeed expect that successful projects achieve
stable hierarchy, since large structural shifts disrupt coordination.

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: October 2022.

https://hierarchypaper.bitbucket.io/public/i-projects/bootstrap/6months/issue/hierarchical-structure/bootstrap-issue-selected_hierarchical-structure-weight3-changedHierarchy.pdf
https://hierarchypaper.bitbucket.io/public/m-projects/django/6months/mail/hierarchical-structure/django-mail-selected_hierarchical-structure-weight3-changedHierarchy.pdf
https://hierarchypaper.bitbucket.io/public/i-projects/electron/6months/issue/hierarchical-structure/electron-issue-selected_hierarchical-structure-weight3-changedHierarchy.pdf
https://hierarchypaper.bitbucket.io/public/m-projects/ffmpeg/6months/mail/hierarchical-structure/ffmpeg-mail-selected_hierarchical-structure-weight3-changedHierarchy.pdf
https://hierarchypaper.bitbucket.io/public/m-projects/llvm/6months/mail/hierarchical-structure/llvm-mail-selected_hierarchical-structure-weight3-changedHierarchy.pdf
https://hierarchypaper.bitbucket.io/public/i-projects/moby/6months/issue/hierarchical-structure/moby-issue-selected_hierarchical-structure-weight3-changedHierarchy.pdf
https://hierarchypaper.bitbucket.io/public/i-projects/nodejs/6months/issue/hierarchical-structure/nodejs-issue-selected_hierarchical-structure-weight3-changedHierarchy.pdf
https://hierarchypaper.bitbucket.io/public/m-projects/qemu/6months/mail/hierarchical-structure/qemu-mail-selected_hierarchical-structure-weight3-changedHierarchy.pdf
https://hierarchypaper.bitbucket.io/public/i-projects/react/6months/issue/hierarchical-structure/react-issue-selected_hierarchical-structure-weight3-changedHierarchy.pdf
https://hierarchypaper.bitbucket.io/public/i-projects/typescript/6months/issue/hierarchical-structure/typescript-issue-selected_hierarchical-structure-weight3-changedHierarchy.pdf

Hierarchical and Hybrid Organizational Structures in Open-Source Software Projects: A Longitudinal Study 17

5.2.2 Change of Position in Hierarchy (RQ2).

Results. In Fig. 10, we show how the position of an exemplary developer changes during the
evolution of project LLVM. The developer starts in the upper left of the plot, that is, at the bottom of
the hierarchy or already in the non-hierarchical part. Then, the clustering coefficient decreases as
the developer moves down in the plot towards the hierarchical part, where the developer stays for
around 12 time ranges. Then, the developer moves back to the non-hierarchical part and potentially
leaves the project (if this is not yet the end of our analyzed time period).

We find notable patterns of positional change, which we summarize in Table 2 for mail networks
and Table 3 for issue networks. In total, we analyze 200 developers per data source (i.e., 200 devel-
opers for issue networks and 200 developers for mail networks)—the 10 developers with maximum
node degree and 10 random developers per project as described in Sec. 4.3. We provide descriptive
statistics for both, the most active and the randomly selected developers, in Tables 6 and 7 in the
appendix. In general, the majority of the randomly selected developers contributed no commit to
the project and only few e-mails or issue comments, whereas the most active developers were not
only highly active in communicating, but were also highly active code contributors. (Project GCC
is an exception, where even none of the most active communicators contributed any commit to
the source code; we discuss this phenomenon further below in Sec. 5.2.4.) As expected, the most
active developers appear to be active in more time ranges than the randomly selected developers
do. In line with that, the most active developers are mostly part of the hierarchical part, whereas
the randomly selected developers are only rarely part of the hierarchical part.

Themail and issue networks exhibit largely similar movement patterns for the selected developers,
so we focus on the details of mail networks to summarize. The movement patterns describe different
starting points and directions of position changes in the organizational structure. The most frequent
pattern occurs in all projects: 40 out of 100 most active developers start at the non-hierarchical
part’s upper left region in the hierarchy plot, then move down to the upper levels of the hierarchical
part (lower right), to finally return to the non-hierarchical part again (pattern “down → up”). An
example of this pattern is developer 1610 of the project LLVM (Fig. 10). The two second most
frequent patterns (18 out of 100) describe developers who move from the non-hierarchical part to
the upper levels of the hierarchical part (that is, down to the right in the hierarchy plot, pattern
“down”) and developers moving in the opposite direction (18 out of 100), that is, they start in the
hierarchical part and then move to the non-hierarchical part (pattern “up”). The five remaining
patterns play only a secondary role and do not occur often. In the end, we find 11 developers over
all projects who have other (individual) movement patterns.

For the randomly selected developers, we find the same patterns, but with different frequencies.
Often, developers remain relatively constant in one area in the hierarchy (35 out of 99, pattern
“constant”) and they move only slightly. We find also that developers move horizontally (i.e., they
have more neighbors, but the connectivity between the neighbors stays constant, 18 out of 99,
“horizontal”) and remain active only for few time ranges.

For the issue networks, we end up in largely similar pattern occurrences, but we get much more
occurrences of pattern “constant” for the randomly selected developers (68 out of 100) than we do
for the randomly selected developers from the mail networks (35 out of 99).

Answering RQ2, we observed patterns of transitions regarding developers’ trajectory through
positions in the organizational structure. In the two most frequent patterns, developers move
from the non-hierarchical to the hierarchical part. In one, they move back and in the other, they
stay. Other transitions tend to be rare.

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: October 2022.

18 Mitchell Joblin, Barbara Eckl-Ganser, Thomas Bock, Angelika Schmid, Janet Siegmund, and Sven Apel

−1.0

−0.5

0.0

0.0 0.5 1.0
standardized degree

st
an

da
rd

iz
ed

 c
lu

st
er

 c
oe

ffi
ci

en
t

3
6
9
12

count

20
40
60

time steps

Fig. 10. The considered developer of the project LLVM (developer 1610) starts with a low number of contacts
and a high clustering coefficient in the non-hierarchical part (dark blue triangle). The developer has many
contacts in the middle of the project’s analyzed time ranges, then they move to back to the non-hierarchical
part, until they leave the project (light blue rectangle). Hence, the corresponding movement pattern for this
developer is “down → up”. The color of the big rectangles in the background denotes the count of how many
time ranges the developer has held a certain position; the darker the rectangle, the longer the developer has
held the position.

Table 2. Frequency of directions of positional change in the hierarchy for the 10 most active/10 randomly
selected developers for mail networks.

Movement Pattern Django FFmpeg GCC git LLVM ownCloud1 QEMU Qt U-Boot Wine
∑ ∑

all devs

down → up 5/1 4/– 2/– 4/1 6/2 7/1 6/2 –/4 3/3 3/3 40/17 57
constant –/5 1/3 –/5 1/2 –/4 –/– –/6 2/3 –/5 1/2 5/35 40
down 2/1 1/– 1/– 2/– 2/1 1/3 3/– 1/– 5/– –/1 18/6 24
up 1/– 3/– 1/– 1/– –/– 1/2 1/– 6/1 1/– 3/2 18/5 23
horizontal –/– –/5 –/1 –/5 –/1 –/1 –/2 –/1 –/2 –/– –/18 18
down → up → down 2/– –/– 1/– 2/1 1/– 1/– –/– –/– –/– –/– 7/1 8
up → down –/1 –/– 1/1 –/1 –/– –/– –/– –/– –/– –/– 1/3 4
up → down → up –/1 –/– –/– –/– –/– –/1 –/– –/– –/– –/– 2/– 2
other –/1 1/2 4/3 –/– 1/2 –/1 –/– 1/1 1/– 3/2 11/12 23

1 There are only nine random selected developers in ownCloud.

Table 3. Frequency of directions of positional change in the hierarchy for the 10 most active/10 randomly
selected developers for issue networks.

Movement Pattern Angular Atom Bootstrap Electron Flutter Moby Node.js React TypeScript webpack
∑ ∑

all devs

down → up 2/1 7/– 4/– 4/– 1/– 7/– 3/– 4/1 3/– 6/– 41/2 43
constant –/6 –/9 1/6 –/7 1/7 –/7 1/4 –/7 4/7 1/8 8/68 76
down 3/1 –/– 2/– 5/– 7/– 2/– 4/– 3/– 1/– 1/– 28/1 29
up –/– 1/– 2/– –/– –/– 1/– 2/– 2/– –/1 –/– 8/1 9
horizontal –/1 –/1 –/3 –/2 –/2 –/2 –/3 –/2 –/2 –/– –/18 18
down → up → down –/– –/– –/– –/– –/– –/– –/– –/– –/– –/– –/– –
up → down –/– –/– –/– 1/– –/– –/– –/– –/– –/– –/– 1/– 1
up → down → up –/– –/– 1/– –/– 1/– –/– –/– –/– –/– –/– 2/– 2
other 5/1 2/– –/1 –/1 –/1 –/1 –/3 1/– 2/– 2/2 12/10 22

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: October 2022.

Hierarchical and Hybrid Organizational Structures in Open-Source Software Projects: A Longitudinal Study 19

Discussion. The high number of occurrences for pattern “constant” for the randomly selected
developers in the issue networks might be caused by the much higher number of project “users”
participating in issue discussions only for a short time period, compared to the mail networks
(see Table 1). When neglecting the pattern “constant” for the randomly chosen developers in issue
networks, the most frequent pattern among all developers (most active and randomly chosen
developers) is that developers enter the project with only few contacts (pattern “down→ up”). Over
time, the number of interaction partners rises and the developer climbs the project’s hierarchy.
This may be indicative of their role changing and gaining coordination responsibilities. Then, the
number of interactions decreases again and the developer returns to a small number of contacts.
The second most frequent pattern is similar to the first in that non-hierarchical developers move to
the hierarchical structure’s upper regions—however, either they stay or we run out of data before
we see them leaving (pattern “down”). This might be caused by the much higher number of project
“users” participating in issue discussions only for a short time period (see Table 1).

Developers starting in the hierarchical part and moving to the non-hierarchical part are often
founders or leaders of the project, who then stopped contributing. We confirmed this for each
project that had mailing lists by consulting its website (e.g., for git, Linus Torvalds is listed as
founder; over time, he moved to the non-hierarchical part).

Hypothesis 1: Developers who move up in the hierarchy tend to take more coordination tasks.

5.2.3 Developers’ Neighborhood (RQ3).

Results. We illustrate an example in Fig. 11 and summarize the results for all projects in Table 4
for mail networks and Table 5 for issue networks. First, we explore the most active developers
in a project who have a static neighborhood. These developers interact during their entire life
cycle with developers of the hierarchical part (2 out of 100 developers in mail networks, pattern
“Hierarchical part”) or both (61 out of 100 in mail networks, pattern “Both”). Second, the most active
developers’ neighborhood may change, too, which happens in two ways: Either a developer starts
their career with contacts mainly from the hierarchical part, and then they interact with developers
from both parts (17 out of 100 in mail networks, pattern “Hierarchical part → both”), or they start
with contacts from both parts and then restrict their interaction to developers of the hierarchical
part (19 out of 100 in mail networks, pattern “Both → hierarchical part”). Issue networks exhibit
similar patterns as described for mail networks.

We also evaluate the neighborhood of randomly selected developers. Their neighborhoods
are more stable. Those developers interact during their entire life cycle with developers of the
hierarchical part (47 out of 99 in mail networks, pattern “Hierarchical part”) or both parts (34 out
of 99 in mail networks, pattern “Both”). Only 18 out of 99 randomly selected developers in mail
networks have a dynamic neighborhood. For issue networks, similarly, only 10 out of 100 randomly
selected developers have a dynamic neighborhood.

Answering RQ3, the 10 most active developers interact (via e-mails or issues) with developers
of the hierarchical part and sometimes, additionally, with developers of the non-hierarchical
part, but rarely exclusively with developers of the non-hierarchical part. This also holds for the
randomly selected developers, who mostly interact with developers of only the hierarchical part.

Discussion. If a project is assumed to have proficient leadership (which cannot be guaranteed for
every project), then it is not unexpected that randomly selected developers of the non-hierarchical
part mostly interact with developers of the hierarchical part or both groups, but not solely with
developers of the non-hierarchical part: In any discussion, a developer of the hierarchical part

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: October 2022.

20 Mitchell Joblin, Barbara Eckl-Ganser, Thomas Bock, Angelika Schmid, Janet Siegmund, and Sven Apel

0%

25%

50%

75%

100%

0 20 40 60
time steps

Perc. in hierachy Perc. not in hierarchy

Fig. 11. Neighborhood of a developer (developer 7507) of the project U-Boot over time. That is, the percentage
of the developer’s contacts that are from the hierarchical (light blue) or from the non-hierarchical part (dark
blue) at the respective time range.

Table 4. Frequency of position of neighborhood contacts in the hierarchy for each subject project for mail
networks for 10 most active/10 randomly selected developers.

Neighborhood Pattern Django FFmpeg GCC git LLVM ownCloud QEMU Qt U-Boot Wine
∑ ∑

all devs

Both (static) 5/2 6/4 5/3 5/4 7/5 6/3 4/3 9/3 5/3 9/4 61/34 95
Hierarchy (static) –/8 –/4 1/6 –/5 –/3 –/4 –/3 1/4 –/6 –/4 2/47 49

Both → hierarchy (dynamic) 4/– 2/1 3/1 1/– –/– 4/1 4/4 –/1 1/1 –/2 19/11 30
Hierarchy → both (dynamic) 1/– 2/1 1/– 4/1 3/2 –/1 2/– –/2 4/– 1/– 17/7 34

Table 5. Frequency of position of neighborhood contacts in the hierarchy for each subject project for issue
networks for 10 most active/10 randomly selected developers.

Neighborhood Pattern Angular Atom Bootstrap Electron Flutter Moby Node.js React TypeScript webpack
∑ ∑

all devs

Both (static) 6/1 7/1 7/1 10/2 7/1 6/- 10/- 8/3 9/3 6/2 76/14 90
Hierarchy (static) –/8 –/9 –/7 –/6 –/9 3/8 –/9 –/6 –/6 –/8 3/76 79

Both → hierarchy (dyn.) 2/– 3/– 3/1 –/– 2/– 1/2 –/– 1/1 –/1 4/– 16/5 21
Hierarchy → both (dyn.) 2/1 –/– –/1 –/2 1/– –/– –/1 1/– 1/– –/– 5/5 10

can join to add clarifications or to make a decision, which is not unlikely given the role of the
developers of the hierarchical part. Consequently, developers of the non-hierarchical part are
expected to interact with developers of the hierarchical part in projects that have a well-functioning
leadership. Also, it is worth mentioning that the developers of the non-hierarchical part do not
deliberately choose their interaction partners, as they cannot influence who is replying to their
messages. Developers from the hierarchical part, however, take the role of maintainers and, most
likely, decide which discussions they reply to.

Especially the dynamic patterns of the most active developers’ neighborhoods are interesting,
as these shed light on on- and off-boarding processes. During on-boarding, developers start with
interactions from the hierarchical part, and later extend their interaction to developers of both
parts. This dynamic might suggest that, when developers enter a project, they start accumulating
knowledge from developers of the hierarchical part and only later transfer knowledge to the
non-hierarchical part. During off-boarding, we observe that developers focus their interaction to
developers of the hierarchical part. Interaction with the non-hierarchical part or, more specifically,
newcomers seems to be present, though. This finding suggests that, when central developers leave,
they focus on bringing their ongoing topics to an end, but avoid opening new ones.

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: October 2022.

Hierarchical and Hybrid Organizational Structures in Open-Source Software Projects: A Longitudinal Study 21

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

1.0 2.0 3.0 4.0 5.0
log degree

lo
g

cl
us

te
r

co
ef

fic
ie

nt

500
1000
1500
2000
2500

tenure (days)

tenure (days)
2500
2000
1500
1000
500

2009−03−04 to 2009−09−03

0

2000

4000

Periphery Hierarchy

developer group

te
nu

re
 (

da
ys

)

0

500

1000

1500

2000

ranges

m
ea

n
te

nu
re

 (
da

ys
)

group
hierarchy
periphery

Fig. 12. Left: Tenure of the active developers of LLVM (03-2009 to 09-2009). The bigger and lighter a dot, the longer
the developer is already active in the project; middle: distribution of tenure values per group; right: average
tenure over time.

Hypothesis 2: When developers enter a project, they start accumulating knowledge from hierar-
chical developers and only later transfer knowledge to non-hierarchical developers.

Hypothesis 3: Developers who will leave the project do this step-by-step, finishing their ongoing
tasks and answering questions to avoid knowledge loss.

5.2.4 Tenure and Programming Activity (RQ4).

Results. In Fig. 12, we show the developers’ tenure and their position in the hierarchy for LLVM:
The left plot encodes tenure in terms of size and color (larger and lighter dots denote shorter tenure
values); the middle plot compares the distributions of tenure values of developers in the hierarchy
with developers outside the hierarchy; the right plot shows the progression of average tenure values
over time. Overall, the developers in LLVM’s hierarchy have, on average, higher tenure values
than the developers outside the hierarchy (? � 0.001; 3 = 0.39). This difference in tenure between
developers inside and outside the hierarchy is consistent across all projects that use a mailing list
(? � 0.001; 0.25 ≤ 3 ≤ 0.52). Interestingly, the difference between tenure values of hierarchical
and non-hierarchical developers increases over time. Remarkably, also this is consistent across all
projects that use a mailing list, except for qt, where the difference stays constant over time.

For issue-based projects, we get slightly different results: Developers in the hierarchy have,
on average, higher tenure values than the developers outside the hierarchy. This holds for all
projects. However, only for projects Flutter, Node.js, and TypeScript, this difference (? � 0.001;
0.23 ≤ 3 ≤ 0.42) has a similar effect size than in the projects that use mailing lists. For these three
projects, also the difference between the tenure values increases over time, as we already have
identified for the projects that use mailing lists. For the remaining seven issue-based projects, the
difference in tenure between developers inside and outside the hierarchy still is significant, but
with a smaller effect size (? � 0.001; 0.10 ≤ 3 ≤ 0.18) and without notable patterns over time.

Much like for tenure, we show the results for programming activity for developers of LLVM in
Fig. 13. Developers in the hierarchical part edit most files (? � 0.001; 3 = 0.40). This difference in
programming activity remains existent over time but is fluctuating with regard to its extent. For
most projects, we find that, overall, the number of edited files of the non-hierarchical developers is
significantly lower than the number of edited files of the hierarchical part. Only for GCC we cannot
find any significant difference between developers inside and outside the hierarchy. As already seen
for tenure, the difference between the number of edited files of developers inside and outside the
hierarchy has a stronger effect on projects that use mailing lists (and project Node.js) (? � 0.001;
0.12 ≤ 3 ≤ 0.47) than on projects that use the GitHub issue tracker (? � 0.001; 0.03 ≤ 3 ≤ 0.10).

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: October 2022.

22 Mitchell Joblin, Barbara Eckl-Ganser, Thomas Bock, Angelika Schmid, Janet Siegmund, and Sven Apel

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

1.0 2.0 3.0 4.0 5.0
log degree

lo
g

cl
us

te
r

co
ef

fic
ie

nt

0
100
200
300

number edited files

number edited files
300
200
100
0

2009−03−04 to 2009−09−03

0

250

500

750

Periphery Hierarchy

developer group

nu
m

be
r

of
 e

di
te

d
fil

es

0

25

50

75

ranges

m
ea

n
nu

m
be

r
of

 e
di

te
d

fil
es

group
hierarchy
periphery

Fig. 13. Left: Number edited files of the active developers of LLVM (03-2009 to 09-2009). The bigger and lighter
a dot, the more files the developer has edited; middle: distribution of the number of edited files per group;
right: average number of edited files over time.

The dynamics of the individual projects show different patterns, though, which we group into four
categories: In the first category, the upper hierarchical part contains both developers who edit many
files and developers who edit no files or only a few files (Angular (AnF), Atom (AtF), Django (DF),
FFmpeg (FfF), Flutter (FlF), git (GiF), LLVM (LF), ownCloud (OF), React (RF), TypeScript (TF), U-
Boot (UF), and Wine (WiF)). In the second category, the distribution of the number of files edited
is split between the hierarchical and the non-hierarchical part: the hierarchical part contains the
developers who edit many files, whereas the non-hierarchical parts contains the developers who
edit only few files (Bootstrap (BF), Electron (EF), Moby (MF), Node.js (NF), and webpack (WeF)). In
the third category, the pattern is dynamic (QEMU (QeF) and Qt (QtF)). For example, in early phases
of QEMU (QeF), mainly developers of the non-hierarchical part edited files. In later phases, most
files were edited by developers of the hierarchical part. In the fourth category is only GCC (GcF),
which has mainly editing developers in the non-hierarchical part of the network.

Interestingly, for several projects (e.g., GCC (GcF), git (GiF), ownCloud (OF), U-Boot (UF), and
Wine (WiF)), the number of developers who program a lot is very low: A maximum number of five
developers are responsible for most of the changes. These developers often have a relatively low
node degree. Furthermore, for some projects and time ranges, we found that developers of the
hierarchical part have very few edited files and mainly communicate (GCC, git, and Qt).

Answering RQ4, we found a relationship between developers’ tenure and their position in the
hierarchy: Developers in the hierarchy have a longer tenure than developers outside the hierarchy.
Regarding programming activity, developers of the hierarchical part perform most file edits. For
some projects, this changes over time: In early project phases, mainly developers of the non-
hierarchical part or both parts edit files; later, only developers of the hierarchical part edit files.

Discussion. Our data suggest that developers in the hierarchy stay longer in the project. The
patterns are consistent with a system where gaining experience through consistent involvement is
important for advancement of responsibilities and influence. This finding is interesting in the light
of the conjecture that hierarchy reflects role stratification, since developers with the behavior of a
core developer consistently appear within the hierarchical part and not in the non-hierarchical part.

Hypothesis 4: Developers move quickly up the hierarchy when they take on coordination
tasks early.

Hypothesis 5: Consistent contribution, coordination with other project members, and knowledge
are important to role advancement in OSS projects.

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: October 2022.

https://hierarchypaper.bitbucket.io/public/i-projects/angular/6months/issue/edited-files/angular-issue-number-of-edited-files.pdf
https://hierarchypaper.bitbucket.io/public/i-projects/atom/6months/issue/edited-files/atom-issue-number-of-edited-files.pdf
https://hierarchypaper.bitbucket.io/public/m-projects/django/6months/mail/edited-files/django-mail-number-of-edited-files.pdf
https://hierarchypaper.bitbucket.io/public/m-projects/ffmpeg/6months/mail/edited-files/ffmpeg-mail-number-of-edited-files.pdf
https://hierarchypaper.bitbucket.io/public/i-projects/flutter/6months/issue/edited-files/flutter-issue-number-of-edited-files.pdf
https://hierarchypaper.bitbucket.io/public/m-projects/git/6months/mail/edited-files/git-mail-number-of-edited-files.pdf
https://hierarchypaper.bitbucket.io/public/m-projects/llvm/6months/mail/edited-files/llvm-mail-number-of-edited-files.pdf
https://hierarchypaper.bitbucket.io/public/m-projects/owncloud/6months/mail/edited-files/owncloud-mail-number-of-edited-files.pdf
https://hierarchypaper.bitbucket.io/public/i-projects/react/6months/issue/edited-files/react-issue-number-of-edited-files.pdf
https://hierarchypaper.bitbucket.io/public/i-projects/typescript/6months/issue/edited-files/typescript-issue-number-of-edited-files.pdf
https://hierarchypaper.bitbucket.io/public/m-projects/uboot/6months/mail/edited-files/uboot-mail-number-of-edited-files.pdf
https://hierarchypaper.bitbucket.io/public/m-projects/wine/6months/mail/edited-files/wine-mail-number-of-edited-files.pdf
https://hierarchypaper.bitbucket.io/public/i-projects/bootstrap/6months/issue/edited-files/bootstrap-issue-number-of-edited-files.pdf
https://hierarchypaper.bitbucket.io/public/i-projects/electron/6months/issue/edited-files/electron-issue-number-of-edited-files.pdf
https://hierarchypaper.bitbucket.io/public/i-projects/moby/6months/issue/edited-files/moby-issue-number-of-edited-files.pdf
https://hierarchypaper.bitbucket.io/public/i-projects/nodejs/6months/issue/edited-files/nodejs-issue-number-of-edited-files.pdf
https://hierarchypaper.bitbucket.io/public/i-projects/webpack/6months/issue/edited-files/webpack-issue-number-of-edited-files.pdf
https://hierarchypaper.bitbucket.io/public/m-projects/qemu/6months/mail/edited-files/qemu-mail-number-of-edited-files.pdf
https://hierarchypaper.bitbucket.io/public/m-projects/qt/6months/mail/edited-files/qt-mail-number-of-edited-files.pdf
https://hierarchypaper.bitbucket.io/public/m-projects/qemu/6months/mail/edited-files/qemu-mail-number-of-edited-files.pdf
https://hierarchypaper.bitbucket.io/public/m-projects/gcc/6months/mail/edited-files/gcc-mail-number-of-edited-files.pdf
https://hierarchypaper.bitbucket.io/public/m-projects/gcc/6months/mail/edited-files/gcc-mail-number-of-edited-files.pdf
https://hierarchypaper.bitbucket.io/public/m-projects/git/6months/mail/edited-files/git-mail-number-of-edited-files.pdf
https://hierarchypaper.bitbucket.io/public/m-projects/owncloud/6months/mail/edited-files/owncloud-mail-number-of-edited-files.pdf
https://hierarchypaper.bitbucket.io/public/m-projects/uboot/6months/mail/edited-files/uboot-mail-number-of-edited-files.pdf
https://hierarchypaper.bitbucket.io/public/m-projects/wine/6months/mail/edited-files/wine-mail-number-of-edited-files.pdf

Hierarchical and Hybrid Organizational Structures in Open-Source Software Projects: A Longitudinal Study 23

The number of edited files seems to affect the position in the hierarchy more than the developer’s
tenure: the more files a developer edits, the more embedded they appear to be in the hierarchy,
probably because a higher number of edited files increases the probability that their activity affects
many other developers. The interesting cases are when the number of edited files and the position
in the hierarchy are unrelated. This could be an indicator for a modular project structure, in which
developers of the non-hierarchical part edit files of a certain part of the project, whereas the
files that developers of the hierarchical part edit are scattered across many parts of the project.
In project GCC, which is an outlier w.r.t. to the programming activity, there could also be an
additional explanation for mainly having editing developers of the non-hierarchical part: As GCC is
a rather low-level, technical project, which is dependent on technical features that rely on a certain
hardware support [22], developers from different hardware manufacturers may add their specific
hardware support to the code base, being in the non-hierarchical part of the project communication
although accounting for many file edits. Table 6 in the appendix shows that none of the 10 most
active developers on GCC’s mailing list, who often are also in the hierarchical part, contributed
any commit to the source code. This indicates that these most active developers on the mailing list
take rather organizational coordination tasks than programming tasks in GCC, which is why this
project has mainly editing developers in the non-hierarchical part of the mail network.

The relationship between developers’ positions in the hierarchy and programming activity or
tenure occurs to be less pronounced in issue-based projects than in projects that use mailing
lists. One possible reason for that could be that there are lots of “users” of issue-based projects
who participate in discussions for a large amount of time (e.g., reporting bugs, etc.), which also
is represented in the sheer number of participants in the discussions (see Table 1). By contrast,
there are many developers in the hierarchical part who perform merely project maintenance and
pull-request reviews and therefore edit only a smaller number of files. Nevertheless, even if the
effect is lower for issue-based projects, both kinds of projects have in common that the number
of edited files and tenure are higher for developers inside the hierarchical part than outside the
hierarchical part.

The fact that the relationship of the number of edited files with the hierarchical part is subject to
change speaks in favor of a strong relationship between temporal focus and social contacts. At
times when active developers are in the non-hierarchical part, a rather discussion-based group
structure seems to establish. At times when the most active developers are at the top of the project’s
organizational structure, operational activity seems to be the main focus.

Hypothesis 6: When the most active developers are in the non-hierarchical part, they primar-
ily participate in detailed, technically focused discussions with a specific group of developers.
Whereas, when the most active developers are at the top of the hierarchy, they primarily take on
coordination-related tasks and perform operational maintenance.

6 PERSPECTIVES
Overall, we found that the organizational structure co-evolves with OSS projects, despite the
absence of external pressure to form any specific kind of structure. Specifically, it (a) regularly
splits into a hierarchical and a non-hierarchical part, consistent with anecdotal evidence first seen
by Joblin et al. [26]. Over time, the number of developers increases until reaching a peak, followed
by a decrease, which is accompanied by a restructuring process. Growth in the number of developers
usually leads to a decrease in the portion of developers who are organized hierarchically. From
the perspective of individual developers, (b) the on-boarding of the most active developers follows
typical patterns. We could confirm the belief that developers often start loosely connected in the
non-hierarchical part [42], then tightly integrate into the hierarchical part, until they move to the

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: October 2022.

24 Mitchell Joblin, Barbara Eckl-Ganser, Thomas Bock, Angelika Schmid, Janet Siegmund, and Sven Apel

non-hierarchical part again and most likely leave the project. During this process, (c) developers’
coding activity and their tenure can drive their hierarchical position. That is, on the one hand,
early pioneers of a project are as likely to be in the upper ranges of the hierarchy as new members
of a project. On the other hand, developer roles can adapt flexibly to changing project situations.
This is relevant for research on success factors for climbing the social ladder of OSS projects [e.g.,
17] and helps to better understand the social dynamics integrating project newcomers. Padhye
et al. [37] found that core developers are open to accept bug fixes and documentation changes
from peripheral developers, but not to proposed feature enhancements from peripheral developers.
This habit appears inefficient—our method, when combined with a content analysis on the kind of
contribution by the developers of the two parts, can help to identify such community smells [44].

Second, also at the group level, we observed considerable flexibility with regard to the number
of groups in which developers want to engage. The prevalent hybrid structure that we observed
contains developers whose clustering coefficient and node degree do not match the rules of hierar-
chical organization. Combining our approach with dynamic group analysis [e.g., 19] might provide
insights into the hub function of central developers. For example, we observed that many former
top developers leave the project with a high clustering coefficient, that is, their last interaction
partners were from a well-connected subgroup. Further research on these groups shall complement
analyses of developer tenure and knowledge conservation [e.g., 38]. Moreover, our method can
be used to further investigate the role of developers within stable or dynamic subgroups of the
project [e.g., 5], with respect to their position in the hierarchy to get more insights into how
developers in the hierarchical part are connected to the different subgroups and to investigate their
role with respect to programming activity and communication activity. This might provide further
insights into group dynamics and may be used to derive recommendations for project managers on
how to reduce developer turnover, knowledge loss, and maintain a project successfully. There is
already evidence that socio-technical factors derived from network representations contain highly
relevant information about the future success of a project [24]. The patterns found in our study
are useful for providing additional context for predictive models to increase their effectiveness.
Currently, predictive models lack the temporally rich patterns that we have identified. We believe
that a coherent treatment of the temporal dimension is likely necessary to move beyond predictive
analytics to achieve the end goal of prescriptive analytics.

Third, we found that structural changes, such as losing a substantial number of developers,
manifest in the hierarchy directly. At times of change, developers who do not edit many files in the
respective time range dominate the hierarchical structure. An interesting case is ownCloud, where
we observed a breakdown of the hierarchical structure two years before the fork of Nextcloud,
only emerging again afterwards. This possibly hints at the organizational disturbances that led
eventually to the fork. These insights illustrate that our analysis can add to the methodological
toolbox for research in change management. Since our study focused on popular projects, which
may be a proxy for success, a promising future direction is to explore these structural changes for
projects that became deprecated.

7 THREATS TO VALIDITY
7.1 External Validity
We selected 20 OSS projects with a wide range of domains, programming languages, and sizes (see
Table 1), so our results appear generalizable to similar projects. For generalization to different com-
munication channels, we investigated projects that use mailing lists as their main communication
channel as well as projects that use an issue tracker for communication, and we ended up in similar
results for both types of projects. Clearly, 20 projects cannot cover the diversity of OSS projects out

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: October 2022.

Hierarchical and Hybrid Organizational Structures in Open-Source Software Projects: A Longitudinal Study 25

there, and our study is naturally not meant to generalize to any OSS project. Still, some patterns
and trends that we found are surprisingly pronounced and consistent across our subject projects.
This demonstrates the principle power of our method to reveal such complex patterns and to study
them in depth.

Another threat arises from our selection of only the 10 most active developers and 10 further
random developers for analyzing how individual developer behavior affects the position in the
hierarchy. However, since the 10 most active developers cover a considerable amount of interaction,
our results are nevertheless relevant for the project as a whole.

7.2 Construct Validity
The fact that we set the parameters of our classification algorithm only with a sample labeled
manually threatens construct validity. To gain further confidence, we triangulated our classifi-
cation with Joblin’s dichotomous core–peripheral classification, which relies on the eigenvector
centrality [26]. We found that the two classifications are consistent: In most projects, the set of
core developers and developers in the hierarchy overlap to a large extent, but the core developers’
number is often smaller than the number of developers in the hierarchy. Core developers are usually
in the hierarchical part, but their percentage usually decreases as the project evolves.

A further threat to construct validity is the way we build our networks. As mailing lists or issue
discussions, respectively, are the predominant communication channels in our subject projects,
there was no need to consider further communication channels, such as Slack-chats or IRC. To learn
about the relative influence of link types, we constructed for each network an additional version: one
that consists of communication links and co-change links [27] (i.e., there is a link between a pair of
developers if they have edited a common artifact within the respective time range). The rationale is
that we get a more comprehensive view on the community if we include more information about the
project. This also justifies the networks’ construction and the combination of different link types (co-
changes and communication). This way, we found that the developer networks we analyzed receive
their structural properties mainly from the communication data (which are much more in number).
The overall results of communication networks and the combined networks (co-changes and
communication) are the same. We provide the results using these combined networks conveying
communication and co-change information for all our research questions on our supplementary
website (CombinedNetworks).

Another threat is the definition of tenure: We do not explicitly consider extended phases of
developers’ inactivity, during which developers do not contribute to the project. The tenure’s end
date is always the end of the time range, since we assume the developer’s ongoing activeness.
Our definition of programming activity poses a threat: Defining it as the number of edited files
may be too simple, because the changes can be of different number of lines of code and different
complexity. Counting the number of changes and giving weights to the ties accordingly would
make our analysis much more complex, though. Zhou and Mockus [52] describe another method
based on edited files that could improve a follow-up study.

8 CONCLUSION
Prior work indicates that, over time, highly successful OSS projects develop a hybrid organizational
structure that comprises a hierarchical part and a non-hierarchical part. To study this phenomenon
systematically, we conducted a longitudinal study of 20 popular OSS projects. In particular, we
searched for structural patterns with respect to hierarchy in OSS projects. Therefore, we developed
an automated method to determine the hierarchical and the non-hierarchical part in developer
networks. We tracked the neighborhood and movement of individual developers to understand

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: October 2022.

https://hierarchypaper.bitbucket.io/public/#results-by-research-questions-combined-networks-with-e-mailissue-communication-and-co-change

26 Mitchell Joblin, Barbara Eckl-Ganser, Thomas Bock, Angelika Schmid, Janet Siegmund, and Sven Apel

their placement and trajectory through the hierarchy, and we analyzed the relationships of the
developers’ organizational position with their tenure and programming activity.

Most notably, we found that, with an increasing number of developers in our subject projects,
the portion of developers in the hierarchical part decreases to as little as ∼10%, in some projects
even less than that. Essentially, in almost all cases, a hybrid organizational structure emerged that
consists of a hierarchical part and a non-hierarchical part, independent of project size, domain,
or used communication channel. A deeper investigation lets us link network hierarchy more
closely to actual developer behavior: Very active developers are well connected in the hierarchy,
starting during their on-boarding phase, and stabilizing this connection over time. Surprisingly,
tenure is also associated with hierarchical position—any developer can quickly and flexibly take
over responsibility in the projects, a promise of OSS development. The high correlation between
programming activity and hierarchical position confirms that, often, OSS developers have a dual
role for contributing code and taking over coordination efforts.

Whereas early pioneers of a project are likely to be in the upper ranges of the hierarchy, developer
roles adapt flexibly to changing project situations. The organizational structure of OSS projects is
subject to constant change, which manifests itself in developer turnover and changing developer
roles, and therefore provides the possibility to newcomers to climb up in the organizational hierarchy
with increasing tenure and increasing project involvement. Our method can be used to gain
further insights into structural changes in project organization and hierarchy, to identify potential
organizational community smells, and, eventually, to develop countermeasures against potential
knowledge loss in OSS projects (e.g., when a core developer in the top of the hierarchy is moving
to the non-hierarchical part and is potentially about to leave).

In summary, our study (a) provides a methodological basis for further investigations of hierarchy
formation, (b) suggests a number of hypotheses on prevalent organizational patterns and trends in
OSS projects to be addressed in further work, and (c) may ultimately help to guide the governance
of organizational structures.

ACKNOWLEDGMENTS
This work was supported by the German Research Foundation (AP 206/14-1) as well as the
Bavarian State Ministry of Education, Science, and the Arts in the framework of the Center
Digitisation.Bavaria (ZD.B).

REFERENCES
[1] Bilal Afsar and Yuosre F. Badir. 2015. The Impacts of Person-Organisation Fit and Perceived Organisational Support

on Innovative Work Behaviour: The Mediating Effects of Knowledge Sharing Behaviour. International Journal of
Information Systems and Change Management (IJISCM) 7, 4 (2015), 263–285.

[2] Christian Bird, Alex Gourley, Premkumar T. Devanbu, Anand Swaminathan, and Greta Hsu. 2007. Open Borders?
Immigration in Open Source Projects. In Proc. Int. Workshop Mining Software Repositories (MSR). IEEE, 6–6.

[3] Christian Bird, Nachiappan Nagappan, Harald C. Gall, Brendan Murphy, and Premkumar T. Devanbu. 2009. Putting It
All Together: Using Socio-technical Networks to Predict Failures. In Proc. Int. Sympos. Software Reliability Engineering
(ISSRE). IEEE, 109–119.

[4] Christian Bird, David Pattison, Raissa D’Souza, Vladimir Filkov, and Premkumar T. Devanbu. 2008. Latent Social
Structure in Open Source Projects. In Proc. Int. Sympos. on Foundations of Software Engineering (FSE). ACM, 24–35.

[5] Thomas Bock, Angelika Schmid, and Sven Apel. 2022. Measuring and Modeling Group Dynamics in Open-Source
Software Development: A Tensor Decomposition Approach. ACMTransactions on Software Engineering andMethodology
(TOSEM) 31, 2 (2022), 19:1–19:50.

[6] Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto, and Sebastiano Panichella. 2012. Who is Going to Mentor
Newcomers in Open Source Projects?. In Proc. Int. Sympos. on Foundations of Software Engineering (FSE). ACM, 1–11.

[7] Marcelo Cataldo, James D. Herbsleb, and Kathleen M. Carley. 2008. Socio-Technical Congruence: A Framework for
Assessing the Impact of Technical and Work Dependencies on Software Development Productivity. In Proc. Int. Sympos.
Empirical Software Engineering and Measurement (ESEM). ACM, 2–11.

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: October 2022.

Hierarchical and Hybrid Organizational Structures in Open-Source Software Projects: A Longitudinal Study 27

[8] Marcelo Cataldo, Audris Mockus, Jeffrey A. Roberts, and James D. Herbsleb. 2009. Software Dependencies, Work
Dependencies, and Their Impact on Failures. IEEE Transactions on Software Engineering (TSE) 35, 6 (2009), 864–878.

[9] Gemma Catolino, Fabio Palomba, Damian A. Tamburri, Alexander Serebrenik, and Filomena Ferrucci. 2019. Gender
Diversity and Women in Software Teams: How Do They Affect Community Smells?. In Proc. Int. Conf. Software
Engineering: Software Engineering in Society (ICSE-SEIS). ACM, 11–20.

[10] Can Cheng, Bing Li, Zeng-Yang Li, Yu-Qi Zhao, and Feng-Ling Liao. 2017. Developer Role Evolution in Open Source
Software Ecosystem: An Explanatory Study on GNOME. Journal of Computer Science and Technology (JCST) 32, 2
(2017), 396–414.

[11] Kevin Crowston and James Howison. 2006. Hierarchy and Centralization in Free and Open Source Software Team
Communications. Knowledge, Technology & Policy 18, 4 (2006), 65–85.

[12] Mariam El Mezouar, Feng Zhang, and Ying Zou. 2019. An Empirical Study on the Teams Structures in Social Coding
using GitHub Projects. Empirical Software Engineering 24, 6 (2019), 3790–3823.

[13] Paul Erdős and Alfréd Rényi. 1959. On Random Graphs. Publicationes Mathematicae 6 (1959), 290–297.
[14] Michelle Girvan and Mark E. J. Newman. 2002. Community Structure in Social and Biological Networks. Proceedings

of the National Academy of Sciences 99, 12 (2002), 7821–7826.
[15] Mehdi Golzadeh, Alexandre Decan, Damien Legay, and Tom Mens. 2021. A Ground-Truth Dataset and Classification

Model for Detecting Bots in GitHub Issue and PR Comments. Journal of Systems and Software (JSS) 175 (2021), 110911.
[16] Mehdi Golzadeh, Damien Legay, Alexandre Decan, and Tom Mens. 2020. Bot or Not? Detecting Bots in GitHub Pull

Request Activity Based on Comment Similarity. In Proc. Int. Conf. Software Engineering Workshops (ICSEW). ACM,
31–35.

[17] Marvin Hanisch, Carolin Haeussler, Stefan Berreiter, and Sven Apel. 2018. Developers’ Progression from Periphery to
Core in the Linux Kernel Development Project. Academy of Management Proceedings 2018, 1 (2018), 14263.

[18] Andrea Hemetsberger and Christian Reinhardt. 2009. Collective Development in Open-Source Communities: An
Activity Theoretical Perspective on Successful Online Collaboration. Organization Studies 30, 9 (2009), 987–1008.

[19] Steffen Herbold, Aynur Amirfallah, Fabian Trautsch, and Jens Grabowski. 2021. A Systematic Mapping Study of
Developer Social Network Research. Journal of Systems and Software (JSS) 171 (2021), 110802.

[20] James D. Herbsleb, Audris Mockus, and Jeffrey A. Roberts. 2006. Collaboration in Software Engineering Projects: A
Theory of Coordination. In Proc. Int. Conf. Information Systems (ICIS). Association for Information Systems, 553–568.

[21] Pamela J. Hinds and Cathleen McGrath. 2006. Structures that Work: Social Structure, Work Structure and Coordination
Ease in Geographically Distributed Teams. In Proc. Int. Conf. Computer-Supported Cooperative Work (CSCW) & Social
Computing. ACM, 343–352.

[22] Bruno C. Honorio, João P. L. De Carvalho, and Alexandro J. Baldassin. 2018. On the Efficiency of Transactional Code
Generation: A GCC Case Study. In Workshop of Computer Systems and High Performance (WSCAD). IEEE, 184–190.

[23] Claus Hunsen, Janet Siegmund, and Sven Apel. 2020. On the Fulfillment of Coordination Requirements in Open-Source
Software Projects: An Exploratory Study. Empirical Software Engineering 25, 6 (2020), 4379–4426.

[24] Mitchell Joblin and Sven Apel. 2022. How Do Successful and Failed Projects Differ? A Socio-Technical Analysis. ACM
Transactions on Software Engineering and Methodology (TOSEM) 31, 4 (2022), 67:1–67:24.

[25] Mitchell Joblin, Sven Apel, Claus Hunsen, and Wolfgang Mauerer. 2017. Classifying Developers into Core and
Peripheral: An Empirical Study on Count and Network Metrics. In Proc. Int. Conf. Software Engineering (ICSE). IEEE,
164–174.

[26] Mitchell Joblin, Sven Apel, and Wolfgang Mauerer. 2017. Evolutionary Trends of Developer Coordination: A Network
Approach. Empirical Software Engineering 22, 4 (2017), 2050–2094.

[27] Mitchell Joblin, Wolfgang Mauerer, Sven Apel, Janet Siegmund, and Dirk Riehle. 2015. From Developer Networks to
Verified Communities: A Fine-Grained Approach. In Proc. Int. Conf. Software Engineering (ICSE). IEEE, 563–573.

[28] Yuan Long and Keng Siau. 2007. Social Network Structures in Open Source Software Development Teams. Journal of
Database Management (JDM) 18, 2 (2007), 25–40.

[29] Luis López-Fernández, Gregorio Robles, and Jesús M. González-Barahona. 2004. Applying Social Network Analysis to
the Information in CVS Repositories. In Proc. Int. Workshop Mining Software Repositories (MSR). IET, 101–105.

[30] Wolfgang Mauerer, Mitchell Joblin, Damian A. Tamburri, Carlos Paradis, Rick Kazman, and Sven Apel. 2022. In Search
of Socio-Technical Congruence: A Large-Scale Longitudinal Study. IEEE Transactions on Software Engineering (TSE) 48,
8 (2022), 3159–3184.

[31] AndrewMeneely and LaurieWilliams. 2011. Socio-technical Developer Networks: ShouldWe Trust OurMeasurements?.
In Proc. Int. Conf. Software Engineering (ICSE). ACM, 281–290.

[32] Andrew Meneely, Laurie Williams, Will Snipes, and Jason A. Osborne. 2008. Predicting Failures with Developer
Networks and Social Network Analysis. In Proc. Int. Sympos. on Foundations of Software Engineering (FSE). ACM, 13–23.

[33] Audris Mockus, Roy T. Fielding, and James D. Herbsleb. 2002. Two Case Studies of Open Source Software Development:
Apache and Mozilla. ACM Transactions on Software Engineering and Methodology (TOSEM) 11, 3 (2002), 309–346.

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: October 2022.

28 Mitchell Joblin, Barbara Eckl-Ganser, Thomas Bock, Angelika Schmid, Janet Siegmund, and Sven Apel

[34] Nachiappan Nagappan, Brendan Murphy, and Victor R. Basili. 2008. The Influence of Organizational Structure on
Software Quality. In Proc. Int. Conf. Software Engineering (ICSE). ACM, 521–530.

[35] Mark E. J. Newman. 2005. Power Laws, Pareto Distributions and Zipf’s Law. Contemporary Physics 46, 5 (2005),
323–351.

[36] Siobhán O’Mahony and Fabrizio Ferraro. 2007. The Emergence of Governance in an Open Source Community. Academy
of Management Journal 50, 5 (2007), 1079–1106.

[37] Rohan Padhye, Senthil Mani, and Vibha S. Sinha. 2014. A Study of External Community Contribution to Open-source
Projects on GitHub. In Proc. Int. Workshop Mining Software Repositories (MSR). ACM, 332–335.

[38] Mehvish Rashid, Paul M. Clarke, and Rory V. O’Connor. 2019. A Systematic Examination of Knowledge Loss in Open
Source Software Projects. International Journal of Information Management (IJIM) 46 (2019), 104–123.

[39] Erzsébet Ravasz and Albert-László Barabási. 2003. Hierarchical Organization in Complex Networks. Physical Review E
67, 2 (2003), 026112.

[40] Gregorio Robles, Jesus M. Gonzalez-Barahona, and Israel Herraiz. 2009. Evolution of the Core Team of Developers in
Libre Software Projects. In Proc. Int. Workshop Mining Software Repositories (MSR). IEEE, 167–170.

[41] Yonghee Shin, Andrew Meneely, Laurie Williams, and Jason A. Osborne. 2011. Evaluating Complexity, Code Churn,
and Developer Activity Metrics as Indicators of Software Vulnerabilities. IEEE Transactions on Software Engineering
(TSE) 37, 6 (2011), 772–787.

[42] Igor Steinmacher, Marco A. Graciotto Silva, and Marco A. Gerosa. 2014. Barriers Faced by Newcomers to Open Source
Projects: A Systematic Review. In Open Source Software: Mobile Open Source Technologies. Springer, 153–163.

[43] Margaret-Anne Storey, Leif Singer, Fernando Figueira Filho, Alexey Zagalsky, and Daniel M. German. 2017. How
Social and Communication Channels Shape and Challenge a Participatory Culture in Software Development. IEEE
Transactions on Software Engineering (TSE) 43, 2 (2017), 185–204.

[44] Damian A. Tamburri, Philippe Kruchten, Patricia Lago, and Hans van Vliet. 2015. Social Debt in Software Engineering:
Insights from Industry. Journal of Internet Services and Applications (JISA) 6, 10 (2015), 1–17.

[45] Damian A. Tamburri, Patricia Lago, and Hans van Vliet. 2013. Organizational Social Structures for Software Engineering.
ACM Computing Surveys 46, 1 (2013), 3:1–3:35.

[46] Damian A. Tamburri, Fabio Palomba, and Rick Kazman. 2019. Exploring Community Smells in Open-Source: An
Automated Approach. IEEE Transactions on Software Engineering (TSE) 47, 3 (2019), 630–652.

[47] Michael Weiss. 2018. Business of Open Source: A Case Study of Integrating Existing Patterns Through Narratives. In
Proc. Europ. Conf. Pattern Languages of Programming (EuroPLoP). ACM, 23:1–23:4.

[48] Mairieli Wessel, Bruno M. de Souza, Igor Steinmacher, Igor S. Wiese, Ivanilton Polato, Ana P. Chaves, and Marco A.
Gerosa. 2018. The Power of Bots: Characterizing and Understanding Bots in OSS Projects. Proceedings of the ACM on
Human-Computer Interaction (HCI) 2, CSCW (2018), 1–19.

[49] Timo Wolf, Adrian Schroter, Daniela Damian, and Thanh Nguyen. 2009. Predicting Build Failures Using Social Network
Analysis on Developer Communication. In Proc. Int. Conf. Software Engineering (ICSE). ACM, 1–11.

[50] Yunwen Ye and Kouichi Kishida. 2003. Toward an Understanding of the Motivation of Open Source Software Developers.
In Proc. Int. Conf. Software Engineering (ICSE). IEEE, 419–429.

[51] Minghui Zhou, Qingying Chen, Audris Mockus, and Fengguang Wu. 2017. On the Scalability of Linux Kernel
Maintainers’ Work. In Proc. Europ. Software Engineering Conf. and the Int. Sympos. Foundations of Software Engineering
(ESEC/FSE). ACM, 27–37.

[52] Minghui Zhou and Audris Mockus. 2010. Developer Fluency: Achieving True Mastery in Software Projects. In Proc. Int.
Sympos. on Foundations of Software Engineering (FSE). ACM, 137–146.

[53] Minghui Zhou and Audris Mockus. 2011. Does the Initial Environment Impact the Future of Developers?. In Proc. Int.
Conf. Software Engineering (ICSE). ACM, 271–280.

[54] Minghui Zhou and Audris Mockus. 2012. What Make Long Term Contributors: Willingness and Opportunity in OSS
Community. In Proc. Int. Conf. Software Engineering (ICSE). IEEE, 518–528.

[55] Minghui Zhou and Audris Mockus. 2015. Who Will Stay in the FLOSS Community? Modeling Participant’s Initial
Behavior. IEEE Transactions on Software Engineering (TSE) 41, 1 (2015), 82–99.

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: October 2022.

Hierarchical and Hybrid Organizational Structures in Open-Source Software Projects: A Longitudinal Study 29

A APPENDIX
Descriptive Statistics for the 10 Most Active and 10 Randomly Selected Developers

Table 6. Descriptive statistics for the 10 most active and 10 randomly selected developers: Commit count and
event count. For each of the two groups of developers, we report the minimum value and the maximum value
per project as well as the 25%, 50%, and 75% quantiles.

Project
Commit Count Event Count1

most active developers random developers most active developers random developers
min max 25% 50% 75% min max 25% 50% 75% min max 25% 50% 75% min max 25% 50% 75%

Django 34 1 231 209 462 1 051 0 3 0 0 0 482 2 895 682 995 1 438 1 47 6 13 23
FFmpeg 0 13 339 19 592 1 093 0 215 0 1 3 1 061 47 411 2 166 5 429 6 990 4 1 064 9 26 37
GCC 0 0 0 0 0 0 0 0 0 0 2 425 18 070 3 158 6 100 13 998 11 568 17 46 193
git 0 1 674 35 365 792 0 6 0 0 1 2 695 55 548 4 149 6 469 12 096 1 76 15 30 58
LLVM 0 1 558 557 775 917 0 195 0 6 24 2 862 28 885 3 146 4 060 7 061 15 337 27 43 118
ownCloud 0 2 452 1 77 374 0 1 0 0 0 213 874 252 4 20 468 5 75 9 20 34
QEMU 13 1 891 325 464 659 0 182 0 1 10 2 839 23 188 7 049 8 874 12 751 4 946 24 31 213
Qt 0 647 1 14 155 0 193 0 0 3 229 5 157 371 466 620 5 144 15 20 55
U-Boot 5 2 723 121 392 811 0 87 2 10 28 1 517 28 549 4 597 5 792 16 803 6 594 30 90 148
Wine 81 10 928 546 1 663 2 528 0 761 0 0 27 1 098 7 771 1 354 1 667 2 870 5 398 13 57 162

Angular 0 785 9 78 460 0 0 0 0 0 1 245 13 078 1 877 3 227 8 096 1 16 1 3 9
Atom 0 3 657 45 100 983 0 0 0 0 0 1 307 5 558 2 174 3 004 3 714 1 23 1 2 3
Bootstrap 3 437 22 168 314 0 0 0 0 0 350 19 279 1 943 3 477 7 087 1 17 3 5 7
Electron 0 3 915 27 539 689 0 9 0 0 0 907 10 224 2 224 3 759 5 904 1 38 1 4 9
Flutter 0 1 317 0 7 220 0 0 0 0 0 2 817 28 958 4 008 6 271 9 945 1 29 1 4 16
Moby 0 850 91 222 474 0 2 0 0 0 2 294 46 674 4 312 6 793 8 653 1 28 1 5 13
Node.js 70 1 391 128 336 890 0 1 0 0 0 5 169 25 990 7 732 8 590 18 114 1 125 1 10 19
React 13 941 54 72 545 0 0 0 0 0 929 19 158 2 771 3 954 5 921 1 71 1 3 7
TypeScript 0 2 223 113 1 012 1 194 0 0 0 0 0 1 686 21 174 2 424 7 778 10 199 1 23 1 4 12
webpack 0 3 275 3 38 123 0 0 0 0 0 274 12 935 552 1 099 1 795 1 23 2 5 11

1 E-mail count (upper ten projects) or count of issue comments (lower ten projects) respectively

Table 7. Descriptive statistics for the 10 most active and 10 randomly selected developers: Number of active
time periods (i.e., number of overlapping 6-month ranges within the date denoted in Table 1 in which the
developer contributed to the mailing list or commented on an issue) and number of time periods in which the
developer was part of the hierarchical part. For each of the two groups of developers, we report the minimum
value and the maximum value per project as well as the 25%, 50%, and 75% quantiles.

Project
Active Time Periods Periods in Hierarchical Part

most active developers random developers most active developers random developers
min max 25% 50% 75% min max 25% 50% 75% min max 25% 50% 75% min max 25% 50% 75%

Django 19 49 29 44 47 2 24 3 5 8 15 45 28 33 40 0 5 1 2 4
FFmpeg 22 60 30 39 52 2 28 3 8 19 19 60 28 33 42 1 15 1 2 6
GCC 54 69 61 66 69 3 65 8 9 38 23 69 46 55 59 0 6 0 0 2
git 32 52 41 48 51 2 19 8 12 15 26 52 33 43 45 0 5 0 1 4
LLVM 28 59 34 41 50 5 20 6 13 16 22 47 28 35 41 0 4 0 1 2
ownCloud 8 26 14 17 18 3 13 4 9 11 7 23 13 15 16 1 8 2 4 7
QEMU 25 40 29 37 38 2 39 7 9 19 21 36 25 29 33 0 9 0 1 3
Qt 20 28 26 28 28 4 19 10 12 15 15 27 18 22 26 0 7 0 0 3
U-Boot 29 71 34 39 52 6 34 9 15 18 21 70 28 30 45 0 13 1 3 5
Wine 14 61 41 48 60 4 34 6 10 14 12 59 30 40 54 0 16 1 3 6

Angular 6 25 18 20 24 2 10 2 2 5 5 25 14 17 23 0 2 0 0 1
Atom 12 31 14 19 23 2 15 2 2 4 10 26 13 16 21 0 2 0 0 1
Bootstrap 6 37 15 23 30 1 7 2 4 5 3 37 12 19 25 0 3 0 1 2
Electron 14 30 15 20 26 2 13 2 2 5 12 30 14 17 24 0 5 0 0 1
Flutter 4 22 7 10 15 2 8 2 2 5 4 20 4 5 12 0 1 0 0 1
Moby 18 31 20 28 28 2 11 2 3 7 9 31 18 23 28 0 3 0 1 2
Node.js 18 21 21 21 21 2 13 2 4 7 17 21 19 21 21 0 4 0 0 2
React 14 30 22 26 28 2 10 2 3 4 9 27 14 17 22 0 3 0 0 2
TypeScript 11 25 21 23 25 2 11 2 3 5 11 25 18 22 24 0 2 0 1 2
webpack 7 34 13 18 21 2 9 2 3 7 5 33 7 12 15 0 2 0 0 0

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: October 2022.

	Abstract
	1 Introduction
	2 Background & Related Work
	2.1 Network Analysis
	2.2 Developer Networks

	3 Research Questions
	4 Method
	4.1 Data Extraction & Construction of Developer Networks
	4.2 Typical Structure and Evolution (RQ1)
	4.3 Change of Position in Hierarchy (RQ2)
	4.4 Developers' Neighborhood (RQ3)
	4.5 Tenure and Programming Activity (RQ4)

	5 Longitudinal Study
	5.1 Subject Projects
	5.2 Results

	6 Perspectives
	7 Threats to Validity
	7.1 External Validity
	7.2 Construct Validity

	8 Conclusion
	Acknowledgments
	References
	A Appendix

