
Automated Software Engineering manuscript No.
(will be inserted by the editor)

Type Safety for Feature-Oriented Product Lines

Sven Apel · Christian Kästner · Armin
Größlinger · Christian Lengauer

the date of receipt and acceptance should be inserted later

Abstract A feature-oriented product line is a family of programs that share a common set
of features. A feature implements a stakeholder’s requirement and represents a design deci-
sion or configuration option. When added to a program, a feature involves the introduction
of new structures, such as classes and methods, and the refinement of existing ones, such
as extending methods. A feature-oriented decomposition enables a generator to create an
executable program by composing feature code solely on the basis of the feature selection
of a user – no other information needed. A key challenge of product line engineering is to
guarantee that only well-typed programs are generated. As the number of valid feature com-
binations grows combinatorially with the number of features, it is not feasible to type check
all programs individually. The only feasible approach is to have a type system check the
entire code base of the feature-oriented product line. We have developed such a type system
on the basis of a formal model of a feature-oriented Java-like language. The type system
guaranties type safety for feature-oriented product lines. That is, it ensures that every valid
program of a well-typed product line is well-typed. Our formal model including type system
is sound and complete.

1 Introduction

Feature-oriented programming (FOP) aims at the modularization of programs in terms of
features [59, 15]. A feature implements a stakeholder’s requirement and represents a de-

Sven Apel
Department of Informatics and Mathematics, University of Passau, Germany
E-mail: apel@uni-passau.de

Christian Kästner
School of Computer Science, University of Magdeburg, Germany
E-mail: kaestner@iti.cs.uni-magdeburg.de

Armin Größlinger
Department of Informatics and Mathematics, University of Passau, Germany
E-mail: groesslinger@uni-passau.de

Christian Lengauer
Department of Informatics and Mathematics, University of Passau, Germany
E-mail: lengauer@uni-passau.de

2

sign decision or configuration option [7]. Contemporary feature-oriented programming lan-
guages and tools, such as AHEAD [15], Xak [2], CaesarJ [52], Classbox/J [16], Feature-
House [10], and FeatureC++ [11], provide a variety of mechanisms that support the speci-
fication, modularization, and composition of features. A key idea is that a feature is imple-
mented by a distinct code unit, called a feature module. When added to a base program, it
introduces new structures, such as classes and methods, and refines existing ones, such as
extending methods [47,12]. A program that is decomposed into features is called henceforth
a feature-oriented program.1

Beside the decomposition of programs into feature modules, the concept of a feature
is useful for distinguishing different, related programs which together make up a software
product line [37, 23]. Typically, programs of a common domain share a set of features but
also differ in other features. For example, suppose an email client for mobile devices that
supports the protocols IMAP and POP3 and another client that supports POP3, MIME, and
SSL encryption. With a decomposition of the two programs into the features IMAP, POP3,
MIME, and SSL, both programs can share the code of feature POP3. Since mobile devices
have only limited resources, unnecessary features should be removed.

With feature-oriented decomposition, programs can be generated solely on the basis of a
user’s selection of features by composing the corresponding feature modules. Of course, not
all combinations of features are legal and result in correct programs [14]. A feature model
describes which features can be composed in which combinations, i.e., which programs are
valid [37, 23]. It consists of an (ordered) set of features and a set of constraints on feature
combinations [23, 14]. For example, our email client may have different rendering engines
for HTML text, e.g., the Mozilla engine or the Safari engine, but only one at a time. A set
of feature modules along with a feature model is called a feature-oriented product line [14].

An important question is how the correctness of feature-oriented programs, in particu-
lar, and product lines, in general, can be guaranteed. A first problem is that contemporary
feature-oriented languages and tools usually involve a code generation step during composi-
tion in which the code is transformed into a lower-level representation. In previous work, we
have addressed this problem by modeling feature-oriented mechanisms directly in the for-
mal syntax and semantics of a core language, called Feature Featherweight Java (FFJ) [9].
The type system of FFJ ensures that the composition of feature modules is type-correct.

Here, we address a second problem: How can the type safety of a feature-oriented prod-
uct line be guaranteed? That is, are all valid programs of the product line well-typed? A
naive approach would be to type check all valid programs using a type checker that expects
single programs, like the one for FFJ [9]. However, this approach does not scale; already for
34 independent optional features, a variant can be generated for every person on the planet.
Noticing this problem, Czarnecki and Pietroszek [24] and Thaker et al. [69] suggested the
development of a type system that checks the entire code and document base of the feature-
oriented product line, instead of all individual feature-oriented programs. In this scenario, a
type checker must analyze all feature modules of a product line on the basis of the feature
model. We will show that, with this information, the type checker can ensure type safety.
That is, every valid program variant that can be generated is well-typed. Specifically, we
make the following contributions:

1 Typically, feature-oriented decomposition is orthogonal to class-based or functional decomposition [68,
53, 66]. A multitude of modularization and composition mechanisms [19, 28, 26, 49, 50, 60, 70] have been
developed to allow programmers to decompose a program along multiple dimensions [68]. Feature-oriented
languages and tools provide a significant subset of these mechanisms [12].

3

– We provide a condensed version of FFJ, which is in many respects more elegant and
concise than its predecessor [9].

– We develop a formal type system that uses information about features and constraints
on feature combinations to type check an entire product line without generating every
program.

– We show that the type system is sound (i.e., it guarantees that every program generated
from a well-typed product line is well-typed). Furthermore, we show that the type system
is complete (i.e., the well-typedness of all programs of a product line implies that the
product line is well-typed as a whole).

– We offer an implementation of FFJ, including the proposed type system, which can be
downloaded for evaluation and for experiments with further feature-oriented language
and typing mechanisms.

Our work differs in many respects from previous and related work (see Section 5 for
a comprehensive discussion). Most notably, Thaker et al. have implemented a type system
for feature-oriented product lines and conducted several case studies [69]. We take their
work further with a formalization and a soundness and completeness proof. A further distin-
guishing property is that we model feature-related mechanisms directly in FFJ’s semantics
and type system, without any transformation to a lower-level representation (e.g., as in the
work of Delaware et al. [25]), and we stay very close to the syntax of contemporary feature-
oriented languages and tools. Finally, our work is related to type-checking mechanisms for
annotation-based product lines [38]. The type systems of traditional feature-oriented product
lines and annotation-based product lines are complementary to some extent. However, our
approach supports the full power of alternative features including all implications such as
that terms may have multiple types. For example, previous work by Kästner et al. supports
only one type per term.

2 Feature-Oriented Programs in FFJ

In this section, we introduce the language FFJ. Originally, FFJ was designed for feature-
oriented programs [9]. We extend FFJ in Section 3 to support feature-oriented product lines,
i.e., to support the representation of multiple alternative program variants at a time.

2.1 An Overview of FFJ

FFJ is a lightweight feature-oriented language that has been inspired by Featherweight Java
(FJ) [34]. As with FJ, we have aimed at minimality in the design of FFJ. FFJ provides
basic constructs like classes, fields, methods, and inheritance and only a few new constructs
capturing the core mechanisms of FOP. But, so far, FFJ’s type system has not supported the
development of feature-oriented product lines. That is, a set of feature modules written in
FFJ constitutes a single program. We will change this in Section 3.

Based on an earlier version [9], we developed a condensed version of FFJ, which is in
many respects more elegant and concise than its predecessor. After explaining the condensed
version, we summarize briefly the differences to the earlier version in Section 2.9.

An FFJ program consists of a set of classes and refinements. A refinement extends a
class that has been introduced previously. Each class and refinement is associated with a

4

feature. We say that a feature introduces a class or applies a refinement to a class. Tech-
nically, the mapping between classes/refinements and the feature they belong to can be es-
tablished in different ways, e.g., by extending the language with modules representing fea-
tures [52,16,25] or by grouping classes and refinements that belong to a feature in packages
or directories [15,11]. In the remainder, we call the set of classes and refinements associated
with a feature a feature module, neglecting that modules are not explicit in FFJ.

Like in FJ, each class declares a superclass, which may be the class Object. Refinements
are defined using the keyword refines. The semantics of a refinement applied to a class is
that the refinement’s members are added to and merged with the members of the refined
class. This way, a refinement can add new fields and methods to the class and override
existing methods (declared by modifier overrides).

On the left side in Figure 1, we show an excerpt of the FFJ code of a basic email client
called EMAILCLIENT (top) and a feature called SSL (bottom). Feature SSL adds class SSL
(Lines 7–10) to the email client’s code base and refines class Trans to encrypt outgoing mes-
sages (Lines 11–15). To this effect, the refinement of Trans adds a new field key (Line 12)
and overrides the method send of class Trans (Lines 13-15).

Feature EMAILCLIENT

1 class Msg extends Object {
2 String serialize() { ... }
3 }
4 class Trans extends Object {
5 Bool send(Msg m) { ... }
6 }

Feature SSL

7 class SSL extends Object {
8 Trans trans;
9 Bool send(Msg m) { ... }

10 }
11 refines class Trans {
12 Key key;
13 overrides Bool send(Msg m) {
14 return new SSL(this).send(m);
15 }
16 }

refinement chain

feature

refinement

class

inherits

refines

SSLEmailClient

Object

Trans

Msg

Trans

SSL

Fig. 1 A feature-oriented email client supporting SSL encryption.

Typically, a programmer applies multiple refinements to a class by composing a se-
quence of features. The ordered list of refinements is called a refinement chain. A refine-
ment that is applied immediately before another refinement in the chain is called its prede-
cessor. The order of the refinements in a refinement chain is determined by their features’
composition order. On the right side in Figure 1, we depict the refinement and inheritance
relationships of our email example.

Fields are unique within the scope of a class, its inheritance hierarchy, and its refine-
ment chain (i.e., field overshadowing is prohibited, for simplicity). That is, a refinement or
subclass is not allowed to add a field that has already been defined in a predecessor in the
refinement chain or in a superclass. For example, a further refinement of Trans would not
be allowed to add a field key, since key has been introduced by feature SSL already. With
methods, this is different. A refinement or subclass may add new methods (overloading is
prohibited, for simplicity) and override existing methods. To distinguish the two cases, FFJ

5

expects the programmer to declare whether a method overrides an existing method (using
modifier overrides). For example, the refinement of Trans in feature SSL overrides the
method send introduced by feature EMAILCLIENT; for subclasses, this is similar.

The distinction between method introduction and overriding allows the type system
to check (1) whether an introduced method inadvertently replaces or occludes an existing
method with the same name and (2) whether, for every overriding method, there is a proper
method to be overridden. Apart from the modifier overrides, the syntax of methods in FFJ
is identical to the syntax methods in FJ. That is, a method body is an expression (prefixed
with return) and not a sequence of statements. This is due to the functional nature of FFJ
(and FJ). Furthermore, overloading of methods (introducing methods with equal names and
different argument types) is not allowed in FFJ (and FJ).

As shown in Figure 1, refinement chains grow from left to right and inheritance hier-
archies from top to bottom. When looking up a method body, FFJ traverses the combined
inheritance and refinement hierarchy of a class and selects the right-most and bottom-most
(i.e., the least in the lexical order depicted in Figure 1) body of a method declaration or
method refinement that is compatible. This kind of lookup is necessary since we model
features directly in FFJ, instead of generating and evaluating FJ code [44].

First, FFJ’s method lookup mechanism searches for a proper method declaration in the
refinement chain of the given class, starting with the last refinement back to the class decla-
ration itself. The first body of a matching method declaration is returned. If the method is not
found in the class’ refinement chain or in its own declaration, the methods in the superclass
(and then the superclass’ superclass, etc.) are searched, each again from the most specific
refinement to the class declaration itself. The field lookup works analogously, except that the
entire inheritance and refinement hierarchy is searched and the fields are accumulated in a
list. In Figure 2, we illustrate the processes of method body and field lookup schematically.

Ref(n−1,k)Classn−1 Ref(n−1,1) Ref(n−1,k−1)

Ref(n,1) Ref(n,m)Classn Ref(n,m−1)

Ref(n,1) Ref(n,p)

Refinement

Inheritance

Lookup

Class1 Ref(n,p−1)

Object

Fig. 2 Order of method body and field lookup in FFJ.

2.2 Syntax of FFJ

Before we go into detail, let us introduce some notational conventions. We abbreviate lists
in the obvious ways:

– C is shorthand for C1, . . . , Cn

– C f is shorthand for C1 f1, . . . , Cn fn

6

L ::= class declarations:
class C extends D { C f; M }

R ::= refinement declarations:
refines class C { C f; M }

M ::= method declarations:
[overrides] C m(C x) { return t; }

t ::= terms:
x variable
t.f field access
t.m(t) method invocation
new C(t) object creation
(C) t cast

v ::= values:
new C(v) object creation

Fig. 3 Syntax of FFJ in extended BNF.

– C f; is shorthand for C1 f1; . . . ; Cn fn;
– t : C is shorthand for t1 : C1, . . . , tn : Cn

– C <: D is shorthand for C1 <: D1 . . . Cn <: Dn

– . . .

Note that, depending on the context, blanks, commas, or semicolons separate the elements
of a list. The context will make clear which separator is meant. The symbol • denotes the
empty list, and lists of field declarations, method declarations, and parameter names must
not contain duplicates (by name). We use the metavariables A–E for class names, f–h for
field names, and m for method names. Feature names are denoted by Greek letters.

In Figure 3, we depict the syntax of FFJ in extended Backus-Naur-Form. An FFJ pro-
gram consists of a set of class and refinement declarations. A class declaration L declares a
class with the name C that inherits from a superclass D and consists of a list C f; of fields
and a list M of method declarations.2 A refinement declaration R consists of a list C f; of
fields and a list M of method declarations.

A method m expects a list C x of arguments and declares a body that returns only a
single expression t of type C. Using the modifier overrides, a method declares that it intends
to override another method with an equal signature. Where we want to distinguish methods
that override others and methods that do not override others, we call the former method
introductions and the latter method refinements

Finally, there are five forms of terms: the variable, field access, method invocation, object
creation, and type cast, which are taken from FJ without change. The only values are object
creations whose arguments are values as well.

2.3 FFJ’s Class Table

Declarations of classes and refinements can be looked up via a class table CT . The compiler
fills the class table during the parser pass. In contrast to FJ, class and refinement declarations
are identified not only by their names but, additionally, by the names of the enclosing fea-
tures. For example, in order to retrieve the declaration of class Trans, introduced by feature
EMAILCLIENT, in our example of Figure 1, we write CT(EMAILCLIENT.Trans); in order
to retrieve the refinement of class Trans applied by feature SSL, we write CT(SSL.Trans).
We call Φ.C the qualified type of class C in feature Φ. The reserved symbol Base denotes
the feature that introduces class Object. Feature Base plays the same role for features as
Object plays for classes.

2 The concept of a class constructor is unnecessary in FFJ and FJ [58]. In FJ, it is used solely for backward
compatibility with Java. In FFJ, we do not pursue backward compatibility; its omittance simplifies the syntax,
semantics, and type rules significantly without loss of generality.

7

Navigating along the refinement chain

RT (C) = Ψ

last(C) = Ψn.C
RT (C) = Ψ,Φ,Ω Ψ 6= •

pred(Φ.C) = Ψn.C
RT (C) = Φ,Ω

pred(Φ.C) = Base.Object

Fig. 4 Refinement in FFJ.

In FFJ, class and refinement declarations are unique with respect to their qualified types.
Our model ensures this property by the following sanity conditions: a feature is not allowed

– to introduce a class or refinement twice inside a single feature module and
– to refine a class that the feature has just introduced.

These are common sanity conditions in feature-oriented languages and tools [15,11,10]. As
for FJ, we impose further sanity conditions on the class table and the inheritance relation:

– CT (Φ.C) = class C extends D { . . . } or refines class C { . . . } for every qualified
type Φ.C ∈ dom(CT);

– Φ.C ∈ dom(CT) ⇒ Φ 6= Base ∧C 6= Object;
– for every class name C appearing anywhere in CT , we have Φ.C ∈ dom(CT) for at

least one feature Φ; and
– the inheritance relation contains no cycles (including self-cycles).

2.4 Refinement in FFJ

Information on the refinement chain of a class can be retrieved using the refinement table
RT . The compiler fills the refinement table during the parser pass. It can be constructed
solely on the basis of the class table. RT (C) yields a list of all features that either introduce
or refine class C. Specifically, RT (C) = Φ for every type Ψ.C ∈ dom(CT), with Φ1 being
the feature that introduces class C (i.e., Φ 6= •) and a possibly empty list Φ2, . . . Φn of
features that refine class C. That is, the leftmost element of the result list is the feature that
introduces the class C and, then, from left to right, the features are listed that refine class
C in the order of their composition. In our example of Figure 1, RT (Trans) yields the list
EMAILCLIENT, SSL.

In Figure 4, we show two functions for the navigation of the refinement chain that rely
on RT . Function last returns, for a class name C, a qualified type Ψn.C, in which Ψn refers
to the feature that applies the final refinement to class C; if a class is not refined at all, Ψn

refers to the feature that introduces class C. Function pred returns, for a qualified type Φ.C,
another qualified type Ψn.C, in which Ψn refers to the feature that introduces or refines
class C and that is the immediate predecessor of Φ in the refinement chain; if there is no
predecessor, Base.Object is returned (for terminating the lookup functions).

2.5 Subtyping in FFJ

In Figure 5, we show the subtype relation <: of FFJ. It is defined by one rule for reflexiv-
ity, one rule for transitivity, and one rule for relating the type of a class to the type of its
immediate superclass. It is not necessary to define subtyping over qualified types because
only classes (not refinements) declare superclasses and there is only a single declaration per
class.

8

Subtyping C <: D

C <: C
C <: D D <: E

C <: E
CT(Φ.C) = class C extends D { . . . }

C <: D

Fig. 5 Subtyping in FFJ.

2.6 Auxiliary Definitions of FFJ

In Figure 6, we show the auxiliary definitions of FFJ. Function fields searches the refine-
ment chain from right to left and accumulates the fields into a list (using the comma as
concatenation operator). If there is no further predecessor in the refinement chain (i.e., we
have reached a class declaration), then the refinement chain of the superclass is searched
(see Figure 2). If Base.Object is reached, the empty list is returned (denoted by •).

Function mbody looks up the most specific and most refined body of a method m. A
body consists of the formal parameters x of a method and a term t representing the content.
The search is like in fields. First, the refinement chain is searched from right to left and,
then, the superclasses’ refinement chains are searched, as illustrated in Figure 2. Note that
[overrides] means that a given method declaration may (or may not) have the modifier. This
way, we are able to define uniform rules for method introduction and method refinement.

Function mtype yields the signature B→B0 of a declaration of method m. The lookup is
like in mbody , except that method introductions are considered only. Later we define a well-
formedness rule that guarantees that all corresponding method refinements have compatible
types.

Predicate introduceclass is used to check whether a class has been introduced by mul-
tiple features. Precisely, it states whether C has not been introduced by any feature other
than Φ. To evaluate it, we check whether CT (Ψ.C) yields a class declaration or not, for any
feature Ψ different from Φ. Similarly, introducefield and introducemethod are used to check
whether a field f or a method m has been introduced multiple times in a class (i.e., whether
they have not been introduced by Φ.C or in any of its predecessors or superclasses). In the
case of methods, we check whether mtype yields a signature and, in the case of fields, we
check whether f is defined in the list of fields returned by fields .

Predicate refine states whether, for a given refinement, a proper class has been declared
previously in the refinement chain. The predicate override states whether a method m has
been introduced before in some predecessor of Φ.C and whether the previous declaration of
m has the given signature.

2.7 Evaluation of FFJ Programs

Each FFJ program consists of a class table, a refinement table, and a term. The term is
evaluated using the evaluation rules shown in Figure 7. The evaluation terminates when a
value (i.e., a term of the form new C(v)) is reached. Note that we use a direct semantics
of class refinement [44]. That is, the field and method lookup mechanisms incorporate all
refinements when a class is searched for fields and methods. An alternative would be a
flattening semantics that merges each class in a preprocessing step with all of its refinements
into a single declaration. In Section 5, we compare both alternatives and justify our choice.

Using the subtype relation <: and the auxiliary functions fields and mbody, the evalua-
tion of FFJ is fairly simple. The first three rules are most interesting (the remaining rules are

9

Field lookup fields(Φ.C) = C f

fields(Base.Object) = •

CT (Φ.C) = class C extends D { C f; M }

fields(Φ.C) = fields(last(D)), C f

CT (Φ.C) = refines class C { C f; M }

fields(Φ.C) = fields(pred(Φ.C)), C f

Method body lookup mbody(m,Φ.C) = (x, t)

CT (Φ.C) = class C extends D { C f; M }
[overrides] B m(B x) { return t; } ∈ M

mbody(m,Φ.C) = (x, t)

CT (Φ.C) = class C extends D { C f; M }
m is not defined in M

mbody(m,Φ.C) = mbody(m, last(D))

CT (Φ.C) = refines class C { C f; M }
[overrides] B m(B x) { return t; } ∈ M

mbody(m,Φ.C) = (x, t)

CT (Φ.C) = refines class C { C f; M }
m is not defined in M

mbody(m,Φ.C) = mbody(m, pred(Φ.C))

Method type lookup mtype(m,Φ.C) = C→C

CT (Φ.C) = class C extends D { C f; M }
B0 m(B x) { return t; } ∈ M

mtype(m,Φ.C) = B→B0

CT (Φ.C) = class C extends D { C f; M }
m is not defined in M

mtype(m,Φ.C) = mtype(m, last(D))

CT (Φ.C) = refines class C { C f; M }
B0 m(B x) { return t; } ∈ M

mtype(m,Φ.C) = B→B0

CT (Φ.C) = refines class C { C f; M }
m is not defined in M

mtype(m,Φ.C) = mtype(m, pred(Φ.C))

Valid class introduction introduceclass(Φ.C)

@ Ψ : (CT (Ψ.C) = class C extends D { . . . } ∧ Φ 6= Ψ)

introduceclass(Φ.C)

Valid field introduction introducefield (f,Φ.C)

fields(Φ.C) = E h f /∈ h
introducefield (f,Φ.C)

Valid method introduction introducemethod (m,Φ.C)

(m,Φ.C) /∈ dom(mtype)

introducemethod (m,Φ.C)

Valid class refinement refine(Φ.C)

RT (C) = Ψ,Φ,Ω CT (Ψ1.C) = class C extends D { . . . }
refine(Φ.C)

Valid method overriding override(m,Φ.C,C→C0)

mtype(m,Φ.C) = B→B0 C = B C0 = B0

override(m,Φ.C,C→C0)

Fig. 6 Auxiliary definitions of FFJ.

10

fields(last(C)) = C f
(new C(v)).fi −→ vi

(E-PROJNEW)

mbody(m, last(C)) = (x, t0)

(new C(v)).m(u) −→ [x 7→ u, this 7→ new C(v)] t0
(E-INVKNEW)

C <: D
(D)(new C(v)) −→ new C(v)

(E-CASTNEW)

t0 −→ t′0
t0.f −→ t′0.f

(E-FIELD)

t0 −→ t′0
t0.m(t) −→ t′0.m(t)

(E-INVKRECV)

ti −→ t′i
v0.m(v, ti, t) −→ v0.m(v, t′i, t)

(E-INVKARG)

ti −→ t′i
new C(v, ti, t) −→ new C(v, t′i, t)

(E-NEWARG)

t0 −→ t′0
(C)t0.f −→ (C)t′0.f

(E-CAST)

Fig. 7 Evaluation of FFJ programs.

congruence rules). Rule E-PROJNEW describes the projection of a field from an instantiated
class. A projected field fi evaluates to a value vi that has been passed as argument to the in-
stantiation. Function fields is used to look up the fields of the given class. It receives last(C)

as argument since we want to search the entire refinement chain of class C from right to left
(cf. Figure 2).

Rule E-PROJINVK evaluates a method invocation by replacing the invocation with the
method’s body. The formal parameters of the method are substituted in the body for the
arguments of the invocation; the value on which the method is invoked is substituted for this.
The function mbody is called with the last refinement of the class C in order to search the
refinement chain from right to left and return the most specific method body (cf. Figure 2).

Rule E-CASTNEW evaluates an upcast by simply removing the cast. The premise must
be that the cast is really an upcast and not a downcast or an incorrect cast.

2.8 Type Checking FFJ Programs

The type relation of FFJ consists of the type rules for terms and the well-formedness rules
for classes, refinements, and methods, shown in Figures 8 and 9.

2.8.1 Term Typing Rules.

A term typing judgment is a triple consisting of a typing context Γ, a term t, and a type C
(see Figure 8).

Rule T-VAR checks whether a free variable is contained in the typing context. Rule T-
FIELD checks whether a field access t0.f is well-typed. Specifically, it checks whether f is

11

Term typing Γ ` t : C

x : C ∈ Γ

Γ ` x : C
(T-VAR)

Γ ` t0 : C0 fields(last(C0)) = C f
Γ ` t0.fi : Ci

(T-FIELD)

Γ ` t0 : C0 Γ ` t : C mtype(m, last(C0)) = D→C C <: D
Γ ` t0.m(t) : C

(T-INVK)

Γ ` t : C fields(last(C)) = D f C <: D
Γ ` new C(t) : C

(T-NEW)

Γ ` t0 : D D <: C
Γ ` (C)t0 : C

(T-UCAST)

Γ ` t0 : D C <: D C 6= D
Γ ` (C)t0 : C

(T-DCAST)

Γ ` t0 : D C 6<: D D 6<: C stupid warning

Γ ` (C)t0 : C
(T-SCAST)

Fig. 8 Term typing in FFJ.

declared in the type of t0 and whether the type of f equals the type of the entire term. Rule
T-INVK checks whether a method invocation t0.m(t) is well-typed. To this end, it checks
whether the arguments t of the invocation are subtypes of the types of the formal parameters
of m and whether the return type of m equals the type of the entire term. Rule T-NEW checks
whether an object creation new C(t) is well-typed in that it checks whether the arguments t
of the instantiation of C are subtypes of the types D of the fields of C and whether C equals
the type of the entire term. The rules T-UCAST, T-DCAST, and T-SCAST check whether
casts are well-typed. In each rule, it is checked whether the type C the term t0 is cast to is a
subtype, supertype, or unrelated type of the type of t0 and whether C equals the type of the
entire term.3

2.8.2 Well-Formedness Rules.

In Figure 9, we show FFJ’s well-formedness rules of classes, refinements, and methods.
The well-formedness judgments of classes and refinements are binary relations between

a class or refinement declaration and a feature, written L OK a Φ and R OK a Φ. The rule
of classes checks whether there is no feature other than Φ that introduces a class C, whether
none of the fields of the class declaration is introduced multiple times in the combined in-
heritance and refinement hierarchy, and whether all methods are well-formed in the context
of the class’ qualified type. The well-formedness rule of refinements is analogous, except
that the rule checks whether a corresponding class has been introduced before.

3 Rule T-SCAST is needed only for the small step semantics of FFJ (and FJ) to be able to formulate and
prove the type preservation property. FFJ (and FJ) programs whose type derivation contains this rule (i.e., the
premise stupid warning appears in the derivation) are not further considered (cf. [34]).

12

Method typing M OK a Φ.C

x : B, this : C ` t0 : E0 E0 <: B0

CT (Φ.C) = class C extends D { C f; M } introducemethod (m, last(D))

B0 m(B x) { return t0; } OK a Φ.C

x : B, this : C ` t0 : E0 E0 <: B0

CT (Φ.C) = class C extends D { C f; M } override(m, last(D),B→B0)

overrides B0 m(B x) { return t0; } OK a Φ.C

x : B, this : C ` t0 : E0 E0 <: B0

CT (Φ.C) = refines class C { C f; M } introducemethod (m, pred(Φ.C))

B0 m(B x) { return t0; } OK a Φ.C

x : B, this : C ` t0 : E0 E0 <: B0

CT (Φ.C) = refines class C { C f; M } override(m, pred(Φ.C),B→B0)

overrides B0 m(B x) { return t0; } OK a Φ.C

Class typing L OK a Φ

introduceclass(Φ.C) ∀ f ∈ f : introducefield (f, last(D)) M OK a Φ.C

class C extends D { C f; M } OK a Φ

Refinement typing R OK a Φ

refine(Φ.C) ∀ f ∈ f : introducefield (f, pred(Φ.C)) M OK a Φ.C

refines class C { C f; M } OK a Φ

Fig. 9 Well-formedness rules of FFJ.

The well-formedness judgment of methods is a binary relation between a method decla-
ration and the qualified type that declares the method, written M OK a Φ.C. There are four
different rules for methods (from top to bottom in Figure 9)

1. that do not override another method and that are declared by classes,
2. that override another method and that are declared by classes,
3. that do not override another method and that are declared by refinements,
4. that override another method and that are declared by refinements.

All four rules check whether the type E0 of the method body is a subtype of the declared re-
turn type B0 of the method declaration. For methods that are being introduced, it is checked
whether no method with an identical name has been introduced in a superclass (Rule 1) or
in a predecessor in the refinement chain (Rule 3). For methods that override other methods,
it is checked whether a method with identical name and signature exists in the superclass
(Rule 2) or in a predecessor in the refinement chain (Rule 4).

2.8.3 Well-Typed FFJ Programs.

An FFJ program, consisting of a term, a class table, and a refinement table, is well-typed if

– the term is well-typed (checked using FFJ’s term typing rules),
– all classes and refinements stored in the class table are well-formed (checked using FFJ’s

well-formedness rules), and

13

– the class table satisfies its sanity conditions.4

2.8.4 Type Soundness of FFJ.

The type system of FFJ is sound. We can prove this using the standard theorems of preser-
vation and progress [71]:

THEOREM 1 (Preservation) If Γ ` t : C and t −→ t′, then Γ ` t′: C′ for some C′<: C.

THEOREM 2 (Progress) Suppose t is a well-typed term.

1. If t includes new C0(t).fi as a subterm, then fields(last(C0)) = C f for some C and f.
2. If t includes new C0(t).m(u) as a subterm, then mbody(m, last(C0)) = (x, t0) and
|x| = |u| for some x and t0.

We provide the proofs of the two theorems in Appendix A.

2.9 Differences to the Earlier Version

As stated previously, the FFJ version presented here is based on an earlier version [9], which
is more verbose. The changes are summarized as follows:

– As stated previously, we removed the constructors to simplify the calculus.
– We introduced a refinement table and adapted the corresponding navigation functions.

In the earlier version, these functions have been defined only semiformally.
– We simplified the field and method lookup algorithm and condensed the corresponding

lookup functions.
– We revised several auxiliary predicates and added some new predicates to simplify the

well-formedness rules.

3 Feature-Oriented Product Lines in FFJPL

In this section, our goal is to define a type system for feature-oriented product lines – a type
system that checks whether all valid combinations of features yield well-typed programs. In
this scenario, the features in question may be optional or mutually exclusive such that dif-
ferent combinations are possible that form different feature-oriented programs. Since there
may be plenty of valid combinations, type checking all of them individually is usually not
feasible.

To provide a type system for feature-oriented product lines, we need information about
which combinations of features are valid (i.e., which features are mandatory, optional, and
mutually exclusive), and we need to adapt the subtype and type rules of FFJ to check that
there are no combinations/variants that lead to ill-typed terms. The type system guarantees
that every program derived from a well-typed product line is a well-typed FFJ program.
FFJ together with the type system for checking feature-oriented product lines is henceforth
called FFJPL.

4 As stated previously, a further requirement is that type rule T-SCAST does not occur in the type derivation
of the program [58].

14

3.1 An Overview of Feature-Oriented Product Lines

A feature-oriented product line is made up of a set of feature modules and a feature model.
The feature modules contains the features’ implementation and the feature model describes
how the feature modules can be combined. In contrast to the feature-oriented programs
of Section 2, typically, some features are optional and some are mutually exclusive. (Also
other relations such as disjunction, negation, and implication are possible [14]; we decom-
pose them into mandatory, optional, and mutually exclusive features, as we will explain.)
Generally, in a derivation step, a user selects a valid subset of features from which, subse-
quently, a feature-oriented program is derived. In our case, derivation means assembling the
corresponding feature modules for a given set of features selected by the user. In Figure 10,
we illustrate the process of program derivation.

selection

user’s feature
B

A

E

C

program program

program program

A

B

D

E

A

B

E

B

A

C

E

D

...

A

B C D

F

FE

B

B

A

...

E

...

...

feature model

F

C
B
A

D
E

feature modules

feature−oriented product line feature−oriented programs

derivation

program

Fig. 10 The process of deriving programs from a product line.

Typically, a wide variety of programs can be derived from a product line [23, 21]. The
challenge is to define a type system that guarantees, on the basis of the feature modules
and the feature model, that every valid feature combination produces a well-typed program.
Once a program is derived from such a well-typed product line, we can be sure that it is well-
typed, and we can evaluate it using the standard evaluation rules of FFJ (see Section 2.7).

3.2 Managing Variability – Feature Models

The aim of developing a product line is to manage the variability of a set of programs devel-
oped for a particular domain and to facilitate the reuse of feature implementations among the
programs of the domain. A feature model captures the variability by (explicitly or implicitly)
defining an ordered set of all features of a product line and their legal feature combinations.
A well-defined feature order is essential for field and method lookup (see Section 3.7).

Different approaches to product line engineering use different representations of fea-
ture models to define legal feature combinations. The simplest approach is to enumerate
all legal feature combinations. In practice, commonly different flavors of tree structures are
used, sometimes in combination with additional propositional constraints, to define legal
combinations [23, 14], as illustrated in Figure 10.

15

For our purpose, the actual representation of legal feature combinations is not relevant.
In FFJPL, we use the feature model only to check whether features and/or specific program
elements are present in certain circumstances. A design decision of FFJPL is to abstract from
the concrete representation of the underlying feature model and to provide an interface to the
feature model instead. This has two benefits: (1) we need not to struggle with all the details of
the formalization of feature models, which is well understood by researchers [14,24,69,25]
and outside the scope of this paper, and (2) we are able to support different kinds of feature
model representations (e.g., a tree structures, grammars, or propositional formulas) [14].
The interface to the feature model is simply a set of functions and predicates that we use
to ask questions like “may feature A be present together with feature B” or “is program
element m present in every variant in which also feature A is present”, that is, “is program
element m always reachable from feature A”.

3.3 Challenges of Type Checking

Let us illustrate the challenges of type checking by extending our email example, as shown
in Figure 11. Suppose our basic email client is refined to process incoming text messages
(feature TEXT, Lines 1–8). Optionally, it is enabled to process HTML messages, using either
Mozilla’s rendering engine (feature MOZILLA, Lines 9–12) or Safari’s rendering engine
(feature SAFARI, Lines 13–16). To this end, the features MOZILLA and SAFARI override
the method render of class Display (Line 11 and 15) to invoke the respective rendering
engines (field renderer, Lines 10 and 14) instead of the text printing function (Line 7).

Feature TEXT

1 refines class Trans {
2 Unit receive(Msg msg) {
3 return /∗ do something... ∗/ new Display().render(msg);
4 }
5 }
6 class Display {
7 Unit render(Msg msg) { /∗ display message in text format ∗/ }
8 }

Feature MOZILLA

9 refines class Display {
10 MozillaRenderer renderer;
11 overrides Unit render(Msg m) { /∗ render HTML message using the Mozilla engine ∗/ }
12 }

Feature SAFARI

13 refines class Display {
14 SafariRenderer renderer;
15 overrides Unit render(Msg m) { /∗ render HTML message using the Safari engine ∗/ }
16 }

Fig. 11 A feature-oriented email client using Mozilla’s and Safari’s rendering engines.

The first thing to observe is that the features MOZILLA and SAFARI rely on class Dis-
play and its method render introduced by feature TEXT. To guarantee that every derived
program is well-typed, the type system checks whether Display and render are always
reachable from the features MOZILLA and SAFARI, i.e., whether, in every program variant
that contains MOZILLA and SAFARI, also feature TEXT is present.

16

The second thing to observe is that the features MOZILLA and SAFARI both add a field
renderer to Display (Lines 10 and 14), both of which have different types. In FFJ, a pro-
gram with both feature modules would not be a well-typed program because the field ren-
derer is introduced twice. However, Figure 11 is not intended to represent a single feature-
oriented program but a feature-oriented product line; the features MOZILLA and SAFARI

are mutually exclusive, as defined in the product line’s feature model (stated earlier), and
the type system has to take this fact into account.

Let us summarize the key challenges of type checking product lines:

– A global class table contains classes and refinements of all features of a product line,
even if some features are optional or mutually exclusive, such that they are present
only in some derived programs. That is, a single class can be introduced by multiple
features as long as the features are mutually exclusive. This is also the case for multiple
introductions of methods and fields.

– Alternative definitions of classes may have different superclasses, and alternative defi-
nitions of fields, methods, and types may have different types. Aversano et al. showed
that this situation indeed occurs in practice [13] (see Section 5).

– The presence of types, fields, and methods depends on the presence of the features that
introduce them. A reference from the elements of a feature to a type, field, or method
is valid if the referenced element is always reachable from the referring feature. That is,
the referenced element is present in every variant that contains a referring element.

– Like references, an extension of a program element, such as a class or method refine-
ment, is valid only if the extended program element is always reachable from the feature
that applies the refinement.

– Refinements of classes and methods do not necessarily form linear refinement chains.
There may be alternative refinements of a single class or method that exclude one an-
other, as we explain below.

3.4 Collecting Information on Feature Modules

For type checking, the FFJPL compiler collects various information on the feature modules
of the product line. Before the actual type checking is performed, the compiler fills three
tables with information: the class table CT , the introduction table IT , and the refinement
table RT .

The class table CT of FFJPL is like the one of FFJ and has to satisfy the same sanity
conditions except that there may be cycles in the inheritance hierarchy, but no cycles for
each set of classes which are reachable from any given feature.

The introduction table IT maps a type to a list Φ of (mutually exclusive) features that
introduce the type: IT (C) = Φ for every type Ψ.C ∈ dom(CT), with Φ being the features
that introduce class C. The features are listed in the order prescribed by the feature model.
In our example of Figure 11, a call of IT (Display) would return a list consisting only of
the single feature TEXT. Likewise, the introduction table maps field and method names,
in combination with their declaring classes (i.e., IT (C.f) and IT (C.m)), to features. For
example, a call of IT (Display.renderer) would return the list MOZILLA, SAFARI.

Much like in FFJ, in FFJPL there is a refinement table RT . A call of RT (C) yields a list
of all features that either introduce or refine class C (which is different from the introduction
table that returns only the features that introduce class C). As with IT , the features returned
by RT are listed in the order prescribed by the feature model.

17

3.5 Feature Model Interface

As stated previously, in FFJPL, we abstract from the concrete representation of the feature
model and define instead an interface consisting of proper functions and predicates.

We would like to know which features are sometimes present together, which features
are never present together, and which features are always present together. To this end, we
define a predicate sometimes and a function always .

Predicate sometimes(Ω, Φ) indicates that feature Φ is sometimes present when the fea-
tures Ω are present. That is, there are variants in which the features Ω and feature Φ are
present together and there may be variants in which they are not present together. Ω is
henceforth also called context.

Negating the predicate (i.e., ¬sometimes(Ω, Φ)) indicates that feature Φ is never reach-
able in context Ω. That is, there is no valid program variant in which the features Ω and
feature Φ are present together.

Function always(Ω, Φ) is used to evaluate whether feature Φ is always present in context
Ω (either alone or within a group of alternative features). The function returns a list of
features. There are three cases:

1. If feature Φ is always present in the context, function always returns a singleton list of
feature Φ: always(Ω, Φ) = Φ.

2. If feature Φ is not always present, but belongs to a group Θ of features, which is the
smallest group in which all features are mutually exclusive and one feature of the group
is always present, always returns this group (including Φ): always(Ω, Φ) = Θ with
Φ ∈ Θ.

3. If the two previous cases do not apply (i.e., feature Φ is never or sometimes present
and not part of a group of mutually exclusive features), always returns the empty list:
always(Ω, Φ) = •.

The reserved feature Base is always present.
Predicate sometimes and function always provide all information we need to know

about the features’ relationships. They are used especially for field and method lookup.

3.6 Valid References

We would like to know whether a specific program element is always present when a
given set of features is present. This is necessary to ensure that references to program el-
ements are always valid (i.e., not dangling). To this end, we need two sources of informa-
tion. First, we need to know all features that introduce the program element in question
(determined using the introduction table) and, second, we need to know which combina-
tions of features are legal (determined using the feature model). For the field renderer
of our example, the introduction table would yield the features MOZILLA and SAFARI.
From the feature model, it follows that MOZILLA and SAFARI are mutually exclusive, i.e.,
¬sometimes(MOZILLA, SAFARI). But it can happen that none of the two features is present,
which can invalidate a reference to the field. The type system needs to know about this situ-
ation.

To this end, we introduce three predicates that express that certain program elements are
always reachable from a set of features, shown in Figure 12. Predicate validref class(Ω, C)

holds if type C is always reachable from context Ω, predicate validref field (Ω, C.f) holds if
field f of class C is always reachable from context Ω, and predicate validref method (Ω, C.m)

18

Valid class reference validref class(Ω,C)

IT (C) = Φ always(Ω,Φ1) ∨ . . . ∨ always(Ω,Φn)

validref class(Ω,C)

Valid field reference validref field (Ω,C)

IT (C.f) = Φ always(Ω,Φ1) ∨ . . . ∨ always(Ω,Φn)

validref field (Ω,C.f)

Valid method reference validref method (Ω,C)

IT (C.m) = Φ always(Ω,Φ1) ∨ . . . ∨ always(Ω,Φn)

validref method (Ω,C.m)

Fig. 12 Valid class, field, and method references in FFJPL.

Navigating along the refinement chain

RT (C) = Ψ

last(C) = Ψn.C
RT (C) = Ψ,Φ,Ω Ψ 6= •

pred(Φ.C) = Ψn.C
RT (C) = Φ,Ω

pred(Φ.C) = Base.Object

Fig. 13 Refinement in FFJPL.

holds if method m of class C is always reachable from context Ω. Applying validref 5 to a
list of program elements means that the conjunction of the predicates for every list element
is taken. Finally, when we write validref class(Ω, C) a Ψ, we mean that program element C
is always reachable from context Ω in a subset Ψ of features of the product line. For brevity,
we do not provide a formalization here. (We need this special case in the well-formedness
rules of classes and refinements.)

In our prototype, we have implemented the above functions and predicates using a SAT
solver that reasons about propositional formulas representing constraints on legal feature
combinations (see Section 4), as proposed by Batory [14] and Czarnecki and Pietroszek [24].

3.7 Refinement in FFJPL

In Figure 13, we show the functions last and pred for the navigation along the refinement
chain. The two functions are identical to the ones of FFJ (cf. Figure 4). However, in FFJPL,
there may be alternative declarations of a class and, in the refinement chain, refinement
declarations may even precede class declarations, as long as the declaring features are mu-
tually exclusive. Let us illustrate refinement in FFJPL by means of the example shown in
Figure 14. Class C is introduced in the features Φ1 and Φ3. Feature Φ2 refines class C in-
troduced by feature Φ1 and feature Φ4 refines class C introduced by feature Φ3. Feature Φ1

and Φ2 are never present when feature Φ3 or Φ4 are present and vice versa. Still, a call of
RT (C) would return the list Φ1, . . . , Φ4, a call of last(C) would return the qualified type
Φ4.C, and a call of pred(Φ4.C) would return the qualified type Φ3.C and so on.

5 When we do not refer to one specific of the three predicates, we write validref without subscript.

19

CC CC

2 3 41
Φ Φ Φ Φ

mutually exclusive

Fig. 14 Multiple alternative refinements.

3.8 Subtyping in FFJPL

The subtype relation is more complicated in FFJPL than in FFJ. The reason is that a class
may have multiple declarations in different features, each declaring possibly different su-
perclasses, as illustrated in Figure 15. That is, when checking whether a class is a subtype
of another class, we need to check whether the subtype relation holds in all alternative
inheritance paths that may be reached from a given context. For example, FooBar is a sub-
type of BarFoo because BarFoo is a superclass of FooBar in every program variant (since
always(Φ1, Φ2) = Φ2, Φ3); but FooBar is not a subtype of Foo and Bar because, in both
cases, a program variant exists in which FooBar is not a (indirect) subclass of the class in
question.

Φ1

Φ2 Φ3

Φ2 Φ3

Φ1present together with

and are

mutually exclusive and

one of them is always

E e;

B b;

B m(B b);

A a;

A m(D d);

D d;

FooBar

Foo Bar

BarFoo

D d;

BarFoo

Fig. 15 Multiple inheritance chains in the presence of alternative features.

In Figure 16, we show the subtype relation C <: E a Ω of FFJPL. It is read as follows:
in context Ω, type C is a subtype of type E. That is, type C is a subtype of type E in every
variant in which also the features of context Ω are present. The first rule in Figure 16 covers
reflexivity and terminates the recursion over the inheritance hierarchy. The second rule states
that class C is a subtype of class E if at least one declaration of C is always present (tested
with validref class) and if every of C’s declarations that may be present together with Ω

(tested with sometimes) declares some type D as its supertype and D is a subtype of E in
context Ω. That is, E must be a direct or indirect supertype of D in all variants in which the
features of context Ω are present. Additionally, supertype D must be always reachable from
context (Ω, Ψ). Traversing the inheritance hierarchy, in each step, the context is extended by
the feature that introduces the current class in question (e.g., Ω is extended with Ψ).

Interestingly, the second rule subsumes the two FFJ rules for transitivity and direct su-
perclass declaration because some declarations of C may declare E directly as its superclass,
and some declarations may declare another superclass D that is, in turn, a subtype of E. The
rule must be applicable to both cases simultaneously.

20

Subtyping C <: E a Ω

C <: C a Ω

validref class(Ω,C)

∀Ψ ∈ IT (C) : sometimes(Ω,Ψ)⇒
„

CT(Ψ.C) = class C extends D { . . . }
validref class((Ω,Ψ),D) D <: E a Ω,Ψ

«
C <: E a Ω

Fig. 16 Subtyping in FFJPL.

Applied to our example of Figure 15, we have FooBar <: FooBar a Φ1 because of the
reflexivity rule. We also have FooBar <: BarFoo a Φ1 because FooBar is reachable from
feature Φ1 and every feature that introduces FooBar, namely Φ1, contains a correspond-
ing class declaration that declares BarFoo as FooBar’s superclass, and BarFoo is always
reachable from Φ1. However, we have FooBar 6<: Foo a Φ1 and FooBar 6<: Bar a Φ1 be-
cause FooBar’s immediate superclass BarFoo is not always a subtype of Foo respectively
of Bar.

3.9 Auxiliary Definitions of FFJPL

Extending FFJ toward FFJPL requires the addition and modification of some auxiliary func-
tions. The most complex changes concern the field and method lookup mechanisms.

3.9.1 Field Lookup.

The auxiliary function fields collects the fields of a class including the fields of its super-
classes and refinements. Since alternative class or refinement declarations may introduce
alternative fields (or the same field with identical or alternative types), fields may return
different fields for different contexts. Since we want to type check all valid variants, field

returns multiple field lists (i.e., a list of lists) that cover all possible feature selections. Each
inner list contains field declarations collected in an alternative path of the combined inheri-
tance and refinement hierarchy.

For legibility, we separate the inner lists using the delimiter ‘◦’. For example, look-
ing up the fields of class FooBar in the context of feature Φ1 (Figure 15) yields the list
A a, D d, E e ◦ B b, D d, E e because the features Φ2 and Φ3 are mutually exclusive and
one of them is present in each variant in which also Φ1 is present. For readability, we use
the metavariables F and G when referring to inner field lists. We abbreviate a list of lists
F1 ◦ . . . ◦ Fn of fields by F .

Function fields receives a qualified type Φ.C and a context Ω of features. If we want all
possible field lists, the context is empty. If we want only field lists for a subset of feature
selections (e.g., only the fields that can be referenced from a term in a specific feature mod-
ule), we can use the context to specify one or more features of which we know that they
must be selected.

The basic idea of FFJPL’s field lookup is to traverse the combined inheritance and re-
finement hierarchy much like in FFJ. There are five situations that are handled differently:

21

Field lookup fields(Ω,Φ.C) = C f

fields(Ω,Φ.Object) = • (FL-1)

¬sometimes(Ω,Φ)

fields(Ω,Φ.C) = fields(Ω, pred(Φ.C))
(FL-2)

always(Ω,Φ) = Φ

CT (Φ.C) = class C extends D { C f; M }

fields(Ω,Φ.C) = append(fields(Ω, last(D)),C f)
(FL-3.1)

always(Ω,Φ) = Φ

CT (Φ.C) = refines class C { C f; M }

fields(Ω,Φ.C) = append(fields(Ω, pred(Φ.C)),C f)
(FL-3.2)

sometimes(Ω,Φ) always(Ω,Φ) = •
CT (Φ.C) = class C extends D { C f; M }

fields(Ω,Φ.C) = append(fields(Ω, last(D)),C f@)
(FL-4.1)

sometimes(Ω,Φ) always(Ω,Φ) = •
CT (Φ.C) = refines class C { C f; M }

fields(Ω,Φ.C) = append(fields(Ω, pred(Φ.C)),C f@)
(FL-4.2)

sometimes(Ω,Φ) always(Ω,Φ) = Ψ

fields(Ω,Φ.C) = fields((Ω,Ψ1),Φ.C) ◦ . . . ◦ fields((Ω,Ψn),Φ.C)
(FL-5)

Fig. 17 Field lookup in FFJPL.

1. The field lookup returns the empty list when it reaches Base.Object, i.e., the recursion
terminates.

2. The field lookup ignores all fields that are introduced by features that are never present
in a given context.

3. The field lookup collects all fields that are introduced by features that are always present
in a given context. References to these fields are always valid.

4. The field lookup collects all fields that are introduced by features that may be present in a
given context but that are not always present. In this case, a special marker @ is added to
the fields in question because we cannot guarantee that a reference to this field is safe in
the given context.6 It is up to the type system to decide, based on the marker, whether this
situation may provoke an error (e.g., the type system ignores the marker when looking
for duplicate fields but reports an error when type checking object creations).

5. A special situation occurs when the field lookup identifies a group of alternative features.
In such a group, each feature is optional and excludes every other feature of the group
and at least one feature of the group is always present in a given context. Once the
field lookup identifies a group of alternative features, we split the result list, each list
containing the fields of a feature of the group and the fields of the original list.

To distinguish the different cases, we use the predicates and functions defined in Sec-
tion 3.5 (especially sometimes and always). The definition of function fields , shown in
Figure 17, follows the intuition described above: Once Base.Object is reached, the recur-
sion terminates (FL-1). When a feature is never reachable in the given context, fields ignores

6 Note that the marker @ is generated during type checking, so we do not include it in the syntax of FFJ.

22

Method type lookup mtype(Ω,m,Φ.C) = B→B0

mtype(Ω,m,Base.Object) = • (ML-1)

CT (Φ.C) = class C extends D { C f; M }
B0 m(B x) { . . . } ∈ M sometimes(Ω,Φ)

mtype(Ω,m,Φ.C) = mtype(Ω,m, pred(Φ.C)),mtype(Ω,m, last(D)),B→B0

(ML-2)

CT (Φ.C) = refines class C { C f; M }
B0 m(B x) { . . . } ∈ M sometimes(Ω,Φ)

mtype(Ω,m,Φ.C) = mtype(Ω,m, pred(Φ.C)),B→B0

(ML-3)

CT (Φ.C) = class C extends D { C f; M }
(m is not defined in M ∨ ¬sometimes(Ω,Φ))

mtype(Ω,m,Φ.C) = mtype(Ω,m, pred(Φ.C)),mtype(Ω,m, last(D))
(ML-4)

CT (Φ.C) = refines class C { C f; M }
(m is not defined in M ∨ ¬sometimes(Ω,Φ))

mtype(Ω,m,Φ.C) = mtype(Ω,m, pred(Φ.C))
(ML-5)

Fig. 18 Method type lookup in FFJPL.

this feature and resumes with the previous one (FL-2). When a feature is mandatory (i.e.,
always present in a given context), the fields in question are added to each alternative result
list, which were created in Rule FL-5 (FL-3.1 and FL-3.2).7 When a feature is optional, the
fields in question, annotated with the marker @, are appended to each alternative result list
(FL-4.1 and FL-4.2). When a feature is part of an alternative group of features, we cannot
immediately decide how to proceed. We split the result list in multiple lists (by means of
multiple recursive invocations of fields), in which we add one of the alternative features to
each context passed to an invocation of fields (FL-5).

3.9.2 Method Type Lookup.

Like in field lookup, in method lookup, we have to take alternative definitions of meth-
ods into account. But the lookup mechanism is simpler than in fields because the order
of signatures found in the combined inheritance and refinement hierarchy is irrelevant for
type checking. Hence, function mtype yields a simple list B→B0 of signatures for a given
method name m. For example, calling mtype(Φ1, m, Φ1.C) in the context of Figure 15
yields the list D→A, B→B.

In Figure 18, we show the definition of function mtype. For Base.Object, the empty list
is returned (ML-1). If a class that is sometimes reachable (using sometimes) introduces a
method in question (ML-2), its signature is added to the result list and all possible prede-
cessors in the refinement chain (using pred) and all possible subclasses are searched (using
last). Likewise, if a refinement that is sometimes reachable (using sometimes) introduces a
method with the name searched (ML-3), its signature is added to the result list and all pos-
sible predecessors in the refinement chain are searched (using pred). If a class or refinement

7 Function append adds to each inner list of a list of field lists a given field. Its implementation is straight-
forward and omitted for brevity.

23

Valid class introduction introduceclass(Ω,Φ.C)

@ Ψ :

„
CT (Ψ.C) = class C extends D { C f; M }

Ψ 6= Φ sometimes(Ω,Ψ)

«
introduceclass(Ω,Φ.C)

Valid field introduction introducefield (Ω, f,Φ.C)

∀E h ∈ fields(Ω,Φ.C) : f /∈ h
introducefield (Ω, f,Φ.C)

Valid method introduction introducemethod (Ω,m,Φ.C)

mtype(Ω,m,Φ.C) = •
introducemethod (Ω,m,Φ.C)

Valid class refinement refine(Ω,Φ.C)

RT (C) = Ψ,Φ,Π validref class(Ω,C) a Ψ

refine(Ω,Φ.C)

Valid method overriding override(Ω,m,Φ.C,C→C0)

RT (C) = Ψ,Φ,Π validref method (Ω,C.m) a Ψ,Φ

∀B→B0 ∈ mtype(Ω,m,Φ.C) : C = B ∧ C0 = B0

override(Ω,m,Φ.C,C→C0)

Fig. 19 Valid introduction, refinement, and overriding in FFJPL.

does not declare a corresponding method (ML-4 and ML-5) or the a class is never reachable,
the search proceeds with the possible superclasses or predecessors.

The current definition of function mtype returns possibly many duplicate signatures.
A straightforward optimization would be to remove duplicates before using the result list,
which we omitted for simplicity.

3.9.3 Valid Introduction, Refinement, and Overriding.

In Figure 19, we show predicates for checking the validity of introduction, refinement, and
overriding in FFJPL. Predicate introduceclass indicates whether a class with the qualified
type Φ.C has not been introduced by any other feature Ψ that may be present in context
Ω. Likewise, introducefield and introducemethod hold if a field f or a method m has not
been introduced by a qualified type Φ.C (including possible predecessors and superclasses)
that may be present in the given context Ω. To this end, the former checks whether f is not
contained in every inner list returned by fields , and the latter checks whether mtype yields
the empty list.

For a given refinement, predicate refine indicates whether a proper class, which is al-
ways reachable in the given context, has been declared previously in the refinement chain.
We write validref class(Ω, C) a Ψ to state that a declaration of class C has been introduced
in the set Ψ of features, which is only a subset of the features of the product line, namely
the features that precede the feature that introduces class C. Predicate override indicates
whether a declaration of method m has been introduced (and is always reachable) in some

24

Term typing Γ ` t : C a Φ

x : C ∈ Γ

Γ ` x : C a Φ
(T-VARPL)

Γ ` t0 : E a Φ ∀E ∈ E : validref field (Φ,E.f)
fields(Φ, last(E)) = F ,C f,G

Γ ` t0.f : C11, . . . ,Cn1, . . . ,C1m, . . . ,Cnm a Φ
(T-FIELDPL)

Γ ` t0 : E a Φ Γ ` t : C a Φ ∀E ∈ E : validref method (Φ,E.m)

mtype(Φ,m, last(E)) = D→B ∀C ∈ C, ∀D ∈ D : C <: D a Φ

Γ ` t0.m(t) : B11, . . . ,Bn1, . . . ,B1m, . . . ,Bnm a Φ
(T-INVKPL)

Γ ` t : C a Φ validref class(Φ,C)

fields(Φ, last(C)) = F @ /∈ F ∀D g ∈ F , ∀C ∈ C : C <: D a Φ

Γ ` new C(t) : C a Φ
(T-NEWPL)

Γ ` t0 : E a Φ validref class(Φ,C)

∀E ∈ E : (E <: C a Φ ∨ C <: E a Φ)

Γ ` (C)t0 : C a Φ
(T-UDCASTPL)

Fig. 20 Term typing in FFJPL.

feature introduced by before the feature that refines m and whether every possible declara-
tion of m in any predecessor of a Φ.C has the same signature.

3.10 Type Relation of FFJPL

The type relation of FFJPL consists of type rules for terms and well-formedness rules for
classes, refinements, and methods, shown in Figure 20 and Figure 21.

3.10.1 Term Typing Rules.

A term typing judgment in FFJPL is a quadruple, consisting of a typing context Γ, a term
t, a list of types C, and a feature Φ that contains the term (see Figure 20). A term can have
multiple types in a product line because there may be multiple declarations of classes, fields,
and methods. The list C contains all possible types a term can have.

Rule T-VARPL is standard and does not refer to the feature model. It yields a list con-
sisting only of the type of the variable in question.

Rule T-FIELDPL checks whether a field access t0.f is well-typed in every possible
variant in which also Φ is present. Based on the possible types E of the term t0 from
which the field f is accessed, the rule checks whether f is always reachable from Φ (using
validref field).8 Note that this is a key mechanism of FFJPL’s type system. It ensures that a
field, being accessed, is definitely present in every valid program variant in which the field
access occurs – without generating all these variants. Furthermore, all possible fields of all
possible types E are assembled in a nested listF , C f,G in which C f denotes a declaration of

8 In this case, we do not need to evaluate whether the field is marked with @; predicate validref field
ensures that the field is always reachable.

25

Method typing M OK a Φ.C

x : B, this : C ` t0 : E a Φ ∀E ∈ E : E <: B0 a Φ

CT (Φ.C) = class C extends D { C f; M }
validref class(Φ,B) introducemethod (Φ,m, last(D))

B0 m(B x) { return t0; } OK a Φ.C

x : B, this : C ` t0 : E a Φ ∀E ∈ E : E <: B0 a Φ

CT (Φ.C) = class C extends D { C f; M }
validref class(Φ,B) override(Φ,m, last(D),B→B0)

overrides B0 m(B x) { return t0; } OK a Φ.C

x : B, this : C ` t0 : E a Φ ∀E ∈ E : E <: B0 a Φ

CT (Φ.C) = refines class C { C f; M }
validref class(Φ,B) introducemethod (Φ,m, pred(Φ.C))

B0 m(B x) { return t0; } OK a Φ.C

x : B, this : C ` t0 : E a Φ ∀E ∈ E : E <: B0 a Φ

CT (Φ.C) = refines class C { C f; M }
validref class(Φ,B) override(Φ,m, pred(Φ.C),B→B0)

overrides B0 m(B x) { return t0; } OK a Φ.C

Class typing L OK a Φ

validref class(Φ,D) validref class(Φ,C)

introduceclass(Φ,Φ.C) ∀ f ∈ f : introducefield (Φ, f, last(D)) M OK a Φ.C

class C extends D { C f; M } OK a Φ

Refinement typing R OK a Φ

validref class(Φ,C)

refine(Φ,Φ.C) ∀ f ∈ f : introducefield (Φ, f, pred(Φ.C)) M OK a Φ.C

refines class C { C f; M } OK a Φ

Fig. 21 Well-formedness rules of FFJPL.

field f;9 the call of fields(Φ, last(E)) is shorthand for fields(Φ, last(E1)) . . . fields(Φ, last(En)),
in which the individual result lists are concatenated. Finally, the list of all possible types
C11, . . . , Cn1, . . . , C1m, . . . , Cnm of field f becomes the list of types of the overall field
access. Note that the result list may contain duplicates, which could be eliminated for opti-
mization purposes.

Rule T-INVKPL checks whether a method invocation t0.m(t) is well-typed in every
possible variant in which also Φ is present. Based on the possible types E of the term t0
on which the method m is invoked, the rule checks whether m is always reachable from
Φ (using validref method). As with field access, this check is essential. It ensures that in
generated programs only methods are invoked that are also present. Furthermore, all possible
signatures of m of all possible types E are assembled in the nested list D→B, and it is
checked that all possible lists C of argument types of the method invocation are subtypes
of all possible lists D of parameter types of the method (this implies that the lengths of the
two lists must be equal). A method invocation has multiple types assembled in a list that

9 For brevity, we flatten lists in the calculus if their use is unambiguous.

26

contains all result types of method m determined by mtype. As with field access, duplicates
should be eliminated for optimization purposes.

Rule T-NEWPL checks whether an object creation new C(t) is well-typed in every pos-
sible variant in which also Φ is present. Specifically, it checks whether there is a declaration
of class C always reachable from Φ. Furthermore, all possible field combinations of C are
assembled in the nested list F , and it is checked whether all possible combinations of ar-
gument types passed to the object creation are subtypes of the types of all possible field
combinations (this implies that the number of arguments types must equal the number of
field types). The fields of the result list must not be annotated with the marker @ since op-
tional fields may not be present in every variant and references may become invalid (see
field lookup).10 An object creation has only a single type C.

Rule T-UDCASTPL checks whether casts are well-typed in every possible variant in
which also Φ is present. This is done by checking whether the type C the term t0 is cast to is
always reachable from Φ and whether this type is a subtype or supertype of all possible types
E the term t0 can have.11 We have only a single rule T-UDCASTPL for up- and downcasts
because the list E of possible types may contain super- and subtypes of C simultaneously.
A cast yields a list containing only a single type C.

3.10.2 Well-Formedness Rules.

In Figure 21, we show the well-formedness rules of classes, refinements, and methods.
Like in FFJ, the well-formedness judgment of classes and refinements is a binary relation

between a class or refinement declaration and a feature. The rule of classes checks whether
the superclass and all field types are always reachable from Φ (using validref class), whether
the class declaration is unique in the scope of the enclosing feature Φ (i.e., whether no other
feature, that may be present together with feature Φ, introduces a class with an identical
name), whether none of the fields of the class declaration have been introduced before ,
and whether all methods are well-formed in the context of the class’ qualified type. The
well-formedness rule of refinements is analogous, except that the rule checks that there is at
least one class declaration reachable that is refined and that has been introduced before the
refinement (using refine).

The well-formedness judgment of methods is a binary relation between a method dec-
laration and the qualified type that declares the method. Like in FFJ, there are four different
rules for methods (from top to bottom in Figure 21)

1. that do not override another method and that are declared by classes,
2. that override another method and that are declared by classes,
3. that do not override another method and that are declared by refinements,
4. that override another method and that are declared by refinements.

All four rules check whether all possible types E of the method body are subtypes of the de-
clared return type B0 of the method and whether the argument types B are always reachable
from the enclosing feature Φ (using validref class).

For methods that are introduced, it is checked whether no method with identical name
has been introduced in any possible superclass (Rule 1) or in any possible predecessor in the

10 The treatment of @ is semiformal but simplifies the rule. In a more formal approach, we would have to
treat each field as a triple of type, name, and marker, and we would match the marker in the rule.

11 In FFJPL, we do not need a rule for stupid casts. In FFJ, rule T-SCAST was necessary to formulate the
preservation theorem, which we do not need in FFJPL.

27

refinement chain (Rule 3). For methods that override other methods, it is checked whether
a method with identical name and signature exists in any possible superclass (Rule 2) or in
any possible predecessor in the refinement chain (Rule 4).

3.10.3 Well-Typed FFJPL Product Lines.

An FFJPL product line, consisting of a term, a class table, an introduction table, and a
refinement table, is well-typed if

– the term is well-typed (checked using FFJPL’s term typing rules),
– all classes and refinements stored in the class table are well-formed (checked using

FFJPL’s well-formedness rules), and
– the class table satisfies its sanity conditions.12

3.11 Soundness and Completeness of FFJPL

What does correctness mean in the context of a product line? The product line itself is never
evaluated; rather, different programs are derived that are then evaluated. Hence, the property
we are interested in is that all programs that can be derived from a well-typed product line
are in turn well-typed. Furthermore, we would like to be sure that all FFJPL product lines,
from which only well-typed FFJ programs can be derived, are well-typed. We formulate the
two properties as the two theorems Soundness of FFJPL and Completeness of FFJPL.

3.11.1 Soundness

THEOREM 3 (Soundness of FFJPL) Given a well-typed FFJPL product line pl (including
a well-typed term t, a well-formed class table CT , an introduction table IT , a refinement
table RT , and a consistent feature model FM), every program that can be derived with a
valid feature selection fs is a well-typed FFJ program (cf. Figure 10).

pl = (t, CT , IT , RT , FM) pl is well-typed fs is valid in FM

derive(pl , fs) is well-typed

Function derive collects the feature modules from a product line according to a user’s
selection fs (i.e., non-selected feature modules are removed from the derived program).
After this derivation step, the class table contains only classes and refinements stemming
from the selected feature modules. We define a valid feature selection to be a list of features
whose combination does not contradict the constraints implied by the feature model.

The proof idea is to show that the type derivation tree of an FFJPL product line is a
superimposition of multiple type derivation slices. As usual, the type derivation proceeds
from the root (i.e., an initial type rule that checks the term and all classes and refinements of
the class table) to the leaves (type rules that do not have a premise) of the type derivation tree.
Each time a term has multiple types (e.g., a method has different alternative return types,
which is caused by multiple mutually exclusive method declarations), the type derivation
splits into multiple branches. With branch we refer only to locations in which the type
derivation tree is split into multiple subtrees to type check multiple mutually exclusive term
definitions. Each subtree from the root of the type derivation tree along the branches toward

12 Again, type rule T-SCAST must not occur in the type derivations.

28

a leaf is a type derivation slice. Each slice corresponds to the type derivation of a feature-
oriented program.

Let us illustrate the concept of a type derivation slice with a simplified example. Suppose
the application of an arbitrary type rule to a term t somewhere in the type derivation. Term
t has multiple types C due to different alternative definitions of t’s subterms. For simplicity,
we assume here that t has only a single subterm t0, like in the case of a field access (t = t0.f),
in which the overall term t has multiple types depending on t0’s and f’s types; the rule can
be easily extended to multiple subterms by adding a predicate per subterm. The type rule
ensures the well-typedness of all possible variants of t on the basis of the variants of t’s
subterm t0. Furthermore, the type rule checks whether a predicate predicate (e.g., C <: D)
holds for each variant of the subterm with its possible types E, written predicate(t0 : Ei).
The possible types C of the overall term follow in some way from the possible types E of its
subterm. Predicate validref is used to check whether all referenced elements and types are
present in all valid variants, including different combinations of optional features. For the
general case, this can be written as follows:

t0 : E predicate(t0 : E1) predicate(t0 : E2) . . . predicate(t0 : En)

validref (. . .) validref (. . .) . . .

Γ ` t : C a Φ
(T-*PL)

The different uses of predicate in the premise of an FFJPL type rule correspond to the
branches in the type derivation that denote alternative definitions of subterms. Hence, the
premise of the FFJPL type rule is the conjunction of the different premises that cover the
different alternative definitions of the subterms of a term.

The proof strategy is as follows. Assuming that the FFJPL type system ensures that
each slice is a valid FFJ type derivation (see Lemma 5 in Appendix B.1) and that each valid
feature selection corresponds to a single slice (since alternative features have been removed;
see Lemma 6 in Appendix B.1), each feature-oriented program that corresponds to a valid
feature selection is guaranteed to be well-typed. Note that multiple valid feature selections
may correspond to the same slice because of the presence of optional features. It follows
that, for every valid feature selection, we derive a well-typed FFJ program – since its type
derivation is valid – whose evaluation satisfies the properties of progress and preservation
(see Appendix A). In Appendix B, we describe the proof idea of Theorem 3 in more detail.

3.11.2 Completeness

THEOREM 4 (Completeness of FFJPL) Given an FFJPL product line pl (including a term
t, a class table CT , an introduction table IT , a refinement table RT , and a feature model
FM), and given that all valid feature selections fs yield well-typed FFJ programs, according
to Theorem 3, pl is a well-typed product line according to the rules of FFJPL (with t is
well-typed and CT , IT , and RT are well-formed).

pl = (t, CT , IT , RT , FM) ∀ fs : (fs is valid in FM ⇒ derive(pl , fs) is well-typed)

pl is well-typed

The proof idea is to examine three basic cases and to generalize subsequently: (1) pl has
only mandatory features; (2) pl has only mandatory features except a single optional feature;
(3) pl has only mandatory features except two mutually exclusive features. All other cases
can be formulated as combinations of these three basic cases. To this end, we divide the
possible relations between features into three disjoint sets: (1) a feature is reachable from

29

another feature in all variants, (2) a feature is reachable from another feature in some, but not
in all, variants, (3) two features are mutually exclusive. From these three possible relations,
we can prove the three basic cases in isolation and, subsequently, construct a general case
that can be phrased as a combination of the three basic cases. The description of the general
case and the reduction finish the proof of Theorem 4. In Appendix B, we describe the proof
idea of Theorem 4 in detail.

4 Implementation & Discussion

4.1 Implementation in Haskell

We have implemented FFJ and FFJPL in Haskell, including a program evaluator and a type
checker for product lines.13. The FFJPL compiler expects a set of feature modules and a
feature model both of which, together, represent the product line. A feature module is rep-
resented by a directory. The files found inside a directory belong to the enclosing feature
module. The FFJPL compiler stores this information for type checking. Each file may con-
tain multiple classes and class refinements. In Figure 22, we show a snapshot of our test
environment, which is based on Eclipse. We use Eclipse to interpret or compile our FFJ
and FFJPL type system and evaluator. Specifically, the figure shows the directory structure
of our email system. Beside the feature implementations, file EmailClient.features (in the
right widget on the bottom) contains the feature model of the product line.

Fig. 22 Snapshot of the test environment of the Haskell implementation (email example).

The feature model of a product line is represented by a propositional formula, following
the approaches of Batory [14] and Czarnecki and Pietroszek [24]. Propositional formulas are

13 http://www.fosd.de/ffj

http://www.fosd.de/ffj

30

an effective way of representing the relationships between features (e.g., of specifying which
feature implies the presence and absence of other features and of machine checking whether
a feature selection is valid). For example, we have implemented predicate sometimes as
follows:14

sometimes(FM , Ω, Ψ) = satisfiable(FM ∧ Ω1 ∧ . . . ∧ Ωn ∧Ψ)

The feature model is a propositional formula, features are variables, and satisfiable is a
satisfiability solver.

The implementation of function always is more complicated due to the case distinction
(cf. Section 3.5). A simplified variant that covers only the first case (feature Ψ is always
present in context Ω) can be formulated as follows:

alwayscase1
(FM , Ω, Ψ) = ¬satisfiable(¬(FM ⇒ ((Ω1 ∧ . . . ∧ Ωn)⇒ Ψ)))

For more details, we refer the interested reader to our Haskell implementation. It is based
on Batory’s work on the relationship between propositional formulas, feature models, and
feature selections [14].

In Figure 23, we show the textual specification of the feature model of our email system,
which can be passed directly to the FFJPL compiler.

1 features:
2 EmailClient IMAP POP3 MIME SSL Text Mozilla Safari
3
4 model:
5 EmailClient implies (IMAP or POP3);
6 IMAP implies EmailClient;
7 POP3 implies EmailClient;
8 MIME implies EmailClient;
9 SSL implies EmailClient;

10 Text implies (IMAP or POP3);
11 Mozilla implies (IMAP or POP3);
12 Safari implies (IMAP or POP3);
13 Mozilla implies (not Safari);
14 Safari implies (not Mozilla);

Fig. 23 Feature model of an email client product line.

The first section (‘features’) of the file representing the feature model defines an ordered
set of names of the features of the product line, and the second section (‘model’) defines
constraints on the features’ presence in the derived programs. In our example, each email
client supports the protocols IMAP, POP3, or both. Furthermore, every feature requires the
presence of the base feature EMAILCLIENT. Feature TEXT requires the presence of either
IMAP or POP3 or both – the same for MOZILLA and SAFARI. Finally, feature MOZILLA

requires the absence of feature SAFARI and vice versa.
On the basis of the feature modules and the feature model, FFJPL’s type system checks

the entire product line and identifies valid program variants that still contain type errors. A
SAT solver is used to check whether elements are sometimes, never, or always reachable.
If an error is found, the product line is rejected as ill-formed. If not, a feature-oriented
program guaranteed to be well-typed can derived on the basis of a user’s feature selection.

14 In the implementation, we make the dependence of the predicates and functions on the feature model
FM explicit; for ease of presentation, the feature model was omitted as an argument in Section 3.

31

This program can be evaluated using the standard evaluation rules of FFJ, which we have
also implemented in Haskell.

In contrast to previous work on type checking feature-oriented product lines (i.e., based
on feature modules) [69, 25], our type checker provides detailed error messages. This is
possible due to the fine-grained checks at the level of individual term typing and well-
formedness rules. For example, if a field access succeeds only in some program variants,
this fact can be reported to the user and the error message can point to the erroneous field
access. Previously proposed type systems compose all code of all feature modules of a prod-
uct line and extract a single propositional formula [69,25], which is checked for satisfiability.
If the formula is not satisfiable (i.e., a type error has occurred), it is difficult to identify the
location that has caused the error (the feature combination in question has to be compiled
again). See Section 5, for a detailed discussion of related approaches.

We made several tests and experiments with our Haskell implementation. However, real-
world tests did not seem sensible because of two reasons. First, like FJ, FFJ is a core lan-
guage that, by its relative simplicity, is suited for the formal definition and proof of language
properties – in our case, a type system and its soundness and completeness. But a core lan-
guage is never suited for the development of real-world programs. This is why our examples
and test programs are of similar size and complexity as the FJ examples of Pierce [58].
Second, previous work has already demonstrated that feature-oriented product lines require
proper type systems and that type checking entire real-world product lines is useful [69].

Nevertheless, type checking our test programs required acceptable amounts of time (on
the order of milliseconds per product line). We do not claim to be able to handle full-sized
feature-oriented product lines by hand-coding them in FFJPL. Rather, this would require
an expansion of the type system to full Java (including support for features as provided by
AHEAD [15] or FeatureHouse [10]) – an enticing goal, but one for the future (especially,
as Java’s informal language specification [30] has 688 pages). Our work lays a foundation
for implementing type systems in that it provides evidence that core feature-oriented mech-
anisms are type-safe.

4.2 Scalability

Still, we would like to make some predictions on the scalability of our approach. The novelty
of our type system is that it incorporates alternative features and, consequently, alternative
definitions of classes, fields, and methods. This leads to a type derivation tree with possi-
bly multiple branches denoting alternative term types. Hence, type checking a product line
with many alternative features may consume a significant amount of computation time and
memory. It seems that this overhead is the price for allowing alternative implementations of
program parts.

Nevertheless, our approach minimizes the overhead caused by alternative features com-
pared to the naive approach. In the naive approach, all possible programs are derived and
type checked subsequently. In our approach, we type check the entire code base of the prod-
uct line and branch the type derivation only at terms that really have multiple, alternative
types, and not at the level of entire program variants, as done in the naive approach. Our
experience with feature-oriented product lines shows that, usually, there are not many alter-
native features in a product line, but mostly optional features [46, 3, 69, 40, 64, 12, 10, 6, 8,
62,65,61]. For example, in the Berkeley DB product line (80 000 lines of code) there are 99
feature modules, but only two pairwise alternatives [10,40]; in the Graph Product Line there
are 26 feature modules, of which only three are pairwise alternatives [46, 10].

32

Although a previous study indicates that alternative features occur in practice that vary
in type (e.g., to support different hardware platforms or libraries) [13], the most alternative
features that we encountered do not vary in type. That is, there are multiple definitions
of fields and methods but with equal types. For example, GPL and Berkeley DB contain
alternative definitions of a few methods but only with identical signatures. Type checking
these product lines with our approach, the type derivation would have almost no branches.
In the naive approach, still many program variants exist due to optional features. Hence, our
approach is preferable. For example, in a product line with 10 features and 100 variants, in
our approach, the type system would have to check 10 feature modules (with a few branches
in the type derivation leading to a few simple SAT problems to be solved; see below) and,
in the naive approach, the type system would have to check 100 feature modules, because
a single feature module is checked in multiple variants. For product lines with a higher
degree of variability (e.g., for 2n we would have 1024 variants) the benefit of our approach
becomes even more significant. We believe that this benefit can make a difference in real-
world product line engineering.

A further point is that almost all typing and well-formedness rules contain calls to the
built-in SAT solver. This results in possibly many invocations of the SAT solver at type
checking time. Determining the satisfiability of a propositional formula is in general an
NP-complete problem. However, it has been shown that the structures of propositional for-
mulas occurring in software product lines are simple enough to scale satisfiability solving
to thousands of features [51]. Furthermore, in our experiments, we have observed that many
calls to the SAT solver are redundant, which is easy to see when thinking about type check-
ing feature-oriented product lines where the presence of single types or members is checked
in many type rules. Consequently, we implemented a cache that stores intermediate results
to decrease the number of calls to the SAT solver to a minimum.

Finally, the implementation in Haskell helped us a lot in establishing the correctness
of our type rules. It can serve other researchers to reproduce and evaluate our work and to
experiment with further (feature-oriented) language mechanisms.

5 Related Work

We divide our discussions of related work into two parts: the implementation, formal mod-
els, and type systems of (1) feature-oriented programs and of (2) feature-oriented product
lines.

5.1 Feature-Oriented Programs

FFJ has been inspired by several feature-oriented languages and tools, most notably by
the AHEAD tool suite [15], FeatureC++ [11], FeatureHouse [10], and Prehofer’s feature-
oriented Java extension [59]. Their key aim is to separate the implementation of software
artifacts (e.g., classes and methods), from the definition of features. That is, classes and re-
finements are not annotated or declared to belong to a feature. There is no statement in the
program text that defines explicitly a connection between code and features. Instead, the
mapping of software artifacts to features is established via containment hierarchies, which
are basically directories containing software artifacts. The advantage of this approach is that
a feature’s implementation can include, beside classes in the form of Java files, also other

33

supporting documents (e.g., documentation in the form of HTML files, grammar specifica-
tions in the form of JavaCC files, or build scripts and deployment descriptors in the form
of XML files) [15]. To this end, feature composition merges not only classes with their
refinements but also other artifacts, such as HTML or XML files, with their respective re-
finements [2, 10].

Another category of programming languages that provide mechanisms for the definition
and extension of classes and class hierarchies includes, e.g., ContextL [31], Scala [56], and
Classbox/J [16]. The difference to feature-oriented languages is that they provide explicit
language constructs for aggregating the classes that belong to a feature, e.g., family classes,
classboxes, or layers. This implies that non-code software artifacts cannot be included in a
feature [12]. However, FFJ still models a subset of the mechanisms of these languages, in
particular, class refinement.

Similarly, related work on the formalization of the key concepts underlying feature-
oriented programming has not disassociated the concept of a feature from the level of code.
Especially, calculi for mixins [28, 18, 1, 36], traits [45], family polymorphism and virtual
classes [35, 27, 32, 20], path-dependent types [56, 55], open and dependent classes [22, 29],
and nested inheritance [54] either support only the refinement of single classes or expect the
classes that form a semantically coherent unit (i.e., that belong to a feature) to be located in
a physical module that is defined in the host programming language. For example, a virtual
class is by definition an inner class of the enclosing object, and a classbox is a package that
aggregates a set of related classes. Thus, FFJ differs from previous approaches in that it
relies on contextual information that has been collected by the compiler (e.g., the features’
composition order or the mapping of code to features).

A different line of research aims at the language-independent reasoning about fea-
tures [15, 48, 10, 43]. The calculus gDeep is most closely related to FFJ since it provides
a type system for feature-oriented languages that is language-independent [5, 4]. The idea
is that the recursive process of merging software artifacts, when composing hierarchically
structured features, is very similar for different host languages (e.g., for Java, C#, and XML).
The calculus describes formally how feature composition is performed and what type con-
straints have to be satisfied. In contrast, FFJ does not aspire to be language-independent,
although the key concepts can certainly be used with different languages. The advantage of
FFJ is that its type system can be used to check whether terms of the host language (Java or
FJ) violate the principles of feature orientation (e.g., whether methods refer to classes that
have been added by other features). Due to its language independence, gDeep does not have
enough information to perform such checks.

5.2 Feature-Oriented Product Lines

Our work on type checking feature-oriented product lines was motivated by the work of
Thaker et al. [69]. They suggested the development of a type system for feature-oriented
product lines that does not check all individual programs but the individual feature imple-
mentations. They have implemented an (incomplete) type system and, in a number of case
studies on product lines, they found numerous hidden errors using their type rules. Never-
theless, the implementation of their type system is ad-hoc in the sense that it is described
only informally, and they do not provide any proofs. Our type system has been inspired
by their work, and we were able to provide a formalization and proofs of soundness and
completeness.

34

In a parallel line of work, Delaware et al. have developed a formal model of a feature-
oriented language, called Lightweight Feature Java (LFJ), and a type system for feature-
oriented product lines [25]. Their work was also influenced by the practical work of Thaker
et al. So, it is not surprising that it is closest to ours. However, there are numerous differ-
ences. First, their formal model of a feature-oriented language is based on Lightweight Java
(LJ) [67] and not on Featherweight Java (FJ). While LJ is more expressive, it is also more
complex. We opted for the simpler variant FJ, omitting, for example, constructors and muta-
ble state. Second, Delaware et al. do not model feature-oriented mechanisms, such as class
or method refinements, directly in the dynamic semantics of the language, which was a goal
of developing FFJ. For product line type checking, they introduce a transformation step in
which LFJ code is “compiled down” to LJ code (i.e., they flatten refinement chains to single
classes).

Lagorio et al. have shown that a flattening semantics and a direct semantics are equiv-
alent [44]. An advantage of a “direct” semantics is that it allows a type checking and error
reporting at a finer grain. In LFJ, all feature modules are composed and a single proposi-
tional formula is generated and tested for satisfiability; if the formula is not satisfiable, it is
difficult to identify precisely the point of failure. In FFJPL, the individual type rules consult
the feature model and can point directly to the point of failure.

A further advantage of our approach is that it leaves open when feature composition
is performed. Currently, feature composition is modeled in FFJ/FFJPL as a static process
done before compilation but, with our approach, it becomes possible to model dynamic
feature composition at run time [63, 57] by making the class and feature tables and the
feature model dynamic, i.e., by allowing them to change during a computation. With LFJ,
this is not possible. Hutchins has shown that feature composition can be performed by an
interpreter and partial evaluation can be used to pre-evaluate the parts of a composition that
are static [33].

However, Delaware et al. have developed a machine-checked model of their type system
formalized with the theorem prover Coq [17]. Our proof (sketches) are hand-written, but we
have a Haskell implementation of the FFJ and FFJPL calculi that we have tested thoroughly.

Even previously to the work of Thaker et al., Czarnecki et al. presented an automatic
verification procedure for ensuring that no ill-formed UML (unified modeling language)
model template instances will be generated from a valid feature selection [24]. That is, they
type check product lines that consist not of Java programs but of UML models. They use
OCL (object constraint language) constraints to express and implement a type system for
UML-based product lines. In this sense, their aim is very similar to that of FFJPL, but limited
to model artifacts (although they have proposed to generalize their work to programming
languages). A further difference is that Czarnecki et al. do not organize the product line’s
features in feature modules but, instead, annotate a single superimposed model, such that
the type checker (and the programmer) can infer for each model element to which feature it
belongs.

Kästner et al. have developed a formal calculus CFJ and a set of type rules for an
annotation-based implementation of a product line [39]. Like in the approach of Czarnecki
et al., and in contrast to feature-oriented languages and tools, variability is implemented
with #ifdef-like directives or similar annotations on the source code [41]. Variants are gen-
erated by conditionally removing annotated code fragments that correspond to deselected
features. CFJ defines a type system for annotation-based product lines and proves that vari-
ant generation preserves typing [39, 38]. That is, all programs generated from a well-typed
annotation-based product line are well-typed. For example, if a method declaration is condi-
tionally removed, the remaining code must not reference this method. The goal of the work

35

on CFJ is to provide a type system for preprocessors, which are still frequently used in prac-
tice. Its focus is to create a simple and backward compatible type system that can easily be
integrated into existing tool environments. CFJ does not introduce new language constructs
but is designed such that annotations can be checked on top of an existing FJ or Java type
system.

Recently, it has been shown that a product line based on feature modules can be trans-
formed to a product line based on annotations [42]. That is, an FFJPL product line could be
transformed to a CFJ product line and then typed checked by CFJ’s type system. So, why
did we develop FFJ in the first place? FFJPL and CFJ pursue different goals. CFJ makes
several restrictions to achieve backward compatibility with Java, specifically, CFJ does not
introduce any new language constructs. Backward compatibility restricts expressiveness re-
garding alternative features: In CFJ, even with alternative features, each term can only have
a single type. In contrast, FFJ and FFJPL are not backward compatible to Java anyway, since
we introduce new language constructs. With FFJPL, we explore maximum expressiveness
and allow multiple types per program element. Hence, CFJ is more restricted and cannot
type check all transformed FFJPL programs. Handling alternative types of a term is a major
innovation of FFJPL over CFJ.

Another principle problem with annotation-based product lines is that modular type
checking (i.e., type checking a feature in isolation) is conceptually not possible. Although
FFJPL does not support modular type checking of feature modules yet, Hutchins showed
that it is possible in principle [32], and in further work we intend to combine his results with
FFJPL’s approach of product line type checking.

Finally, Aversano et al. developed a tool that collects all possible types of each variable
in a given C program [13]. The background is that, using the C preprocessor, a programmer
can provide different definitions of a variable and, depending on preprocessor flags, a spe-
cific definition is selected before compilation. Aversano et al. argue that knowing all possible
types is essential for program comprehension and for avoiding type errors. Although devel-
oped independently, our approach is a consequent next step that guarantees type correctness
in the presence of alternative variable definitions (method declarations and so on).

6 Conclusion

A feature-oriented product line imposes severe challenges on type checking. The naive ap-
proach of checking all individual programs of a product line is not feasible because of the
combinatorial explosion of program variants. Hence, the only practical option is to check
the entire code base of a product line, including all features, and, based on the information
of which feature combinations are valid, to ensure that it is not possible to derive a valid
program variant that contains type errors.

We have developed such a type system based on a formal model of a feature-oriented
Java-like language, called Feature Featherweight Java (FFJ). A distinguishing property of
our work is that we have modeled the dynamic semantics of core feature-oriented mecha-
nisms directly, without compiling feature-oriented code down to a lower-level representa-
tion such as object-oriented Java code. The direct semantics allows us to reason about core
feature-oriented mechanisms in terms of themselves rather than of generated lower-level
code. A further advantage is the fine-grained error reporting and that the time of feature
composition may vary between compile time and run time. Finally, our approach supports
the full power of mutually exclusive features, including implications such as that terms may

36

have multiple type. Previous work on annotation-based product lines is limited in this re-
spect.

Based on a valid feature selection, our type system guarantees type safety for feature-
oriented product lines. That is, it ensures that every program of a well-typed feature-oriented
product line is well-typed. We have shown that the type system is sound and complete. Our
implementation of FFJ, including the type system for product lines (FFJPL), indicates the
feasibility of our approach and can serve as a testbed for experimenting with further feature-
oriented mechanisms.

Acknowledgment

This work is being funded in part by the German Research Foundation (DFG), project num-
ber AP 206/2-1.

References

1. D. Ancona, G. Lagorio, and E. Zucca. Jam—Designing a Java Extension with Mixins. ACM Transactions
on Programming Languages and Systems (TOPLAS), 25(5):641–712, 2003.

2. F. Anfurrutia, O. Díaz, and S. Trujillo. On Refining XML Artifacts. In Proceedings of the International
Conference on Web Engineering (ICWE), volume 4607 of LNCS, pages 473–478. Springer-Verlag, 2007.

3. S. Apel and K. Böhm. Towards the Development of Ubiquitous Middleware Product Lines. In Software
Engineering and Middleware, volume 3437 of LNCS, pages 137–153. Springer-Verlag, 2004.

4. S. Apel and D. Hutchins. An Overview of the gDeep Calculus. Technical Report MIP-0712, Department
of Informatics and Mathematics, University of Passau, 2007.

5. S. Apel and D. Hutchins. A Calculus for Uniform Feature Composition. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), 2010.

6. S. Apel, F. Janda, S. Trujillo, and C. Kästner. Model Superimposition in Software Product Lines. In
Proceedings of the International Conference on Model Transformation (ICMT), volume 5563 of LNCS,
pages 4–19. Springer-Verlag, 2009.

7. S. Apel and C. Kästner. An Overview of Feature-Oriented Software Development. Journal of Object
Technology (JOT), 8(5):49–84, 2009.

8. S. Apel, C. Kästner, A. Größlinger, and C. Lengauer. Feature (De)composition in Functional Program-
ming. In Proceedings of the International Conference on Software Composition (SC), volume 5634 of
LNCS, pages 9–26. Springer-Verlag, 2009.

9. S. Apel, C. Kästner, and C. Lengauer. Feature Featherweight Java: A Calculus for Feature-Oriented
Programming and Stepwise Refinement. In Proceedings of the International Conference on Generative
Programming and Component Engineering (GPCE), pages 101–112. ACM Press, 2008.

10. S. Apel, C. Kästner, and C. Lengauer. FeatureHouse: Language-Independent, Automated Software Com-
position. In Proceedings of the International Conference on Software Engineering (ICSE), pages 221–
231. IEEE CS, 2009.

11. S. Apel, T. Leich, M. Rosenmüller, and G. Saake. FeatureC++: On the Symbiosis of Feature-Oriented and
Aspect-Oriented Programming. In Proceedings of the International Conference on Generative Program-
ming and Component Engineering (GPCE), volume 3676 of LNCS, pages 125–140. Springer-Verlag,
2005.

12. S. Apel, T. Leich, and G. Saake. Aspectual Feature Modules. IEEE Transactions on Software Engineer-
ing (TSE), 34(2):162–180, 2008.

13. L. Aversano, M. Di Penta, and I. Baxter. Handling Preprocessor-Conditioned Declarations. In Proceed-
ings of the International Workshop on Source Code Analysis and Manipulation (SCAM), page 83. IEEE
CS, 2002.

14. D. Batory. Feature Models, Grammars, and Propositional Formulas. In Proceedings of the International
Software Product Line Conference (SPLC), volume 3714 of LNCS, pages 7–20. Springer-Verlag, 2005.

15. D. Batory, J. Sarvela, and A. Rauschmayer. Scaling Step-Wise Refinement. IEEE Transactions on
Software Engineering (TSE), 30(6):355–371, 2004.

16. A. Bergel, S. Ducasse, and O. Nierstrasz. Classbox/J: Controlling the Scope of Change in Java. In
Proceedings of the International Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), pages 177–189. ACM Press, 2005.

37

17. Y. Bertot and P. Casteran. Interactive Theorem Proving and Program Development – Coq’Art: The Cal-
culus of Inductive Constructions. Texts in Theoretical Computer Science. An EATCS Series. Springer-
Verlag, 2004.

18. V. Bono, A. Patel, and V. Shmatikov. A Core Calculus of Classes and Mixins. In Proceedings of the
European Conference on Object-Oriented Programming (ECOOP), volume 1628 of LNCS, pages 43–66.
Springer-Verlag, 1999.

19. G. Bracha and W. Cook. Mixin-Based Inheritance. In Proceedings of the European Conference on
Object-Oriented Programming (ECOOP) and International Conference on Object-Oriented Program-
ming Systems, Languages, and Applications (OOPSLA), pages 303–311. ACM Press, 1990.

20. D. Clarke, S. Drossopoulou, J. Noble, and T. Wrigstad. Tribe: A Simple Virtual Class Calculus. In
Proceedings of the International Conference on Aspect-Oriented Software Development (AOSD), pages
121–134. ACM Press, 2007.

21. P. Clements and L. Northrop. Software Product Lines: Practices and Patterns. Addison-Wesley, 2002.
22. C. Clifton, T. Millstein, G. Leavens, and C. Chambers. MultiJava: Design Rationale, Compiler Imple-

mentation, and Applications. ACM Transactions on Programming Languages and Systems (TOPLAS),
28(3):517–575, 2006.

23. K. Czarnecki and U. Eisenecker. Generative Programming: Methods, Tools, and Applications. Addison-
Wesley, 2000.

24. K. Czarnecki and K. Pietroszek. Verifying Feature-Based Model Templates Against Well-Formedness
OCL Constraints. In Proceedings of the International Conference on Generative Programming and
Component Engineering (GPCE), pages 211–220. ACM Press, 2006.

25. B. Delaware, W. Cook, and D. Batory. Fitting the Pieces Together: A Machine-Checked Model of Safe
Composition. In Proceedings of the International Symposium on Foundations of Software Engineering
(FSE), pages 243–252. ACM Press, 2009.

26. S. Ducasse, O. Nierstrasz, N. Schärli, R. Wuyts, and A. Black. Traits: A Mechanism for Fine-Grained
Reuse. ACM Transactions on Programming Languages and Systems (TOPLAS), 28(2):331–388, 2006.

27. E. Ernst, K. Ostermann, and W. Cook. A Virtual Class Calculus. In Proceedings of the International
Symposium on Principles of Programming Languages (POPL), pages 270–282. ACM Press, 2006.

28. M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes and Mixins. In Proceedings of the International
Symposium on Principles of Programming Languages (POPL), pages 171–183. ACM Press, 1998.

29. V. Gasiunas, M. Mezini, and K. Ostermann. Dependent Classes. In Proceedings of the International
Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), pages
133–152. ACM Press, 2007.

30. J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification. The Java Series. Addison-
Wesley, 3rd edition, 2005.

31. R. Hirschfeld, P. Costanza, and O. Nierstrasz. Context-Oriented Programming. Journal of Object Tech-
nology (JOT), 7(3):125–151, 2008.

32. D. Hutchins. Eliminating Distinctions of Class: Using Prototypes to Model Virtual Classes. In Pro-
ceedings of the International Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), pages 1–19. ACM Press, 2006.

33. D. Hutchins. Pure Subtype Systems: A Type Theory For Extensible Software. PhD thesis, School of
Informatics, University of Edinburgh, 2009.

34. A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A Minimal Core Calculus for Java and GJ.
ACM Transactions on Programming Languages and Systems (TOPLAS), 23(3):396–450, 2001.

35. A. Igarashi, C. Saito, and M. Viroli. Lightweight Family Polymorphism. In Proceedings of the Asian
Symposium on Programming Languages and Systems (APLAS), volume 3780 of LNCS, pages 161–177.
Springer-Verlag, 2005.

36. T. Kamina and T. Tamai. McJava – A Design and Implementation of Java with Mixin-Types. In Pro-
ceedings of the Asian Symposium on Programming Languages and Systems (APLAS), volume 3302 of
LNCS, pages 398–414. Springer-Verlag, 2004.

37. K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson. Feature-Oriented Domain Analysis (FODA)
Feasibility Study. Technical Report CMU/SEI-90-TR-21, Software Engineering Institute, Carnegie Mel-
lon University, 1990.

38. C. Kästner. Virtual Separation of Concerns: Rehabilitating the Preprocessor. PhD thesis, School of
Computer Science, University of Magdeburg, 2010. under review.

39. C. Kästner and S. Apel. Type-Checking Software Product Lines – A Formal Approach. In Proceedings
of the International Conference on Automated Software Engineering (ASE), pages 258–267. IEEE CS,
2008.

40. C. Kästner, S. Apel, and D. Batory. A Case Study Implementing Features using AspectJ. In Proceedings
of the International Software Product Line Conference (SPLC), pages 222–232. IEEE CS, 2007.

38

41. C. Kästner, S. Apel, and M. Kuhlemann. Granularity in Software Product Lines. In Proceedings of the
International Conference on Software Engineering (ICSE), pages 311–320. ACM Press, 2008.

42. C. Kästner, S. Apel, and M. Kuhlemann. A Model of Refactoring Physically and Virtually Separated
Features. In Proceedings of the International Conference on Generative Programming and Component
Engineering (GPCE), pages 157–166. ACM Press, 2009.

43. C. Kästner, S. Apel, S. Trujillo, M. Kuhlemann, and D. Batory. Guaranteeing Syntactic Correctness
for all Product Line Variants: A Language-Independent Approach. In Proceedings of the International
Conference on Objects, Models, Components, Patterns (TOOLS EUROPE), volume 33 of LNBI, pages
174–194. Springer-Verlag, 2009.

44. G. Lagorio, M. Servetto, and E. Zucca. Featherweight Jigsaw – A Minimal Core Calculus for Modular
Composition of Classes. In Proceedings of the European Conference on Object-Oriented Programming
(ECOOP), volume 5653 of LNCS, pages 244–268. Springer-Verlag, 2009.

45. L. Liquori and A. Spiwack. FeatherTrait: A Modest Extension of Featherweight Java. ACM Transactions
on Programming Languages and Systems (TOPLAS), 30(2):1–32, 2008.

46. R. Lopez-Herrejon and D. Batory. A Standard Problem for Evaluating Product-Line Methodologies. In
Proceedings of the International Conference on Generative and Component-Based Software Engineering
(GCSE), volume 2186 of LNCS, pages 10–24. Springer-Verlag, 2001.

47. R. Lopez-Herrejon, D. Batory, and W. Cook. Evaluating Support for Features in Advanced Modular-
ization Technologies. In Proceedings of the European Conference on Object-Oriented Programming
(ECOOP), volume 3586 of LNCS, pages 169–194. Springer-Verlag, 2005.

48. R. Lopez-Herrejon, D. Batory, and C. Lengauer. A Disciplined Approach to Aspect Composition. In
Proceedings of the International Symposium Partial Evaluation and Semantics-Based Program Manip-
ulation (PEPM), pages 68–77. ACM Press, 2006.

49. O. Madsen and B. Moller-Pedersen. Virtual Classes: A Powerful Mechanism in Object-Oriented Pro-
gramming. In Proceedings of the International Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), pages 397–406. ACM Press, 1989.

50. H. Masuhara and G. Kiczales. Modeling Crosscutting in Aspect-Oriented Mechanisms. In Proceedings
of the European Conference on Object-Oriented Programming (ECOOP), volume 2743 of LNCS, pages
2–28. Springer-Verlag, 2003.

51. M. Mendonca, A. Wasowski, and K. Czarnecki. SAT-based Analysis of Feature Models is Easy. In
Proceedings of the International Software Product Line Conference (SPLC), pages 231–240. Software
Engineering Institute, Carnegie Mellon University, 2009.

52. M. Mezini and K. Ostermann. Variability Management with Feature-Oriented Programming and As-
pects. In Proceedings of the International Symposium on Foundations of Software Engineering (FSE),
pages 127–136. ACM Press, 2004.

53. G. Murphy, A. Lai, R. Walker, and M. Robillard. Separating Features in Source Code: An Exploratory
Study. In Proceedings of the International Conference on Software Engineering (ICSE), pages 275–284.
IEEE CS, 2001.

54. N. Nystrom, S. Chong, and A. Myers. Scalable Extensibility via Nested Inheritance. In Proceedings of
the International Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), pages 99–115. ACM Press, 2004.

55. M. Odersky, V. Cremet, C. Röckl, and M. Zenger. A Nominal Theory of Objects with Dependent Types.
In Proceedings of the European Conference on Object-Oriented Programming (ECOOP), volume 2743
of LNCS, pages 201–224. Springer-Verlag, 2003.

56. M. Odersky and M. Zenger. Scalable Component Abstractions. In Proceedings of the International
Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), pages
41–57. ACM Press, 2005.

57. K. Ostermann. Dynamically Composable Collaborations with Delegation Layers. In Proceedings of
the European Conference on Object-Oriented Programming (ECOOP), volume 2374 of LNCS, pages
89–110. Springer-Verlag, 2002.

58. B. Pierce. Types and Programming Languages. MIT Press, 2002.
59. C. Prehofer. Feature-Oriented Programming: A Fresh Look at Objects. In Proceedings of the Euro-

pean Conference on Object-Oriented Programming (ECOOP), volume 1241 of LNCS, pages 419–443.
Springer-Verlag, 1997.

60. T. Reenskaug, E. Andersen, A. Berre, A. Hurlen, A. Landmark, O. Lehne, E. Nordhagen, E. Ness-Ulseth,
G. Oftedal, A. Skaar, and P. Stenslet. OORASS: Seamless Support for the Creation and Maintenance of
Object-Oriented Systems. Journal of Object-Oriented Programming (JOOP), 5(6):27–41, 1992.

61. M. Rosenmüller, S. Apel, T. Leich, and G. Saake. Tailor-Made Data Management for Embedded Sys-
tems: A Case Study on Berkeley DB. Data & Knowledge Engineering (DKE), 68(12):1493–1512, 2009.

62. M. Rosenmüller, C. Kästner, N. Siegmund, S. Sunkle, S. Apel, T. Leich, and G. Saake. SQL á la Carte
– Toward Tailor-made Data Management. In Datenbanksysteme in Business, Technologie und Web –

39

Fachtagung des GI-Fachbereichs Datenbanken und Informationssysteme, volume P-144 of GI-Edition –
LNI, pages 117–136. Gesellschaft für Informatik, 2009.

63. M. Rosenmüller, N. Siegmund, G. Saake, and S. Apel. Code Generation to Support Static and Dynamic
Composition of Software Product Lines. In Proceedings of the International Conference on Generative
Programming and Component Engineering (GPCE), pages 3–12. ACM Press, 2008.

64. M. Rosenmüller, N. Siegmund, H. Schirmeier, J. Sincero, S. Apel, T. Leich, O. Spinczyk, and G. Saake.
FAME-DBMS: Talor-made Data Management Solutions for Embedded Systems. In Proceedings of the
EDBT Workshop on Software Engineering for Tailor-made Data Management (SETMDM), pages 1–6.
ACM Press, 2008.

65. N. Siegmund, C. Kästner, M. Rosenmüller, F. Heidenreich, S. Apel, and G. Saake. Bridging the Gap
between Variability in Client Application and Database Schema. In Datenbanksysteme in Business,
Technologie und Web – Fachtagung des GI-Fachbereichs Datenbanken und Informationssysteme, volume
P-144 of GI-Edition – LNI, pages 297–306. Gesellschaft für Informatik, 2009.

66. Y. Smaragdakis and D. Batory. Mixin Layers: An Object-Oriented Implementation Technique for Refine-
ments and Collaboration-Based Designs. ACM Transactions on Software Engineering and Methodology
(TOSEM), 11(2):215–255, 2002.

67. R. Strniša, P. Sewell, and M. Parkinson. The Java Module System: Core Design and Semantic Definition.
In Proceedings of the International Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), pages 499–514. ACM Press, 2007.

68. P. Tarr, H. Ossher, W. Harrison, and S. Sutton, Jr. N Degrees of Separation: Multi-Dimensional Sepa-
ration of Concerns. In Proceedings of the International Conference on Software Engineering (ICSE),
pages 107–119. IEEE CS, 1999.

69. S. Thaker, D. Batory, D. Kitchin, and W. Cook. Safe Composition of Product Lines. In Proceedings of
the International Conference on Generative Programming and Component Engineering (GPCE), pages
95–104. ACM Press, 2007.

70. M. VanHilst and D. Notkin. Using Role Components in Implement Collaboration-based Designs. In
Proceedings of the International Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), pages 359–369. ACM Press, 1996.

71. A. K. Wright and M. Felleisen. A Syntactic Approach to Type Soundness. Information and Computation,
115(1):38–94, 1994.

A Proof of Soundness of FFJ

Before giving the main proof, we state and proof some required lemmas.

LEMMA 1 If mtype(m, last(D)) = C→C0, then mtype(m, last(C)) = C→C0 for all C <: D.

Proof (Lemma 1) Straightforward induction on mtype . There are two cases: First, if method m is not de-
fined in the declaration or in any refinement of class C, then mtype(m, last(C)) should be the same as
mtype(m, last(E)) where CT (Φ.C) = class C extends E { . . . } for some Φ. This follows from the defi-
nition of mtype that searches E’s refinement chain from right to left if m is not declared in C’s refinement
chain. Second, if m is defined in the declaration or in any refinement of class C, then mtype(m, last(C))
should also be the same as mtype(m, last(E)) with CT (Φ.C) = class C extends E { . . . } for some Φ.
This case is covered by the well-formedness rules for methods that use the predicate override to ensure that
m is properly overridden, i.e., the signatures of the overridden and the overriding declaration of m are equal,
and that m is not introduced twice, i.e., overloading is not allowed in FFJ. ut

LEMMA 2 (Term substitution preserves typing) If Γ, x : B ` t : D and Γ, s : A, where A <: B, then Γ `
[x 7→ s] t : C for some C <: D.

Proof (Lemma 2) By induction on the derivation of Γ, x : B ` t : D.

CASE (T-VAR) t = x x : D ∈ Γ

If x 6∈ x, then the result is trivial since [x 7→ s] x = x.15 On the other hand, if x = xi and D = Bi, then,
since [x 7→ s] x = si, letting C = Ai finishes the case.

15 Note that [x 7→ s] x is an abbreviation for [x1 7→ s1, . . . , xn 7→ sn] x. It means that all occurrences of
the variables x1, . . . , xn in the term x are substituted with the corresponsing terms s1, . . . , sn.

40

CASE (T-FIELD) t = t0.fi Γ, x : B ` t0 : D0 fields(last(D0)) = C f D = Ci

By the induction hypothesis, there is some C0 such that Γ ` [x 7→ s] t0 : C0 and C0 <: D0. It is easy to check
that fields(last(C0)) = fields(last(D0)),D g for some D g. Therefore, by T-FIELD, Γ ` ([x 7→ s] t0).fi : Ci.
The fact that the refinements of a class may add new fields does not cause problems. D g contains all fields
that C0, including all of its refinements, add to D0.

CASE (T-INVK) t = t0.m(t) Γ, x : B ` t0 : D0 mtype(m, last(D0)) = E→D
Γ, x : B ` t : D D <: E

By the induction hypothesis, there are some C0 and C such that:

Γ ` [x 7→ s] t0 : C0 C0 <: D0 Γ ` [x 7→ s] t : C C <: D.

By Lemma 1, we have mtype(m, last(C0)) = E→D. Moreover, C <: E by the transitivity of <: . Therefore,
by T-INVK, Γ ` [x 7→ s] t0.m([x 7→ s] t) : D. The key is that subclasses and refinements may override
methods but the well-formedness rules of methods ensure that the method’s type is not altered, i.e., there is
no overloading in FFJ.

CASE (T-NEW) t = new D(t) fields(last(D)) = D f Γ, x : B ` t : C C <: D

By the induction hypothesis, Γ ` [x 7→ s] t : E for some E with E <: C. We have E <: D by the transitivity
of <: . Therefore, by rule T-NEW, Γ ` new D([x 7→ s] t) : D. Although refinements of class D may add new
fields, rule T-NEW ensures that the arguments of the object creation match the overall fields of D, including
all refinements, in number and types. That is, the number of arguments (t) equals the number of fields (f)
which function fields returns.

CASE (T-UCAST) t = (D)t0 Γ, x : B ` t0 : C C <: D

By the induction hypothesis, there is some E such that Γ ` [x 7→ s] t0 : E and E <: C. We have E <: D by
the transitivity of <: , which yields Γ ` (D)([x 7→ s] t0) : D by T-UCAST.

CASE (T-DCAST) t = (D)t0 Γ, x : B ` t0 : C D <: C D 6= C

By the induction hypothesis, there is some E such that Γ ` [x 7→ s] t0 : E and E <: C. If E <: D or D <: E,
then Γ ` (D)([x 7→ s] t0) : D by T-UCAST or T-DCAST, respectively. If both D 6<: E and E 6<: D, then
Γ ` (D)([x 7→ s] t0) : D (with a stupid warning) by T-SCAST.

CASE (T-SCAST) t = (D)t0 Γ, x : B ` t0 : C D 6<: C C 6<: D

By the induction hypothesis, there is some E such that Γ ` [x 7→ s] t0 : E and E <: C. This means that E 6<: D
because, in FFJ, each class has just one superclass and, if both E <: C and E <: D, then either C <: D or
D <: C, which contradicts the induction hypothesis. So Γ ` (D)([x 7→ s] t0) : D (with a stupid warning),
by T-SCAST. ut

LEMMA 3 (Weakening) If Γ ` t : C, then Γ, x : D ` t : C x /∈ dom(Γ)

Proof (Lemma 3) Straightforward induction. The proof for FFJ is similar to the proof for FJ. ut

LEMMA 4 If mtype(m, last(C0)) = D→ D, and mbody(m, last(C0)) = (x, t), then for some D0 and
some C <: D we have C0 <: D0 and x : D, this : D0 ` t : C .

Proof (Lemma 4) By induction on the derivation of mbody(m, last(C0)). The base case (in which m is
defined in the most specific refinement of C0) is easy since m is defined in CT (last(C0)) and the well-
formedness of the class table implies that we can derive x : D, this : C0 ` t : C by the well-formedness rules
of methods. The induction step is also straightforward: if m is not defined in CT (last(C0)), then mbody
searches the refinement chain from right to left; if m has not been found, the superclass’ refinement chain is
searched. There are two subcases: first, m is defined in the declaration or in any refinement of C0; this case
is similar to the base case. Second, m is defined in a superclass D0 of C0 or in one of D0’s refinements; in
this case, the well-formedness of the class table implies that we can derive x : D, this : D0 ` t : C by the
well-formedness rules of methods, which finishes the case. ut

41

Note that this lemma holds because method refinements do not change the types of the arguments and
the result of a method, overloading is not allowed, and this points always to the class that is introduced or
refined.

THEOREM 5 (Preservation) If Γ ` t : C and t −→ t′, then Γ ` t′: C′ for some C′<: C.

Proof (Theorem 5) By induction on a derivation of t −→ t′, with a case analysis on the final rule.

CASE (E-PROJNEW) t = new C0(v).fi t′ = vi fields(last(C0)) = D f

From the shape of t, we see that the final rule in the derivation of Γ ` t : C must be T-FIELD, with premise
Γ ` new C0(v) : D0, for some D0, and that C = Di. Similarly, the last rule in the derivation of Γ `
new C0(v) : D0 must be T-NEW, with premises Γ ` v : C and C <: D, and with D0 = C0. In particular,
Γ ` vi : Ci, which finishes the case, since Ci <: Di.

CASE (E-INVKNEW) t = (new C0(v)).m(u) t′ = [x 7→ u, this 7→ new C0(v)] t0
mbody(m, last(C0)) = (x, t0)

The final rules in the derivation of Γ ` t : C must be T-INVK and T-NEW, with premises Γ ` new C0(v) : C0,
Γ ` u : C, C <: D, and mtype(m, last(C0)) = D→C. By Lemma 4, we have x : D, this : D0 ` t : B for
some D0 and B, with C0 <: D0 and B <: C. By Lemma 3, Γ, x : D, this : D0 ` t0 : B. Then, by Lemma 2,
we have Γ [x 7→ u, this 7→ new C0(v)] t0 : E for some E <: B. By the transitivity of <: , we obtain E <: C.
Letting C′ = E completes the case.

CASE (E-CASTNEW) t = (D)(new C0(v)) C0 <: D t′ = new C0(v)

The proof of Γ ` (D)(new C0(v)) : C must end with T-UCAST since ending with T-SCAST or T-DCAST
would contradict the assumption of C0 <: D. The premises of T-UCAST give us Γ ` new C0(v) : C0 and
D = C, finishing the case.

The cases for the congruence rules are easy. We show just the case E-CAST.

CASE (E-CAST) t = (D)t0 t′ = (D)t′0 t0 −→ t′0
There are three subcases according to the last typing rule used.

SUBCASE (T-UCAST) Γ ` t0 : C0 C0 <: D D = C

By the induction hypothesis, Γ ` t′0 : C′0 for some C′0 <: C0. By transitivity of <: , C′0 <: C. Therefore, by
T-UCAST, Γ ` (C)t′0 : C (with no additional stupid warning).

SUBCASE (T-DCAST) Γ ` t0 : C0 D <: C0 D = C

By the induction hypothesis, Γ ` t′0 : C′0 for some C′0 <: C0. If C′0 <: C or C <: C′0, then Γ ` (C)t′0 : C
by T-UCAST or T-DCAST (without any additional stupid warning). On the other hand, if both C′0 6<: C or
C 6<: C′0, then Γ ` (C)t′0 : C with a stupid warning by T-SCAST.

SUBCASE (T-SCAST) Γ ` t0 : C0 D 6<: C0 C0 6<: D D = C

By the induction hypothesis, Γ ` t′0 : C′0 for some C′0 <: C0. Then, also C′0 6<: C and C 6<: C′0. There-
fore Γ ` (C)t′0 : C with a stupid warning . If C′0 6<: C, then C 6<: C′0 since C 6<: C0 and, therefore, Γ `
(C)t′0 : C with stupid warning . If C′0 <: C, then Γ ` (C)t′0 : C by T-UCAST (with no additional stupid
warning). This subcase is analogous to the case T-SCAST of the proof of Lemma 2. ut

THEOREM 6 (Progress) Suppose t is a well-typed term.
1. If t includes new C0(t).fi as a subterm, then fields(last(C0)) = C f for some C and f.
2. If t includes new C0(t).m(u) as a subterm, then mbody(m, last(C0)) = (x, t0) and |x| = |u| for some

x and t0.

Proof (Theorem 6) If t has new C0(t).fi as a subterm, then, by well-typedness of the subterm, it is easy to
check that fields(last(C0)) is well-defined and fi appears in it. The fact that refinements may add fields
(that have not been defined already) does not invalidate this conclusion. Note that for every field of a
class, including its superclasses and all its refinements, there must be a proper argument. Similarly, if t has
new C0(t).m(u) as a subterm, then it is also easy to show that mbody(m, last(C0)) = (x, t0) and |x| = |u|
from the fact that mtype(m, last(C0)) = C→ D where |x| = |C|. This conclusion holds for FFJ since a
method refinement must have the same signature than the method refined and overloading is not allowed. ut

THEOREM 7 (Type soundness of FFJ) If ∅ ` t : C and t −→∗ t′ with t′ a normal form, then t′ is either a
value v with ∅ ` v : D and D <: C, or a term containing (D)(new C(t)) in which C <: D.

Proof (Theorem 7) Immediate from Theorem 5 and 6. Nothing changes in the proof of Theorem 7 for FFJ
compared to FJ. ut

42

B Proofs of Soundness and Completeness of FFJPL

In this section, we provide proof sketches of the theorems Soundness of FFJPL and Completeness of FFJPL.
A further formalization would be desirable, but we have stopped at this point. As is often the case with
formal systems, there is a trade-off between formal precision and legibility. We decided that a semi-formal
development of the proof strategies are the best fit for our purposes.

B.1 Soundness

THEOREM 8 (Soundness of FFJPL) Given a well-typed FFJPL product line pl (including a well-typed
term t, a well-formed class table CT , an introduction table IT , a refinement table RT , and a consistent
feature model FM), every program that can be derived with a valid feature selection fs is a well-typed FFJ
program (cf. Figure 10).

pl = (t,CT , IT ,RT ,FM) pl is well-typed fs is valid in FM

derive(pl , fs) is well-typed

The derived program is well-typed under the premise that the FFJPL type system ensures that each slice
is a valid FFJ type derivation (Lemma 5) and that each valid feature selection corresponds to a single slice
(Lemma 5). Before we prove Theorem 8 we develop two required lemmas that cover the two assumptions of
our proof strategy.

LEMMA 5 Given a well-typed FFJPL product line, every slice of the product line’s type derivation corre-
sponds to a (set of) valid type derivation(s) in FFJ.

Proof (Lemma 5) Given a well-typed FFJPL product line, the corresponding type derivation consists of
possibly multiple slices.

Recall that each subtree from the root of the type derivation tree along the branches induced by mutually
exclusive features toward a leaf is a type derivation slice. The basic case is easy: there is only a simple
derivation without branches due to mutually exclusive features (optional features may be present). In this
case, each term has only a single type, which is the one that would also be determined by FFJ. Furthermore,
FFJPL guarantees that referenced types, methods, and fields are present in all valid variants, using predicate
validref .

Let us illustrate this with the rule T-FIELDPL; the other rules are analogous:

Γ ` t0 : E a Φ ∀E ∈ E : validref field (Φ,E.f)
fields(Φ, last(E)) = F ,C f,G

Γ ` t0.f : C11, . . . ,Cn1, . . . ,C1m, . . . ,Cnm a Φ
(T-FIELDPL)

In the basic case, there are no branches in the type derivation and thus term t0 has only a single type E1.
For the same reason, fields returns only a simple list of fields that contains the declaration of field f. Finally,
T-FIELDPL checks whether the declaration of f is present in all valid variants (using validref field). Hence,
in the basic case, an FFJPL derivation that ends at the rule T-FIELDPL is equivalent to a set of corresponding
FFJ derivations that do not contain alternative and optional features and thus t0 has a single type, fields
returns a simple list of fields that contains the declaration of f, and the declaration of f is present. The reason
that an FFJPL derivation without mutually exclusive features (i.e., a single slice) corresponds to multiple
FFJ derivations is that the FFJPL derivation may contain optional features whose different combinations
correspond to the different FFJ derivations. Using predicate validref , all type rules of FFJPL ensure that all
possible combinations of optional features are well-typed.

In the case that there are multiple slices in the FFJPL derivation, a term t0 may have multiple types E.
The type rules of FFJPL guarantee that every possible shape of a given term is well-typed. Each possible
type of the term leads to a branch in the derivation tree. The premise of T-FIELDPL enforces that all possible
shapes of a given term are well-typed by taking the conjunction of all branches of the derivation. Hence, if
T-FIELDPL is successful, the premises of each individual branch hold, i.e., each slice corresponds to a well-
typed FFJ program. Ensuring that, in the presence of optional features, all relevant subterms are well-typed
(i.e., all referenced elements are present in all valid variants), a well-typed slice covers a set of well-typed
FFJ derivations that correspond to different combinations of optional features, like in the basic case.

For example, in a field projection t0.f, subterm t0 has multiple types E. For all these types, fields yields
all possible combinations of fields declared by the variants of the types. It is checked whether, for each type

43

of subterm t0, each combination of fields contains a proper declaration of field f. The different types of f
become the possible types of the overall field projection term. Like in the basic case, it is enforced that every
possible type of t0 is present in all valid variants (using validref class), so that each slice corresponds to a
valid FFJ derivation, i.e., a set of derivations covering different combinations of optional features. ut

LEMMA 6 Given a well-typed FFJPL product line, each valid feature selection corresponds to a single slice
in the corresponding type derivation.

Proof (Lemma 6) By definition, a valid feature selection does not contain mutually exclusive features. Con-
sidering only a single valid feature selection, each term has only a single type. But the type derivation of the
overall product line contains branches corresponding to alternative types of the terms. A successive removal
of mutually exclusive features removes these branches until only a single branch remains. Consequently, a
valid feature selection corresponds to a single slice. ut

Proof (Theorem 8) The fact that the FFJPL type system ensures that each slice is a valid FFJ type derivation
(Lemma 5) and that each valid feature selection corresponds to a single slice (Lemma 6), implies that each
feature-oriented program that corresponds to a valid feature selection is well-typed. ut

B.2 Completeness

THEOREM 9 (Completeness of FFJPL) Given an FFJPL product line pl (including a term t, class, intro-
duction, and refinement tables CT , IT , and RT , and a feature model FM), and given that all valid feature
selections fs yield well-typed FFJ programs, according to Theorem 3, pl is a well-typed product line accord-
ing to the rules of FFJPL (with t is well-typed and CT , IT , and RT are well-formed).

pl = (t,CT , IT ,RT ,FM) ∀ fs : (fs is valid in FM ⇒ derive(pl , fs) is well-typed)

pl is well-typed

Proof (Theorem 9) There are three basic cases: (1) pl has only mandatory features; (2) pl has only mandatory
features except a single optional feature; (3) pl has only mandatory features except two mutually exclusive
features. Proving Theorem 9 for the first basic case is trivial. Since only mandatory features exist, only a
single FFJ program can be derived from the product line. If the FFJ program is well-typed, the product line is
well-typed, too, because all elements are always reachable and each term has only a single type. In fact, the
type rules of FFJPL and FFJ become equivalent in this case.

In the second basic case, two FFJ programs can be derived from the product line, one including and
one excluding the optional feature. The difference between the two programs is the content of the optional
feature. The feature can add new classes, refine existing classes by new methods and fields, and refine existing
methods by overriding. If the two programs are well-typed, then the overall product line is well-typed as well
since the reachability checks succeed in every type rule of FFJPL. Otherwise, at least one of the two programs
would not be well-typed since, in this case, the reachability checks are the only difference between FFJPL’s
and FFJ’s type rules (as in the first case, each term has only a single type since there are no mutually exclusive
features). The fact that the two FJ programs are well-typed implies that all elements are reachable in the type
derivations of two FFJ programs. Thus, the reachability checks of the FFJPL derivation succeed in every case.
That is, the product line in question is well-typed.

In the third basic case, two FFJ programs can be derived from the product line, one including the first
alternative and the other including the second alternative of the feature in question. The difference between
the two programs is, on the one hand, the program elements one feature introduces that are not present in the
other and, on the other hand, the alternative definitions of similar elements, like two alternative definitions of
a single class. The first kind of difference is already covered by the second basic case. Concerning the second
kind of difference: alternative definitions of a program element that are well-typed in the context of their
enclosing FFJ programs, are well-typed in FFJPL because they lead to two new branches in the derivation
tree which are handled separately and the conjunction of their premises must hold. Since the corresponding
FFJ type rule for the element succeeds in both FFJ programs, their conjunction in the FFJPL type rule always
holds. That is, the product line in question is well-typed.

Finally, it remains to show that all other cases (i.e., all other combinations of mandatory, optional, and
alternative features) can be reduced to combinations of the three basic cases. To this end, we divide the
possible relations between features into three disjoint sets: (1) a feature is reachable from another feature in
all variants, (2) a feature is reachable from another feature in some, but not in all, variants, (3) two features
are mutually exclusive. From these three possible relations we construct a general case that can be reduced to
a combination of the three basic cases.

44

Assume a feature Φ that is mandatory with respect to a set of features Π, that is optional with respect to
a set of features Ω, and that is alternative to a set Θ of features. We use arrows to illustrate to which of the
three basic cases a pairwise relation between Φ and each element of a list is reduced:

Φ
2 //

1

��

3

��<
<<

<<
<<

Ω

Π Θ

Such an arrow diagram can be created for every feature of a product line. The reason is that the three kinds of
relations are orthogonal and there are no further relations relevant for type checking. Hence, the general case
covers all possible relations between features and combinations of features. The description of the general
case and the reduction finish the proof of Theorem 9. That is, FFJPL’s type system is complete. ut

