
Information and Software Technology xxx (2012) xxx–xxx
Contents lists available at SciVerse ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof
Scalable prediction of non-functional properties in software product lines:
Footprint and memory consumption

Norbert Siegmund a,⇑, Marko Rosenmüller a, Christian Kästner b, Paolo G. Giarrusso b, Sven Apel c,
Sergiy S. Kolesnikov c

a Department of Computer Science, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
b Department of Computer Science and Mathematics, Philipps University Marburg, Germany
c Department of Informatics and Mathematics, University of Passau, Germany
a r t i c l e i n f o

Article history:
Available online xxxx

Keywords:
Non-functional properties
Prediction
Measurement
Software product lines
SPL Conqueror
0950-5849/$ - see front matter � 2012 Elsevier B.V. A
http://dx.doi.org/10.1016/j.infsof.2012.07.020

⇑ Corresponding author. Address: University of Mag
Magdeburg, Germany.

E-mail address: nsiegmun@ovgu.de (N. Siegmund)
URL: http://wwwiti.cs.uni-magdeburg.de/~nsiegm

Please cite this article in press as: N. Siegmund
consumption, Inform. Softw. Technol. (2012), h
a b s t r a c t

Context: A software product line is a family of related software products, typically created from a set of
common assets. Users select features to derive a product that fulfills their needs. Users often expect a
product to have specific non-functional properties, such as a small footprint or a bounded response time.
Because a product line may have an exponential number of products with respect to its features, it is usu-
ally not feasible to generate and measure non-functional properties for each possible product.
Objective: Our overall goal is to derive optimal products with respect to non-functional requirements by
showing customers which features must be selected.
Method: We propose an approach to predict a product’s non-functional properties based on the product’s
feature selection. We aggregate the influence of each selected feature on a non-functional property to
predict a product’s properties. We generate and measure a small set of products and, by comparing mea-
surements, we approximate each feature’s influence on the non-functional property in question. As a
research method, we conducted controlled experiments and evaluated prediction accuracy for the
non-functional properties footprint and main-memory consumption. But, in principle, our approach is
applicable for all quantifiable non-functional properties.
Results: With nine software product lines, we demonstrate that our approach predicts the footprint with
an average accuracy of 94%, and an accuracy of over 99% on average if feature interactions are known. In a
further series of experiments, we predicted main memory consumption of six customizable programs
and achieved an accuracy of 89% on average.
Conclusion: Our experiments suggest that, with only few measurements, it is possible to accurately pre-
dict non-functional properties of products of a product line. Furthermore, we show how already little
domain knowledge can improve predictions and discuss trade-offs between accuracy and required num-
ber of measurements. With this technique, we provide a basis for many reasoning and product-derivation
approaches.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

A software product line (SPL) is a family of related software prod-
ucts sharing a common set of assets [1]. Differences and common-
alities between products are typically described in terms of
features [2]. Users customize a product by means of a selection
of features that satisfies their functional requirements [3]. With
many contemporary implementation mechanisms, one can auto-
ll rights reserved.

deburg, P.O. Box 4120, 39016

.
un/ (N. Siegmund).

et al., Scalable prediction of no
ttp://dx.doi.org/10.1016/j.infsof
matically generate products based on feature selections. For exam-
ple, we can map features to preprocessor definitions (i.e., #define
statements) to specify which features are selected. The preproces-
sor removes all code units that belong to not selected features, that
is, undefined preprocessor identifiers. Another way to customize a
product’s behavior is to use program parameters. For example,
users can specify command-line parameters or configuration files
to customize a product for their needs (e.g., customizing log levels
of a web server via a configuration file). Although, in these exam-
ples, variability is evaluated at runtime, we consider also such
products in our work and use uniformly product-line terminology.

In addition to functional requirements, users are also interested
in non-functional properties of a product, such as performance,
n-functional properties in software product lines: Footprint and memory
.2012.07.020

http://dx.doi.org/10.1016/j.infsof.2012.07.020
mailto:nsiegmun@ovgu.de
http://wwwiti.cs.uni-magdeburg.de/~nsiegmun/
http://dx.doi.org/10.1016/j.infsof.2012.07.020
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof
http://dx.doi.org/10.1016/j.infsof.2012.07.020


2 N. Siegmund et al. / Information and Software Technology xxx (2012) xxx–xxx
footprint, and reliability. Non-functional properties are especially
important in the domain of embedded and real-time systems
[4,5]. Reducing the resource consumption of a software product
can enable the use of cheaper hardware devices or extend battery
live, which can save much money in mass production or increase
user acceptance.1 In a product-line setting, a stakeholder may wish
to enforce constraints on non-functional properties (e.g., the foot-
print may not exceed the capacity of an embedded device) or select
the product that is best according to some quantifiable property (e.g.,
the fastest product). This, however, means that we have to measure
many products, until we find a feature combination that satisfies
certain non-functional requirements.

To search for the feature combination that is optimal with re-
gard to a certain non-functional property, we may have to generate
and measure all products. Even small SPLs with less than a hundred
features can already have millions of products, and industrial-size
SPLs can contain thousands of features [6–8]. Generating products
for all feature selections is thus not feasible in practice. Conse-
quently, we investigate alternatives based on heuristics that esti-
mate non-functional properties without generating and
measuring all individual products.

Our goal is to predict non-functional properties of customizable
products. We do so by measuring the influence of each feature on a
non-functional property. We compute a small but suitable set of
products, by analyzing the relationships between features docu-
mented in a feature model [2]. Next, we compile and measure
these products and quantify the influence of each feature from del-
tas between these products. Finally, we predict a product’s non-
functional properties by adding the quantified influences of all se-
lected features.

Of course, the predictions will not be exact, because the selec-
tion of one feature may influence non-functional properties of
other features (for example, a feature ‘‘global compiler optimiza-
tion’’ will affect footprint and other non-functional properties of
other features). Additionally, there may be a complex mapping
from features to implementation assets that can lead to false
approximations. To take such feature interactions into account,
we develop a model in which we can document and incorporate
known feature interactions. We measure the influence of these
interactions to improve the accuracy of our predictions.

Our approach is independent of a particular implementation
mechanism (i.e., we treat an SPL as a black box) and can be applied
to different quantifiable non-functional properties. To evaluate our
approach, we conducted two experiments, in which we compare
predicted against measured non-functional properties.

For the first experiment, we choose footprint (binary size of a
generated product) and selected nine SPLs of different sizes, lan-
guages, varying implementation techniques, from different do-
mains (e.g., operating systems, database engines, end-user
applications), and from different developers (both academic and
industrial). In the second experiment, we choose the property
main-memory consumption and selected six customizable programs
from different domains (e.g., web server, compiler, database en-
gines) and with varying customization techniques (#ifdef, com-
mand-line parameters, configuration files). With a linear number
of measurements (i.e., without considering feature interactions),
our predictions have an accuracy of 78.7% on average for all SPLs
for footprint and an accuracy of 86.4%, on average, for main-mem-
ory consumption. By exploiting domain knowledge about feature
interactions, predictions of footprint improve to 99.8% for all SPLs
and measuring all pair-wise interactions for main-memory con-
sumption, accuracy improves to 89%, on average.
1 Discussions among researchers and industry representatives at conferences (like
software product line conference) and Dagstuhl seminars emphasize the importance
of this problem.

Please cite this article in press as: N. Siegmund et al., Scalable prediction of no
consumption, Inform. Softw. Technol. (2012), http://dx.doi.org/10.1016/j.infsof
This is a revised and extended version of a previous conference
paper [9]. Compared to this earlier paper, we provide more evi-
dence of the generality of our approach, in particular, by means
of additional study of a second non-functional property. In addition
to predicting only footprint in prior work, we predict main-memory
consumption in six different sample programs. Moreover, a subset
of four programs can be customized via program parameters which
extend the scope of our approach to a broader range of application
scenarios.
2. Problem statement

Non-functional properties are diverse, and it is not obvious how
we can interpret and handle measurements of these properties. We
concentrate on properties that can be quantified (i.e., that are mea-
surable). The theory of measurement defines different levels (nom-
inal, ordinal, interval, and ratio) of how measured values can be
interpreted [10]. Our approach relies on interval and ratio-scale-
based measures, because the values of two measurements reflect
differences of the according property.2

To measure the vast majority of non-functional properties, we
have to actually generate and execute a product [11]. A key idea
of our approach is to identify the influence of an individual feature
on the product’s non-functional properties, because it is not clear
which feature of a product contributes in which quantity to a prod-
uct’s properties. Even worse, a feature’s influence on non-func-
tional properties may depend on the presence of other features,
such that correlations between measured values and correspond-
ing features are ambiguous. Hence, determining an exact value of
how a feature influences a non-functional property is usually not
possible [12].

Problems of approximating a feature’s influence on non-func-
tional properties are mostly caused by interactions between fea-
tures. Two types of feature combinations can cause a feature
interaction: (a) features A and B are present in a product and (b)
features A or B. For footprint this means that we have to include
additional code in a product in the first case (i.e., a piece of code
that is required only when features A and B are present). In the sec-
ond case, multiple features share a certain piece of code. That is,
this code is present only once in a product no matter how many
features require it.

To illustrate the problems of feature interactions, we use a sim-
ple example that already exhibits measurement problems. In Fig. 1,
we show the C++ implementation of a linked list with two features:
PrintList and PrintElement. Features are implemented with condi-
tional compilation. To measure say footprint (measured as the bin-
ary size of the compiled product), we first measure each individual
feature. Hence, we measure the footprint of Lines 5 and 6 as well as
Line 11 for feature PrintList. We would not measure Lines 8 and 9,
because these lines are compiled only for a product that contains
both features PrintList and PrintElement. Hence, if we would predict
the footprint of a product that includes both features, the predic-
tion would be inaccurate. To predict the footprint correctly, we
would have to measure the influence of the feature interaction
(Lines 8–9).

As another example, consider a set of features that use the same
resource. A shared resource may be an external library. We can al-
ter our example to use an external library to log the elements of a
list instead of printing them. To this end, we change the call to cout
and method print (in Lines 6 and 15 of Fig. 1) to use the external
logging library. The library has a considerably larger binary size
2 For some non-functional properties including main-memory consumption, we
may consider only ratio-scale-based measures, because we may need to reason about
approximations.

n-functional properties in software product lines: Footprint and memory
.2012.07.020

http://dx.doi.org/10.1016/j.infsof.2012.07.020


Fig. 2. The process of computing approximations of non-functional properties for features and feature interactions.

Fig. 1. C++ code of a list implementation with two features: PrintList and PrintElement. We show the feature model in the upper right corner.

N. Siegmund et al. / Information and Software Technology xxx (2012) xxx–xxx 3
than the features itself. When approximating a feature’s influence
on footprint, the predominant part would stem from the logging li-
brary. Because we measure the size of the library for both features,
we would predict the size of a product with both features incor-
rectly. The reason is that both features share the same library,
which is included only once in the product, but was measured
twice (once for each feature).

3. Non-functional properties of features

In this section, we present our approach to approximate the
influence of a feature and feature interactions on a non-functional
property. First, we describe the general concept of our approach.
Second, we explain algorithms necessary to extract the approxima-
tions of each feature’s influence on a non-functional property from
a (minimal) set of products. We start with a description of our
notation that we use to express configurations, measurements,
and approximations of a feature’s influence on a property. For illus-
tration, we use the property footprint in the examples.

We describe a product P as a set of selected features F1, . . ., Fn:
P = {F1, . . . ,Fn}. P({F1, . . . ,Fn}) (or short: P(P)) refers to the specific
non-functional property currently being considered. Furthermore,
we represent the approximation of the influence of feature Fi on
Please cite this article in press as: N. Siegmund et al., Scalable prediction of no
consumption, Inform. Softw. Technol. (2012), http://dx.doi.org/10.1016/j.infsof
a non-functional property with P(Fi). Finally, we use operator #
to indicate an interaction between features. For example, we de-
note the interaction between features F1 and F2 as F1#F2 and we
treat F1#F2 like another feature.

As an underlying data structure and prediction model, we use
feature models (as shown in Fig. 1) [2]. A feature model specifies
all valid feature combinations and thus all configurations that
can be generated.It has a hierarchical structure beginning with a
root node, which represents the domain concept. Features can be
mandatory (required in all products when the parent feature is se-
lected) or optional (the user can decide to select this feature). Fur-
thermore, we can specify an or relationship between features,
which denotes that when the parent feature is selected we have
to select at least one child feature of the or relationship. Similarly,
we specify alternative groups with the only difference that we have
to select exactly one child feature. We explain in the next section
how these relationships affect the approximation of a feature’s
influence on non-functional properties.

3.1. Approximation process

The general idea of approximating a feature’s influence on a
non-functional property is to measure the delta between two
n-functional properties in software product lines: Footprint and memory
.2012.07.020

http://dx.doi.org/10.1016/j.infsof.2012.07.020


Fig. 3. Sample DBMS product line. The root denotes the concept. 2PC: two phase commit protocol.

Table 1
Set of products to approximate the influence of each feature. All measured values are in KB.

Feature Feature product P Delta product P

Base P1 = {Base} 420 ; 0
Encryption P2 = {Base, Encryption, RSA} 730 P1 = {Base} 420
RSA P2 = {Base, Encryption, RSA} 730 P2 = {Base, Encryption, RSA} 730
Index P4 = {Base, Index, Hash} 570 P1 = {Base} 420
Btree P3 = {Base, Index, Btree} 740 P1 = {Base} 420
Hash P4 = {Base, Index, Hash} 570 P3 = {Base, Index, Btree} 740
InMemory P5 = {Base, InMemory, Encryption, RSA} 610 P2 = {Base, Encryption, RSA} 730
Transactions P6 = {Base, Transactions, Logging, 2PC} 995 P1 = {Base} 420
Logging P6 = {Base, Transactions, Logging, 2PC} 995 P7 = {Base, Transactions, 2PC} 885
2PC P6 = {Base, Transactions, Logging, 2PC} 995 P8 = {Base, Transactions, Logging} 845

4 N. Siegmund et al. / Information and Software Technology xxx (2012) xxx–xxx
products that differ only in the presence or absence of this feature.
We interpret the delta of two products as the approximation of the
added (or removed) feature’s influence.

Let us assume we measure two products of the list SPL that dif-
fer only in the presence of feature PrintList: {base} and {base,Print-
List}.3 We can approximate the influence of feature PrintList
P(PrintList) as the delta between both products:
PðPrintListÞ ¼ Pðfbase; PrintListgÞ �PðfbasegÞ

In Fig. 2, we illustrate the approach of approximating a feature’s
influence on non-functional properties for SPLs and customizable
programs that support an automated product generation. Using a
feature model, we determine a small, but suitable set of products
(Fig. 2b). In an automated process, we generate and measure each
product of this set. Based on these measurements, we compute
the delta between two products and use this value as the approx-
imation for a feature (Fig. 2c). This means, to enable for each fea-
ture the computation of the delta between two products, we
would need 2n measurements altogether for n features. By using
the values of previous measurements, we can reduce the number
of required measurements to n + 1.

Furthermore, as an optional initial step (Fig. 2a), we allow
stakeholders to define feature interactions in the corresponding
feature model [13].4 Still in an automated process, for each feature
interaction, we add a single product to the set of products and mea-
sure its influence. That is, we scale the number of measurements to
improve the quality of the prediction. We compute the actual
influence of a feature interaction by using the delta between non-
functional properties of the measured product and predicted non-
functional properties of the same product. For example, if we know
the existence of the feature interaction PrintList#PrintElement, we
might predict P({PrintList,PrintElement}) = 220 KB, whereas the
measured footprint is 200 KB. Hence, we would assign the difference
3 Feature base represents the code that is present in every product.
4 In a parallel line of research, we developed an approach that automatically

detects feature interactions for the property performance [14].

Please cite this article in press as: N. Siegmund et al., Scalable prediction of no
consumption, Inform. Softw. Technol. (2012), http://dx.doi.org/10.1016/j.infsof
between interaction and prediction (�20 KB) to the interaction
PrintList#PrintElement as its influence on footprint.

3.2. Approximating non-functional properties per feature

In the following, we describe our approach to compute approx-
imations of a feature’s non-functional properties for the most com-
mon relationships between features [2,3]. In Fig. 3, we show a
feature model of a database management (DBMS) SPL. We use this
SPL as a running example throughout the remaining paper. As we
explained previously, we need two products per feature to mea-
sure the delta of these products. One product in which the feature
is present, called feature product, and another product, called delta
product, in which the feature is missing. We summarize all prod-
ucts in Table 1 that we need to approximate each feature’s influ-
ence on footprint and describe step by step how we determine
the feature’s influence depending on the relationship in the feature
model.

Note that there are SPLs that always require to select some fea-
tures to derive a valid product (e.g., we may always must choose
between alternative features). In such a case, we cannot determine
a product that differs only in these features, because we always
have to select them. To overcome this problem, our first task is
to measure the influence of an initial feature set on a non-functional
property. This initial feature set acts as the root feature for all fea-
tures that have no parent feature. Since there is no product with
fewer features, the delta product is the empty set for which the
non-functional property is zero. Hence, we interpret the influence
of the initial feature set on a non-functional property as the mea-
sured value of the corresponding product. For example, feature
base must always be selected in our sample SPL (see Fig. 3):
n
.20
Type
-functiona
12.07.020
Feature
l propertie
Feature product
s in software prod
Delta product
uct lines: Footpr
Result
Initial
 Base
 P(P1) = 420 KB
 P(;) = 0 KB
int and memory

http://dx.doi.org/10.1016/j.infsof.2012.07.020


N. Siegmund et al. / Information and Software Technology xxx (2012) xxx–xxx 5
(1) Optional. In an optional relationship, it is not required to se-
lect the child feature. Hence, we generate a product that contains
only the parent feature.5 Additionally, we need a second product
with the optional child feature. In our sample SPL, feature Encryption
is an optional feature. Since it has no parent feature, the initial fea-
ture set is considered as the root feature and acts as the parent fea-
ture. Based on the computed product set of Table 1, we measure the
following products:
all

P
co
Type
5 Of course, we h
mandatory feat

lease cite this
nsumption, In
Feature
Encryption

ave to inclu
ures.

article in p
form. Softw
Feature product
P(P2) = 730 KB

de all necessary fe

ress as: N. Sieg
. Technol. (20
Delta product
P(P1) = 420 KB

atures to derive

mund et al., S
12), http://dx.
Result
With these measurements we compute the influence of feature
Encryption:

PðEncryptionÞ ¼ PðP2Þ �PðP1Þ
¼ 730 KB� 420 KB
¼ 310 KB

where P1 represents the product that we measure for Encryptions’
parent feature (which is the initial product set in this case).

(2) Mandatory. A mandatory relationship enforces that when-
ever the parent feature is selected, we must also select its child fea-
ture. As a consequence, we cannot measure the parent feature’s
influence on a property without measuring the influence also of
the child feature. Hence, we set the value of the child feature to
zero and the value of the parent to the sum of both influences.
When a stakeholder selects the parent feature during product con-
figuration, we show already the aggregated value of both features.
This way, it is easy to see the implications of a feature selection for
a stakeholder, because she usually selects features starting from
the root node.

In our example, when selecting feature Encryption, we must also
select its child feature RSA. Hence, we set the value of feature RSA
to zero and the value of feature Encryption to the sum of both
features.
Type
 Feature
 Feature product
 Delta product
a v

cal
doi
Result
RSA
 P(P2)
= 730 KB
P(P1)
= 730 KB
We compute the value for a mandatory relationship as follows:

PðRSAÞ ¼ PðP2Þ �PðP2Þ
¼ 730 KB� 730 KB
¼ 0 KB

(3) Alternative. In an alternative relationship, we cannot select
the parent feature of the relationship individually, but measure
its value always in combination with its child features. Here, there
is no unambiguous feature product for the parent feature, because
we can measure this feature in multiple ways depending on which
alternative feature we additionally selected. As a design decision,
alid product, e.g.,

able prediction of no
.org/10.1016/j.infsof
we use the product as the feature product of the parent feature that
has the minimum measured binary size. This way, we can assign a
minimum value to the parent feature that increases the footprint of
a product by at least this respective value. If we would choose an-
other feature product, we have to assign a negative footprint to at
least one child feature (which has the minimum measured foot-
print). This may be unintuitive during configuration. It depends
on the property and the initial value if we either subtract (using
the maximum) or add (using the minimum) a feature’s non-func-
tional properties. After having assigned a value to the parent fea-
ture, we use its feature product as the delta product for all of its
child features.

The features Btree and Hash are alternative features with feature
Index as their parent feature (see Fig. 3). To approximate their
influences, we need the following three measurements:
n-
.20
Type
functional propertie
12.07.020
Feature
s in sof
Feature product
tware product
Delta product
lines: Footprin
Result
Index
 P(P4) = 570 KB
 P(P1) = 420 KB
Btree
 P(P3) = 740 KB
 P(P4) = 570 KB
Hash
 P(P4) = 570 KB
 P(P4) = 570 KB
In Table 1, we see that we require a generated product per fea-
ture in the alternative group. In our example, we require two prod-
ucts P3 = {Base, Index,Btree} and P4 = {Base, Index,Hash}. To compute
the value of feature Index, as always, we need the measured prod-
uct of the parent (or initial feature set): P1 = {Base}. We use the fol-
lowing equations:

PðIndexÞ ¼MinðPðP3Þ;PðP4ÞÞ �PðP1Þ

¼Minð740 KB;570 KBÞ � 420 KB

¼ 570 KB� 420 KB

¼ 150 KB

PðBtreeÞ ¼ PðP3Þ �PðP4Þ

¼ 740 KB� 570 KB

¼ 170 KB

PðHashÞ ¼ PðP4Þ �PðP4Þ

¼ 570 KB� 570 KB

¼ 0 KB

(4) OR. In contrast to an alternative relationship, in an OR rela-
tionship, we can select multiple child features. This raises the prob-
lem that we need to determine the influence of the parent feature
of the relationship. For example, if we do not know the influence of
feature Transactions, we would aggregate its influence twice for a
product’s prediction that contains its two child features Logging
and 2PC. Hence, we have to determine the approximation of the
parent feature (e.g., feature Transactions) in an OR relationship
rather than using the minimal measured product. To retrieve the
value of the parent feature (Transactions), we need an additional
measurement for the OR relationship in comparison to the alterna-
tive relationship. In this measurement, we create a product that
contains two child features of the OR group (e.g., P6 = {P6Base,
Transactions, Logging, 2PC} in Table 1).
t and memory

http://dx.doi.org/10.1016/j.infsof.2012.07.020


6 N. Siegmund et al. / Information and Software Technology xxx (2012) xxx–xxx

P
c

Type
lease cite this a
onsumption, In
Feature F
rticle in pre
form. Softw
eature
product

D

ss as: N. Sieg
. Technol. (20
elta product
mund et al., S
12), http://dx
Result
Transactions P
(P6) = 995 KB P
(P1) = 420 KB
Logging P
(P6) = 995 KB P
(P7) = 885 KB
2PC P
(P6) = 995 KB P
(P8) = 845 KB
With this additional measurement, we are able to compute the
influence of feature Transactions and the remaining features of its
group using the following equations:

PðLoggingÞ ¼ PðP6Þ �PðP7Þ
¼ 995 KB� 885 KB
¼ 110 KB

Pð2PCÞ ¼ PðP6Þ �PðP8Þ
¼ 995 KB� 845 KB
¼ 150 KB

PðTransactionsÞ ¼ PðP8Þ �PðLoggingÞ �PðP1Þ
¼ 845 KB� 110 KB� 420
¼ 315 KB

(5) Requires. Finally, we also consider cross-tree constraints in
the feature model. The excludes constraint does not change the
computation of a feature’s non-functional properties, because it re-
stricts only the number of features and we already measure a prod-
uct with a minimal number of features. In contrast, the requires
constraint prohibits the measurement of a single feature. For
example, we cannot measure feature InMemory without feature
RSA. So, our approach is to measure first the product that includes
the target of the requires constraint (i.e., feature RSA with product
P2 is the target of feature InMemory). Then, we measure the prod-
uct that includes both features P5 = {Base, InMemory,Encryption,
RSA}.
Type
 Feature
 Feature product
 Delta product
cala
.doi.
Result
InMemory
 P(P5) = 610 KB
 P(P2) = 730 KB
6 The concept node does not represent a feature.
7 Of course, also feature RSA is a differing feature, but as a mandatory feature, we

always measure its influence together with feature Encryption.
The problem of a cross-tree constraint is that we can have an
overlapping set of features. That is, we subtract the influence of
all parent features from the current feature and additionally sub-
tract the influence of the required feature and its parent feature.
When these parent features overlap (e.g., in the case of Base), it
leads to the situation that we may subtract the influence of a fea-
ture twice. In our example, Base is such a feature, because it acts as
the root feature (it is member of the initial feature set). Thus, we
must identify the set of overlapping features S = F1, . . ., Fn first
and to omit subtracting them twice. With the following step, we
determine the approximation of feature InMemory where S = Base:

PðInMemoryÞ ¼ PðP5Þ �PðP1Þ �PðP2Þ þPðSÞ
¼ 610 KB� 420 KB� 730 KBþ 420 KB
¼ �120 KB

We visualize the result of our computations in Fig. 4. We are
aware of that there might be cycles in a feature model such that
each feature of the cycle cannot be measured without any other
feature of the cycle. Hence, approximations of individual features
ble prediction of no
org/10.1016/j.infsof
in a cycle cannot be computed. However, this is not necessary, be-
cause in each product either all features of a cycle are present or
none. Therefore, the solution in this case is to transform the feature
model into an alternative representation using atomic feature sets
[15]. This way, these cycle features are composed as a single atom-
ic feature and we can use our approach again.

3.3. Computing the product set for measurement

Measurements can be time consuming and expensive. This is
the reason why we aim at further scaling the number of necessary
measurements from 2n to n + 1 by reusing already executed mea-
surements. To reach this goal, we use the hierarchical structure of
feature models that allows us to reuse products already defined for
the parent feature.

Since a feature model has a hierarchical form, every feature has
a parent feature or the parent is the concept node. In the last case,
we use the initial feature set as a root feature. Beginning with the
root feature, we traverse the feature tree and add for each feature a
single product to the product set that (a) contains the current fea-
ture, (b) has the minimal number of features, and (c) is valid. For
example, when reaching feature Encryption of our sample SPL, we
add product P2 = {Base,Encryption,RSA} to the product set. The delta
product of this feature is the product of either the parent feature or
the initial feature set. Hence, each newly determined product can
use the previously defined product (e.g., the one for the parent)
to compute the delta of its non-functional properties. An exception
for this rule is the or relationship in which we have to measure an
additional product to determine the influence of the parent feature
of the or group (as we explained before). Furthermore, we have to
measure an additional product per defined feature interaction,
which we explain in Section 3.4.

Although the feature model of Fig. 4 has ten features,6 we need
to measure only eight configurations, because we reuse already mea-
sured configurations and we save a measurement due to the manda-
tory feature RSA and another measurement because of the
alternative constraint between Btree and Hash. Feature groups (i.e.,
alternative and or groups) require the selection of (at least) one addi-
tional feature, but not the measurement of additional products.
Hence, we use the same configuration for feature Index and Btree.
Feature InMemory represents an interesting case, because it defines
a requires constraint to feature RSA. Hence, the delta configuration
for this feature must already include the required feature RSA and
its parent feature Encryption, because we need two configurations
that differ only in feature InMemory.

3.4. Measuring feature interactions

As we explained previously, feature interactions may affect the
approximation of a feature’s non-functional properties. That is, we
approximate different values for a feature depending on the selec-
tion of other features, which can cause inaccurate predictions. For
example, to approximate the influence of feature Encryption with
P(Encryption) = 310 KB, we used the following two products: P2 =
{Base,Encryption,RSA} and P1 = {Base}. However, we may also use
products P9 = {Base,Encryption,RSA,Transactions,Logging} and P9 =
{Base,Transactions,Logging} and compute a different delta:
P(Encryption) = 350 KB. Since the only differing feature is Encryp-
tion,7 there is a feature interaction that influences the measured
non-functional property.

If feature interactions are not known or should not be taken into
account, a pure feature-wise measurement approach is used, that is,
n-functional properties in software product lines: Footprint and memory
.2012.07.020

http://dx.doi.org/10.1016/j.infsof.2012.07.020


Fig. 4. Feature model after approximating the influence of each feature on footprint.

N. Siegmund et al. / Information and Software Technology xxx (2012) xxx–xxx 7
we ignore feature interactions and only estimate non-functional
properties of individual features. Unfortunately, this is sometimes
not sufficient, for example, if there is a complex mapping between
features and implementation assets. In this case, a feature’s
approximation would take into account non-functional properties
of several implementation assets that however are also related to
other features. Hence, a single approximation for a feature is not
sufficient.

Fortunately, it is often an easy task to identify such feature
interactions for some non-functional properties, such as footprint.
We can use three different sources to identify feature interactions
by: (a) using the mapping between domain features and imple-
mentation assets, (b) analyzing the source code (e.g., searching
for nested #ifdefs as a common indication of simple implementa-
tion interactions), and (c) using domain knowledge. In our evalua-
tion (Section 4), we use our knowledge of the mapping from
domain features to implementation units for the Violet SPL, we
analyze the source code of Berkeley DB, Prevayler, and SQLite,
and we asked a domain expert for the Linux kernel to identify fea-
ture interactions. In the case that no domain knowledge is avail-
able, it can be worthwhile to simply assume the existence of a
feature interaction between each pair of features in an SPL. To
approximate the influence of a feature interaction, we choose a
suitable product, measure it, and compare this value against what
we predict for this product; the difference of measurement and
prediction is the influence of the interaction. We summarize the
different approaches next.

Feature-wise measurement (FW). Feature-wise measurement
means that we do not consider feature interactions. We only
approximate the influence of features and nothing more. That is,
we generate a product for each feature. The complexity is O(n),
in which n is the number of features of an SPL. This approach
should be used for very large SPLs and is most accurate if there
is a one-to-one mapping between features and implementation as-
sets, such as in feature-oriented programming [16]. Still, in other
cases, the results of the measurement are useful if we are inter-
ested in more or less rough predictions for a product’s non-func-
tional properties (e.g., if a stakeholder is only interested in a
qualitative comparison of non-functional properties from a set of
desired products).

Interaction-wise measurement (IW). For the interaction-wise ap-
proach, we measure not only each feature in the feature model, but
also all known feature interactions. For each interaction, we create
a product that contains the features that interact. This way, we
have to measure O(n + k) products, in which n is the number of fea-
tures and k is the number of defined interactions. If k = 0, the inter-
action-wise approach is identical to the feature-wise approach.
Measuring all interactions improves accuracy. Especially, when
an SPL contains a large number of features, domain knowledge
Please cite this article in press as: N. Siegmund et al., Scalable prediction of no
consumption, Inform. Softw. Technol. (2012), http://dx.doi.org/10.1016/j.infsof
can help to identify which of them interact. This approach results
in a solid prediction base.

Pair-wise measurement (PW). With pair-wise measurement, we
automatically detect all pair-wise feature interactions (i.e., an
interaction in which exactly two features participate). That is, we
measure n(n � 1)/2 + n products. The approach results in a sub-
stantially increased product set to measure, compared to the fea-
ture-wise measurement: O(n) vs. O(n2). Note that there are also
k-wise measurements possible to measure feature interactions in
which exactly k features participate (kth order feature interaction).
However, they usually require a large number of additional mea-
surements, and it is only reasonable to measure them, when we
know from domain knowledge that there are such interactions.

3.5. Tool support: SPL Conqueror

We developed the tool SPL Conqueror8 to manage and automate
the process of determining and measuring products and to approxi-
mate a feature’s influence on non-functional properties [17]. The
application of SPL Conqueror provides two major benefits compared
to a manual approach. First, SPL Conqueror realizes an automated
measurement and approximation process that does not require
any user interaction (e.g., the measurement process can run over
night without monitoring). Second, based on the results of the auto-
mated measurement and approximation process, it predicts a prod-
uct’s non-functional properties almost instantly.

SPL Conqueror maintains a feature model of the given SPL or
customizable program. We use SPL Conqueror to determine valid
configurations that have to be measured. To support any program-
ming language and composition technique, we abstract from spe-
cific implementation techniques and consider a customizable
program or SPL as a black box. All customizable programs have
in common that they need to know the configuration in a special
format and they have to be executed with this given configuration.
The measurement process has three steps: (1) generate a configu-
ration in the application-specific format, (2) trigger the generation
or execution of the product, and (3) execute a user-defined mea-
surement program, which executes the application, measures its
non-functional properties, and writes the results in a XML format
that can be read by SPL Conqueror.

Each step must be defined in SPL Conqueror such that the whole
measurement process can be automated. SPL Conqueror needs to
know in which format a configuration must be generated. For
example for preprocessor-based customization, we generate a
flags.h file, which contains preprocessor statements (e.g., #de-
fine HAVE_ENCRYPTION to compile Berkeley DB with encryption
support). The remaining task (one time per SPL) is to manually
include this flags.h file in the compilation process (e.g., in the
8 http://fosd.de/SPLConqueror.

n-functional properties in software product lines: Footprint and memory
.2012.07.020

http://fosd.de/SPLConqueror
http://dx.doi.org/10.1016/j.infsof.2012.07.020


8 N. Siegmund et al. / Information and Software Technology xxx (2012) xxx–xxx
makefile). We support a wide array of customization techniques,
but further techniques can be included if necessary:

� Preprocessor-based customization is supported via an auto-
mated generation of a user-defined header file, which includes
the definition of preprocessor flags corresponding to selected
features.
� FeatureHouse is a language-independent composition tool

based on feature-oriented programming [18]. It stores configu-
rations in an expression file, in which the selected features are
listed.
� AHEAD is a composition tool suite for programs and other arti-

facts based on feature-oriented programming [19]. The configu-
ration mechanism is similar to FeatureHouse.
� FeatureC++ generates C++ programs based on feature-oriented

programming [20] and uses also expression files with a slightly
changed syntax.
� Configuration files are used in many programs, such as the

Apache web server and the Rar compression library. To use this
method with SPL Conqueror, a user specifies the name and path
of the configuration file as well as how a selected customization
option is defined by the corresponding program. Basically, we
define the value for these key-value pairs in the feature model
and generate the according configuration file.
� Command-line options represent a common way to customize

a program. In this case, triggering the generation is the process
of executing a program with the generated set of command-line
parameters, which are also derived as key-value pairs from the
feature model. With this technique, we measure only runtime
properties.

4. Evaluation

Since our approach only predicts non-functional properties and
cannot provide precise results, we evaluated accuracy of our
approximations with two series of experiments. The first series
of experiments address measurement and prediction of the prop-
erty footprint (binary size of a program) and the second series of
experiment concentrates on the main memory consumption. We
use the goal-question-metric approach to evaluation goals and re-
search questions [21].

We demonstrate that our predictions are sufficiently accurate
for many real-world scenarios, in which we want to constrain
the configuration space or select a nearly-optimal product regard-
ing some non-functional property. We provide online the raw
material of measurements for each program. We refer the inter-
ested reader to our Web site for more detailed information and
for downloading our tool: http://fosd.de/SPLConqueror.

4.1. Experiment overview

We analyze the prediction of a product’s footprint and main-
memory consumption for the purpose of evaluation with respect to
accuracy from the point of view of the vendor/customer in the con-
text of SPLs and customizable programs. Since our approach is cus-
tomer-centered, we calculate a fault rate of our prediction as the
relative difference between predicted and actual property:
jactual�predictedj

actual � 100. As discussed in Section 3.4, we developed three
approaches to quantify the influence of a feature on a non-func-
tional property. These approaches differ in accuracy and measure-
ment effort. To rate these alternatives, we define the following
research questions:

� Q1: What is the average fault rate of the feature-wise measure-
ment approach?
Please cite this article in press as: N. Siegmund et al., Scalable prediction of no
consumption, Inform. Softw. Technol. (2012), http://dx.doi.org/10.1016/j.infsof
� Q2: What is the average fault rate of the interaction-wise mea-
surement approach (only for footprint experiments, see below)?
� Q3: What is the average fault rate of the pair-wise measure-

ment approach?
� Q4: How do the three approaches scale in terms of number of

measurements compared to a brute-force approach?

In the following, we describe the experimental design that we
use to answer the research questions in both experimental series.

Experimental design. The experiment is divided into two steps:
(i) creating the prediction model and (ii) predicting a sample prod-
uct’s footprint and main-memory consumption. In the first step,
we build a prediction model, i.e., a feature model with approxima-
tions. Since we have three approaches, we build three different
predictions models according to the description given in Sec-
tion 3.1. That is, we measure the feature product and the delta
product and compute the approximations according our formula
given in Section 3.2. We report the measurement effort for creating
these models in terms of number of measurements. For the inter-
action-wise prediction model, we measure the influence of known
interactions. To determine interactions (when possible), we ana-
lyze the source code of the used SPLs to gain the knowledge which
interactions exists. With a self-written tool, we detect nested #if-

def statements in SPLs based on preprocessors (cfg. Table 3). For
compositional approaches, we search for the existence of docu-
mented structure interaction modules (e.g., derivatives [22]). For
the pair-wise approach, we specify between each pair of features
a feature interaction in our model and measure its influence: com-
paring measurement and prediction of a product with this
interaction.

The second step is the main step of evaluating accuracies of pre-
dictions. We measure products for the properties footprint and
main-memory consumption and compare these measurements
against our predictions for the three different approaches. For large
SPLs, in which the measurement of all products is not feasible in
reasonable time, we choose 100 random products. For all other
SPLs, we measure all products. We created the random products
as follows: For each feature, we randomly decide whether to in-
clude or not include it. If the resulting feature selection is not valid
according to the feature model, we start over.

Variables. The experiment has a single independent variable:
configuration (shown in Table 2). A configuration is the set of se-
lected features. Hence, it specifies the functionality of a program
and subsequently affects the program’s non-functional properties.
Furthermore, a configuration is the basis for our prediction model.
That is, we compute the prediction for a non-functional property
by adding the influences of all features participating in the
configuration.

The dependent variable fault rate describes the difference be-
tween the predicted and measured property of a program. To com-
pute footprint, we need the two intermediate dependent variables
measurement and prediction, whereas the configuration influences
both variables. To set the fault rate into perspective for the foot-
print property, we provide the highest and lowest measured foot-
print in Table 3. Note that the fault rate requires careful
interpretation, and a base product or a feature with overpropor-
tional influence on the property may distort the figure. We cannot
provide a relative fault rate corresponding to some base or minimal
product, because it is not clear what the base or minimal product is
(we would need to measure all products in the first place). In this
work, when discussing about accuracy, we refer to the dependent
variable accuracy, which we compute according to the formula gi-
ven in Table 2.

Analysis procedure. We analyze the fault rate visually using box
plots [23] and Quantile–Quantile (Q–Q) plots. A box plot plots the
median as a line within the box and the quartiles as lines as the
n-functional properties in software product lines: Footprint and memory
.2012.07.020

http://fosd.de/SPLConqueror
http://dx.doi.org/10.1016/j.infsof.2012.07.020


Table 3
Overview of the SPLs used in the evaluation of footprint prediction.

Product line Domain Lang. Techn. Feat. Products LOC Size in KB

Mina Maxa

LinkedList Component Java Comp. 18 492 2595 4.4 10.5
Prevayler Database Java CC 5 24 4030 87 169
ZipMe Compression Java CC 8 104 4874 79 99
PKJab Messenger Java Comp. 11 72 5016 39 161
SensorNetwork Simulation C++ Comp. 26 3240 7303 19 875
Violet UML editor Java Comp. 100 1020 19,379 6.3 185
Berkeley DB Database C CC 8 256 209,682 1800 2740
SQLite Database C CC 85 1023 305,191 166 200
Linux kernelb OS C CC 25 3 � 107 13,005,842 11,245 13,829

a Minimal and maximal size of large SPLs may not be exact, because we cannot measure all products. We list the smallest and largest measured value.
b We use only a subset of 25 features of the Linux kernel selected by a domain expert. CC: conditional compilation, Comp.: composition approach.

Table 2
Description of experiment variables. Indep: independent; dep: dependent; F: number of features.

Name Type Class Scale type Unit Range

Configuration Indep. Flags, etc. Nominal N/A 2F

Fault rate Dep. jmeasurement�predictionj
measurement � 100 Ratio % 0–1

Accuracy Dep. 100 � Fault rate Ratio % �1 to 100

N. Siegmund et al. / Information and Software Technology xxx (2012) xxx–xxx 9
boundary of the box, so that 50% of all measurements are inside the
box. Whiskers describe the distribution of the remaining measure-
ments (see Table 4).

A Q–Q plot is often used to compare two data distributions by
plotting their quantiles against each other. That is, a point (xi,yi)
on the plot refers to the ith data point of first distribution (x-coor-
dinate) and to the ith data point of the second distribution (y-coor-
dinate). If both distributions are similar then x is equal to y and the
point lies on the diagonal line y = x. We use this plot to compare for
the same configurations predictedversus measured properties. For
a perfect prediction, all dots would lie on the diagonal line. We
visualize each configuration as a dot on the plot.

In addition to the visual analysis, we compute the average fault
rate (arithmetic mean) per SPL and per measurement technique
(i.e., feature-wise, interaction-wise, and pair-wise). To this end,
we compute for each sample product P the fault rate, sum them
up, and divide the result by the number of measurements:

AvgFaultRate ¼ 1
n

Xn

i¼1

jmeasurementðPiÞ � predictionðPiÞj
measurementðPiÞ

� 100 ð1Þ

Furthermore, we compute the standard deviation in percent of all
measurements per SPL and per measurement approach to quantify
the scattering of predictions around the average fault rate.

4.2. Predicting footprint

First, we conducted an experiment to predict footprint (binary
size) of a compiled product. We selected footprint for several
reasons:

� Although it may appear trivial, footprint is quite difficult to pre-
dict. As for performance, feature interactions can have an
immense effect: Cross-cutting features can significantly influ-
ence the footprint of many other features. Interactions due to
shared libraries, nested #ifdefs (code is only included when
two or more features are selected), or possible compiler optimi-
zations make footprint difficult to predict.
� We can measure footprint quickly and without measurement

bias, which is important for a large-scale evaluation with multi-
ple SPLs as ours. We can easily reproduce values, and we
Please cite this article in press as: N. Siegmund et al., Scalable prediction of no
consumption, Inform. Softw. Technol. (2012), http://dx.doi.org/10.1016/j.infsof
exclude noise and confounding influences, such as system load,
which easily can bias benchmarks. In addition, since we need to
automate a high number of measurements (not only for prod-
ucts used to approximate values per feature, which a normal
user of our approach would do, but, in addition, also for refer-
ence products to compare predicted and actual size), it comes
in handy that measuring footprint is quick.
� Finally, since we are not domain experts for all SPLs, it is diffi-

cult to evaluate the influence of domain knowledge to recognize
possible interactions. For footprint, many implementation
approaches give us a chance of using heuristics to detect possi-
ble interactions (e.g., by searching for nested #ifdefs); hence, we
can still provide insight into the benefits of the interaction-wise
approach on different SPLs.

Experimental material. As experimental units for our footprint
prediction, we selected nine existing SPLs with very different char-
acteristics to cover a broad spectrum of scenarios. In Table 3, we
provide an overview of the SPLs: We selected SPLs of different sizes
(2500 to 13 million lines of code, 5 to 100 features), implemented
with different languages (C, C++, and Java) and different variability
mechanisms (conditional compilation and feature-oriented pro-
gramming), from different domains (e.g., operating systems, data-
base engines, end-user applications), and from different developers
(both academic and industrial). Although very different SPLs are
used, the main technical commonality is that, in all SPLs, we can
automatically generate and compile products for a given feature
selection.

Features are either explicitly given by an already existing fea-
ture model (i.e., LinkedList, Prevaylor, ZipMe, PKJab, SensorNet-
work, Violet) or derived from documentation. For SQLite and
Berkeley, we analyze the documentation to identify features. The
document specifies preprocessor flags to turn functions on and
off. We extracted this information and created a corresponding fea-
ture model. The configuration is given as preprocessor flags to gen-
erate the according program.

From Linux, due to the huge configuration space, we considered
only a subset of 25 features, selected as representative by a domain
expert. The domain expert selected the following features, which
cover both modular features, such as drivers, as well as cross-cut-
ting features: DEBUG_BUGVERBOSE, INLINE_SPIN_LOCK, OPTIMIZE_INLINING,
n-functional properties in software product lines: Footprint and memory
.2012.07.020

http://dx.doi.org/10.1016/j.infsof.2012.07.020


Table 4
Fault rates in percent of footprint predictions of all SPLs using the approaches (Appr.): feature-wise (FW), interaction-wise (IW), pair-wise (PW), brute force (BF). Mean: mean
fault rate of predictions, Std: standard deviation of predictions.

10 N. Siegmund et al. / Information and Software Technology xxx (2012) xxx–xxx
CC_OPTIMIZE_FOR_SIZE, MODULE_UNLOAD, FRAME_POINTER, MODULE_SRCVERSION, DNO-

TIFY, INOTIFY_USER, FIRMWARE_IN_KERNEL, SND_VERBOSE_PROCFS, POWER_SUP-

PLY_DEBUG, PCNET32, NF_CONNTRACK_IPV6, NLS_ISO8859_15, NO_HZ,

NET_POLL_CONTROLLER, PRINTK_TIME, SATA_NV, SC520_WDT, KPROBES_SANITY_TEST,

I2C_DEBUG_ALGO, CHR_DEV_SCH. Among the 25 features were some fea-
tures that we knew would interact by changing the footprint (as
the evaluated non-functional property) of other features (e.g., OPTI-

MIZE_INLINING and CC_OPTIMIZE_FOR_SIZE both apply global
optimizations).

Experiment procedure. We compiled all C-based programs with
GCC and with -O2 optimization, which performs all compiler opti-
mizations that do not involve a size-speed trade-off. Since foot-
print measurements are not influenced by the used hardware
Please cite this article in press as: N. Siegmund et al., Scalable prediction of no
consumption, Inform. Softw. Technol. (2012), http://dx.doi.org/10.1016/j.infsof
and we kept the same compiler for all measurements, we could
parallelize the footprint measurements on three systems.

Deviations occurred in the experiment for SQLite. It was not
possible to measure all variants that are valid with respect to the
feature model. In these cases, we run into compilation errors, be-
cause of undocumented dependencies between features (compila-
tion flags). However, we could perform all feature-wise
measurements to approximate for each feature its influence on
footprint. The effect of these errors is that we could neither mea-
sure each pair-wise interaction and nor each known interaction.
That is, the FW prediction model is complete, but the other predic-
tion models lack some interactions. Hence, our predictions might
be more accurate if we could determine the influence of these
n-functional properties in software product lines: Footprint and memory
.2012.07.020

http://dx.doi.org/10.1016/j.infsof.2012.07.020


N. Siegmund et al. / Information and Software Technology xxx (2012) xxx–xxx 11
interactions. However, considering the huge configuration space of
SQLite, the few failed configurations are neglectable.

4.2.1. Results
In Table 4, we summarize the results of our footprint measure-

ments and predictions for all SPLs. To put the results into perspec-
tive, we additionally show the effort of a brute-force approach.
Referring to our research question Q1 (what is the average fault
rate of the feature-wise approach), our predictions are usually
quite accurate even for the feature-wise approach. The fault rate
is 21.3%, on average, for all SPLs and 5.5% without Violet; an accu-
racy, on average, of 78.3% and 94.5% respectively.

Predictions based on more measurements are even better. For
Q2 (fault rate of interaction-wise approach), we identify a fault rate
of 0.18%, on average, (i.e., an accuracy of 99.8% on average). How-
ever, we identified an exception of this rule for the Violet SPL,
which we discuss below. That is, for pair-wise measurements
(Q3) the fault rate raises to 80.5%, on average, over all SPLs, but
is at 0.23% without Violet. Nevertheless, even predictions based
on feature-wise measurements usually only exhibit a fault rate of
a few percent, which can be reduced to less than one percent with
more measurements (by defining feature interactions).

To answer Q4, we show in Table 4 the absolute number of mea-
surements we performed to infer approximations of a feature’s
footprint and its percentage, compared to the number of all possi-
ble products (brute force). In summary, we needed to measure only
a small subset of all products. Especially the feature-wise approach
scales linearly with the number of features, and not with the num-
ber of products. Although the interaction-wise and pair-wise ap-
proach requires a higher number of measurements, the relative
number is below one percent for large SPLs, such as Violet, Berke-
ley DB, Linux. Due to parallelization, footprint measurements can
be completed in a feasible amount of time.

4.2.2. Discussion
Let us have a closer look at Berkeley DB, Violet, and the Linux

kernel, because their results show interesting points for further
investigations. Berkeley DB is an SPL that makes exhaustive use
of nested #ifdefs. This means, it is often the case that a certain fea-
ture combination requires additional code, which increases the
footprint for this configuration. In Fig. 5, we show the results of
our different approaches and emphasize the different prediction
patterns of the three approaches. Although we only measured nine
products of Berkeley DB for the feature-wise approach, we have an
average fault rate of about 1.9% for all 256 products. We often pre-
dict a footprint that is too low, because we did not measure these
Fig. 5. Q–Q plot: Measured and predicted footprint in KB of Berkeley

Please cite this article in press as: N. Siegmund et al., Scalable prediction of no
consumption, Inform. Softw. Technol. (2012), http://dx.doi.org/10.1016/j.infsof
feature interactions that include additional code in a product
(nested #ifdef). Hence, for larger products containing an increasing
number of features that depend on each other, the fault rate
increases.

To improve the quality of the measurement, we analyzed the
source code of Berkeley DB to identify such (syntactic) feature
interactions. With a self-written tool, we identified six cases of
nested #ifdefs. These #ifdefs cause feature interactions, for which
we measured 6 additional products. Considering these known fea-
ture interactions, the average fault rate is reduced to 0.5%. Thus, by
measuring only 15 products of Berkeley DB, we can almost predict
the footprint of all 256 products with a high accuracy (99.5% on
average). Finally, we applied the pair-wise approach to Berkeley
DB and measured 37 additional products. This eliminated faults al-
most entirely (maximum fault rate of 0.1%), as illustrated in Fig. 5.

For Violet, we observed the largest fault rates (cf. Table 4). The
reason is a complex mapping between (some) features and imple-
mentation assets. That is, an individual feature may map to multi-
ple implementation assets and a single implementation asset may
be required by multiple features. Hence, when measuring such a
feature, the corresponding product contains several implementa-
tion assets that are also present when measuring another feature’s
product. Therefore, predicting the footprint of a product that in-
cludes multiple features with an overlapping set of implementa-
tion assets is inaccurate, because we consider the footprint of the
implementation assets multiple times. The pair-wise approach is
even worse, because more than two features map to the same code.
Furthermore, we did not use thresholds (e.g., limiting the size of a
feature interaction to the sum of the size of the participating fea-
tures) to limit the influence of interactions (as we would do for
practical use) to gain insights in the nature of feature interactions.
Hence, when predicting a product containing three features, we
aggregate three times the approximation of pair-wise feature
interactions, though only two times would be correct. If more fea-
tures interact, the inaccuracy increases, which is an interesting in-
sight about feature interactions. Fortunately, the mapping that
causes the problems can easily be analyzed in order to automati-
cally define appropriate feature interactions. Hence, with addi-
tional measurements, we can easily reduce the fault rate to
under 1% (see Table 4, Violet_IW).

For Linux, we expected large fault rates regarding the 100 ran-
domly generated products, because all Linux features affect the
size of other features. We were surprised that we still achieved a
quite precise prediction even with the feature-wise approach, par-
tially, because the features had a weaker effect than expected. We
slightly improved the accuracy with the interaction-wise approach,
DB (compiled as static link library) using different approaches.

n-functional properties in software product lines: Footprint and memory
.2012.07.020

http://dx.doi.org/10.1016/j.infsof.2012.07.020


12 N. Siegmund et al. / Information and Software Technology xxx (2012) xxx–xxx
because we defined feature interactions between more than two
features (i.e., we define an interaction between every feature and
the features OPTIMIZE_INLINING and CC_OPTIMIZE_FOR_SIZE).

In summary, the first part of the evaluation shows that, at least
for footprint, our prediction model provides good approximations
of the actual non-functional property with few measurements.
Next, we evaluate if our observations hold for a further non-func-
tional property: main-memory consumption.
4.3. Predicting main-memory consumption

In the second series of experiment, we predict main-memory
consumption (peak memory) of customizable programs. We se-
lected main-memory consumption for the following reasons:

� Main-memory consumption is a property that emerges at run-
time. That is, it is not a static property, such as footprint, but
a dynamic one, which can substantially vary depending on
which features and how many features are selected. We expect
that predicting main-memory consumption is a challenging
task, because we expect many feature interactions.
� Measurement bias for main-memory consumption occurs, but

is usually very low. We wanted to explore how accurate predic-
tions are when measurement bias occurs. That is, we evaluate if
our approach is still feasible for non-functional properties in
which measurements contain noise and may be subject to con-
founding influences.
� Finally, we chose main-memory consumption, because we are

able to automate the measurement procedure for main-mem-
ory consumption performing a large number of measurements
in a reasonable time.

Experimental material. To evaluate prediction of main-memory
consumption, we initially selected seven existing sample systems
(see Table 5). We use fresh sample programs, because we measure
a different characteristic compared to footprint, which requires dif-
ferent measurement techniques. For example, footprint is not
interesting for products that are customized via program parame-
ters, because their sizes stay unchanged. Instead, we require a
benchmark to measure the runtime behavior, which again is hard
to define for a complex system (e.g., a single benchmark to mea-
sure the full Linux kernel). Since benchmarks are often used and
important in the database domain, we selected Berkeley DB and
SQLite. These systems represent SPLs for which products are gener-
ated using conditional compilation. Note that feature models of
both SPLs differ to the models we used for footprint prediction, be-
cause we included features that are likely to change memory con-
sumption (e.g., different page sizes) and excluded features that are
not executed by the benchmark we used. As additional programs,
we selected Curl, LLVM, x264, RAR, and Wget; programs that users
can customize via program parameters. We selected these pro-
grams to demonstrate that our approach can be applied to both
black-box SPLs and customizable programs (i.e., for which neither
Table 5
Overview of sample programs used to predict main-memory consumption. CC:¼con-
ditional compilation; CP: command-line parameter. Vid. enc.: video encoding.

Program Domain Lang. Techn. Feat. Products LOC

Curl Data transfer C CP 13 768 52,341
LLVM Compiler C CP 11 1024 47,549
x264 vid. enc. C CP 16 1152 45,743
Wget Data transfer C CP 16 5120 34,880
Berkeley DB Database C CC 18 2560 209,682
SQLite Database C CC 39 3,932,160 305,191
RAR Compression C++ CP 38 500,000 N/A

Please cite this article in press as: N. Siegmund et al., Scalable prediction of no
consumption, Inform. Softw. Technol. (2012), http://dx.doi.org/10.1016/j.infsof
source code nor domain knowledge is available). We deliberately
include many different domains, such as video encryption, compil-
ers, and data transfer. Furthermore, these programs are well docu-
mented so that we could easily create feature models for them.
Finally, all sample systems are industrial-strength real-world
applications.

Experiment Procedure. In contrast to footprint, we face two addi-
tional challenges. First, when measuring a runtime property, we
have to execute a benchmark application, which we discuss
shortly. Second, we face measurement bias; that is, measuring
the same product several times may result in different values. To
overcome measurement bias, we measure each product three to
ten times depending on the SPLs. We use this number of repeti-
tions, because of two reasons. First, for all sample programs (with
the exception of RAR), the standard deviation of measuring a single
product is less than 1% of the arithmetic mean, which is sufficient
for our studies. Second, increasing the number of measurements
per product would substantially increase the time needed for this
evaluation. Therefore, we decided to include more programs in
the evaluation and reduce the number of repetitions per measure-
ment instead of reducing the standard deviation to, say 0.1%, and
measuring a single product hundred times. From these measure-
ments, we compute the arithmetic mean and use it for our subse-
quent computations.

We use standard benchmarks (if available) for all sample pro-
grams, because self-developed benchmarks would bias the out-
come of the measurements. Furthermore, standard benchmarks
are created to simulate a common workload that is used in praxis,
which is our intended goal. To measure the maximum required
memory when performing a benchmark, we select the Linux stan-
dard program time. We used the following benchmarks:

� We use Oracle’s standard benchmark for Berkeley DB. Similarly,
we execute a benchmark script provided by SQLite to run a typ-
ical workload.
� LLVM is a modular compiler infrastructure. For our benchmarks,

we use the opt-tool that provides different compile-time optimi-
zations. We measure the main-memory LLVM needs to compile
its standard test suite in several configurations (e.g., inline func-
tions and combine redundant instructions).
� x264 is a command-line tool to encode video streams into

H.264 and MPEG-4 AVC format. We measure the main-memory
needed to encode the trailer of the cartoon Sintel (735 MB),
often used as a standard benchmark for video-encoding
projects.
� Curl and Wget are applications to transfer data over the Inter-

net. As we found no standard benchmark, we download
Apache’s user manual which contains static HTML pages, CSS
files and pictures. Due to the manual’s folder structure, we
can use several features of both programs (e.g., recursive down-
load) to measure significant effects on memory consumption.

We measured main-memory consumption with the following
systems, but measure all individual configurations of each sample
program on the same system: AMD Athlon64 2.2 GHz, 2 GB RAM,
Debian GNU/Linux 7; AMD Athlon64 Dual Core @2.0 GHz, 2 GB
RAM, Debian GNU/Linux 7; Intel Core2 Quad @2.4 GHz, 8 GB
RAM, Debian GNU/Linux 7.

Deviations. Early during our measurements of RAR, we identi-
fied huge measurement biases. Measurements of the same config-
uration deviated by 50–100 percent. This behavior was present
with the Windows and Linux version of RAR. A possible reason
may be that the algorithms in RAR are not deterministic. As a re-
sult, we were unable to approximate the influence of a single fea-
ture and thus discarded this program. For all other customizable
programs, the measurement bias is less than one percent.
n-functional properties in software product lines: Footprint and memory
.2012.07.020

http://dx.doi.org/10.1016/j.infsof.2012.07.020


N. Siegmund et al. / Information and Software Technology xxx (2012) xxx–xxx 13
4.3.1. Results
In Table 6, we summarize the fault rates of predicting main-

memory consumption for the sample programs. We observe that
our approach of predicting memory consumption is feasible for
many programs. The feature-wise approach has an average fault
rate of 13.6% for all systems (Q1). For Wget and x264 it exhibits
a high fault rate. Feature interactions have a crucial influence on
the memory consumption. This is different to the footprint study
in which, for most SPLs, fault rate is below 2%. This suggests that
some non-functional properties are affected stronger by feature
interactions than others, since we could largely exclude bias as a
cause.

Using the pair-wise approach (Q3), we see that fault rate usu-
ally decreases (again with the exception of Wget and LLVM, which
we discuss in the following); the average fault rate is 11% for all
programs and 0.9% without Wget and LLVM. This means that our
assumption of measuring the influence of each pair of features
on a property improves accuracy of predictions. However, we have
to keep in mind that this improvement requires additional
measurements.

Referring to our research question Q4, we depict the number of
required measurements for the two approaches in Table 6. The fea-
ture-wise approach usually requires to measure one percent of all
products. For customizable programs with a large number of prod-
ucts (e.g., SQLite), we save even more measurements in relation to
measuring all individual products. This demonstrates the scalabil-
ity of our approach. Also for pair-wise measurements, we need to
measure less than 10% of all products. Furthermore, for SQLite,
we need to measure only 317 products which is 0.008% of all pos-
sible products.
4.3.2. Discussion
We observed a high fault rate for Wget and LLVM. A closer look

at the distribution of the fault rates shows that the median of all
fault rates is closer to zero than in the feature-wise approach
Table 6
Fault rates in percent of predicting main-memory consumption of all SPLs using the appro
mean fault rate of predictions, Std: standard deviation of prediction fault rates.

Please cite this article in press as: N. Siegmund et al., Scalable prediction of no
consumption, Inform. Softw. Technol. (2012), http://dx.doi.org/10.1016/j.infsof
(see boxplots in Table 6). That is, more predictions are accurate,
but a few outlier predictions exhibit a very high fault rate (i.e., over
75%), which leads to a higher arithmetic mean fault rate. This high
fault rate is similar to our observations for predicting footprint of
Violet’s products. In Violet, we could improve prediction accuracy
significantly when using domain knowledge (i.e., the mapping
from features to implementations). Unfortunately, we do not have
the necessary knowledge for these two programs to show how this
would affect accuracy.

We believe higher-order feature interactions are very plausible
for LLVM; we hypothesize that they can be explained as follows.
Each LLVM feature toggles a different optimization phase during
compilation; each optimization might act differently on a code
fragment, depending on how and whether previous optimizations
have transformed it. For instance, function inlining enables other
optimizations to operate on longer code fragments; depending
on the size of code fragments and on the possibilities for optimiza-
tions, further optimization might trigger. To evaluate our assump-
tions, we used the documentation to manually define feature
interactions. Overall, we measured 129 products of LLVM, which
is 12.6% percent of all products. Although we are no domain ex-
perts, our predictions significantly improved to an average fault
rate of 11%, which is an improvement of 22% compared to the
pair-wise approach and 14% compared to the feature-wise
approach.

We discuss feature interactions and general observations in
Section 4.5.
4.4. Summary

We summarize the evaluation of predicting footprint and main-
memory consumption in Table 7. We answer the research ques-
tions in terms of average fault rates (for Q1–Q3) and measurement
effort relative to a brute-force approach (Q4). We can see that, for
many sample programs, our approach provides a high accuracy of
aches (Appr.): feature-wise (FW), pair-wise (PW), brute force (BF). Mean: arithmetic

n-functional properties in software product lines: Footprint and memory
.2012.07.020

http://dx.doi.org/10.1016/j.infsof.2012.07.020


Table 7
Overview of research questions and experiment results. Effort means measurement
effort. Q1–Q4 refer to the research questions given in the experiment description.

Experiment Fault rate (%) Q4: effort (%)

Q1 Q2 Q3 FW IW PW

Footprint 21.3 0.1 80 5.0 6.6 20
Without violet 5.5 0.2 0.2 5.8 7.5 22
Main memory 13.6 N/A 11 0.6 N/A 4.1
without LLVM & Wget 8.5 N/A 0.9 0.7 N/A 4.2

14 N. Siegmund et al. / Information and Software Technology xxx (2012) xxx–xxx
predictions. We also observe that feature interactions play a crucial
role for the accuracy. This is the cause why our predictions for Vio-
let, LLVM, and Wget are inaccurate; for that reason we provide the
fault rates with and without these programs.

Measurement effort is relatively high for programs with a lim-
ited customizability compared to a brute-force approach, but abso-
lutely small in terms of number of measurements. For example,
although we measure 70% of all products of Prevayler for the
pair-wise approach, these are only 17 measurements in total. The
scalability is demonstrated when observing number of measure-
ments for large SPLs, such as SQLite. Here, each approach requires
less than 1% of all configurations and has a fault rate for footprint
less than 1%.

Table 7 shows that more measurements provide more accurate
predictions, with some exceptions. These exceptions, however,
could be easily fixed with domain knowledge. A further result is
that one of nine programs for footprint and two of six programs
for main-memory consumption exhibit a high fault rate. Although
the number of these programs is too small to know how often such
exceptions occur, it indicates that in three-quarters of all programs
a simple feature-wise technique including a pair-wise measure-
ment is sufficient and, for the rest, a more sophisticated feature-
interaction-detection approach or domain knowledge is needed
to improve prediction accuracy.

4.5. Discussion

Next to the results of the evaluation, we discuss three important
observations: using benchmarks, handling feature interactions,
and number of measurements.

4.5.1. Benchmarks
For our second series of experiments, we had to execute bench-

marks to measure the runtime behavior of a program. We mea-
sured main-memory consumption with standard benchmarks. So,
we can predict memory consumption for other configurations only
with respect to this particular workload. It is not our goal to predict
non-functional properties completely independently of the work-
load. Instead, we provide an end-user solution in which customers
perform only few measurements with their workload within their
own environment. We argue that our predictions are more accu-
rate regarding a product’s properties for a specific application sce-
nario than a synthetic benchmark, which uses a standardized
workload and not one actually used.

4.5.2. Feature interactions
The results have shown that the existence of feature interac-

tions that influence a non-functional property can cause high fault
rates. We proposed two approaches to address this problem. First,
we use domain knowledge to manually specify which features we
expect to interact. Second, we incorporate all potential pair-wise
interactions between pairs of features by measuring additional
products. In most cases, both approaches yield more accurate pre-
dictions, because interactions with a large influence on a property
Please cite this article in press as: N. Siegmund et al., Scalable prediction of no
consumption, Inform. Softw. Technol. (2012), http://dx.doi.org/10.1016/j.infsof
are identified. However, when higher-order interactions (i.e., inter-
actions between more than two features) exist and we are not
aware of them, our predictions will be less accurate.

In a parallel line of research, we proposed an approach to auto-
matically detect such non-functional feature interactions for per-
formance [14]. The idea is to find which features interact at all
and then search combinations of these interacting features that
cause an observable feature interaction. Since finding such a com-
bination requires a high effort, we propose three heuristics to find
a sweet spot between measurement effort and accuracy of predic-
tions. However, this is a different approach and goes beyond the
scope of this paper.

4.5.3. Number of measurements
The results have shown that the feature-wise approach is a

good initial approximation of a product’s non-functional proper-
ties. However, if domain knowledge is available, we suggest always
using it as it can significantly improve accuracy with only few
additional measurements. Additionally, complex mappings or un-
known feature interactions can cause large fault rates making pre-
dictions less accurate.

If domain knowledge is not available, it is difficult to decide
whether investment in more measurements is worth the effort.
For some non-functional properties, such as footprint, it might be
feasible to extract information about interactions from the source
code. Sometimes other sources may be available.

At this point, the measurements are often already sufficiently
accurate to use them during product derivation – our initial goal
– for example, to rule out products that obviously do not fulfill
the required constraints or to determine a set of possible candi-
dates for the optimal product.

Finally, if domain knowledge is not available, pair-wise mea-
surements are a good strategy to increase accuracy of predictions
at cost of an increased effort for measurements (from O(n) to
O(n2)). We recommend it only if there is either no domain knowl-
edge available or to combine it with the interaction-wise approach,
when the number of features is acceptably small.

We illustrate the trade-off between measurement effort and
prediction fault rate in Fig. 6. In general, the accuracy increases
(i.e., the fault rate decreases) with additional measurements, but
a stakeholder must be aware of the fact that too many measure-
ments render the approach infeasible. For example, if we want to
measure all 8000 features of the Linux kernel [7] (we considered
only 25 in our evaluation) with the pair-wise approach, we would
need about 64 million measurements (which, extrapolating from
our experiments, would take roughly 2 years to measure on a clus-
ter of 1000 computers). In contrast, the feature-wise approach re-
quires the measurement of only about 8000 products (which could
be realistically done in one day using a cluster of 100 computers).
For our approach, balancing between desired accuracy and invest-
ment in measurements is essential.

4.6. Threats to validity

4.6.1. Construct validity
A common threat to validity is that the experiment objects are

not clearly defined. In our experiment, we want to know and com-
pare the accuracy of the different measurement approaches. For
this purpose, we defined Eq. (1), in which we specify how the fault
rate is calculated. Using this definition, we can compare and rate
the accuracy of the different approaches.

An incorrect choice of benchmarks represents another threat to
construct validity. To minimize this threat, we use standard bench-
marks delivered by vendors or used in the respective community if
possible. Our aim was to not develop our own benchmark to avoid
an uncommon application behavior and, therefore, flaw the exper-
n-functional properties in software product lines: Footprint and memory
.2012.07.020

http://dx.doi.org/10.1016/j.infsof.2012.07.020


Fig. 6. Conceptual relation between number of measurements and fault rate of predictions.

N. Siegmund et al. / Information and Software Technology xxx (2012) xxx–xxx 15
iment design. In case of Wget, we could not find any standardized
benchmark, which leaves room for a validity threat. We chose to
download the Apache manual as a benchmark, because there is a
large spectrum of common use cases (e.g., large files, many small
files, nested folders, and pictures).

4.6.2. Conclusion validity
The reliability of measures strongly affects the conclusion valid-

ity of experiments. In our first experiment, we use footprint, de-
fined as binary size of the generated program. For this measure,
we can accurately determine the true size of programs using OS
functions either by aggregating the size of all class files of a Java
program or by determining the size of the executable in a case of
a C/C++ program. Regarding main-memory consumption, we use
the GNU/Linux tool time and depend therefore on its reliability. It
measures the maximum resident set size of the process during
its lifetime in KB. Since we measure only peak memory and not
the average consumption over time, our measurements are not af-
fected by page swapping of the OS or other influential factors that
can affect validity of measurement. Furthermore, we repeated
measurements and identified that the differences of several runs
with the same configurations are below one percent.

4.6.3. Internal validity
For SPLs with many features and for the main-memory evalua-

tion, we only sampled 100 products to compare prediction and
measured property, because we cannot possibly generate and mea-
sure all products (exponential with the number of features) in rea-
sonable time – this is exactly the motivation for our approach. We
are aware of our evaluation leaving room for outliers, but we be-
lieve that 100 samples provide a reasonable number.

When measuring main-memory consumption, we have to deal
with measurement bias. We repeated each measurement three to
ten times and use the average of these measurements to compute
a feature’ influence and for our evaluation. With the exception of
RAR, we observed only small deviations when measuring the same
product multiple times in our six customizable programs (below
one percent), which indicates that the measurement procedure is
reliable.

In our footprint evaluation, we observed high fault rates for Vio-
let. These fault rates were caused by complex mappings between
features and implementation units. As we have shown, when this
mapping is known, we can easily compute which configurations
have to be additionally measured to achieve accurate predictions.
Hence, the real problem is when we have a complex mapping be-
tween features and implementation units and this mapping is not
known to us. So, the question is this the rule or exception in real-
world applications? We believe that unknown complex mappings
are the exception. Considering SPLs and customizable programs
implemented with preprocessor, we almost always have a direct
mapping between features and preprocessor flags, because we
Please cite this article in press as: N. Siegmund et al., Scalable prediction of no
consumption, Inform. Softw. Technol. (2012), http://dx.doi.org/10.1016/j.infsof
have to know these flags in order to generate the desired program.
Since most of the customizable real-world programs today are
based on preprocessors, this is already a strong argument. Further-
more, new programming paradigms, such as aspect-oriented and
feature-oriented programming aim at a direct one-to-one mapping
between features and implementation units. The general idea is to
model features at the domain level and implement a feature
accordingly [24]. Although Violet is implemented with feature-ori-
ented programming, the mapping problem is an improper model-
ing or implementation of the functionality. Finally, complex
mappings also occur for component-based software development.
Here, however, we always need the mapping between features and
components to be able to assemble this components together [25].
Hence, we believe that there is in most cases either the mapping
known to be able to generate a program or the mapping is one-
to-one.

4.6.4. External validity
Although we use a large variety of different SPLs, we are aware

that the results of our evaluations are not automatically transfer-
able to all other SPLs and all kinds of customizable programs. We
selected real-world SPLs and customizable programs from different
domains, having different sizes, and using varying implementation
techniques. Our used SPLs have feature models with a typical
structure and number of constraints (according to the criteria in
[26]). We did not evaluate SPLs with an unusual, possibly degener-
ated feature model, which might influence the computation of the
product set (cf. Section 3.3). Thus, we cannot generalize our results
to such product lines.

We use non-functional properties in which measurements bias
are below one percent. We cannot yet judge our approach for prop-
erties that exhibit different behaviors for the same workload with-
in the same environment. That is, if the measurement of the same
product yields different results also the predicted product can have
heavily changing values of a non-functional property. We do not
address this issue in this article and leave it for future work.

Finally, we cannot generalize our evaluation to non-functional
properties other than footprint and main-memory consumption.
However, we argue that – similar to performance and many other
non-functional properties – footprint and main-memory consump-
tion are subject to many internal and external influences. These
influences have a crucial impact on the applicability of our ap-
proach, an impact which we could handle for these two properties.
In this article, we want to convey that the approach of approximat-
ing non-functional properties per features is realistic at all.

5. Related work

Many product-derivation approaches for SPLs have been pro-
posed in the past [27–29]. However, most do not allow a user to
specify non-functional constraints or to derive a product with de-
n-functional properties in software product lines: Footprint and memory
.2012.07.020

http://dx.doi.org/10.1016/j.infsof.2012.07.020


16 N. Siegmund et al. / Information and Software Technology xxx (2012) xxx–xxx
sired non-functional properties. Research in this area focuses on
reducing the complexity of the configuration process and support-
ing the user with tools during feature selection. Nevertheless, some
approaches also allow a user to optimize the feature selection for a
specific non-functional property. Benavides and others presented a
technique based on CSP solvers to find an optimal product [30].
The solver evaluates values attached to features in the feature
model, and then computes an optimal configuration for a small
number of features. Their studies show that with an increasing
number of features the computation time grows exponentially.
White and others [31,32] enable users to define constraints on
non-functional properties to derive a product with desired non-
functional properties. They propose a solution based on filtered
Cartesian flattening to approximate a nearly optimal product for
even large scale feature models.

A recent approach by Roos-Frantz and others focus also on qual-
ity attributes in SPLs [33]. In their work, they provide means to
model quality attributes directly in a variability model, so that
users can perform reasoning techniques to identify specification
anomalies and to find configurations that satisfy given quality con-
straints. The verification is realized with a constraint programming
solver within their tool FaMa-OVM.

In contrast to our approach, the approaches of Benavides and
others, White and others, and Roos-Frantz and others do not con-
sider the measurement and computation of a feature’s non-func-
tional properties. Hence, our approach can provide concrete
quality data that is needed to parameterize their models. A combi-
nation of these techniques is feasible.

Only a few approaches apply measurements of non-functional
properties to SPLs. Zubrow and Chastek proposed measures for
SPLs that evaluate the development effort for an SPL [34]. Lopez-
Herrejon and Apel express the complexity of an SPL in terms of var-
iation points with a dedicated metric [35]. Apel and Beyer analyze
the cohesion of features and the relationship to other ones at the
level of source code [36]. Cohesion indicators may be used to en-
rich domain knowledge such that we can document possible fea-
ture interactions in our model.

An approach close to our work is the measurement of the binary
size of an aspect-oriented SPL [37]. The authors compiled aspects
in distinct files and measured the binary size. The footprint of dif-
ferent products can then be computed. Another related approach
for optimizing non-functional properties was developed in the
COMQUAD project [38]. The project focuses on techniques for trac-
ing and adapting non-functional properties in component-based
systems. The approach requires a dedicated component model,
which is an extension of Enterprise JavaBeans and CORBA Compo-
nents and relies on AOP as implementation technique. In contrast
to these approaches, we consider a wide variety of properties
and address the exponential number of products that occur during
the derivation process. Furthermore, we propose an implementa-
tion-independent and language-independent approach, not re-
stricted to aspects. Additionally, we maintain a product-line
model to explicitly address feature interactions which is not sup-
ported by others.

Sincero et al. [12] propose to estimate a product’s non-
functional properties based on a knowledge base consisting of
measurements of already produced products. Their aim is to
find a correlation between feature selection and measurement.
This way, they can give information about how a feature influences
a non-functional property during configuration. In contrast to
our approach, they do not save actually measured feature’s
non-functional properties, but a qualitative statement of how a
feature affects a property. When it comes to product derivation,
they do not present an expected value for a product’s properties,
as we do, but can show with a slider whether a feature selection
improves a property such as performance or not.
Please cite this article in press as: N. Siegmund et al., Scalable prediction of no
consumption, Inform. Softw. Technol. (2012), http://dx.doi.org/10.1016/j.infsof
Feature Interactions. There is a large body of research on
automated detection of feature interactions (e.g., see Nhlabatsi
and others [39] and Calder and others [40] for surveys). Some
approaches detect feature interactions using specifications of
features [41–44]. In a parallel line of research, we propose to
use heuristics to find feature-interactions automatically [14]. How-
ever, how feature interactions can be detected is not the focus of
this paper; we only present two approaches that can be easily
applied and build natural extensions to the pure feature-wise
measurement.
6. Conclusion

To customize programs and derive products of a software prod-
uct line, customers select features according to our requirements.
However, it is often not known how a feature selection affects
non-functional properties of the resulting program. We presented
an approach to predict non-functional properties of customized
and derived programs based on a feature selection without gener-
ating and measuring them. To this end, we approximate the influ-
ence of each feature on a non-functional property. The key idea is
to produce two products that differ in a single feature such that we
can interpret the delta in the products’ properties as the approxi-
mation of the corresponding feature. We propose three different
approaches to measure approximations of features and feature
interactions: feature-wise measurement, interaction-wise mea-
surement, and pair-wise measurement. These approaches vary
from linear to quadratic complexity in terms of the number of fea-
tures in an SPL.

In a first series of experiments, in which we compare predicted
with actual footprints in different SPLs, we achieve an accuracy of
98% on average. Especially, the approach that measures known
interactions between features achieves a high accuracy with a small
number of measurements.

In a second series of experiments, we demonstrated the
generality of our approach with respect to other non-functional
properties. We compared the predicted with actual maximum
main-memory consumption in six different sample programs and
SPLs. Although memory consumption is subject to measurement
bias, we achieve an accuracy of 89% for pair-wise measurement.

In future work, we plan to generalize our approach such that we
can predict non-functional properties of products with varying
workloads.
Acknowledgments

We thank Martin Kuhlemann, Thomas Thüm, and Tillmann
Rendel for helpful comments on previous drafts of the paper. Espe-
cially, we thank Janet Siegmund for advice on statistical evalua-
tions. Norbert Siegmund’s work is supported by the German
Ministry of Education and Science (BMBF), No. 01IM10002B. The
work of Marko Rosenmüller, Sven Apel, and Sergiy S. Kolesnikov
is supported by the German Research Foundation (DFG), Project
Nos. #SA 465/34-1 #AP 206/2, and #AP 206/4, #LE 912/13. Chris-
tian Kästner’s and Paolo Giarrusso’s work is supported by ERC
Grant #203099.

References

[1] P. Clements, L. Northrop, Software Product Lines: Practices and Patterns,
Addison-Wesley, 2002.

[2] K. Kang, S. Cohen, J. Hess, W. Novak, A. Peterson, Feature-Oriented Domain
Analysis (FODA) Feasibility Study, Tech. Rep. CMU/SEI-90-TR-21, Software
Engineering Institute, 1990.

[3] K. Czarnecki, U. Eisenecker, Generative Programming: Methods, Tools, and
Applications, Addison-Wesley, 2000.
n-functional properties in software product lines: Footprint and memory
.2012.07.020

http://dx.doi.org/10.1016/j.infsof.2012.07.020


N. Siegmund et al. / Information and Software Technology xxx (2012) xxx–xxx 17
[4] T. Henzinger, J. Sifakis, The discipline of embedded systems design, Computer
40 (10) (2007) 32–40.

[5] T. Henzinger, Two challenges in embedded systems design: predictability and
robustness, Philosophical Transactions 366 (1881) (2008) 3727–3736.

[6] M. Steger, C. Tischer, B. Boss, A. Müller, O. Pertler, W. Stolz, S. Ferber,
Introducing PLA at Bosch gasoline systems: experiences and practices, in:
Proceedings of the International Software Product Line Conference (SPLC),
Springer, 2004, pp. 34–50.

[7] R. Lotufo, S. She, T. Berger, A. Wasowski, K. Czarnecki, Evolution of the Linux
kernel variability model, in: Proceedings of the International Software Product
Line Conference (SPLC), Springer, 2010, pp. 136–150.

[8] P. Toft, D. Coleman, J. Ohta, A cooperative model for cross-divisional product
development for a software product line, in: Proceedings of the International
Software Product Line Conference (SPLC), Kluwer Academic Publishers, 2000,
pp. 111–132.

[9] N. Siegmund, M. Rosenmüller, C. Kästner, P. Giarrusso, S. Apel, S. Kolesnikov,
Scalable prediction of non-functional properties in software product lines, in:
Proceedings of International Software Product Line Conference (SPLC), IEEE,
2011, pp. 160–169.

[10] S.S. Stevens, On the theory of scales of measurement, Sciences 103 (2684)
(1946) 677–680.

[11] N. Siegmund, M. Rosenmüller, M. Kuhlemann, C. Kästner, G. Saake, Measuring
non-functional properties in software product lines for product derivation, in:
Proceedings of the Asia-Pacific Software Engineering Conference (APSEC), IEEE,
2008, pp. 187–194.

[12] J. Sincero, W. Schroder-Preikschat, O. Spinczyk, Approaching non-functional
properties of software product lines: learning from products, in: Proceedings
of Asia-Pacific Software Engineering Conference (APSEC), IEEE, 2010, pp. 147–
155.

[13] N. Siegmund, M. Kuhlemann, M. Rosenmüller, C. Kästner, G. Saake, Integrated
product line model for semi-automated product derivation using non-
functional properties, in: Proceedings of Workshop on Variability Modelling
of Software-intensive Systems (VaMoS), 2008, pp. 25–31.

[14] N. Siegmund, S.S. Kolesnikov, C. Kästner, S. Apel, D. Batory, M. Rosenmüller, G.
Saake, Predicting performance via automated feature-interaction detection, in:
Proceedings of International Conference on Software Engineering (ICSE), IEEE,
2012, pp.167–177.

[15] S. Segura, Automated analysis of feature models using atomic sets, in:
Proceedings of the International Software Product Line Conference (SPLC),
Lero Int. Science Centre, University of Limerick, Ireland, 2008, pp. 201–207.

[16] S. Apel, C. Kästner, An overview of feature-oriented software development,
Journal of Object Technology (JOT) 8 (5) (2009) 49–84.

[17] N. Siegmund, M. Rosenmüller, M. Kuhlemann, C. Kästner, S. Apel, G. Saake, SPL
Conqueror: toward optimization of non-functional properties in software
product lines, Software Quality Journal (2011) 1–31.

[18] S. Apel, C. Kästner, C. Lengauer, FeatureHouse: language-independent,
automated software composition, in: Proceedings of the International
Conference on Software Engineering (ICSE), IEEE, 2009, pp. 221–231.

[19] D. Batory, J.N. Sarvela, A. Rauschmayer, Scaling step-wise refinement, IEEE
Transactions on Software Engineering (TSE) 30 (6) (2004) 355–371.

[20] S. Apel, T. Leich, M. Rosenmüller, G. Saake, FeatureC++: on the symbiosis of
feature-oriented and aspect-oriented programming, in: Proceedings of the
International Conference on Generative Programming and Component
Engineering (GPCE), Springer, 2005, pp. 125–140.

[21] V.R. Basili, Software modeling and measurement: The goal/question/metric
paradigm, Tech. Rep. CS-TR-2956 (UMIACS-TR-92-96), 1992.

[22] J. Liu, D. Batory, C. Lengauer, Feature-oriented refactoring of legacy
applications, in: Proceedings of the International Conference on Software
Engineering (ICSE), ACM, 2006, pp. 112–121.

[23] T. Anderson, J. Finn, The New Statistical Analysis of Data, Springer, 1996.
[24] S. Apel, C. Kästner, An overview of feature-oriented software development,

Journal of Object Technology 8 (5) (2009) 49–84.
Please cite this article in press as: N. Siegmund et al., Scalable prediction of no
consumption, Inform. Softw. Technol. (2012), http://dx.doi.org/10.1016/j.infsof
[25] G. Pour, Component-based software development approach: New
opportunities and challenges, in: Technology of Object-Oriented Languages
(TOOLS), 1998, pp. 376–383.

[26] T. Thüm, D. Batory, C. Kästner, Reasoning about edits to feature models, in:
Proceedings of the International Conference on Software Engineering (ICSE),
IEEE, 2009, pp. 254–264.

[27] D. Batory, Feature models, grammars, and propositional formulas, in:
Proceedings of the International Software Product Line Conference (SPLC),
Springer, 2005, pp. 7–20.

[28] M. Antkiewicz, K. Czarnecki, FeaturePlugin: feature modeling plug-in for
eclipse, in: Eclipse ’04: Proceedings of the 2004 OOPSLA Workshop on Eclipse
Technology Eechange, ACM Press, 2004, pp. 67–72.

[29] K. Czarnecki, S. Helsen, U.W. Eisenecker, Staged configuration using feature
models, in: Proceedings of the International Software Product Line Conference
(SPLC), Springer, 2004, pp. 266–283.

[30] D. Benavides, A. Ruiz-Cortés, P. Trinidad, Automated reasoning on feature
models, in: Proceedings of Interactional Conference on Advanced Information
Systems Engineering (CAiSE), Springer, 2005, pp. 491–503.

[31] J. White, D.C. Schmidt, E. Wuchner, A. Nechypurenko, Automating product-line
variant selection for mobile devices, in: Proceedings of the International
Software Product Line Conference (SPLC), IEEE, 2007, pp. 129–140.

[32] J. White, B. Dougherty, D.C. Schmidt, Selecting highly optimal architectural
feature sets with filtered Cartesian flattening, Journal of Systems and Software
82 (8) (2009) 1268–1284.

[33] F. Roos-Frantz, D. Benavides, A. Ruiz-Cortés, A. Heuer, K. Lauenroth, Quality-
aware analysis in product line engineering with the orthogonal variability
model, Software Quality Journal (2011) 1–47. http://dx.doi.org/10.1007/
s11219-011-9156-5.

[34] Dave Zubrow, Gary Chastek, Measures for software product lines, Tech. Rep.
CMU/SEI-2003-TN-031, Software Engineering Institute, 2003.

[35] R. Lopez-Herrejon, S. Apel, Measuring and characterizing crosscutting in
aspect-based programs: basic metrics and case studies, in: Proceedings of the
International Conference on Fundamental Approaches to Software Engineering
(FASE), Springer, 2007, pp. 422–437.

[36] S. Apel, D. Beyer, Feature cohesion in software product lines: an exploratory
study, in: Proceeding of the International Conference on Software Engineering
(ICSE), ACM, 2011, pp. 421–430.

[37] F. Hunleth, R. Cytron, Footprint and feature management using aspect-
oriented programming techniques, in: Proceedings of Joint Conference on
Languages, Compilers, and Tools for Embedded Systems & Software and
Compilers for Embedded Systems (LCTES/SCOPES), ACM, 2002, pp. 38–45.

[38] S. Göbel, C. Pohl, S. Röttger, S. Zschaler, The COMQUAD component model:
enabling dynamic selection of implementations by weaving non-functional
aspects, in: Proceedings of the International Conference on Aspect-oriented
software development (AOSD), ACM, 2004, pp. 74–82.

[39] A. Nhlabatsi, R. Laney, B. Nuseibeh, Feature interaction: the security threat
from within software systems, Progress in Informatics 5 (2008) 75–89.

[40] M. Calder, M. Kolberg, E.H. Magill, S. Reiff-Marganiec, Feature interaction: a
critical review and considered forecast, Computer Networks and ISDN Systems
41 (2003) 115–141.

[41] S. Apel, H. Speidel, P. Wendler, A. von Rhein, D. Beyer, Detection of feature
interactions using feature-aware verification, in: Proceedings of the IEEE/ACM
International Conference on Automated Software Engineering (ASE), IEEE,
2011, pp. 372–375.

[42] H. Li, S. Krishnamurthi, K. Fisler, Verifying cross-cutting features as open
systems, SIGSOFT Software Engineering Notes 27 (6) (2002) 89–98.

[43] K. Lauenroth, K. Pohl, S. Toehning, Model checking of domain artifacts in
product line engineering, in: Proceedings of International Conference on
Automated Software Engineering (ASE), IEEE, 2009, pp. 269–280.

[44] H. Post, C. Sinz, Configuration lifting: verification meets software
configuration, in: International Conference on Automated Software
Engineering (ASE), IEEE, 2008, pp. 347–350.
n-functional properties in software product lines: Footprint and memory
.2012.07.020

http://dx.doi.org/10.1007/s11219-011-9156-5
http://dx.doi.org/10.1007/s11219-011-9156-5
http://dx.doi.org/10.1016/j.infsof.2012.07.020

	Scalable prediction of non-functional properties in software product lines: Footprint and memory consumption
	1 Introduction
	2 Problem statement
	3 Non-functional properties of features
	3.1 Approximation process
	3.2 Approximating non-functional properties per feature
	3.3 Computing the product set for measurement
	3.4 Measuring feature interactions
	3.5 Tool support: SPL Conqueror

	4 Evaluation
	4.1 Experiment overview
	4.2 Predicting footprint
	4.2.1 Results
	4.2.2 Discussion

	4.3 Predicting main-memory consumption
	4.3.1 Results
	4.3.2 Discussion

	4.4 Summary
	4.5 Discussion
	4.5.1 Benchmarks
	4.5.2 Feature interactions
	4.5.3 Number of measurements

	4.6 Threats to validity
	4.6.1 Construct validity
	4.6.2 Conclusion validity
	4.6.3 Internal validity
	4.6.4 External validity


	5 Related work
	6 Conclusion
	Acknowledgments
	References


