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Abstract—Feature-oriented software development (FOSD) aims
at the construction, customization, and synthesis of large-scale
software systems. We propose a novel software design paradigm,
called feature-oriented design, that takes the distinguishing char-
acteristics of FOSD into account, especially the clean and consis-
tent mapping between features and their implementations as well
as the tendency of features to interact inadvertently. We extend
the lightweight modeling language Alloy with support for feature-
oriented design and call the extension FeatureAlloy. By means of
an implementation and four case studies, we demonstrate how
feature-oriented design with FeatureAlloy facilitates separation
of concerns, variability, and reuse of models of individual features
and helps defining and detecting semantic dependences and
interactions between features.

I. INTRODUCTION

The idea of feature-oriented software development (FOSD)

is to decompose a software system in terms of the features it

provides [1]. A feature is a unit of functionality that satisfies

a requirement, represents a design decision, and provides

a potential configuration option. Typically, from a set of

features, many different software systems (a.k.a. variants) can

be generated that share common features and differ in other

features. The complete set of variants is also called a software
product line [2].

Systematic software product-line development based on

features has a number of benefits, among others, the ability

to generate reliable and efficient software systems based on

well-tested and verified software artifacts [2], [3]. So it is

not surprising that the product-line paradigm has received

considerable attention in research and industry.1

A distinguishing property of FOSD, compared to other

product line engineering approaches [3], is the clean mapping

between features and their implementations, which is achieved

by expressive module and composition mechanisms [1]. The

key idea is to implement each feature by a distinct feature
module (or a well-defined set of alternative modules), thus

establishing a clean mapping between problem space and

solution space [2]. In FOSD, typically, a set of features and

their relationships are identified in an analysis step, called the

domain analysis, and then the features are implemented right

away. That is, the current state of the art in FOSD research

1See the “Product Line Hall of Fame” for successful applications of
product line technology in companies such as Boeing, Hewlett-Packard, and
Philips: http://splc.net/fame.html.

and practice does not take much advantage of contemporary

design methods [1]. The reason may be the simplicity of the

mapping from features to feature modules, which makes it

unnecessary to model a product line architecture [3].

We propose a novel design paradigm, called feature-orien-
ted design, that is tailored to the needs of FOSD. The idea is

to take advantage of the clean mapping of features and their

implementations and to concentrate on designing the structure

and behavior of features as well as their dependences and

interactions. We base our proposal of feature-oriented design

on the lightweight but expressive modeling language Alloy [4].

We favor Alloy over other modeling languages, such as the

unified modeling language (UML), because of its support of

automatic reasoning. Alloy’s automatic reasoning facilities are

useful for detecting semantic dependences and interactions

between features, which cause major problems in complex

software systems [5] and are still a challenge for research and

industry.

Alloy has no concept of a feature, so we had to extend it

to be useful for FOSD. We call the extension FeatureAlloy.

It is Alloy enhanced with support for collaboration-based

design [6] and stepwise refinement [7]. With FeatureAlloy,

a developer can model features separately and reason about

their different combinations. We demonstrate by means of

an implementation and four case studies that feature-oriented

design with FeatureAlloy has several benefits:

• Feature-oriented design fills the gap between domain

analysis and implementation. It allows developers to

decompose a design in terms of features, thus facilitating

separation of concerns, variability, and reuse.

• With FeatureAlloy, a developer can express and detect
dependences between features at the semantic level, not

only at the structural level.

• FeatureAlloy simplifies the feature-interaction prob-
lem [5] by providing support for the automatic detection

of (certain kinds of) feature interactions (Sec. V).

Especially, the latter two mark notable improvements over

previous work with regard to reliability.

II. BACKGROUND

To lay a foundation for the subsequent sections, we explain

the role of collaborations and refinement in FOSD and intro-

duce basic concepts of Alloy.
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Fig. 1. Collaboration-based design of a simple graph structure.

A. Collaborations and Refinement

A popular technique for decomposing feature-oriented sys-

tems is collaboration-based design [6]. In Figure 1, we show

a sample collaboration-based design of a graph library. A

collaboration is a set of program elements that cooperate

systematically to implement a feature. A collaboration com-

prises typically multiple classes and even only fragments of

classes. The top-most collaboration (BASICGRAPH) consists

of three classes: Graph, Node, and Edge. It represents the basic

graph structure or the base program. The middle collaboration

(WEIGHT) refines the base program by introducing a new class

Weight, refining the existing class Edge by adding a new field

weight and overriding method print to alter its behavior. The

bottom-most collaboration (COLOR) adds a new class Color
and refines class Node and Edge by introducing a new field

color and overriding method print to alter its behavior.

In FOSD, each collaboration implements a feature and is

called a feature module [8]. Different combinations of feature

modules satisfy different needs of customers or application

scenarios. Figure 1 illustrates how features crosscut the given

hierarchical (object-oriented) program structure. In contem-

porary FOSD tools, such as AHEAD [7], FeatureC++ [9],

FeatureHouse [10], or Fuji [11], collaborations are represented

by file-system directories, called containment hierarchies, and

classes and their refinements are stored in files. Features are

selected by name via command line parameters or graphical

tools. Feature composition is implemented by superimposing

and merging recursively the directories and files based on

the user’s feature selection. It has been shown that feature

composition can be applied to software artifacts written in

various languages [10]. For more details on the composition

process we refer the reader to a recent survey on FOSD [1].

B. Alloy

Alloy is a lightweight, textual modeling language for soft-

ware design [4]. It is based on relations and logic, but has

an object-oriented look and feel. This may be one reason for

its acceptance in academia and industry. Its simplicity and

sound mathematical foundation allow tools such as the Alloy

Analyzer2 to reason about Alloy models automatically (e.g., to

decide whether there are legal instances of a model or whether

certain properties hold in a model).

2http://alloy.mit.edu/

Feature BASICGRAPH

1 module Graph
2 // a singleton graph contains multiple nodes
3 one sig Graph {
4 nodes: set Node
5 } {
6 Node in nodes
7 }
8 // each node has multiple incoming and outgoing edges
9 sig Node {

10 inEdges: set Edge, outEdges: set Edge, edges: set Edge
11 } {
12 edges = inEdges + outEdges
13 }
14 // each edge has a source and destination node
15 sig Edge {
16 src: one Node, dest: one Node
17 }
18 // defines proper connections between nodes and edges
19 fact prevNext {
20 all n: Node, e: Edge |
21 (n in e.src <=> e in n.outEdges) && (n in e.dest <=> e in n.inEdges)
22 }
23 // determines the number of reachable nodes (incl. the given node)
24 fun reachableNodes [n: Node] : Int {
25 #(n.ˆ(edges.(src + dest)))
26 }
27 // property that a graph has no double edges
28 pred noDoubleEdges {
29 all e, e’: Edge | e != e’ => e.(src + dest) != e’.(src + dest)
30 }
31 // creates an instance without double edges
32 run noDoubleEdges for 5
33 // holds if the graph has no double edges
34 assert hasNoDoubleEdges {
35 !noDoubleEdges
36 }
37 // checks whether the graph has no double edges
38 check hasNoDoubleEdges for 5

Fig. 2. An Alloy model of a simple graph.

We explain the key aspects of Alloy by means of our

running example: the graph model. Figure 2 contains a simple

Alloy model of our graph.3 The model is defined in an Alloy

module (keyword module) with name Graph (Line 1). The

module contains three signatures (keyword sig) that repre-

sent the graph (Lines 3–7), nodes (Lines 9–13), and edges

(Lines 15–17). In some sense, a signature is akin to an object-

oriented class, but it is purely relational and thus more like

a record. By means of additional constrains in a signature,

expressed in algebra and logic, we can define, for example,

that each model instance consists of only a single graph

(modifier one; Line 3), each node has a set of incoming

and outgoing edges (Line 10) whose union, denoted by field

edges (Line 10), forms the entire set of edges (Line 12), and

each edge has exactly one source and one destination node

(Line 16).

With an Alloy fact (keyword fact), we define an axiom

that holds for all model instances. In the graph model, we

define that, for all nodes and edges, if a node is referred to

by an edge as source node, the very edge is referred to by the

node as outgoing edge—correspondingly for incoming edges

(Lines 19–22).

Beside signatures and facts, Alloy supports the definition

3Our examples are written in Alloy 4 syntax and were tested with the
Alloy Analyzer 4.1.10.
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fact X {...}

...

sig Graph {...}

pred P Node}

  int x;
}
...

class Graph {

fact Y {...}

...
pred Q {...}

sig Node {...}
  int y;
}
...

class Node {

fact Z {...}

pred R {...}
...

sig Edge {...}
  int z;
}
...

class Edge {

Fig. 3. The role of feature-oriented design in FOSD. (The feature model
defines which feature combinations are valid.)

of functions and predicates (keywords fun and pred). We

introduce a function for calculating the number of nodes

that can be reached from a given node (Lines 24–26) and a

predicate stating that there are no double edges between pairs

of nodes (Lines 28–30). Functions and predicates can be used

to compute and analyze properties or can be invoked in the

Alloy Analyzer to determine the properties of a model.

The Alloy Analyzer can create or run example instances

of a model for which a given predicate holds (keyword run).

In our example, we create instances of graphs without double

edges (Line 32). Furthermore, we can check whether a certain

property holds. A property is expressed in the form of an

assertion (keyword assert) and checked for a given scope

(keyword check). For example, we can check whether no

model instances exist that contain double edges (Lines 34–38).

Counterexamples are presented to the developer as graphs of

model elements.

The Alloy Analyzer is a bounded model checker.4 It is able

to examine a finite space of cases (in our example, setting

the scope to five nodes and five edges via keyword for in

Lines 32 and 38 was sufficient) but the analysis is performed

fully automatically. It does not require test cases and, for a

given scope, the results of the analysis are definitive. Typically,

the space of cases examined is huge, even for a small scope,

and Alloy’s analysis offers a degree of coverage unattainable

in testing [12].

III. FEATURE-ORIENTED DESIGN

A. An Overview of Feature-Oriented Design

The basic idea of feature-oriented design is to make features

explicit in the design and to use a modeling language that

supports the concept of a feature. In Figure 3, we illustrate

the role of feature-oriented design as a link between domain

analysis and implementation as well as a clean (ideally one-to-

one) mapping between features in all phases. Feature-oriented

design comprises two steps: (1) modeling features separately

and (2) reasoning about feature combinations.

Modeling Features Separately: A feature-oriented de-

sign consists of a set of model fragments, each of which

corresponds to the portion of the design that concerns a

feature. The individual fragments can be composed in different

4Actually, the Alloy Analyzer is a model finder. The difference to other
model checkers is not relevant here and discussed elsewhere [12].

combinations using different composition techniques (e.g.,

superimposition [13]).

The benefits of modeling features in distinct units are:

• Separation of concerns: A feature-oriented design al-

lows a developer to structure a software design along fea-

tures, which facilitates understandability, maintainability,

and evolvability.

• Variability: The individual features of a design can be

composed in different combinations yielding different

generated designs. This flexibility of composition (which

cannot be attained with the standard Alloy module mech-

anism) allows a developer to tailor a software to the needs

of a customer or application scenario.

• Reuse: Features can be reused in different design variants

without replicating information, which is not possible

with monolithic designs. Systematic reuse of well-tested

or verified features can improve reliability.

Reasoning About Feature Combinations: Given a set of

features that structure the design, a developer can reason

about their dependences and interactions. Features may relate

to other features in different ways (e.g., “feature A requires

feature B and excludes feature C”). Typically, dependences

between features are expressed in a feature model and common

configuration tools disallow the generation of a software

product from an invalid feature selection [1]. However, it has

been observed that it is not uncommon for dependences and

interactions to occur at the implementation level without any

information in the feature model [14], [15]. This leads to the

generation of incorrect target code and unexpected program

behaviors [16]–[18].

In the past, type systems have been proposed to find

a certain class of such implementation-level or structural
dependences [14], [19], [20]. However, there is a class of

dependences that cannot be detected at the type level, which

we call semantic dependences. We show how FeatureAlloy can

be used to model and detect semantic dependences automat-

ically thus improving the reliability of the generated designs.

Furthermore, semantic dependences are related to the feature-
interaction problem [5], which we discuss in Section III-D.

B. FeatureAlloy

FeatureAlloy extends Alloy by three ingredients useful for

FOSD: (1) collaboration-based design, (2) stepwise refine-

ment, and (3) feature composition.

In a nutshell, FeatureAlloy follows the philosophy of con-

temporary FOSD languages and tools [1]. It represents each

feature as a containment hierarchy, which encapsulates a

collaboration of model elements (signatures, facts, etc.) that

belong to a feature. Furthermore, FeatureAlloy supports the

refinement of existing Alloy modules, signatures, facts, and so

on by subsequent features without the need to modify existing

model elements. Note that, like in the seminal work on feature

interactions in telecommunication systems [5], a feature is not

necessarily declaratively complete and a developer may have

to combine it with a base program or with other features. That
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Feature TREE

1 refines module Graph
2 // property that the graph is connected
3 pred isConnected {
4 some n: Node | (Graph.nodes = n) || (Graph.nodes = n.ˆ(edges.(src + dest)))
5 }
6 // property that the graph is acyclic
7 pred noCycles {
8 all n: Node | n not in (n.ˆ(outEdges.dest) + n.ˆ(inEdges.src))
9 }

10 // property that each node has one or no parent
11 pred loneParent {
12 all n: Node | lone n.inEdges
13 }
14 // defines that the graph is a tree
15 fact isTree {
16 noDoubleEdges && isConnected && noCycles && loneParent
17 }

Fig. 4. A refinement that imposes tree properties on graph instances.

Feature UNIQUEVALUES

1 refines module Graph
2 // adds a value to each node
3 refines sig Node {
4 val: one Int
5 }
6 // defines that node values are unique
7 fact uniqueValues {
8 all disj n, n’: Node | n.val != n’.val
9 }

Fig. 5. A refinement that assigns unqiue values to nodes.

is, features are often increments in program functionality [7].

Finally, features are composed based on an external and

declarative user’s specification. A generator superimposes the

model elements of the features involved and produces the final

model of the system.

Module and Signature Refinement: We explain refine-

ment in FeatureAlloy by means of the graph example, which

was also our first case study. Suppose we add a new feature

TREE to the graph model that ensures that every graph instance

is a tree. In Figure 4, we show a corresponding refinement of

module Graph by the addition of feature TREE. The refinement

is declared using keyword refines. The semantics of module

refinement is that the elements of a refinement are added to

the refined module. This resembles the flattening semantics of

mixin modules [21]. In our case, the refinement adds several

predicates that define a tree (Lines 3–13) and a corresponding

fact that states that these properties hold for every graph

instance (Lines 15–17).

Furthermore, we add a feature UNIQUEVALUES, which

assigns unique values to the nodes of a graph. In Figure 5, we

show a corresponding refinement that refines signature Node
by adding a new field val and that adds a fact defining that

node values are unique. Notice the similarity of module and

signature refinement. If there is already a field with the same

name, the new definition of the signature refinement overrides

the existing definition.

Finally, suppose we would like to add a feature BINARY-

TREE that defines that every tree is a binary tree. In Figure 6,

we show a corresponding refinement that defines an assertion

(Lines 3–8) that can be used to check whether the existing

Feature BINARYTREE

1 refines module Graph
2 // holds if the graph is a tree
3 assert isTree {
4 all e, e’: Edge | e != e’ => e.(src + dest) != e’.(src + dest)
5 some n: Node | (Graph.nodes = n) || (Graph.nodes = n.ˆ(edges.(src + dest)))
6 all n: Node | n not in (n.ˆ(outEdges.dest) + n.ˆ(inEdges.src))
7 all n: Node | lone n.inEdges
8 }
9 // checks whether the graph is a tree

10 check isTree for 5
11 // defines that each graph is a binary tree
12 fact binaryTree {
13 all n: Node | #n.outEdges =< 2
14 }

Fig. 6. A refinement that defines that every tree is a binary tree.

graph model is a tree (Line 10) and that defines, based on

this assumption, that all trees are binary trees (Lines 12–14).

We explain in Section III-C that assertions play a key role in

detecting semantic dependences with FeatureAlloy.

Generalizing Refinement: We generalize the concept of

refinement by introducing capabilities to refine elements other

than signatures, including facts or predicates. However, this is

trickier than one would expect. A closer look at the structure

of Alloy modules reveals that there are three kinds of model

elements, each with different properties regarding refinement:

(1) signatures; (2) facts, predicates, and functions; and (3)

assertions.

First, a signature is refined by adding new fields, as already

explained. Second, a fact, predicate, or function is refined by

overriding.5 That is, the content of a refining element (list of

constraints or expressions) overrides the content of a refined

element. The overriding element may refer to the overridden

element by means of keyword original. Third, a feature is not

allowed to replace an assertion of another feature, but it may

refine it by adding constraints using keyword original. The

reason for this design decision is that we use assertions to

model semantic dependences and interactions, and features

should not be able to alter the requirements of other features.

Feature Composition: Once a user has selected a set

of features by specifying their names, a generator assembles

all model elements of the features involved. Specifically, it

proceeds recursively by taking the union of all elements and

applying refinements to their base elements, which is much

like composition in collaboration-based design (cf. Sec. II).

To summarize, FeatureAlloy’s capabilities of making fea-

tures explicit in the design (i.e., to separate features) improve

(1) variability in that a developer can express variants of

a design in terms of feature combinations and (2) reuse in

that individual features can be used in different variants of a

design. Although previous work provides related capabilities

(see Sec. V), the combination of FOSD and Alloy provides a

unique opportunity to discover semantic feature dependences

and interactions, as we explain next.

5The refining and the refined element must have identical signatures.
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C. Structural and Semantic Dependences

Historically, in FOSD, researchers have been assuming

that all dependences between features are documented in

a feature model, such that a user cannot generate invalid

products. However, recently, Thaker et al. have shown that

real product lines usually contain dependences between feature

implementations that are not documented in the feature model

and vice versa [14].6 An undocumented dependence can lead

to syntax or type errors when generating and compiling a

software product; we call this a structural dependence.

We would like to draw attention to a class of dependences,

which we call semantic dependences, that cannot be detected

with existing tools for safe composition.7 A semantic depen-

dence is like a structural dependence, yet it occurs not at

the level of syntax or types but appears in the form of a

misbehavior at run time. That is, if a feature requires the

presence of another feature due to a semantic dependence,

but the other feature is not selected, then the final product has

an incorrect behavior (although it is well-typed).

Structural dependences are problematic; they are hidden

until a particular variant (which may be one out of millions) is

compiled and appear then in the form of syntax or type errors.

Semantic dependences are even more problematic. They are

hidden in some variants until run time when a certain program

state is reached, and they may be responsible for unhandled

exceptions, segmentation faults, race conditions, and so on.

Let us illustrate the difference between structural and se-

mantic dependences by means of our graph example. Suppose

we add a feature that defines that all binary trees have the

search tree property (i.e., for each node, all children in the left

subtree have smaller values and all children in the right subtree

have larger values). In Figure 7, we depict a corresponding

refinement. It divides the set of edges into left-hand and

right-hand edges (Lines 3–5) and introduces a fact stating the

search tree property (Lines 7–13) via the two helper predicates

(Lines 15–21).

There are two problems with feature SEARCHTREE. First,

it depends on feature UNIQUEVALUES in that it refers to

field val of signature Node (e.g., in Line 16). This is a

structural dependence, which is detected when a user generates

a variant with feature SEARCHTREE and without feature

UNIQUEVALUES. Second, feature SEARCHTREE depends on

feature BINARYTREE (which, in turn, depends on feature

TREE). This dependence is a semantic dependence, which

cannot be detected offhand by the Alloy Analyzer. The reason

is that the search-tree property can be defined for general

graphs, but this does not make sense (e.g., due to possible

cycles there is no notion of a subtree) and the resulting graph

model instances do not match our intention.

Structural dependences have been explored exhaustively in

the past [14], [15], [18] and are outside the scope of this

6It has been argued that some dependences are intrinsically
implementation-specific and should not be included in the feature model [15].

7Note that there is some related, theoretical work on model checking
product lines, which we discuss in Section V.

Feature SEARCHTREE

1 refines module Graph
2 // divides the set of edges into left and right edges
3 sig LeftEdge, RightEdge extends Edge { } {
4 LeftEdge + RightEdge = Edge
5 }
6 // defines that the graph is a search tree
7 fact searchTree {
8 all n: Node | (#n.outEdges = 2) =>
9 (some n.outEdges & LeftEdge && some n.outEdges & RightEdge)

10 all n: Node | all l: LeftEdge | all r: RightEdge |
11 (l in n.outEdges => (validLeftSubTree [l.dest.∗(outEdges.dest), n])) &&
12 (r in n.outEdges => (validRightSubTree [r.dest.∗(outEdges.dest), n]))
13 }
14 // search tree property for the left subtree
15 pred validLeftSubTree[children: Node, parent: one Node] {
16 all child : Node | child in children => child.val < parent.val
17 }
18 // search tree property for the right subtree
19 pred validRightSubTree[children: Node, parent: one Node] {
20 all child : Node | child in children => child.val > parent.val
21 }

Fig. 7. A refinement that defines that every binary tree is a search tree.

Feature SEARCHTREE

1 refines module Graph
2 // holds if the graph is a binary tree
3 assert isBinaryTree {
4 all e: Edge | e.src != e.dest
5 some n: Node | (Graph.nodes = n) || (Graph.nodes = n.ˆ(edges.(src + dest)))
6 all n: Node | n not in (n.ˆ(outEdges.dest) + n.ˆ(inEdges.src))
7 all n: Node | (lone n.inEdges) && (#n.outEdges =< 2)
8 }
9 // checks whether the graph is a binary tree

10 check isBinaryTree for 5
11 // the remaining code is taken from Figure 7
12 sig LeftEdge, RightEdge extends Edge ...
13 ...

Fig. 8. Using an assertion to check whether a graph is a binary tree.

paper. We concentrate on semantic dependences, which are

less explored (see Sec. V) and more challenging. A major

contribution of our approach of feature-oriented design is to

make semantic dependences explicit, such that they can be

detected in the design phase, long before the compile and run

time of the software system. Our choice of building Feature-

Alloy on Alloy provides a unique opportunity to discover

semantic dependences. We use the assertion mechanism and

the automatic analysis of the Alloy Analyzer to model and

detect semantic dependences. This is a notable improvement

over previous work connecting modeling and FOSD (see

Sec. V).

We illustrate the role of the assertion mechanism in Feature-

Alloy by means of feature SEARCHTREE. Figure 8 extends

the listing of Figure 7 by defining an assertion that we use to

check the tree and binary tree properties of graph instances

(Lines 3–10). The Alloy Analyzer presents a counterexample

when feature SEARCHTREE is present but BINARYTREE is

not, thereby indicating an unsatisfied dependence. The remain-

ing code of feature SEARCHTREE (beginning at Line 12)

is similar to the original feature shown in Figure 7 and

omitted for brevity. The general pattern of modeling and

detecting semantic dependences is (1) to define an assertion

that specifies the properties that must hold for a given feature
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to operate correctly and (2) to check this assertion after feature

composition for counterexamples. If there is a counterexample,

a dependence has not been satisfied (i.e., a required feature is

not present). We call this idiom Requires Idiom.

Applying the Requires Idiom, we can use the Alloy An-

alyzer to ensure that a feature composition does respect all

semantic dependences between the features involved, without

relying on ‘nominal’ information of the feature model (e.g.,

‘SEARCHTREE requires BINARYTREE’). The Requires Idiom

is a way to define a semantic constraints between features that

provide enough information to be checked automatically.

The Requires Idiom is very flexible in that it does not rely

on syntactic information. The fact that a graph is a binary tree

can be expressed in many different ways. The Requires Idiom

can be used without knowing how the property is defined; it

simply states which properties the resulting model has to have.

Alternative variants of features TREE and BINARYTREE can

be used with feature SEARCHTREE, as long as the resulting

graph has the binary tree property, as defined in Figure 8.

Note that, in our example, some dependences could have

been structural, but this is not generally the case, especially

not in a distributed feature composition scenario [22]. The

ability to model requirements declaratively with FeatureAlloy

is useful in such a scenario. Often, a developer does not

know which other features will be added to a system. So,

the developer has to define the constraints that put a feature

to work solely on the basis of the known base system and

on its own semantics (e.g., without a proper feature model).

FeatureAlloy supports precisely this process and helps to

detect unsatisfied dependences early in the software life cycle.

D. Feature Interactions

The feature-interaction problem is related to feature depen-

dences. Two features interact if their combined presence leads

to misbehavior, whereas their mutually exclusive presences do

not. In such a situation, additional code is necessary to adjust

the structure or behavior of one or both features to let them

coexist properly. The additional code is called a derivative [18]

or lifter [16]. Some FOSD configuration tools [18] ensure that,

depending on the feature selection, the appropriate derivatives

are selected.

We distinguish between structural and semantic interactions.

A structural interaction is caused by one or more structural

dependences, a semantic interaction by one or more semantic

dependences. Again, we concentrate on the more interesting

semantic interactions; structural interactions have been ex-

plored in the past [14]–[18], and our work on FeatureAlloy

adopts established solutions for Alloy, but does not add

anything new to this problem.

Since there are no straightforward semantic feature inter-

actions in our graph example, we illustrate semantic feature

interactions by means of the classic example of a phone system

with the two features CALLFORWARDING and CALLWAIT-

ING. Feature CALLWAITING allows one call to be suspended

while a second call is answered. Feature CALLFORWARDING

enables a customer to specify a secondary phone number to

which additional calls are being forwarded when the phone is

busy. If both features are present and a call comes in while

another is active, the phone system has to decide whether the

call should be forwarded or the user should be notified that

another call has arrived. In the worst case, the system behaves

or terminates erroneously.

In Figure 9, we show an excerpt of the design of a phone

system that we developed with FeatureAlloy. It consists of

the three features BASICPHONE, CALLFORWARDING, and

CALLWAITING. The latter two contain assertions (Lines 19–24

and 37–44) that we use to check whether the features operate

correctly, which is the case when each feature is used without

the other. When the latter two features are selected, checking

one or both assertions produces counterexamples that indicate

a feature interaction. Basically, the assertion is used to check

whether a call is forwarded or suspended properly and the

phone system is in a valid state.

Feature BASICPHONE

1 module Phone
2 // models a phone system
3 sig Phone {
4 currentState: one State, ...
5 }
6 // models the states of a phone system
7 abstract sig State {}
8 one sig Idle, Busy extends State {} ...
9 // models the state transition for incoming calls

10 pred incomingCall [in: Call, disj p, p’: Phone] { ... }

Feature CALLFORWARDING

11 module Phone
12 // adds a field to forward a call
13 refines sig Phone {
14 forward: lone Phone
15 }
16 // overrides the state transition to forward calls
17 refines pred incomingCall [in: Call, disj p, p’: Phone] { ... }
18 // holds if a call is forwarded correctly
19 assert isForwarded {
20 all disj phone, phone’: Phone | all inCall: Call |
21 (incomingCall [inCall, phone, phone’]) =>
22 ((phone.currentState = Idle <=> no phone’.forward) &&
23 (phone.currentState = Busy <=> one phone’.forward))
24 }
25 // checks whether a call is forwarded correctly
26 check isForwarded for 5

Feature CALLWAITING

27 module Phone
28 // adds a field to refer to a waiting call
29 refines sig Phone {
30 waitingCall: set Call
31 } ...
32 // adds a new state for suspended phones
33 one sig Suspended extends State {}
34 // overrides the state transition to suspend busy phones
35 refines pred incomingCall [in: Call, disj p, p’: Phone] { ... }
36 // holds if a busy phone is suspended correctly
37 assert isSuspended {
38 all disj phone, phone’: Phone | all inCall: Call |
39 (incomingCall [inCall, phone, phone’]) =>
40 ((phone.currentState = Idle <=> no phone’.waitingCall) &&
41 (phone.currentState = Busy <=> one phone’.waitingCall) &&
42 (phone.currentState = Suspended <=>
43 (some phone.waitingCall && some phone’.waitingCall)))
44 }
45 // checks whether a busy phone is suspended correctly
46 check isSuspended for 5

Fig. 9. A basic phone system and two features whose interaction is detected
by assertions.
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This example illustrates an important difference between

semantic interactions and semantic dependences. Modeling

a semantic dependence, we use an assertion to state which

properties defined by other features must hold so that a given

feature works correctly. Modeling a semantic interaction, we

use an assertion to define which properties of a given feature

must not be altered by other features to let the given feature

work correctly. To distinguish the two cases, henceforth, we

refer to the first as the Requires Idiom and to the second

as the Excludes Idiom, since the first reveals situations in

which something is missing and the second reveals situations

in which something is too much.

A distinguishing property of FeatureAlloy is that it enables

us not only to model and detect semantic interactions, but also

to resolve them without modifying existing model elements.

In Figure 10, we show an excerpt of two derivatives that

adjust the combined behavior of CALLFORWARDING and

CALLWAITING. Essentially, the first derivative eliminates the

interference of CALLWAITING and the second the interference

of CALLFORWARDING, without changing the features. In

practice, the two derivatives could be merged to a single

derivative that resolves the interaction based on a parameter.

Derivative CALLFORWARDING + CALLWAITING

1 refines module Phone
2 // disables the interfering effects of CallWaiting
3 fact disableWaiting {
4 Suspended not in Phone.currentState
5 all phone: Phone |
6 (phone.currentState = Idle || phone.currentState = Busy) =>
7 no phone.waitingCall
8 }

Derivative CALLWAITING + CALLFORWARDING

9 refines module Phone
10 // disables the interfering effects of CallForwarding
11 fact disableForwarding {
12 all phone: Phone | no phone.forward
13 }

Fig. 10. Two derivatives that resolve the interaction between CALLFOR-
WARDING and CALLWAITING.

To summarize, FeatureAlloy can be used to model and

detect feature interactions modularly. It allows a developer

to specify the properties that have to hold when a particular

feature is present in a system, without requiring knowledge

about other features (e.g., in the form of a feature model

or code). Our approach can detect feature interactions solely

on the basis of the individual features’ specification. This

ability is especially of interest in systems in which features

are combined that have been developed independently, such as

in distributed feature composition [22]. FeatureAlloy enables

a developer to resolve interactions using derivatives, which

are themselves cohesive and composable units. This way, the

resolution code does not pollute the base code, which would

decrease variability and reusability.

IV. IMPLEMENTATION & CASE STUDIES

We have implemented FeatureAlloy on top of the Feature-

House tool suite [10]. FeatureHouse is a general framework

for FOSD, into which languages can be plugged to be en-

riched with support for features and feature composition. We

plugged in Alloy and implemented the syntax and refinement

rules explained in the previous sections, modulo some minor

deviations.8 In our case studies, we have used the Alloy An-

alyzer to model individual features (e.g., taking advantage of

syntax checking and highlighting), FeatureHouse to compose

FeatureAlloy designs, and again the Alloy Analyzer to check

assertions and visualize instances of feature compositions.

Especially, the visualization and analysis capabilities are an

improvement over previous approaches of connecting model-

ing and FOSD (see Sec. V). FeatureAlloy can be downloaded

from the Web as part of the FeatureHouse distribution.9

Beside the graph case study (which we extended by further

features such as BINARYSEARCH) and the phone system case

study, we have conducted two further case studies, which can

be downloaded as part of the FeatureHouse distribution. We fo-

cused particularly on FeatureAlloy’s capabilities of separating

features and of modeling and detecting semantic dependences

and interactions. We meant not to conduct an empirical case

study but to explore the potential benefits and drawbacks of our

approach. We tried to keep the models as concise as possible

and to capture only the essential aspects of the target systems,

as is best practice in software design [12]. Nevertheless, we

found several dependences and interactions and were able to

model, detect, and resolve them with our approach.

Content-Addressable Network: A content-addressable
network (CAN) is a protocol for data management and routing

in large peer-to-peer networks [23]. The basic idea is that

the network manages an n-dimensional key-value space. Each

peer is responsible for a certain region of the space and knows

his adjacent peers and their regions. If a data item is queried,

a peer can decide whether the corresponding key (which is an

n-tuple) is in its own region of the space or not. In the former

case, the corresponding data item is returned and, in the latter

case, the query is forwarded to the neighbor whose region is

closest to the key.

We have used FeatureAlloy to model the key aspects of

data management and routing in a CAN. Overall, we have

decomposed the design into eight features that represent

key design decisions in developing a CAN (e.g., routing

and item retrieval) and advanced functionalities such as load

measurement and the simulation of malicious peers. In our

design, all features are well separated, we can generate tailored

CAN models based on declarative specifications (e.g., with or

without malicious peers), and we can reuse model fragments

across different CAN models (e.g., routing is present in all

variants).

While modeling and composing the features, we discovered

a semantic dependence: load measurement requires the CAN’s

key-value space to consist of only a single partition. Otherwise,

the load measurement does not calculate the average load

8For example, in the current version, FeatureAlloy infers automatically
which model element overrides another element; keyword refines is not nec-
essary and is omitted for symmetry with other feature-oriented languages [10].

9http://www.fosd.de/fh/
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correctly since it relies on the standard routing mechanism,

which cannot route between multiple partitions. We have made

this dependence explicit by applying the Requires Idiom. So,

when we select load measurement in a CAN that may have

multiple partitions, we detect this error automatically with the

Alloy Analyzer. Without FeatureAlloy, this dependence may

go unnoticed, especially when it is not documented properly.

Furthermore, we found two semantic feature interactions.

In particular, the load-measurement feature and the malicious-

peers feature interact such that we had to adjust a function

that calculates the overall number of data items. The rea-

son is that malicious peers do not respond to queries even

though they own data items of interest. So, to calculate the

correct number of data items, we have to ignore malicious

peers. A similar interaction occurs between the item-retrieval

feature and the malicious-peers feature. We have applied the

Excludes Idiom to make the two interactions explicit, and we

have implemented two derivatives to resolve the interactions.

FeatureAlloy helped in both cases: interactions are detected

with assertions and derivatives are modeled in distinct units.

POSIX File System: In a further case study, we created

and analyzed a model of a POSIX-compliant file system. The

basic file-system model is a legacy design created by others.We

decomposed it into five features representing fundamental

operations such as create, move, and remove. Then, we added

further features for block and partition management, inspired

by Kang and Jackson [24], and for symbolic links. Applying

feature-oriented–design principles, we were able to attain a

similar degree of separation of concerns, variability, and reuse

as in the CAN case study.

We found a semantic interaction between the list operation

and symbolic links. Applying the Excludes Idiom, we state

and check that a list operation does not ‘jump’ between file

systems. We used a derivative to disallow the list operation

to follow symbolic links and to introduce an extended list

operation that may bridge file systems.

Interestingly, in this case study, we noticed a potential

limitation of the Excludes Idiom. The background is that block

management interacts with file system operations. File system

operations such as remove change the file system structure. If

there is block management, the mapping between index nodes

and files has to be kept consistent. We achieve consistency

by applying additional code (i.e., derivatives) that synchronize

file-system changes with the underlying blocks. The problem is

to detect the interactions between block management and file-

system operations. A corresponding assertion has to be aware

of both the changes the operations apply and the underlying

block management. Hence, the assertion code it not modular

in the sense that it can be assigned to a single feature. We

pose this problem as an open research question: Can all
interactions be detected by formulating assertions that are local

to individual features?

V. RELATED WORK

Several researchers proposed to make features or other

aspects of a system explicit in the design (a discussion of work

that targets source code is outside the scope of this paper).

Fisler and Krishnamurthi emphasized the role of features in

system design and verification [25]. Trujillo et al. decom-

posed domain-specific state-chart models into features and

composed them in different combinations based on a user’s

feature selection [26]. Apel et al. compose model fragments

of UML diagrams in a feature-oriented way [13]. Prehofer

models features and feature interactions with partial state

charts and composes them automatically based on a user’s

feature selection [27]. Similarly, in aspect-oriented modeling

(AOM), different model fragments are “woven” using certain

more or less explicit composition rules [28], [29]. All of these

approaches rely on modeling languages that are not sufficient

for automated reasoning and thus not able to handle feature

dependences and interactions properly.

Jayaraman et al. use graph-based rewriting techniques to

compose UML models belonging to different features [30].

The rewriting approach allows them to detect structural in-

teractions between features. Instead, with FeatureAlloy, we

concentrate on semantic interactions. Mostefaoui and Vachon

translate UML models into Alloy models to detect design-level

interactions in Aspect-UML models [31]. Our aim has been to

bridge the gap between domain analysis and implementation

in FOSD, which goes beyond their work. Furthermore, Alloy

is much simpler than UML and closer to formal verification

approaches, such that Alloy models are easier to check auto-

matically than UML models.

Uzuncaova et al. use Alloy specifications to generate test

inputs for compositions of features [32]. Like ordinary feature

code, the specifications can be refined by subsequent features

to alter or extend the test coverage. They aim at improving the

speed of test generation based on stepwise refinement, whereas

we aim at feature-oriented design and the detection of feature

dependences and interactions.

Work on early aspects and aspect-oriented requirements

engineering attempts to infer automatically mutual conflicts

between requirements and inconsistencies between require-

ments and the system architecture [33], [34]. To this end,

architectural description languages, natural-language process-

ing, and machine-learning techniques are used to support

automated reasoning. However, requirements and architectural

specifications are more abstract than Alloy models and are

useful in earlier development phases than feature-oriented

design. Furthermore, Alloy is a very lightweight approach

based on a sound mathematical foundation.

Li et al. proposed a technique for the verification of feature-

oriented systems that proceeds in two steps: (1) features are

verified modularly and (2) their composition is verified without

the need of re-verifying the involved features [35]. The state

machine models they use are quite spartan, mainly designed

for formal argumentation, and not user-friendly enough to

support a design at a proper level of abstraction.

Poppleton proposed an approach for feature-oriented spec-

ification [36]. He uses a formal specification language, called

FeatureEvent-B, to specify and model the structure and behav-

ior of a feature in isolation and to ensure the safe composition
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of features without considering the implementation. However,

FeatureEvent-B is quite abstract and only of limited use as a

general modeling language for feature-oriented design.

Recently, some model-checking techniques have been pro-

posed that take the variability of models in software product

lines, especially state machines, into account and guarantee

certain correctness properties for all products that can be

generated [37]–[39]. State-machine models are appropriate for

verification, but they are too abstract for all facets of practical

software design.

Finally, there is a significant body of research in the tele-

communications domain that explores the feature-interaction

problem [5]. Most related is the work of Zave, who modeled,

for example, the interoperation of addressing schemes in

network systems with Alloy [40]. Similarly to our approach,

she used assertions that express the requirements of features.

However, her approach does not make features explicit and

thus is not able to compose features and their derivatives

flexibly. Feature-oriented design with FeatureAlloy draws a

connection between software product lines and FOSD and the

work on feature interactions in telecommunication systems.

VI. DISCUSSION & FURTHER WORK

Feature-oriented design allows a developer to compose fea-

tures in different combinations tailoring the design to specific

needs, to reuse features in different design variants, and to

explore potential feature interactions. Using Alloy or any other

related modeling or specification language, we could not make

features explicit in our case studies thus losing the benefits of

a proper separation of features such as reuse, variability, and

modular feature specification.

In our case studies, we found some semantic dependences

between features. We applied the Requires Idiom to make the

dependences explicit and to detect feature combinations that

do not satisfy them. In this respect, FeatureAlloy combines

the strengths of FOSD and Alloy. Without Alloy’s automatic

reasoning, semantic feature dependences may not be detected

and resolved and may lead to erroneous behavior. So, our

approach is an improvement over previous work on connecting

UML and FOSD, which lacks a proper automatic analysis.

Furthermore, we found in our case studies some semantic

feature interactions, which we modeled and detected using

the Excludes Idiom and which we resolved by means of

derivatives. An advantage of FeatureAlloy (beside automated

reasoning) is that we can model derivatives in distinct units,

without altering existing model elements, and we can apply

the derivatives depending on a developer’s feature selection.

So, FeatureAlloy has the ability to modularize even the glue

or derivative code that fixes undesired interactions. Without a

feature-oriented decomposition, the derivative code would be

entangled with the feature code, and the coupling between the

features would hinder flexible feature composition [15].

We believe that our approach is of broader interest because

our case studies help to understand the difference between

a simple semantic dependence and a semantic interaction

and their effects on software reliability. The former reflects

a situation in which a feature requires properties of other

features. The latter reflects a situation in which a feature

interferes undesirably with (local) properties of other features.

A helpful property of the Requires Idiom and the Excludes

Idiom is that they enable us to model the requirements and

constraints of a feature purely and modularly in terms of the

properties of the model instances the feature expects. They

allow us to decouple features from the syntactic structures

of other features, a property that is essential when the other

features of a system are not known a priori.

Finally, we would like to comment on the practicality of our

approach. First, as with all automatic verification procedures,

it relies on the correctness of the input model in the sense

that it contains the essential facts of the world in which we

are interested. Proving this kind of correctness is impossible

and a principle limitation of computer-aided verification [41].

Second, the Alloy Analyzer searches for counterexamples

by bounded model checking. That is, there is always the

possibility that a counterexample is going unnoticed because

of an undersized scope. Based on our experience with the

case studies, we agree with Jackson that, although correctness

can ultimately not be proved, Alloy (and FeatureAlloy) offer a

good trade-off between reliability and performance [12]. Third,

model checking is a computationally expensive task. Although

much progress has been made in the past, large systems can

still not be verified in a reasonable time. Fortunately, design,

in general, and feature-oriented design, in particular, aim at

capturing the key aspects of a system and at identifying design

flaws. That is, typically, the resulting models are orders of

magnitude smaller than corresponding code bases.

There are three promising avenues of further research. First,

we would like to enhance FeatureAlloy’s capabilities to check

features in isolation. This requires a syntactic and semantic

interface mechanism. Earlier work on the modular verification

of features [25], [35] proposed a similar mechanism, and it

is interesting to draw a connection. Second, we would like

to move the dependence and interaction analysis from after

to before composition time. This is in line with the vision

of safe composition of product lines to check a product line

for incorrect products upfront, before the (possibly many)

individual products have been generated [14], [19], [20], [42],

[43]. Some theoretical approaches have previously applied this

idea to the model checking of product lines [37]–[39]. Our

work on FeatureAlloy lays an important, practical foundation

for detecting semantic errors in product lines. Third, we

would like to carry the results of the feature-oriented design

phase over to the implementation phase. How can we take

advantage of FeatureAlloy specifications for code generation

and verification in the implementation phase?
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[15] C. Kästner, S. Apel, S. ur Rahman, M. Rosenmüller, D. Batory, and
G. Saake, “On the Impact of the Optional Feature Problem: Analysis and
Case Studies,” in Proc. Int. Software Product Line Conference (SPLC).
SEI, 2009, pp. 181–190.

[16] C. Prehofer, “Feature-Oriented Programming: A Fresh Look at Objects,”
in Proc. Europ. Conf. Object-Oriented Programming (ECOOP), ser.
LNCS, vol. 1241. Springer-Verlag, 1997, pp. 419–443.

[17] J. Liu, D. Batory, and S. Nedunuri, “Modeling Interactions in Feature-
Oriented Designs,” in Proc. Int. Conf. Feature Interactions in Software
and Communication Systems (ICFI). IOS Press, 2005, pp. 178–197.

[18] J. Liu, D. Batory, and C. Lengauer, “Feature-Oriented Refactoring of
Legacy Applications,” in Proc. Int. Conf. Software Engineering (ICSE).
ACM Press, 2006, pp. 112–121.

[19] B. Delaware, W. Cook, and D. Batory, “Fitting the Pieces Together:
A Machine-Checked Model of Safe Composition,” in Proc. Int. Symp.
Foundations of Software Engineering (FSE). ACM Press, 2009, pp.
243–252.
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