
1

Language-Independent and Automated
Software Composition:

The FEATUREHOUSE Experience
Sven Apel, Christian Kästner, Christian Lengauer

Abstract—Superimposition is a composition technique that has been applied successfully in many areas of software develop-
ment. Although superimposition is a general-purpose concept, it has been (re)invented and implemented individually for various
kinds of software artifacts. We unify languages and tools that rely on superimposition by using the language-independent model
of feature structure trees (FSTs). On the basis of the FST model, we propose a general approach to the composition of software
artifacts written in different languages. Furthermore, we offer a supporting framework and tool chain, called FEATUREHOUSE. We
use attribute grammars to automate the integration of additional languages. In particular, we have integrated Java, C#, C, Haskell,
Alloy, and JavaCC. A substantial number of case studies demonstrate the practicality and scalability of our approach and reveal
insights into the properties that a language must have in order to be ready for superimposition. We discuss perspectives of our
approach and demonstrate how we extended FEATUREHOUSE with support for XML languages (in particular, XHTML, XMI/UML,
and Ant) and alternative composition approaches (in particular, aspect weaving). Rounding off our previous work, we provide
here a holistic view of the FEATUREHOUSE approach based on rich experience with numerous languages and case studies and
reflections on several years of research.

Index Terms—FEATUREHOUSE, feature structure trees, software composition, superimposition, language independence

F

1 INTRODUCTION

Software composition is the process of constructing soft-
ware systems from a set of software artifacts. An artifact
can be any kind of information that is part of or related
to software, for example, code units (packages, classes,
methods, etc.) or supporting documents (models, documen-
tation, makefiles, etc.). One popular approach to software
composition is superimposition. Superimposition is the
process of composing software artifacts by merging their
corresponding substructures. For example, when composing
two Java files, two constituent classes with the same name,
say Foo, are merged, and the result is called again Foo. The
substructures of Foo are merged in turn recursively.

Superimposition has been applied successfully to the
composition of class hierarchies in multi-team soft-
ware development [1], the extension of distributed pro-
grams [2], [3], the implementation of collaboration-based
designs [4], feature-oriented programming [5], [6], multi-
dimensional separation of concerns [7], aspect-oriented
programming [8], [9], and software component adapta-
tion [10]. Although diverse, all these applications pur-
sue superimposition of hierarchically organized program

• S. Apel is with the Department of Informatics and Mathematics,
University of Passau, Innstr. 33, 94032 Passau, Germany.
E-mail: see http://www.infosun.fim.uni-passau.de/spl/apel/

• C. Kästner is with the Department of Mathematics and Informatics,
Philipps University Marburg, Hans-Meerwein Str., 35032 Marburg,
Germany.

• C. Lengauer is with the Department of Informatics and Mathematics,
University of Passau, Innstr. 33, 94032 Passau, Germany.

constructs on the basis of their nominal and structural
similarities.

It has been noted that, when composing software, not
only code artifacts – possibly written in different program-
ming languages – have to be considered, but also noncode
artifacts, for example, models, documentation, grammar
files, or makefiles [6]. Thus, as a composition technique,
superimposition should be applicable to a wide range of
software artifacts. While there are various tools that support
superimposition of code artifacts [6], [9], [11]–[18] and
noncode artifacts [6], [19]–[23], they appear all different,
they are dedicated to and embedded individually in their
respective host languages, and their implementation and
integration require a major effort. Usually, the developers of
languages and tools did not address (or realize) the general
nature of superimposition. This hinders coordinated efforts
to advance composition technology.

We propose a structural approach to the composition
of software artifacts written in different languages, and
we offer a supporting framework and tool chain, called
FEATUREHOUSE. FEATUREHOUSE follows the ideas of
Batory’s AHEAD program generator [6] and builds on our
previous work on language-independent software represen-
tation [24] and composition [25], as we will explain.

In a nutshell, FEATUREHOUSE is a framework for soft-
ware composition on the basis of superimposition into
which new languages can be plugged on demand. The
integration of a new language, say C# or Haskell, requires
only a few hours of effort, in contrast to expensive manual
implementations. Technically, FEATUREHOUSE is based
on three ingredients: (1) a language-independent model

http://www.infosun.fim.uni-passau.de/spl/apel/

2

of software artifacts, (2) superimposition as a language-
independent composition paradigm, and (3) an artifact-
language specification based on attribute grammars.

We have used FEATUREHOUSE in a number of case
studies to demonstrate that our approach of software com-
position is indeed general. In particular, we have integrated
several, different languages into FEATUREHOUSE: Java, C,
C#, Haskell, Alloy, JavaCC, XHTML, XMI/UML, and Ant.
That is, FEATUREHOUSE can be used to compose software
artifacts written in these languages. We did not need to
extend the languages themselves (e.g., by introducing new
syntax and extending the compiler), as would be necessary
in related approaches and tools such as AHEAD [6], Cae-
sarJ [26], Classbox/J [14], FeatureC++ [17], or Fuji [18].
This saved us a lot of tedious and error-prone implementa-
tion work.

The integration of a new language is almost entirely
based on the language’s grammar, plus some attributes
added as annotations and some concise composition rules
(usually not more than 10 to 20 lines of code). We have
applied FEATUREHOUSE in the composition of over 50
software systems of different sizes (1 to 64 thousand
lines of code), written in different languages (Java, C#,
C, Haskell, Alloy, and JavaCC). Our studies demonstrate
the practicality and scalability of our approach and tools
and provide insight into mandatory and desirable proper-
ties that a language must have in order to be ready for
superimposition.

In summary, we make the following contributions:
1) We propose a general approach to software composi-

tion, based on superimposition, that is applicable to a
wide variety of software languages.

2) We provide a framework and tool chain for language-
independent, automated software composition and re-
port on experiments with six languages and 50 soft-
ware systems.

3) We discuss experience and insight gained in our
case studies, especially with regard to composition
granularity, uniqueness of identifiers, and ordering of
elements.

4) We present two substantial extensions of FEATURE-
HOUSE (support for XML-based languages and an
integration of aspect weaving as an additional com-
position operator), which demonstrate the generality
and potential of our approach.

5) We discuss perspectives of our approach especially
with regard to type checking and formal foundations.

This article subsumes and extends our previous work
on language-independent, automated software composi-
tion [27]–[30]. For the first time, we provide a coherent and
complete overview of our experience and insight gained
with FEATUREHOUSE. Compared to previous work, we
report on experience with a substantial number of further
case studies (42 new case studies, as compared to [27]),
new kinds of languages (including functional, specification,
and XML-based languages), a number of extensions of
our approach (e.g., a further composition operator), and
perspectives that arise from our holistic and retrospective

view on the FEATUREHOUSE approach. None of these
contributions could have been made in earlier work, which
concentrated on individual aspects, but neglecting the big
picture and its implications. These contributions arise from
our experience and the ability to step back and look at
practical applications.

2 FEATUREHOUSE
FEATUREHOUSE is a framework for software composi-
tion supported by a corresponding tool chain. It provides
facilities for software composition based on a language-
independent model of software artifacts and an auto-
matic plugin mechanism for the integration of new arti-
fact languages. FEATUREHOUSE generalizes and subsumes
a previous software composition tool, called FSTCOM-
POSER [25], and exceeds prior work on AHEAD in that it
implements software composition language-independently.1

The code of FEATUREHOUSE, as well as examples and all
case studies, can be downloaded from the project’s Web
site: http://www.fosd.net/fh.

We begin with a brief review of FSTCOMPOSER and
proceed with a description of the overall FEATUREHOUSE
architecture and how it integrates FSTCOMPOSER.

2.1 Representation and Composition
FSTCOMPOSER relies on a general model of the structure
of software artifacts, called the feature structure tree (FST)
model. An FST represents the essential structure of a soft-
ware artifact and abstracts from language-specific details.
For example, an artifact written in Java contains packages,
classes, methods, and so forth, which are represented by
nodes in its FST; a Haskell program contains equations, al-
gebraic data types, type classes, etc., which contain further
elements; a makefile or build script consists of definitions
and rules that may be nested.

Each node of an FST has (1) a name that is the name
of the corresponding structural element and (2) a type that
represents the syntactic category of the corresponding struc-
tural element. For example, a Java class Foo is represented
by a node Foo of type Java class. Essentially, an FST
is a stripped-down abstract syntax tree: it contains only
information that is necessary for the specification of the
modular structure of an artifact and for its composition
with other artifacts. The inner nodes of an FST denote
modules (e.g., classes and packages) and the leaves carry
the modules’ content (e.g., method bodies and field initial-
izers). We call the inner nodes nonterminals and the leaves
terminals. For illustration, Figure 1 depicts an excerpt of
a class of a database system, taken from one of our case
studies (Section 3.1). The complete class is located in a
subpackage structure and contains 13 fields, 2 constructors,
58 methods, and 4 inner classes.

What code elements are represented as inner nodes and
leaves? This depends on the language and on the level

1. Although AHEAD provides a language-independent model based on
nested records, the support for different languages has been implemented
for each language individually from scratch (see Section 6).

http://www.fosd.net/fh

3

1 package com.sleepycat;
2 public class Database {
3 private DbState state;
4 private List triggerList;
5 protected void notifyTriggers(Locker locker, DatabaseEntry priKey,
6 DatabaseEntry oldData, DatabaseEntry newData) throws DatabaseException {
7 for(int i=0; i<triggerList.size(); i+=1) {
8 DatabaseTrigger trigger = (DatabaseTrigger)triggerList.get(i);
9 trigger.databaseUpdated(this, locker, priKey, oldData, newData);

10 }
11 } // over 650 further lines of code...
12 }

sleepycat

com

notifyTriggerstriggerListstate

Database

field method

class

package

...

...

BaseDB

Fig. 1. Java code and FST of the artifact BaseDB, taken from the BERKELEY DB case study

of granularity at which software artifacts are to be com-
posed [31]. Different granularities are possible and might be
desired in different contexts. For Java, we might represent
only packages and classes but not methods or fields as FST
nodes (a coarse granularity), or we might also represent
statements or expressions as FST nodes (a fine granularity).
In any case, the structural elements not represented in the
FST are stored as text content of terminal nodes (e.g., the
body of a method). In our experience, the granularity of
Figure 1 is usually appropriate for composition. We will
return to the issue of granularity in Section 2.2.

The composition of software artifacts proceeds by the
superimposition of the corresponding FSTs, henceforth
denoted by ‘•’. Two FSTs are superimposed by merging
their nodes, identified by their names, types, and relative
positions, starting from the root and descending recursively.
Figure 2 illustrates the process of FST superimposition with
the database example. The artifact BaseDB is superimposed
with an artifact called Latches, of which again only a subset
is shown. Their composition results in a class Database
consisting of the union of the members of its instances
in BaseDB and Latches. Basically, composing Latches
with BaseDB adds two new methods acquireReadLock
and releaseReadLock and extends method notifyTriggers of
BaseDB via overriding (original defines how two method
bodies are composed, which is similar to Java’s super or
AspectJ’s proceed).

Generally, the composition of two leaves of an FST
that contain further content (e.g., the two bodies of notify-
Triggers) demands a special treatment. The reason is that
the content is not represented as a subtree but as plain
text. Java method bodies are composed differently from
fields, Haskell functions, or JavaCC grammar productions.
Depending on the artifact language and node type, different
rules for the composition of terminals apply. Often simple
rules such as replacement, concatenation, specialization, or
overriding suffice, but the approach is open to more sophis-
ticated rules known from multi-dimensional separation of
concerns [16] or software merging [32]. For example, in our
case studies, we merge two method bodies via overriding, in
which original defines how the bodies are merged. Note that

original is not a new keyword added to the grammar of Java.
We use a regular Java parser, which classifies original as a
method name. FEATUREHOUSE searches for occurrences
of original during the composition of two method bodies
and substitutes each occurrence by the original method
body (in the case of name clashes, with some semantics-
preserving renaming). The only restriction is that original
must not be used as a method name (or as any other
kind of identifier). So, actually we have restricted the
Java semantics minimally to support the composition of
method bodies. As a result of the composition, we receive
a syntactically correct Java program.

Technically, multiple software artifacts (e.g., code and
corresponding documentation) can be aggregated in a com-
position unit. FSTCOMPOSER expects a list of units to
be composed. The artifacts of a composition unit may be
organized in a subdirectory structure. Without any further
preparation, FSTCOMPOSER interprets subdirectories as
nonterminals and the files located inside a subdirectory
as terminals. Of course, if we intend to achieve a finer
composition granularity than at the level of entire files (e.g.,
at the level of functions, classes and methods, and grammar
rules, as in Figure 2), we add further levels of nonterminals
representing the artifacts’ substructures, as we will explain
next.

2.2 Generation and Automation
New languages can be plugged easily into FEATURE-
HOUSE. The idea is that, although artifact languages are
very different, the process of software composition by
superimposition is very similar. For example, the developers
of AHEAD [6] and FeatureC++ [17] have extended the
artifact languages Java and C++ by constructs (e.g., refines
or Super) and mechanisms for composition. They have
each implemented a parser, a superimposition algorithm,
and a pretty printer2 – all specific to the artifact language.
We have introduced the FST model to be able to express
superimposition independently of an artifact language [25].

2. With ‘pretty printer’ we refer to a tool, also known as unparser, that
takes a parse tree or an FST and generates source code.

4

1 package com.sleepycat;
2 public class Database {
3 private void acquireReadLock() throws DatabaseException { ... }
4 private void releaseReadLock() throws DatabaseException { ... }
5 protected void notifyTriggers(Locker locker, DatabaseEntry priKey,
6 DatabaseEntry oldData, DatabaseEntry newData) throws DatabaseException {
7 acquireReadLock();
8 original(locker,priKey,oldData,newData);
9 releaseReadLock();

10 } // 50 further lines of code...
11 }

•

sleepycat

com

Database

notifyTriggers ...

...

Latches

acquireReadLock

releaseReadLock

1 package com.sleepycat;
2 public class Database {
3 private DbState state;
4 private List triggerList;
5 protected void notifyTriggers(Locker locker, DatabaseEntry priKey,
6 DatabaseEntry oldData, DatabaseEntry newData) throws DatabaseException {
7 for(int i=0; i<triggerList.size(); i+=1) {
8 DatabaseTrigger trigger = (DatabaseTrigger)triggerList.get(i);
9 trigger.databaseUpdated(this, locker, priKey, oldData, newData);

10 }
11 } // over 650 further lines of code...
12 }

=

sleepycat

com

Database

state

triggerList

...

notifyTriggers ...

BaseDB

1 package com.sleepycat;
2 public class Database {
3 private DbState state;
4 private List triggerList;
5 private void acquireReadLock() throws DatabaseException { ... }
6 private void releaseReadLock() throws DatabaseException { ... }
7 protected void notifyTriggers(Locker locker, DatabaseEntry priKey,
8 DatabaseEntry oldData, DatabaseEntry newData) throws DatabaseException {
9 acquireReadLock();

10 for(int i=0; i<triggerList.size(); i+=1) {
11 DatabaseTrigger trigger = (DatabaseTrigger)triggerList.get(i);
12 trigger.databaseUpdated(this, locker, priKey, oldData, newData);
13 }
14 releaseReadLock();
15 } // over 700 further lines of code...
16 }

sleepycat

com

Database

state

triggerList

...

...

BaseDB

acquireReadLock

Latches

notifyTriggers

releaseReadLock

Fig. 2. Java code of Latches, BaseDB, and Latches •BaseDB

Nevertheless, without automation, we had to provide for
each language (at the time, for Java and C#):

1) a parser and corresponding framework classes repre-
senting the parse tree,

2) an adapter that maps the parse tree to the FST,
3) language-specific composition rules (e.g., for merging

method bodies), and
4) a pretty printer for writing superimposed FSTs to disk.
Overall, the process of implementing and integrating

language support manually was time-consuming and error-
prone. Usually, we (or our students) spent several weeks
on making the parsers, adapters, and pretty printers work.
Often, the initial versions of the manually implemented and
integrated parsers, adapters, and pretty printers contained
numerous bugs, so we had to spend a significant time on
debugging.

Generation

These problems motivated us to automate the integration
of further languages and base it largely on the languages’
grammars. This allows us to generate most of the code
that must otherwise be provided and integrated manually
(parser, adapter, pretty printer) and to experiment with
different representations of software artifacts, as we will

illustrate shortly. Our tool FSTGENERATOR expects the
grammar of the language to be integrated in a specific for-
mat, called FEATUREBNF, and generates parser, adapter,
and pretty printer accordingly. FEATUREBNF is similar
to the Backus-Naur-Form but supports a number of ex-
tensions [33] and annotations, some of which are used
by FSTGENERATOR, as we will explain. Using a gram-
mar written in FEATUREBNF, FSTGENERATOR generates
(a) an LL(k) parser that directly produces FST nodes and
(b) a corresponding pretty printer. After the generation
step, composition proceeds as follows: (1) the generated
parser receives artifacts written in the target language and
produces one FST per artifact; (2) FSTCOMPOSER per-
forms the composition; and (3) the generated pretty printer
writes the composed artifacts to disk. For the composition
of the content of terminal nodes, we have developed and
integrated a library of composition rules (e.g., rules for
method overriding and for the concatenation of the state-
ments of two constructors). Figure 3 illustrates the interplay
between FSTGENERATOR and FSTCOMPOSER; Table 1
lists the composition rules we have implemented so far
(Section 3.1).

5

Java C JavaCC

Generator

...C#

Parser Composer Pretty Printer

Source Code Source CodeFST

Library of Composition Rules

Haskell

FSTFST

FeatureBNF

FSTGenerator

FSTComposer

Alloy

Fig. 3. The architecture of FEATUREHOUSE

Rule Description

method
overriding

merges two method bodies; original is used
to inline one body into the other (one rule
for Java and one for C#)

grammar-rule
overriding

merges two grammar rules; original is used
to inline the body of one rule into the body
of the other

constructor
concatenation

appends the statements of one constructor
to the statements of the other

field
specialization

assigns an initial value to a field in the case
it did not have one before

implements-
list union

takes the union of the types of two imple-
ments lists, excluding duplicates

modifier
specialization

specializes modifiers similar to Java’s sub-
typing rules

replacement replaces one terminal node with the other

text-content
concatenation

concatenates the text content of two termi-
nal nodes

TABLE 1
Composition rules implemented in FEATUREHOUSE

Attributes

To specify how artifacts of a language are represented
as FSTs, programmers annotate the language’s grammar
with attributes. We explain the role of attributes using a
simplified Java grammar. In Figure 4, we depict an excerpt
of the corresponding FEATUREBNF grammar that is rele-
vant for classes and methods. For example, rule ClassDecl
defines the structure of classes containing fields (VarDecl),
constructors (ClassConstr), and methods (MethodDecl).

Without any attributes, FSTGENERATOR would create
a single terminal node for each file; in our case, beside
nonterminals denoting the enclosing directories and the
enclosing Java file, there would only be a terminal node per
class, and the class’ members would appear as text in the
terminal’s content. Since this granularity is too coarse for
our purposes (recall: we would like to exploit the internal
structure of a Java file, as shown in Figures 1 and 2), we use
attributes to annotate the production rules that correspond
to nonterminals (i.e., that contain further nodes).

Figure 5 depicts an annotated version of our simple

1 ClassDecl :
2 ”class” Type ”extends” ExtType ”{”
3 (VarDecl)∗ (ClassConstr)∗ (MethodDecl)∗
4 ”}”;
5 VarDecl : Type ID ”;”;
6 MethodDeclaration :
7 Type ID ”(” (FormalParamList)? ”)” ”{”
8 (Statement)∗
9 ”}”;

10 ...

Fig. 4. An excerpt of a simplified Java grammar

Java grammar. Attribute @FSTNonTerminal above rule
ClassDecl states that classes are nonterminals that contain
further elements; all productions that follow and that are
not annotated are automatically interpreted as terminals. It
follows from the grammar that a node representing a class
may have children representing its name, supertype, fields,
constructors, and methods. The attribute’s parameter, name,
is used to assign the name of a class to the FST node
representing the class.

1 @FSTNonTerminal(name=”{Type}”)
2 ClassDecl :
3 ”class” Type ”extends” ExtType ”{”
4 (VarDecl)∗ (ClassConstr)∗ (MethodDecl)∗
5 ”}”;
6 ...

Fig. 5. An excerpt of a simplified Java grammar with
annotations

With a single attribute, we have refined the composition
granularity of Java artifacts. Now, Java FSTs have three
levels (omitting packages and imports, for simplicity): (1) a
root that represents the Java file, (2) a class that is a nonter-
minal, and (3) type names, methods, constructors, and fields
that are terminals. Without the attribute, a Java FST consists
only of a single node representing the corresponding Java
file. In Figure 6, we illustrate the difference between the
two levels of granularity.

Beside @FSTNonTerminal, FSTGENERATOR supports
several further kinds of attributes. For example, attribute
@FSTTerminal is used to mark terminal nodes, as could
be useful for representing classes as FST nodes. Although
all production rules that are not annotated are interpreted
as terminals or as text content of terminals, this attribute
allows a programmer to define the name that appears in
the FST node and the composition rule for merging the

Content

notifyTriggerstriggerListstate

Database

Content Content Content

...

...

Database.java

finer granularity

...

Database.java

coarse granularity

Fig. 6. Two granularities of representing Java artifacts
as FSTs (controlled by a single attribute)

6

content of two corresponding terminals. For example, in
Figure 7, we specify that the name of a node representing
a Java method receives the method’s name (ID) followed by
its formal parameters (FormalParamList). Production rules
without explicitly assigned names receive proper default
names.

1 @FSTTerminal(name=”{ID}({FormalParamList})”,
2 compose=”JavaMethodOverriding”)
3 MethodDecl :
4 Type ID ”(” (FormalParamList)? ”)” ”{”
5 (Statement)∗
6 ”}”;
7 ...

Fig. 7. Annotating a method declaration with a name
and a composition rule

Note that, without the possibility of specifying the name
of an FST node, in many cases a superimposition would not
be feasible. Recall that two nodes are superimposed if and
only if their names (and types) are identical. For example,
we can use parameter name to define that two classes are
composed if their identifiers are identical (name=”{Type}”)
or only if their identifiers and their supertypes are identical
(name=”{Type} {ExtType}”).

Using parameter compose, we define which composition
rule from the library is used when composing terminal
nodes. In our simple Java grammar of Figure 7, we define
that methods are composed via method overriding. The
value JavaMethodOverriding refers to an artifact-specific
composition rule that is part of the library of composition
rules.

In Figure 8, we depict the interface of rule JavaMethod-
Overriding. A composition rule takes the terminal nodes
to be composed as well as the result node as arguments.
Then, it constructs the body of the result node such that
it represents the composition of the two input nodes to
be composed. This example illustrates the simplicity of
writing composition rules. Of course, it is possible to
write more sophisticated composition rules, for example,
by parsing the individual bodies and performing syntax-
tree transformations and type analysis.

1 package composer.rules;
2
3 public class JavaMethodOverriding {
4 public final static String COMPOSITION RULE NAME =
5 ”JavaMethodOverriding”;
6 public static void compose(
7 FSTTerminal nodeA, FSTTerminal nodeB, FSTTerminal comp) {
8 ...
9 }

10 }

Fig. 8. Composition rule for Java method bodies

3 EVALUATION AND EXPERIENCE

To evaluate the generality, practicality, and scalability of
our approach and to reveal open issues, we integrated
six languages into FEATUREHOUSE and used it in the

Java C# C Haskell Alloy JavaCC

rules 135 229 45 78 56 170
nonterminals 10 17 2 13 11 16
terminals 13 18 9 9 11 16
attributes 42 53 21 24 27 61

TABLE 2
Overview of the languages integrated in
FEATUREHOUSE with FSTGENERATOR

composition of 50 software systems of different sizes and
domains. We report on key observations made and lessons
learned.

3.1 Sample Languages and Systems
We integrated three imperative languages, two of them
object-oriented (C, Java, and C#), one functional language
(Haskell), one specification and modeling language (Alloy),
and one domain-specific language for grammar specifica-
tions (JavaCC). In Table 2, we provide a summary of the
overall number of grammar rules, the number of rules
annotated to represent nonterminals, the number of rules
annotated to represent terminals, and the overall number
of attributes per language. FEATUREHOUSE, including all
language plugins, is available on the project’s Web site.

All of our 50 sample systems have been decomposed
into composition units for different purposes, mostly by
others. In our experiments, we composed them in different
variants (reaching from one to hundreds). This was an
incremental process during the last four years. The rationale
of selecting such a large sample was to gain practical
experience with FEATUREHOUSE and to address issues
such as scalability and composition granularity. In Table 3,
we summarize information on the sample software systems
and their compositions. The source code of all software
systems of our study is available on the FEATUREHOUSE
Web site.

Note that some of the sample systems are related.
BCJAK2JAVA, JAK2JAVA, JAMPACK, JRENAME, MIXIN,
MMATRIX, and UNMIXIN belong to the AHEAD
tool suite [34]. They share certain basic functionality
such as parsers. Similarly, BALI2JAK, BALI2JAVACC,
BALI2LAYER, and BALICOMPOSER belong to the BALI
tool suite [34]. Furthermore, CHATSYSTEM comes in eight
different variants. The variants have been developed inde-
pendently in a course on software product-line engineering
at the University of Magdeburg. The same applies to
NOTEPAD, which comes in seven variants, independently
developed in a course on feature-oriented design at The
University of Texas at Austin. Next, we discuss our key
observations.

3.2 Mandatory Properties
Our case studies demonstrate that FEATUREHOUSE is a
very general tool and approach. We were able to integrate
a number of different languages into FEATUREHOUSE

7

System Domain LOC COMP LANG

AJSTATS Source code analysis tool 15 311 20 Java
ARITH Arithmetic expression evaluator 442 15 Haskell
BALI2JAK Grammar processing tool 13 527 11 Java
BALI2JAVACC Grammar processing tool 14 139 11 Java
BALI2LAYER Grammar processing tool 13 811 12 Java
BALICOMPOSER Grammar processing tool 12 197 10 Java
BCJAK2JAVA Code transformation tool 32 326 15 Java
BERKELEYDB Embedded database engine 64 652 99 Java
CHATSYSTEM/BURKE Network client and server 614 6 Java
CHATSYSTEM/DREILING Network client and server 938 5 Java
CHATSYSTEM/BECKER Network client and server 651 7 Java
CHATSYSTEM/WEISS Network client and server 931 7 Java
CHATSYSTEM/SCHINK Network client and server 873 7 Java
CHATSYSTEM/LUONG Network client and server 862 9 Java
CHATSYSTEM/REHN Network client and server 760 6 Java
CHATSYSTEM/THUEM Network client and server 544 8 Java
CAN Peer-to-peer protocol implementation 150 10 Alloy
EMAILSYSTEM Simple email client 894 11 C
EPL Arithmetic expression evaluator 99 12 Java
FFJ Grammar of Feature Featherweight Java 289 2 JavaCC
FGL Functional graph library 2 731 20 Haskell
GAMEOFLIFE Computer game 1 656 14 Java
GPL Graph library 2 439 26 Java
GPL Graph library 2 148 26 C#
GRAPHLIB Graph library 934 13 C
GRAPHMODEL Model of a graph library 114 7 Alloy
GUIDSL Product-line configuration tool 13 573 26 Java
JAK2JAVA Code transformation tool 32 934 16 Java
JAMPACK Code transformation tool 34 326 21 Java
JRENAME Code transformation tool 31 120 17 Java
MIXIN Code transformation tool 32 493 17 Java
MMATRIX Code transformation tool 32 228 13 Java
MOBILEMEDIA8 Multimedia file manager 5 278 51 Java
NOTEPAD/QUARK Text editor 1 397 10 Java
NOTEPAD/DELAWARE Text editor 1 654 6 Java
NOTEPAD/WELLINGTON Text editor 1 522 4 Java
NOTEPAD/SVETOSLAV Text editor 1 627 6 Java
NOTEPAD/WEHRMAN Text editor 1 716 5 Java
NOTEPAD/GUIMBARDA Text editor 1 586 9 Java
NOTEPAD/ROBISON Text editor 1 404 10 Java
PHONESYSTEM Phone system model 96 4 Alloy
PKJAB Chat network client 4 994 8 Java
PREVAYLER In-memory database engine 6 867 6 Java
POSIXFILESYSTEM Model of a POSIX file system 432 13 Alloy
RAROSCOPE Compression library 428 5 Java
SUDOKU Computer game 1 850 7 Java
TANKWAR Computer game 3 184 15 Java
UNMIXIN Code transformation tool 31 658 12 Java
VIOLET UML model editor 9 789 88 Java
ZIPME Compression library 5 479 35 Java

LOC: lines of code; COMP: composition units; LANG: artifact language

TABLE 3
Overview of the sample systems

8

including languages of different programming paradigms
as well as specification and domain-specific languages.
Despite the considerable variety of the languages integrated,
we identified a set of properties that are mandatory for a
language to be plugged into FEATUREHOUSE:

1) The substructure of a software artifact must be a tree.
2) Every element of an artifact must provide a name

that becomes the node’s name and must belong to a
syntactic category that becomes the node’s type; an
element must not contain two or more direct child
elements with the same name and type.

3) Elements that do not have a hierarchical substructure
represented in the FST (terminals) must come with
composition rules in order to be composable.

3.3 Generality

Superimposition is only one of several composition ap-
proaches. It is useful especially in scenarios in which the
code of components is available and their structures are
compatible. Other scenarios such as black-box composition
or the integration of structurally incompatible components
are less suited for superimposition and should be handled
by alternative composition approaches such as on-demand
remodularization [7], [35] and component aggregation [36].

Our case studies have all been designed with super-
imposition in mind. Most of them are product lines whose
features systematically refine the code of other features.
Hence, we are not able to draw sound conclusions on
the suitability of superimposition as compared to other
composition techniques. This issue is outside the scope of
this article and is addressed partially by previous work [8],
[37], [38]. Nevertheless, an extension of FEATUREHOUSE
for quantification and weaving is motivated by this work
and is discussed in Section 4.2.

3.4 Granularity

FEATUREHOUSE enables developers to adjust the granular-
ity of composition by annotating the corresponding gram-
mars. This way, we were able to experiment with different
levels of granularity. For example, in Haskell, it was not
clear which degree of granularity of superimposition is
appropriate. It was clear that function definitions should
be terminals, but not whether data type definitions should
be terminals or nonterminals. After playing with some
examples, we realized that it is quite useful to represent
data types as nonterminals, so that data type definitions can
be extended by adding new type constructors. For example
in Figure 9, we compose two data-type declarations for
the representation of binary operations by merging their
corresponding type constructors (Sub for subtraction and
Add addition; a deriving clause defines to which type class
a data type belongs).

The flexibility in adjusting the composition granularity
makes it even possible to compose unstructured text when
it is viewed as a single terminal node. In this case, two

data BinOp = Sub deriving Eq; •

data BinOp = Add deriving Show; =

data BinOp = Add | Sub deriving Show, Eq;

Fig. 9. Composing data type declarations via super-
imposition, taken from the ARITH case study (no new
composition rules are needed)

text nodes could be merged via string concatenation. How-
ever, the more structure is exposed in an FST, the finer-
grained the composition can be (which typically makes
the composition more expressive and easier to implement),
but there is usually a limit. For example, representing and
superimposing arithmetic expressions is certainly not useful
because expressions do not have unique names and the
order or their evaluation matters, as we explain next.

3.5 Uniqueness of Names

Unique names are central to composition with FEATURE-
HOUSE. Without unique names, superimposition does not
work. For each sample language, we identified a proper
level of granularity at which elements have unique names
and their composition is useful (i.e., there is enough
structure for superimposition). In all languages, there are
syntactic elements with unique names (in the scope of their
parent elements), especially at coarse granularities (e.g., at
the level of Java classes and Alloy signatures). However,
as the granularity becomes finer, syntactic elements tend to
have no or ambiguous names (e.g., at the level of Java
statements or Alloy expressions). That is, the syntactic
structure of the language affects the granularity at which
artifacts can be composed meaningfully. Often, a fine
granularity prohibits superimposition. There are two ways
of attaining uniqueness of names: (1) adjust the attributes of
the corresponding grammar to make composition coarser-
grained, and use a specific composition rule to compose
the corresponding elements properly, as we have done,
for example, for Java statements; (2) assign unique names
manually, which may require changes to the language’s
syntax. Note that these approaches are related to each other:
refining the grain of composition often requires to assign
proper names.

3.6 Element Order

An issue related to unique names is the order of ele-
ments. In our evaluation, we found that, typically, at a
coarse granularity, the order of elements does not affect
the program’s or document’s semantics (e.g., the order of
Java methods or Alloy functions does not matter). As we
made the granularity finer (by annotating the grammar),
we observed that the elements’ order becomes important
in most languages (e.g., in the case of Java statements and
Alloy expressions; in C, already at the level of functions).

9

Superimposition is particularly useful at a level at which
the elements’ order may vary, which makes it is easy to
add new elements (e.g., a new production rule to a JavaCC
grammar). If the elements’ order matters, it is difficult
to insert elements between two existing elements (e.g., a
statement in the middle of Java method). In this case,
workarounds such as sandwiching are necessary.3 When
the elements’ order matters, we can adjust the attributes
of the corresponding grammar to make the composition
coarser-grained and the elements’ order immaterial, and use
a specific composition rule to compose the corresponding
elements properly. A classic example is the composition of
two method bodies via a specific composition rule, in which
keyword original controls the order in which the statements
of the bodies are merged.

3.7 Trade-Offs
Apparently, there is a trade-off between granularity, ex-
pressiveness, and simplicity. At a fine granularity, we gain
compositional expressiveness, but face problems regarding
uniqueness of names and element ordering, which require
complex and language-specific composition rules. At a
coarse granularity, we lose compositional expressiveness
but face fewer or no problems regarding names and order,
and need less complex and fewer language-specific com-
position rules. For the languages we looked at, we found
an acceptable balance between granularity, expressiveness,
and simplicity, because they provide a sufficient amount of
structure.

3.8 Scalability
To learn about scalability, we included a number of software
systems of substantial size in our sample. For example, we
have composed 99 composition units of Berkeley DB with
64 thousand lines of code. Our study shows that FEATURE-
HOUSE, even though it is an unoptimized prototype, scales
well with the number of composition units and lines of
code (24 seconds composition time). The numbers for
other systems are similar or smaller. Note that composition
granularity may influence composition time. In our case
studies, a typical FST has only a low depth (3–10), which
does not influence performance significantly.

3.9 Integration Effort
In earlier work, we developed a parser adapter (to bridge
the gap between parse tree and FST) and a pretty printer
manually for each language [25]; we call this the manual
approach. With FEATUREHOUSE, we generate both auto-
matically based on attribute grammars; we call this the
generative approach. In the manual approach, the effort of
integrating a language was considerable – on the order of
weeks. In contrast, in the generative approach, we spent
usually only a few hours. For all languages, we were
able either to rewrite an existing grammar given in EBNF,

3. Sandwiching is the process of dividing artifacts into parts to be able
to add something inbetween [39].

Manual approach Generative approach

Adapter Pretty
printer

Comp.
rules

Comp.
rules

Attributes

Java 1 366 424 214 178 42
C# 2 851 374 518 53* 53

* For C#, we could reuse most of the composition rules of Java.

TABLE 4
Amount of boilerplate code (LOC)

JavaCC, or ANTLR to the FEATUREBNF format (for Java,
C#, Alloy, and JavaCC) or to write our own grammar
based on the language specification (for C and Haskell).
In Table 4, we list the amount of code we had to write
in the manual and the generative approach for integrating
Java and C#. We did not count generated code (in both
approaches, we generated the parsers) and the code of the
grammar specifications, which were publicly available. The
generative approach reduces the need for code writing for
Java to 11 % and for C# to 3 % of that in the manual
approach.

In the manual approach, the granularity of composition
is fixed. The adapter that translates a parse tree to an
FST sets the granularity (i.e., decides which structural
elements are represented as nonterminals and terminals) and
is difficult and error-prone to write and change. In the gen-
erative approach, the attributes of the grammar define which
structural elements are represented by nonterminals and
terminals. Changing the attributes is a matter of minutes.
This enabled us to experiment with different granularities.

Anyhow, if, for whatever reason, there is no grammar
available for a particular language, the developer can resort
to the manual approach and integrate an existing parser by
means of an adapter. C++, with its inherently complex and
ambiguous grammar, may be an example.

3.10 Composition Rules
Based on our experience, we have developed a number
terminal composition rules and collected them in a library.
These rules were reused in the integration of languages.
Specifically, we have implemented composition rules for
method overriding, grammar-rule overriding, constructor
concatenation, field specialization, implements-list union,
modifier specialization, replacement, and text-content con-
catenation (see Table 1). We can specify declaratively
via grammar attributes for which kind of terminal we
use which library composition rule, for example, com-
pose=”JavaMethodOverriding” (see Section 2.2).

The interesting point is that we needed only a few
rules, and the rules are very simple. The rule for method
overriding is the most complex one. In Alloy – and later
XML – we did not need specific composition rules at
all. Superimposition and generic composition rules such as
simple replacement sufficed in the case studies.

Another notable observation is that it was always suf-
ficient to define a composition rule that is identical for

10

all instances of a structural element of a language, for
example, one rule that applies to all method bodies. Rules
that differ from one element instance to another are possible
but we refrained from implementing such rules as it would
add considerable complexity, and we did not encounter the
need.

3.11 Tool Reliability
Finally, writing adapter code and a pretty printer is error-
prone. After the manual integration of the Java parser into
the initial version of FSTCOMPOSER, we detected lots
of errors caused by bugs in the adapter code and in the
pretty printer or by misconceptions regarding the role of
some structural elements in the FST. For example, in the
manual approach, we forgot to represent inner Java classes
as nonterminals. In the generative approach, we stumbled
early over this issue since it was exposed by the grammar
because we annotated grammars top-down, starting from
the root production and, at some point, reached inner
classes and interfaces. Another example is the merge of
initializer blocks of Java classes. In the manual integration,
we simply did not think of this option, until needed in
BERKELEY DB. When annotating the grammar top-down,
it became obvious.

3.12 Lessons Learned
Let us summarize the most significant observations we
made and insights we gained during the integration of dif-
ferent languages and the composition of different software
systems:

1) Superimposition is applicable to a wide range of
code and noncode languages including object-oriented
languages, functional languages, imperative languages,
specification and modeling languages, and domain-
specific languages.

2) Superimposition of FSTs scales to software projects
of substantial size.

3) The time for preparing and annotating grammars is
moderate, compared to implementing adapters and
pretty printers from scratch; varying the annotations
varies the composition granularity and helps to cope
with naming and ordering issues.

4) At fine granularities, elements often do not have
unique identifiers (they are distinguished by the lexical
order), which disallows superimposition. There are
two solutions to this problem: (1) adjust the attributes
of the corresponding grammar to make composi-
tion coarser-grained, and use expressive but possibly
language-dependent composition rules to compose the
corresponding elements properly; (2) assign unique
names manually, which may require changes to the
language’s syntax.

5) The order of program elements and thus of FST
nodes may matter. This makes superimposition dif-
ficult because, in some situations, workarounds such
as sandwiching are necessary. Usually, this problem
arises at a fine granularity. A solution is to adjust the

attributes of the corresponding grammar to coarsen the
granularity, such that the parent node of the ordered
elements becomes a terminal and then to compose the
ordered elements properly by applying a composition
rule.

6) In practice, only few composition rules are needed;
they can be reused by different languages and follow
even fewer rule patterns.

7) The generative approach leads to more reliable tools
than the manual approach. Developing a combination
of a parser, adapter, and pretty printer from scratch is
tedious and error-prone.

3.13 Threats to Validity
Note that our study was not designed to draw quantitative
conclusions based on descriptive statistics, for example,
regarding the frequency and feasibility of using super-
imposition. Rather, our goal was to demonstrate the prac-
ticality and generality of our approach and to gain insight
into issues such as granularity and scalability. Nevertheless,
we would like to comment on possible threats to validity
in this context. As always, the selection of sample systems
may threaten validity. Hence, we deliberately chose a large
sample size including systems of different domains and
written in different languages. While we do not expect
that further sample systems will change the big picture, we
cannot generalize our findings to all kinds of languages.
However, our experience suggests a catalog of mandatory
properties that a language must have to be supported by
FEATUREHOUSE (Section 3.2). A further threat to validity
is that all sample systems have been developed with super-
imposition in mind, albeit mostly for different purposes. It
would be interesting to see how FEATUREHOUSE performs
in scenarios designed for other composition approaches
such as aspect weaving, but this would require considerable
effort to avoid bias and an entirely different study design
to answer an entirely different set of research questions
outside the scope of this article.

4 EXTENSIONS

After the initial development of FEATUREHOUSE, the
integration of a number of languages, and various case
studies, we made a set of extensions and improvements
to FEATUREHOUSE, which were motivated by new re-
quirements and which diverge partly from the original
approach and architecture. This is the reason why we
discuss them separately, which also reflects the history of
the FEATUREHOUSE project.

4.1 XML-based Languages
Beside the six languages we had integrated into FEATURE-
HOUSE, we aimed at integrating XML and XML-based
languages. XML is used widely to represent semistructured
data, so supporting it would open FEATUREHOUSE for a
whole new set of application scenarios. In a first attempt, we
naively developed a grammar of XML in FEATUREBNF.

11

We annotated the grammar such that XML elements were
the nonterminal nodes and unstructured text content and
element attributes were the terminal nodes. But we realized
quickly that this approach would not succeed.

Integrating XML in general is not very interesting (and
difficult due to missing names and relevant order). More
interesting are XML-based languages, which are specified
with XML Schema. XML Schema is used to define the
grammar of an XML-based language. Popular examples
are XHTML for Web sites and XMI for data exchange. To
integrate a particular XML-based language into FEATURE-
HOUSE, we need its specific grammar (specifying which
types of elements have which types of attributes and are
allowed in which places, etc.) – using the plain XML
grammar only is not sufficient because it is too unspecific.

There are two ways to integrate the grammar of an XML-
based language, which we explain by means of XHTML.
First, we can write a FEATUREBNF grammar that captures
specifically the syntax of XHTML. This is a laborious
task since the lexical structure of XML-based languages
is quite special, and the resulting grammar becomes huge
and very complex. XML Schema has been invented for
describing the structure of XML-based languages, and there
are various industrial-strength tools available. So, actually,
XML Schema should play the role of FEATUREBNF.
Second, we could extend FEATUREHOUSE such that new
languages are plugged in not only using FEATUREBNF but
also using annotated XML Schema. To this end, we have
to enrich XML Schema with the possibility of annotating
it with the attributes defining terminals and nonterminals.
This way, we can describe the syntax of XHTML quite
easily and annotate it like FEATUREBNF-based languages.

In Figure 10, we illustrate how we extended FEATURE-
HOUSE to support XML-based languages. Technically,
we used a combination of XML attributes (to represent
grammar annotations) and XSLT (to generate FSTs). In
Figure 11, we show an FST of a simple XHTML document
that lists software companies; it consists of a head, a
body, and an unnumbered list with two items. We define
which elements are nonterminals and which are terminals
(the corresponding XML elements are defined in an XML
schema). Note that, while we use default names for the head
and the body of an XHTML document (separated by ‘:’),
we define additionally application-specific names for the
list and the list items (separated by ‘::’). Technically, we
define default names in the corresponding XML schema,
as we illustrate in Figure 12 for unordered lists, and we
assign application-specific names via XSLT. Then, super-
imposition is performed as with any other language. We
did not implement any composition rules specific to XML.
Technical details are described elsewhere [30].

Based on the extended version of FEATUREHOUSE, we
conducted a number of further case studies. In a first
step, we integrated three languages: XHTML, XMI/UML,4

and Ant for controlling build processes. Apart from the

4. XMI is a general document format for data exchange. There is a
special namespace for the representation of UML diagrams in XMI.

Java

C#

C

Haskell

Alloy

JavaCC

...

Generator

Parser Composer Pretty Printer

Source Code Source CodeFST

Library of Composition Rules

FSTFST

FSTComposer

XMI/UML

XHTML

...

FeatureBNF XML Schema

FSTGenerator

Fig. 10. The extended architecture of FEATUREHOUSE
with support for XML-based languages

XML.Terminal : content

XML.NonTerminal : li :: IBMXML.NonTerminal : li :: SAP

XML.Terminal : content

XML.NonTerminal : body

XML.NonTerminal : ul :: companies

XML.NonTerminal : head

XML.DocumentRoot : root

Fig. 11. An FST of an XHTML document

use of XML Schema, the integration is similar to that
of FEATUREBNF-based languages. Note that, for Ant, we
used a manual approach (cf. Section 3.9) as there is no
static XML schema available.

Overall, we (de)composed six software systems, each of
which is written in one of the three languages. Specifi-
cally, we decomposed the XHTML documentation of our
GPL case study into features and composed them again
depending on the feature selection. We decomposed the
UML class, state, and sequence diagrams of the designs
of a phone system, an audio control system, a conference
management system, and a gas boiler system into features
and composed them in different combinations generating
different designs. Of course, we did not write XMI/UML

1 <xs:element name=”ul”>
2 ...
3 <xs:complexType>
4 <xs:attributeGroup ref=”attrs”/>
5 // mark unordered lists as nonterminals
6 <xs:attribute name=”isTerminal” type=”xs:boolean”
7 use=”optional” default=”false”/>
8 // support application−specific names via attribute fstname
9 <xs:attribute name=”fstname” type=”xs:string”/>

10 </xs:complexType>
11 </xs:element>

Fig. 12. Annotating XML schema to treat unordered
lists as nonterminals with application-specific names

12

System Domain LOC COMP LANG

GPLDOC Documentation of GPL 484 16 XHTML
PHONE Phone system 1 001 2 XMI/UML
ACS Audio control system 2 080 4 XMI/UML
CMS Conference management 2 077 9 XMI/UML
GBS Gas boiler system 2 380 28 XMI/UML
BUILDER Generic build script 57 6 Ant

LOC: lines of code; COMP: composition units; LANG: artifact language

TABLE 5
Overview of the XML-based case studies

code manually, but used ArgoUML5 as a UML editor,
which was only possible because we did not extend the syn-
tax of XMI/UML – a strength of our approach. Finally, we
decomposed an Ant build script into features and composed
them such that the resulting build scripts control the build
process according to the feature selection. Table 5 provides
an overview of the XML-based case studies, available on
the FEATUREHOUSE Web site.

In summary, our findings were similar to those in the
other case studies. Superimposition worked well at coarse
and medium granularities at which XML elements have
unique names and their order does not matter. At finer
granularities, we had to assign names manually, which is
especially easy in XML-based languages. For example, in
the XHTML documentation of GPL, we assigned unique
names to structural elements such as lists and list elements
(using attribute fstname) to be able to extend them subse-
quently by other features.

A key insight is that our approach and architecture
is general enough to integrate languages with a special
syntax such as XML seamlessly. This makes it usable for a
wide variety of composition problems outside conventional
programming and specification languages.

4.2 Quantification and Weaving

Beside superimposition, also other techniques for software
composition have been proposed, most notably composition
by quantification and weaving [8], [29], [38], in which,
when expressing changes, we specify declaratively the
points at which the changes are applied. This idea has been
explored in depth in work on multi-dimensional separation
of concerns [7], aspect-oriented programming [40], adap-
tive programming [41], and strategic programming [42].
Quantification is the ability to apply the same generic
change in multiple places [40]. In our approach, this means
that we have to determine the locations in the FST where
changes are to be applied. Applying the actual changes then
corresponds to weaving in aspect orientation [40].

In the past, researchers identified complementary
strengths and weaknesses of superimposition, on the one
hand, and quantification and weaving, on the other [8],
[38], [43]. To integrate composition by quantification and

5. A graphical UML editor: http://argouml.tigris.org/

weaving in our approach, we introduce the concept of a
modification. A modification consists of two parts:

1) Traversal specification: A characterization of the FST
nodes that will be affected during composition.

2) Rewrite specification: A specification of how these
nodes will be affected.

A modification is performed by an FST traversal that deter-
mines the nodes to be modified and applies the necessary
changes to them. A modification takes an FST as input and
produces a modified FST as output. A traversal specification
can yield a set of FST nodes as a result. This allows us to
specify the modification of multiple nodes at once rather
than each set member individually.

An advantage of composition by quantification and
weaving is that it enables us to address parts of a program
more generically than superimposition, which always is
applied at a root of an FST. That is, we can locate the
places of change by a pattern on FST nodes that the
structural elements of a program have to satisfy to be
affected by a modification (e.g., “all methods in package
util whose names begin with set”). For example, a feature
could add a new field to every Java class of a package,
regardless of the name of the class. Naturally, such a
modification can be applied to a wide variety of programs.
With superimposition, we have to specify each single target
node, even though we change them all in the same way,
which can result in considerable code replication [38].
Nevertheless, once the points of change are known, the two
kinds of composition become equivalent. That is, once we
have chosen a program, we can find an equivalent FST
for every modification that, when superimposed with the
program, produces the same results as applying the mod-
ification. Figure 13 illustrates this similarity. In previous
work, it has been shown that both kinds of composition
have complementary strengths [38], so we include them
both in our model.

sleepycat

com

Database

notifyTriggers

notifyTriggers

query:

change:

.Database

modification

sleepycat

com

Database

state

triggerList

sleepycat

com

Database

state

triggerList

Latches

Latches

select

add

...

notifyTriggers ...

BaseDB

...

notifyTriggers ...

BaseDB

...

...

acquireReadLock

acquireReadLock

releaseReadLock

releaseReadLock

Fig. 13. Dual notions of composition: superimposition
(top) and quantification and weaving (bottom)

http://argouml.tigris.org/

13

The extension of our FST model by support for quan-
tification and weaving can be formulated again indepen-
dently of a particular language. This illustrates that the
FST model is very general. Another point is that, like
with superimposition, the FST variant of quantification and
weaving helps to condense the essence of related pro-
gramming language mechanisms such as aspect weaving,
which we discuss in Section 5.2 in the context of feature
algebra. However, language independence always impairs
expressiveness and, so, composition by quantification and
weaving is not able to model all mechanisms of fully-
fledged languages such as AspectJ. We get back to this
issue when describing one of our case studies later in this
section.

We have implemented support for quantification and
weaving on top of FEATUREHOUSE. To select a set of
target nodes, a programmer can specify patterns such as
‘Database.∗ : JavaMethod’ for selecting all methods of class
Database. The pattern language is inspired by AspectJ
but allows modifications to quantify also over syntactic
categories (i.e., FST node types). In Table 6, we provide
an overview of the most important constructs of the pattern
language by means of examples. Technical details of the
language are described elsewhere [29].

There are two types of rewrites: a rewrite that defines
which new elements are added to the nodes selected by the
corresponding traversal, and a rewrite that defines which
new elements are composed with the selected nodes via
terminal composition. In the current implementation, the
nodes are given in text form (i.e., the code of the element
to add or compose with).

1 <modification>
2 <type>introduction</type>
3 <traversal>..∗ : JavaClass</traversal>
4 <content>
5 <text>private Tracer t = new Tracer();</text>
6 <tType>Field</tType>
7 </content>
8 </modification>

Fig. 14. A modification introducing a field to every class

Technically, traversal and rewrite specifications are em-
bedded in an XML document, as illustrated in Figure 14.
Traversals and rewrites are straightforwardly implemented
on top of FEATUREHOUSE’s FST classes using visitors,
pattern matching, and terminal composition rules.

In three case studies, we implemented modifications for
four software systems of different sizes written in two
different languages. Table 7 lists relevant information on
the case studies. The source code of all case studies is
available on the FEATUREHOUSE Web site.

In a first study, we implemented several modifications
that add new features to our GPL case study. To demon-
strate the language independence of modifications, we
implemented five new features with, in total, twelve mod-
ifications on top of the Java and a C# implementation of
GPL (see Table 3). Although the quantification mechanism
is language-independent, individual modifications are not.

System Domain LOC MOD LANG

GPL Graph library 2 439 12 Java
GPL Graph library 2 148 12 C#
BERKELEY DB Database system 58 030 4 Java
AJHOTDRAW Graphics framework 43 368 181 Java

LOC: lines of code; MOD: modifications; LANG: artifact language

TABLE 7
Overview of case studies on quantification and

weaving

Hence, we created similar but different traversal and rewrite
specifications in both languages.

In a second study, we implemented a generic tracing fea-
ture for BERKELEY DB. The tracing feature consists of four
modifications. With over 300 classes, the four modifications
affect large parts of the code base of BERKELEY DB. This
indicates the high degree of genericity that can be achieved
in the implementation of modifications as well as a certain
scalability of our approach and tool. With superimposition,
we would have to specify an FST consisting of extensions
of all target classes.

In a third study, we explored to what extent it is pos-
sible to reimplement the aspects of AJHOTDRAW6 with
modifications. AJHOTDRAW is a Java/AspectJ framework
for 2D graphics. Since modifications in FEATUREHOUSE
support only a limited set of changes, we were not able to
reimplement all of the 42 aspects. (Specifically, we were
able to reimplement 23 aspects completely and 13 aspects
partially. For example, the FST model does not capture
dynamic crosscuts as implemented with cflow, which is due
to the static nature of FSTs.)

Overall, the three case studies demonstrate that quan-
tification and weaving are indeed language-independent
mechanisms that can be implemented as part of FEATURE-
HOUSE. Although we did not aim at discussing the
strengths and weaknesses of superimposition as compared
to quantification and weaving, we observed that, especially,
for extensions that are identical for a number of program
locations, modifications can decrease the amount of code
replication considerably. We also found that, due to its syn-
tactic nature, FST-based quantification and weaving is less
expressive than control-flow–based mechanisms of aspect-
oriented languages such as AspectJ. Apparently, there is a
trade-off between language independence and expressive-
ness. As control-flow–based language mechanisms are used
rather infrequently [44], we decided in favor of language
independence accepting the need for workarounds to mimic
control-flow–based program extensions.

4.3 Summary
The two extensions of FEATUREHOUSE illustrate that the
tool suite has considerable potential to be used in further
application scenarios. Beside further composition operators

6. http://sourceforge.net/projects/ajhotdraw

http://sourceforge.net/projects/ajhotdraw

14

Traversal pattern Description

com.sleepycat.Database : JavaClass select class Database of package com.sleepycat
com.sleepycat.* : JavaClass select every class of package com.sleepycat
com.sleepycat.* : * select every element (class, method, etc.) of package com.sleepycat
com.* : JavaPackage + org.* : JavaPackage select every subpackage of the packages com and org
com.* : JavaPackage - com.sleepycat.* : JavaPackage select every subpackage of package com except the ones of com.sleepycat
com..state : JavaField select every field state contained in any class of package com

TABLE 6
Examples of traversal patterns along with descriptions for Java FSTs

and language families, we envision tools for visualization,
documentation, and analysis, to name a few.

5 PERSPECTIVES

In this section, we present ongoing work that aims at
improving software composition with FEATUREHOUSE. In
particular, we discuss perspectives of the FEATUREHOUSE
approach with regard to reliability, formalization, and au-
tomation based on our practical experience. Due to the lack
of space, we must be more cursory here than in the previous
sections.

5.1 Type System
An issue not addressed so far in FEATUREHOUSE is how
we can assess correctness beyond syntactic and structural
properties. As a challenge, we would like to guarantee
that every composed system is well-typed. In our database
example, Latches refers to BaseDB. If the latter is not
present in a composed system, Latches does not work
properly and, due to dangling references, several type errors
are reported for Latches at compile time. Specifically,
there are two challenges of guaranteeing type correctness
in FEATUREHOUSE. First, FEATUREHOUSE is language-
independent. That is, we cannot use a type system tailored
to a particular language. We need an, at least, partially
language-independent solution. Second, in many projects
there is variability in how to compose composition units.
We may select specific combinations of composition units,
for example, from optional and alternative units, and pro-
duce different variants of a product, as is common in
software product lines [45]. Instead of type checking all
possible combinations (an exponential number), we seek
possibilities to type check individual composition units or
closed sets of composition units in isolation.

With regard to the first challenge (language indepen-
dence), we developed a formal calculus for software com-
position, called gDEEP [46]. The key idea of gDEEP is
to model the structure of a composition unit as nested
record independently of a particular language, which is
a representation equivalent to FSTs. Furthermore, gDEEP
comes with a set of well-formedness and subtyping rules
that define uniformly how units are composed type-safely.
However, these language-independent rules alone cannot
ensure type safety. They have to be complemented with
language-specific type rules. In fact, there are two parts

to type checking: the language-independent part check-
ing compositions at the level of the module structure
(nonterminal and terminal structure) and the language-
dependent part checking terms written in specific artifact
languages (content of terminals). We have shown that it
is feasible to combine gDEEP with different languages
such as Java and Haskell [46]. The distinction between
a language-independent and a language-dependent part is
analogous to the distinction between language-independent
superimposition and language-dependent composition rules
in FEATUREHOUSE, as illustrated in Figure 15. Hence, we
are confident that a fully-fledged type system based on
gDEEP is not unrealistic.

Java C# C Haskell Alloy JavaCC ...
Language−Dependent

Term Type Checking

Language−Independent

Module Type Checking

Fig. 15. The interplay between the language-
independent and language-dependent parts of type
checking in gDEEP

With regard to the second challenge (type checking
all composition units once, instead of all valid combina-
tions), we developed a prototype of a language-independent
checker, called FEATURETWEEZER, that takes a set of
composition units and a description of their valid combina-
tions (e.g., Latches requires BaseDB) and checks, without
generating all valid products, whether there is any valid
product that contains a type error [47]. Currently, we
concentrate on a specific class of type errors: dangling
references. The reason for this limitation is that a fully-
fledged, language-independent type system is not available.
To this end, we have extended the FST model by cross-tree
edges that represent references between program elements.

A reference is a very general concept. Modelling ref-
erences as cross-tree edges is a common denominator for
most languages. For example, a Java method invocation
(i.e., the language-independent part of method lookup)
is represented by an edge from the caller to the callee;
a JavaCC reference is represented by an edge from a
nonterminal to the corresponding production rule. Based
on this representation, FEATURETWEEZER checks a set of
composition units once and guarantees, given that the check

15

has been successful, that no valid combination contains
a dangling reference. This saves especially much time if
there are many valid combinations, such as in software
product lines, and checking all of them individually is
infeasible. The algorithm is a straightforward extension of
previous work on type checking product lines [48]–[51],
adapted to a language-independent model. In a nutshell,
FEATURETWEEZER checks, for every reference, whether
the target node (e.g., the called method) is present in every
valid product in which also the source node (the calling
method) is present. To this end, FEATURETWEEZER uses
propositional logic and SAT solver technology to check
references. We envision to extend FEATURETWEEZER to
a fully-fledged type system based on the insight we gained
with gDEEP.

5.2 Feature Algebra
The gDEEP calculus is a first step toward formalizing and
reasoning about feature composition. In a parallel line of
work, we have been exploring how feature composition can
be formalized using algebra [24]. A motivation of this work
is to raise the abstraction level further, from logic (as in
gDEEP) to simple algebraic structures such as semigroups
and semimodules. Again, the FST model is the foundation.
To enable formal reasoning, the feature algebra describes
features as algebraic terms and feature composition as a
fundamental operation. Actually, there are several atomic
operations that resemble different composition mechanisms
including superimposition and quantification and weaving.
For example, feature BaseDB of Figure 1 is represented as
a sum (denoted with ⊕) of introductions:

BaseDB = com.sleepycat .Database.state

⊕ com.sleepycat .Database.triggerList

⊕ com.sleepycat .Database.notifyTriggers

⊕ . . .

Each introduction represents a path in the FST beginning
from the root (prefixes represent paths; FST node types are
not shown here for brevity). Superimposition is represented
by adding new introductions to a given introduction sum.
So, composing feature Latches with feature BasedDB is
achieved by the sum of their introductions.

Quantification and weaving is represented by the op-
eration of modification application (denoted with �). A
modification m is applied to a sum i1 ⊕ . . . ⊕ in of
introductions by applying it to all of its summands, which
is captured by a distributivity law:

m� (i1 ⊕ . . .⊕ in) = (m� i1)⊕ . . .⊕ (m� in)

Feature algebra is a means of exploring the design
decisions we implemented in FEATUREHOUSE formally.
Interestingly, we came to very similar conclusions as with
our work on FEATUREHOUSE, especially, with regard to
the properties that are mandatory to make a language
feature-ready (elements must have unique names, etc.).
The feature algebra helps to analyze the effects of certain

design decisions formally. For example, under which cir-
cumstances is feature composition associative, idempotent,
or even commutative? We gained insight that was difficult
to gain with tools like FEATUREHOUSE, which contains
a lot of distracting functionality. For example, we found
that composition by quantification and weaving results
in a reduction of compositional flexibility compared to
superimposition, which is counterintuitive since changes
can be expressed more generically and declaratively than
with superimposition. Supporting the full power of quan-
tification (each composition unit may affect every other
unit) leads to a composition operator that is not even as-
sociative. (We consider associativity an important property
of composition.) Also, the algebra helped us to compare
different composition tools such as AspectJ, CaesarJ, and
FeatureC++ [24]. For example, we found that, in principle,
CaesarJ and FeatureC++ are similar, whereas AspectJ is dif-
ferent as it does not support (symmetric) superimposition.
Feature algebra provides a means of extracting the essence
of the difference.

In the long term, we intend to use the feature alge-
bra not only to describe the mechanisms implemented
in FEATUREHOUSE, but also as intermediate language to
specify the behavior of our composition tool. Software
components are translated to algebraic expressions that
can be manipulated based on algebraic laws. Algebraic
optimization facilitates design optimization. That is, by ma-
nipulating feature-algebraic terms, we manipulate programs
and their designs. This approach is called architectural
metaprogramming [52] because it lifts metaprogramming
(programs manipulate programs) to the architectural level
(programs manipulate algebraic expressions that represent
programs). Our work on feature algebra and FEATURE-
HOUSE is an important step toward realizing the vision
of architectural metaprogramming.

6 RELATED WORK

Although manifested and implemented differently, several
languages provide support for superimposition of different
kinds of artifacts, for example, Jiazzi [11], Classbox/J [14],
Hyper/J [16] and Jak [6] for Java, FeatureC++ [17] for
C++, Xak [19] for XML, and others [6], [9], [20]–[22],
[53]. In turn, superimposition is based on a large corpus of
work on extending objects and classes noninvasively, for
example, mixins [54], traits [55], virtual classes [56], and
object composition [57]. Work on superimposition build
on these approaches, generalizes them to different kinds
of software artifacts, and applies extensions consistently to
entire sets of entities.

While it has been noted that there is a unique core
common to all composition mechanisms based on super-
imposition [6], researchers have not condensed the essence
of superimposition into a general methodology and tool
chain for software composition. A notable exception is
the work of Batory et al. who, for the first time, stressed
the language-independent nature of software composi-
tion by superimposition [6]. Batory et al. have proposed

16

the AHEAD model for superimposition, based on nested
records, that was a starting point for our work. We have
adapted and evolved the model toward our FST model.
In contrast to AHEAD’s nested records, the FST model
distinguishes between terminals and nonterminals and pre-
sume a fixed order of elements. This and the tree structure
place the FST model closer to the implementation level
and allowed us to derive directly an implementation, which
has not been done by AHEAD (each AHEAD tool for
each language has been developed from scratch). So, we
believe that our FST model captures the essence of super-
imposition more precisely. It is language-independent and
automates the integration of new languages. We envision
further algorithms to be integrated in FEATUREHOUSE
that operate on FSTs and their algebraic representations
to compose, visualize, optimize, and verify software. Thus,
FEATUREHOUSE provides a general framework not only
for different languages but also for different algorithms
that aim at reasoning about software composition language-
independently.

In the context of our FST model, quantification is mod-
eled as a tree walk, in which each node is visited and a
predicate specifies whether the node is modified or not.
Harrison et al. [58] propose a sophisticated set of rewriting
rules that are based on tree walks. Much like in our earlier
work (manual approach; cf. Section 3.9) [25], they define a
general, language-independent composition algorithm that
parses and prints the code of artifacts by calling language-
specific plug-ins, which are analogous to the adapters and
pretty printers in the manual approach. They applied their
approach to Java (source and binary) and Ant.

Recent work in model composition [59]–[62] aims at
developing a general framework for composing different
kinds of models. Our approach can be applied to models
(see Section 4.1), but aims also at nonmodeling languages.
Like FEATUREHOUSE, Hyper/J, CaesarJ, Xak, and Fea-
tureC++ support the combination of superimposition and
quantification, but not independent of the language.

Software composition is related to the broad field of
software merging, whose goal is to merge different versions
of a software system not only at the module level but at all
levels of granularity by using syntactic, semantic, and evo-
lutionary information [32]. Especially for the implementa-
tion of artifact-specific composition rules, superimposition
can benefit from these developments.

In a parallel line of research, we have implemented a
product-line tool, called CIDE, that allows a developer to
decompose legacy software into a product line, type check
all products of a product line, and visualize and resolve
feature interactions [31], [51]. CIDE pursues also a gener-
ative approach of integrating new languages [63] based on
the same grammar format as in FEATUREHOUSE but using
different attributes; initially, FEATUREBNF was developed
for CIDE. CIDE uses the entire parse tree; thus, it does
not require a mapping to terminals and nonterminals of an
FST. The coordinated development of FEATUREHOUSE and
CIDE allows us to use grammars in both projects. CIDE
has been used to decompose some of our case studies into

superimposable units [64].
Delta-oriented programming is partially based on super-

imposition [65]. A delta encapsulates all changes that a
feature makes to a program. In contrast to our composition
units, Deltas can even specify the removal of elements
of a given program. Hence, delta-oriented programming
diverges from the concept of superimposition and also of
quantification and weaving. Recently, it has been shown
that the feature algebra can be embedded in an algebra
that describes delta composition [66]. It would be interest-
ing to explore whether and how FEATUREHOUSE could
be extended to support delta composition. For example,
it seems quite straightforward to allow programmers to
remove nodes from an FST, which is a basic delta operation.

Azanza et al. present a general approach to the incre-
mental development of model-based software [62]. They
describe transformations as model deltas that, when com-
posed, deliver a complete model. They establish a rela-
tionship between a metamodel and its corresponding delta
metamodel, show how model deltas can be defined as model
changes (additions), explain how deltas can be composed
using domain-specific composition algorithms, and propose
metamodel annotations to specify these algorithms. On the
one hand, the key innovation is that the approach of Azanza
et al. allows programmers to plug in new composition
algorithms. On the other hand, the authors do not focus on
language independence in the sense of FEATUREHOUSE.

Finally, we extended FEATUREHOUSE to support, beside
composition via superimposition and quantification and
weaving, also software merging in revision control sys-
tems [67]. While this extension diverged in certain aspects
substantially from the FEATUREHOUSE approach, we were
able to build a merge engine on the FST model. This facil-
itated an easy integration of support for multiple languages
(Java, C#, and Python) as well as the enrichment of the
merge process with information (via grammar attributes)
on how certain code fragments are merged.

7 CONCLUSION
We provided a coherent and complete view of our experi-
ence and insight gained with FEATUREHOUSE. This article
subsumes and extends our previous work on language-
independent, automated software composition [27]–[30].
Compared to previous work, we report on experience in
a substantial number of case studies, a diverse selection of
languages, a number of extensions of our approach, and
perspectives that arise from our holistic and retrospective
view on the FEATUREHOUSE approach.

FEATUREHOUSE is an approach and a set of accompany-
ing tools for language-independent software composition.
In FEATUREHOUSE, we model software artifacts by tree
structures and composition by tree superimposition as well
as tree traversals and rewrites. The FST model abstracts
from the specifics of a particular programming language or
tool. Any reasonably structured software artifact that can be
represented as an FST can be composed by our approach.

FSTGENERATOR generates, on the basis of an attribute
grammar, an FST representation and a pretty printer for

17

a given language. FSTCOMPOSER composes FSTs generi-
cally via both superimposition and quantification and weav-
ing. From the integration of various languages (including
programming, specification and modelling, and domain-
specific languages) and the application to several programs
of different sizes, written in different languages, we learned
much about our approach and the properties and problems
of languages to be integrated. In particular, we found that
the composition granularity is influenced by the language’s
syntactic structure. A fine granularity is expressive but
may be infeasible because of naming and ordering issues.
Composing artifacts at a coarser grain alleviates these
problems but decreases expressiveness. The generative ap-
proach of FEATUREHOUSE allows developers to adjust the
granularity easily to find a proper balance per language.

In the future, we would like to extend FEATUREHOUSE
by further languages, composition operators, a type system,
and tools, for example, for visualization, documentation,
and analysis. Our work on feature algebra and on language-
independent type checking is a foundation for this endeavor.

ACKNOWLEDGMENTS

We are grateful to Don Batory for helpful comments on ear-
lier drafts of this paper, Sebastian Scharinger and Alexander
von Rhein for implementing the Java and C# parsers of
FSTCOMPOSER, Stefan Boxleitner for integrating quantifi-
cation and weaving, Jens Dörre for adding XML-based lan-
guages, Marko Rosenmüller and Norbert Siegmund for their
support in developing the C grammar, Wolfgang Scholz
for implementing FEATURETWEEZER, and the anonymous
reviewers of this article and earlier conference versions.
Apel’s and Lengauer’s work is supported by the German
Research Foundation (DFG – AP 206/2, AP 206/4, and
LE 912/13). Kästner’s work is supported by the European
Research Council (ERC #203099).

REFERENCES

[1] H. Ossher and W. Harrison, “Combination of Inheritance Hi-
erarchies,” in Proceedings of the International Conference on
Object-Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA). ACM Press, 1992, pp. 25–40.

[2] L. Bouge and N. Francez, “A Compositional Approach to Super-
imposition,” in Proceedings of the International Symposium on
Principles of Programming Languages (POPL). ACM Press, 1988,
pp. 240–249.

[3] S. Katz, “A Superimposition Control Construct for Distributed Sys-
tems,” ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 15, no. 2, pp. 337–356, 1993.

[4] Y. Smaragdakis and D. Batory, “Mixin Layers: An Object-Oriented
Implementation Technique for Refinements and Collaboration-Based
Designs,” ACM Transactions on Software Engineering and Method-
ology (TOSEM), vol. 11, no. 2, pp. 215–255, 2002.

[5] C. Prehofer, “Feature-Oriented Programming: A Fresh Look at
Objects,” in Proceedings of the European Conference on Object-
Oriented Programming (ECOOP), ser. LNCS, vol. 1241. Springer-
Verlag, 1997, pp. 419–443.

[6] D. Batory, J. Sarvela, and A. Rauschmayer, “Scaling Step-Wise
Refinement,” IEEE Transactions on Software Engineering (TSE),
vol. 30, no. 6, pp. 355–371, 2004.

[7] P. Tarr, H. Ossher, W. Harrison, and S. Sutton, Jr., “N Degrees
of Separation: Multi-Dimensional Separation of Concerns,” in Pro-
ceedings of the International Conference on Software Engineering
(ICSE). IEEE CS, 1999, pp. 107–119.

[8] M. Mezini and K. Ostermann, “Variability Management with
Feature-Oriented Programming and Aspects,” in Proceedings of the
International Symposium on Foundations of Software Engineering
(FSE). ACM Press, 2004, pp. 127–136.

[9] M. Sihman and S. Katz, “Superimpositions and Aspect-Oriented
Programming,” Computer Journal, vol. 46, no. 5, pp. 529–541, 2003.

[10] J. Bosch, “Super-Imposition: A Component Adaptation Technique,”
Information and Software Technology (IST), vol. 41, no. 5, pp. 257–
273, 1999.

[11] S. McDirmid and W. Hsieh, “Aspect-Oriented Programming with
Jiazzi,” in Proceedings of the International Conference on Aspect-
Oriented Software Development (AOSD). ACM Press, 2003, pp.
70–79.

[12] N. Nystrom, S. Chong, and A. Myers, “Scalable Extensibility via
Nested Inheritance,” in Proceedings of the International Conference
on Object-Oriented Programming, Systems, Languages, and Appli-
cations (OOPSLA). ACM Press, 2004, pp. 99–115.

[13] M. Odersky and M. Zenger, “Scalable Component Abstractions,”
in Proceedings of the International Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA).
ACM Press, 2005, pp. 41–57.

[14] A. Bergel, S. Ducasse, and O. Nierstrasz, “Classbox/J: Controlling
the Scope of Change in Java,” in Proceedings of the International
Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA). ACM Press, 2005, pp. 177–189.

[15] D. Hutchins, “Eliminating Distinctions of Class: Using Prototypes
to Model Virtual Classes,” in Proceedings of the International
Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA). ACM Press, 2006, pp. 1–19.

[16] H. Ossher and P. Tarr, “Hyper/J: Multi-Dimensional Separation of
Concerns for Java,” in Proceedings of the International Conference
on Software Engineering (ICSE). IEEE CS, 2000, pp. 734–737.

[17] S. Apel, T. Leich, M. Rosenmüller, and G. Saake, “FeatureC++: On
the Symbiosis of Feature-Oriented and Aspect-Oriented Program-
ming,” in Proceedings of the International Conference on Generative
Programming and Component Engineering (GPCE), ser. LNCS, vol.
3676. Springer-Verlag, 2005, pp. 125–140.

[18] S. Apel, S. Kolesnikov, J. Liebig, C. Kästner, M. Kuhlemann, and
T. Leich, “Access Control in Feature-Oriented Programming,” Sci-
ence of Computer Programming—Special Issue on Feature-Oriented
Software Development, 2012, to appear.

[19] F. Anfurrutia, O. Dı́az, and S. Trujillo, “On Refining XML Artifacts,”
in Proceedings of the International Conference on Web Engineering
(ICWE), ser. LNCS, vol. 4607. Springer-Verlag, 2007, pp. 473–478.

[20] S. Clarke, W. Harrison, H. Ossher, and P. Tarr, “Subject-Oriented
Design: Towards Improved Alignment of Requirements, Design,
and Code,” in Proceedings of the International Conference on
Object-Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA). ACM Press, 1999, pp. 325–339.

[21] K. Czarnecki and M. Antkiewicz, “Mapping Features to Models:
A Template Approach Based on Superimposed Variants,” in Pro-
ceedings of the International Conference on Generative Program-
ming and Component Engineering (GPCE), ser. LNCS, vol. 3676.
Springer-Verlag, 2005, pp. 422–437.

[22] T. Kamina and T. Tamai, “Lightweight Scalable Components,” in
Proceedings of the International Conference on Generative Pro-
gramming and Component Engineering (GPCE). ACM Press, 2007,
pp. 145–154.

[23] G. Freeman, D. Batory, and G. Lavender, “Lifting Transformational
Models of Product Lines: A Case Study,” in Proceedings of the
International Conference on Model Transformation (ICMT), ser.
LNCS, vol. 5063. Springer-Verlag, 2008, pp. 16–30.

[24] S. Apel, C. Lengauer, B. Möller, and C. Kästner, “An Algebraic
Foundation for Automatic Feature-Based Program Synthesis,” Sci-
ence of Computer Programming (SCP), vol. 75, no. 11, pp. 1022–
1047, 2010.

[25] S. Apel and C. Lengauer, “Superimposition: A Language-
Independent Approach to Software Composition,” in Proceedings
of the International Symposium on Software Composition (SC), ser.
LNCS, vol. 4954. Springer-Verlag, 2008, pp. 20–35.

[26] I. Aracic, V. Gasiunas, M. Mezini, and K. Ostermann, “An Overview
of CaesarJ,” Trans. on Aspect-Oriented Software Development I,
LNCS, vol. 3880, pp. 135–173, 2006.

[27] S. Apel, C. Kästner, and C. Lengauer, “FeatureHouse: Language-
Independent, Automated Software Composition,” in Proceedings of
the International Conference on Software Engineering (ICSE). IEEE
CS, 2009, pp. 221–231.

18

[28] S. Apel, C. Kästner, A. Größlinger, and C. Lengauer, “Feature
(De)composition in Functional Programming,” in Proceedings of the
International Conference on Software Composition (SC), ser. LNCS,
no. 5634. Springer-Verlag, 2009, pp. 9–26.

[29] S. Boxleitner, S. Apel, and C. Kästner, “Language-Independent
Quantification and Weaving for Feature Composition,” in Proceed-
ings of the International Conference on Software Composition (SC),
ser. LNCS, no. 5634. Springer-Verlag, 2009, pp. 45–54.

[30] J. Dörre, “Feature-Oriented Composition of XML Artifacts,” Mas-
ter’s thesis, Department of Informatics and Mathematics, University
of Passau, 2009.

[31] C. Kästner, S. Apel, and M. Kuhlemann, “Granularity in Software
Product Lines,” in Proceedings of the International Conference on
Software Engineering (ICSE). ACM Press, 2008, pp. 311–320.

[32] T. Mens, “A State-of-the-Art Survey on Software Merging,” IEEE
Transactions on Software Engineering (TSE), vol. 28, no. 5, pp. 449–
462, 2002.

[33] D. Wile, “Abstract Syntax from Concrete Syntax,” in Proceedings
of the International Conference on Software Engineering (ICSE).
ACM Press, 1997, pp. 472–480.

[34] D. Batory, J. Liu, and J. Sarvela, “Refinements and Multi-
Dimensional Separation of Concerns,” in Proceedings of the Euro-
pean Software Engineering Conference and the International Sym-
posium on the Foundations of Software Engineering (ESEC/FSE).
ACM Press, 2003, pp. 48–57.

[35] M. Mezini and K. Ostermann, “Integrating Independent Components
with On-Demand Remodularization,” in Proceedings of the Inter-
national Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA). ACM Press, 2002, pp.
52–67.

[36] C. Szyperski, D. Gruntz, and S. Murer, Component Software. Beyond
Object-Oriented Programming. Addision-Wesley, 2002.

[37] R. Lopez-Herrejon, D. Batory, and W. Cook, “Evaluating Support
for Features in Advanced Modularization Technologies,” in Proceed-
ings of the European Conference on Object-Oriented Programming
(ECOOP), ser. LNCS, vol. 3586. Springer-Verlag, 2005, pp. 169–
194.

[38] S. Apel, T. Leich, and G. Saake, “Aspectual Feature Modules,” IEEE
Transactions on Software Engineering (TSE), vol. 34, no. 2, pp. 162–
180, 2008.

[39] D. Parnas, “Designing Software for Ease of Extension and Contrac-
tion,” in Proceedings of the International Conference on Software
Engineering (ICSE). IEEE CS, 1978, pp. 264–277.

[40] H. Masuhara and G. Kiczales, “Modeling Crosscutting in Aspect-
Oriented Mechanisms,” in Proceedings of the European Conference
on Object-Oriented Programming (ECOOP), ser. LNCS, vol. 2743.
Springer-Verlag, 2003, pp. 2–28.

[41] K. Lieberherr, B. Patt-Shamir, and D. Orleans, “Traversals of Ob-
ject Structures: Specification and Efficient Implementation,” ACM
Transactions on Programming Languages and Systems (TOPLAS),
vol. 26, no. 2, pp. 370–412, 2004.

[42] R. Lämmel, E. Visser, and J. Visser, “Strategic Programming Meets
Adaptive Programming,” in Proceedings of the International Con-
ference on Aspect-Oriented Software Development (AOSD). ACM
Press, 2003, pp. 168–177.

[43] A. Colyer and A. Clement, “Large-scale AOSD for Middleware,”
in Proceedings of the International Conference on Aspect-Oriented
Software Development (AOSD). ACM Press, 2004, pp. 56–65.

[44] S. Apel, “How AspectJ is Used: An Analysis of Eleven AspectJ
Programs,” Journal of Object Technology (JOT), vol. 9, no. 1, pp.
117–142, 2010.

[45] P. Clements and L. Northrop, Software Product Lines: Practices and
Patterns. Addison-Wesley, 2002.

[46] S. Apel and D. Hutchins, “A Calculus for Uniform Feature Compo-
sition,” ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 32, no. 5, pp. 1–33, article 19, 2010.

[47] S. Apel, W. Scholz, C. Lengauer, and C. Kästner, “Language-
Independent Reference Checking in Software Product Lines,” in
Proceedings of the International Workshop on Feature-Oriented
Software Development (FOSD). ACM Press, 2010, pp. 65–71.

[48] S. Thaker, D. Batory, D. Kitchin, and W. Cook, “Safe Composition
of Product Lines,” in Proceedings of the International Conference
on Generative Programming and Component Engineering (GPCE).
ACM Press, 2007, pp. 95–104.

[49] B. Delaware, W. Cook, and D. Batory, “Fitting the Pieces Together:
A Machine-Checked Model of Safe Composition,” in Proceedings

of the European Software Engineering Conference and the Inter-
national Symposium on the Foundations of Software Engineering
(ESEC/FSE). ACM Press, 2009, pp. 243–252.

[50] S. Apel, C. Kästner, A. Größlinger, and C. Lengauer, “Type Safety
for Feature-Oriented Product Lines,” Automated Software Engineer-
ing, vol. 17, no. 3, pp. 251–300, 2010.

[51] C. Kästner, S. Apel, T. Thüm, and G. Saake, “Type Checking
Annotation-Based Product Lines,” ACM Transactions on Software
Engineering and Methodology (TOSEM), 2012, to appear.

[52] D. Batory, “Program Refactorings, Program Synthesis, and Model-
Driven Design (Keynote),” in Proceedings of the International
Conference on Compiler Construction (CC), ser. LNCS, vol. 4420.
Springer-Verlag, 2007, pp. 156–171.

[53] L. Bergmans and M. Aksit, “Composing Crosscutting Concerns
Using Composition Filters,” Communications of the ACM, vol. 44,
no. 10, pp. 51–57, 2001.

[54] M. Flatt, S. Krishnamurthi, and M. Felleisen, “Classes and Mixins,”
in Proceedings of the International Symposium on Principles of
Programming Languages (POPL). ACM Press, 1998, pp. 171–183.

[55] S. Ducasse, O. Nierstrasz, N. Schärli, R. Wuyts, and A. Black,
“Traits: A Mechanism for Fine-Grained Reuse,” ACM Transactions
on Programming Languages and Systems (TOPLAS), vol. 28, no. 2,
pp. 331–388, 2006.

[56] O. Madsen and B. Moller-Pedersen, “Virtual Classes: A Powerful
Mechanism in Object-Oriented Programming,” in Proceedings of
the International Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications (OOPSLA). ACM Press, 1989,
pp. 397–406.

[57] L. Bettini, V. Bono, and B. Venneri, “Delegation by Object Compo-
sition,” Science of Computer Programming (SCP), vol. 76, no. 11,
pp. 992–1014, 2011.

[58] W. Harrison, H. Ossher, and P. Tarr, “General Composition of
Software Artifacts,” in Proceedings of the International Symposium
on Software Composition (SC), ser. LNCS, vol. 4089. Springer-
Verlag, 2006, pp. 194–210.

[59] P. Bernstein, A. Halevy, and R. Pottinger, “A Vision for Management
of Complex Models,” SIGMOD Record, vol. 29, no. 4, pp. 55–63,
2000.

[60] D. Kolovos, R. Paige, and F. Polack, “Merging Models with the
Epsilon Merging Language (EML),” in Proceedings of the Interna-
tional Conference on Model-Driven Engineering, Languages, and
Systems (MODELS), ser. LNCS, vol. 4199. Springer-Verlag, 2006,
pp. 215–229.

[61] J. Dingel, Z. Diskin, and A. Zito, “Understanding and Improving
UML Package Merge,” Software and Systems Modeling (SoSyM),
vol. 7, no. 4, pp. 443–467, 2008.

[62] M. Azanza, D. Batory, O. Diaz, and S. Trujillo, “Domain-Specific
Composition of Model Deltas,” in Proceedings of the International
Conference on Model Transformation (ICMT), ser. LNCS, vol. 6142.
Springer-Verlag, 2010, pp. 16–30.

[63] C. Kästner, S. Apel, S. Trujillo, M. Kuhlemann, and D. Batory,
“Guaranteeing Syntactic Correctness for all Product Line Variants:
A Language-Independent Approach,” in Proceedings of the In-
ternational Conference on Objects, Models, Components, Patterns
(TOOLS-EUROPE), ser. LNBIP, vol. 33. Springer-Verlag, 2009,
pp. 174–194.

[64] C. Kästner, S. Apel, and M. Kuhlemann, “A Model of Refactoring
Physically and Virtually Separated Features,” in Proceedings of the
International Conference on Generative Programming and Compo-
nent Engineering (GPCE). ACM Press, 2009, pp. 157–166.

[65] I. Schaefer, L. Bettini, V. Bono, F. Damiani, and N. Tanzarella,
“Delta-Oriented Programming of Software Product Lines,” in Pro-
ceedings of the International Software Product Line Conference
(SPLC), ser. LNCS, vol. 6287. Springer-Verlag, 2010, pp. 77–91.

[66] D. Clarke, M. Helvensteijn, and I. Schaefer, “Abstract Delta Model-
ing,” in Proceedings of the International Conference on Generative
Programming and Component Engineering (GPCE). ACM Press,
2010, pp. 13–22.

[67] S. Apel, J. Liebig, B. Brandl, C. Lengauer, and C. Kästner,
“Semistructured Merge: Rethinking Merge in Revision Control
Systems,” in Proceedings of the European Software Engineering
Conference and the International Symposium on the Foundations
of Software Engineering (ESEC/FSE). ACM Press, 2011, pp. 190–
200.

19

Sven Apel is the leader of the Software
Product-Line Group funded by the esteemed
Emmy Noether Programme of the German
Research Foundation (DFG). The group re-
sides at the University of Passau, Germany.
Dr. Apel received his Ph. D. in Computer Sci-
ence in 2007 from the University of Magde-
burg, Germany. His research interests in-
clude novel programming paradigms, soft-
ware engineering and product lines, and for-
mal and empirical methods. He is the author

or coauthor of over a hundred peer-reviewed scientific publications.
Sven Apel has been a program committee member of several highly
ranked international conferences. His work received awards by the
Ernst Denert Foundation and the Karin Witte Foundation.

Christian Kästner is a PostDoc at the Pro-
gramming Languages group of Klaus Os-
termann at the Philipps University Marburg,
Germany. He received his Ph. D. in Com-
puter Science in 2010 from the University
of Magdeburg, Germany. For his disserta-
tion on virtual separation of concerns, he
received also the prestigious GI-Dissertation
Award. His research focuses on correctness
and understanding of systems with variabil-
ity, including work on implementation mech-

anisms, tools, variability-aware analysis, type systems, feature inter-
actions, empirical evaluations, and refactoring.

Christian Lengauer occupies the Chair for
Programming at the University of Passau.
Previous appointments were at the Univer-
sity of Texas at Austin and the University
of Edinburgh. Professor Lengauer’s research
interests are in parallel programming, no-
tably loop parallelization, and in program-
ming paradigms and methods, among them
feature orientation. He is the chair of the
steering committee of the annual conference
series Euro-Par and of the IFIP Working

Group 2.11 on program generation.

