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Abstract. In feature-oriented programming, a feature is an increment in
program functionality and is implemented by a feature module. Programs
are generated by composing feature modules. A generated program may
be used by other client programs but occasionally must be transformed
to match a particular legacy interface before it can be used. We call the
mismatch of the interface of a generated program and a client-desired in-
terface an incompatibility . We introduce the notion of refactoring feature
modules (RFMs) that extend feature modules with refactorings. We ex-
plain how RFMs reduce incompatibilities and facilitate reuse, and report
our experiences on five case studies.

1 Introduction

In feature-oriented programming, a feature is an increment in program func-
tionality and is implemented by a feature module [1]. Feature modules can add
new classes to a program, add new members, and extend members of existing
classes. It is common for a program composed from feature modules to be used
by another program [2], which we call an environment . An environment expects
a composed program to have names of classes or methods that can be different
from what was generated. We call the non-matching of expectations an incom-
patibility between the composed program and its environment. Incompatibilities
occur frequently and hinder reuse [9, 20, 14].

In this paper, we concentrate on refactorings to eliminate incompatibilities. A
refactoring alters the structure of a program but not its behavior [22, 6]. Existing
approaches can be used to integrate a program – also with refactorings – but they
have problems: To adapt a program composed from feature modules using con-
temporary refactoring engines like Eclipse [7], the program has to be composed
first and then refactorings are applied to it. The key problem is, if there are
n optional features in producing a program and m optional refactorings, then
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2n+m program variants are possible. Hence, brute force is not an option [10].
Wrappers (a.k.a. adapters), as a second approach, increase program complexity
as they introduce additional methods and classes [9], and meta-programs require
developers to guarantee the resulting program can be compiled. We later discuss
these approaches and others in detail. In contrast to prior work, we aim at a
unification of features and refactorings in order to establish a general model of
configurable and reusable software based on transformations.

Feature Module Base

1public class Container {
2List elements;
3void insert front(Element e){
4elements.add(e);
5}
6}

Feature Module LimitedSize

7refines class Container {
8int depth;
9void setElements(List newElems){
10elements=newElems;
11}
12void insert front(Element e){
13Super.insert front(e);
14depth= elements.size();
15}
16}

Feature Module ContainerAsDeque

17public class Deque {
18Container c;
19void add front(Element e){
20c.insert front(e);
21}
22void setElements(List newElems){
23c.setElements(newElems);
24}
25}

Fig. 1. Feature-oriented de-
sign of a container library.

We propose that object-oriented refactorings
be included in feature modules, called refactor-
ing feature modules (RFMs). We illustrate how
RFMs automate recurring tasks that eliminate
incompatibilities. When an off-the-shelf program
is moved into a feature module then RFMs help
automate its integration with other programs.
We demonstrate the practicality of our approach
with five case studies.

2 Background

Feature-Oriented Design. In Figure 1, we
show three feature modules implemented in Jak,
a superset of Java that supports feature modu-
larity and feature composition [1]. When feature
modules are selected in a configuration process
they add classes or class refinements to a given
program. A class refinement , which is indicated
by the keyword refines, adds members to and ex-
tends methods of existing classes.

Feature module Base defines class Container.
Module LimitedSize refines class Container by
adding field depth and method setElements. Ex-
isting methods are extended by overriding, e.g.,
method insert front (Lines 12-15) refines method
insert front of class Container (Lines 3-5) via an inheritance-like mechanism. This
method refinement adds statements and calls the refined method using Jak’s
keyword Super (Line 13).

Feature module ContainerAsDeque adds a new class Deque. The result of
composing Base, LimitedSize, and ContainerAsDeque includes both classes Con-

tainer and Deque. In this example, Deque is a wrapper class (a.k.a. adapter class)
for Container, i.e., by delegating methods it makes Container objects accessible
under the name Deque and makes method insert front of Container accessible
under the name add front of Deque.

Refactoring. A refactoring is a transformation that alters the structure of
a program without altering its observable behavior [22, 6]. One of the uses of
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Fig. 2. Refactoring Container with ’Rename Class’ and ’Rename Method’.

refactorings is to remove incompatibilities among programs in order to increase
reuse [22]. Two common refactorings are ’Rename Method’ and ’Rename Class’.4

We use them as examples throughout the paper.
In Figure 2a, we depict class Container that has been composed from the

feature modules Base and LimitedSize of Figure 1. Figure 2b shows the result of
performing the refactoring ContainerToDeque. ContainerToDeque renames class
Container into Deque and adjusts all references. Figure 2c shows the resulting
class after the refactoring InsertToAdd. InsertToAdd renames method insert front

into add front and adjusts all calls.
Refactorings have parameters that define the target program elements [19].

For example, the parameters of a ’Rename Method’ refactoring are (1) the qual-
ified name of the method to rename and (2) the new method name. We use the
term refactoring type for the template that expects parameters. For example,
’Rename Class’ and ’Rename Method’ are refactoring types. Once its param-
eters are provided, the refactoring is fully specified and can be applied. Fully
specified refactorings can have names, e.g. the ’Rename Class’ refactoring that
renames Container to Deque is called ContainerToDeque (see Fig. 2).

3 Refactoring Feature Modules (RFMs)

A refactoring feature module (RFM) integrates refactorings with feature mod-
ules. The basic idea is to define refactorings in refactoring units that become
elements of feature modules. By packaging one refactoring per feature module, a
particular sequence of refactorings can be applied to a program, just like feature
module sequences are composed to build programs. That is, program generation
and restructuring are integrated with RFMs.

Concept. Every refactoring type has an interface, which contains a getter
method for each parameter of the refactoring type. A refactoring unit is a class-
like module that implements a refactoring interface. It implements each getter
method by returning the value for a designated parameter. Together the pa-
rameter values of a refactoring unit fully specify a particular refactoring. We
choose to represent refactorings as class-like modules because this is similar to
feature-oriented refinements, and technically it allows us to reuse tool support.

4 ’Rename Method’ changes the name of a method and ’Rename Class’ changes the
name of a class [6].
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Feature Module ContainerToDeque

1refactoring MyRenameClass implements
RenameClassRefactoring {

2String getOldClassId(){return ”Container”;}
3String getNewClassName(){return ”Deque”;}
4}

Fig. 3. Refactoring unit that
renames Container into Deque.

Figure 3 depicts a sample RFM, called
ContainerToDeque, which encapsulates a
refactoring unit MyRenameClass. MyRe-

nameClass defines a ’Rename Class’ refac-
toring, i.e., it implements the interface
RenameClassRefactoring and defines the
getter methods getOldClassId and get-

NewClassName. The getters of MyRe-

nameClass return the qualified name of
the class to rename and the new class
name. Refactorings of other types than
’Rename Class’ are defined analogously.

getOldClassId()

MyRenameClass

getOldMethodId()
getNewMethodName()

getNewClassName()

MyRenameMethod

setElements()

Base

_elements
insert_front()

InsertToAdd

Container

Container

<<RFM>>

<<RFM>>

ContainerToDeque

LimitedSize

_depth
insert_front()

Fig. 4. Sequence of RFMs.

In Figure 4, we show a design in which RFMs
are applied successively (in top-down order) to
the composition of the two feature modules
Base and LimitedSize. InsertToAdd is composed
after ContainerToDeque and renames method
Deque.insert front into add front. When all modules
are selected in a configuration process the result is
the same as composing the feature modules of Fig-
ure 1 (class Container is accessible under the name
Deque; method Container.insert front is accessible
under the name add front of class Deque).

Control the scope of RFMs. A transformation
is applied when an RFM is composed [1]. That is,
the program that is synthesized by composing mod-
ules prior to an RFM is transformed by that RFM.

In Figure 4, the classes refactored by the RFMs
ContainerToDeque and InsertToAdd are limited to
classes created by feature modules these RFMs fol-
low. That is, ContainerToDeque refactors the code
added by the feature modules Base and Limited-
Size but not code added/changed by InsertToAdd

as InsertToAdd is composed after ContainerToDeque. If an additional feature
module NewContainer would apply after ContainerToDeque and introduce a
second class Container, like feature module Base, this class would not be affected
by ContainerToDeque because it would be added after ContainerToDeque.

With RFMs, program elements can be both added and deleted (e.g., renam-
ing can be represented as a sequence of deleting and creating code elements).
After an RFM renames a method, the old method no longer exists. If a subse-
quent feature module or RFM references the renamed method by its old name,
an error is reported. To guarantee the absence of such errors in all feature com-
positions is possible with techniques of safe composition [12], another topic that
we are investigating.
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Fig. 5. Composition results.

RFMs in Action. In the introduction, we observed that generated programs
often do not have the correct structure for them to be reused as-is in an environ-
ment (e.g., legacy code) [9]. Here is where RFMs can eliminate incompatibilities
and promote reuse without altering the functionality of the generated program.
RFMs allow us to avoid forwarding methods and classes (commonly used for
integration), and thus simplify the resultant program. Figure 5 shows, the com-
posed program in Figure 5b only encapsulates a class with the desired name
Deque and no obsolete class Container as in Figure 5a.

Tool Support. We have implemented RFMs as an extension to the Jak lan-
guage, which adds support for feature modules to Java [1]. We use the AHEAD
tool suite [1] to compose feature modules. We extended AHEAD with a plugin
mechanism that encapsulates a template program of one refactoring type, e.g.,
the ’Rename Method’ refactoring type is implemented in its own plugin. Refac-
toring units refer to a plugin with their interface declaration and parameterize
the refactoring template program with their getters. More details are given in a
technical report [11].

4 Case Studies

We report on experiences with RFMs using two larger and three smaller case
studies. We (1) transformed an off-the-shelf library in order to be able to reuse
it in an incompatible database engine; (2) integrated variants of configurable li-
braries using RFMs with a legacy environment; (3) used uncommon refactorings
to integrate a library of graph data types (GDTs); (4) integrated a large Eclipse
library using RFMs with minimal effort, and (5) integrated a library of abstract
data types (ADTs) and thereby removed wrapper classes and methods that be-
came obsolete with RFMs. In Table 1, we show the transformed programs and
the refactorings applied to them.

Logging libraries. The off-the-shelf logging library Log4J5 cannot be used as-is
by the database SmallSQL6 (∼20K lines of source code) due to incompatibilities.
To standardize logging in SmallSQL we applied three RFMs to restructure Log4J

5 http://logging.apache.org/log4j/
6 http://www.smallsql.de/
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Table 1. Information on case studies.

Program #SLOC* Refactorings

Log4J ∼12K 1x Move Class, 2x Rename Method
ZipMe ∼3K 2x Move Class, 1x Rename Class
Raroscope ∼250 2x Move Class, 2x Rename Class
TrueZip ∼13K 2x Move Class, 2x Rename Class, 1x Rename Method
GDT ∼1K 4x Move Class, 2x Rename Class, 2x Rename Method,

6x Encapsulate Field, 2x Extract Interface
Workbench.texteditor ∼16K 1x Rename Class, 2x Rename Field
ADT library 59 1x Rename Class, 1x Rename Method

*lines of source code

such that it can be used in SmallSQL. One RFM moves class org.apache.log4j.-

Logger into the SmallSQL package smallsql.database and two RFMs rename
methods into SmallSQL-compatible names. The RFMs transform single code
elements and a number of references to these elements automatically. For exam-
ple, to make class Logger compatible, we did not have to know and enumerate
those 144 points in 38 Log4J classes (distributed over 10 packages), that ref-
erence the moved class and must be transformed; we also did not have to find
the numerous members that needed to be qualified as public when we moved
the class – the ’Move Class’ RFM performs these transformations automatically.
We observed that one incompatibility could not be eliminated by refactoring
Log4J. We introduced with a feature-oriented refinement a single default con-
structor into the Logger class that calls setters. This way, RFMs do not replace
refinements but complement them to integrate programs.

As a result, we can now select either the informal SmallSQL logging engine or
the Log4J standard logging library for the SmallSQL database in a configuration
process. RFMs allow Log4J (and future releases of it) to be reused in the formerly
incompatible SmallSQL environment. We defined the adaptation changes once.
We found the effort to define RFMs is small and found it comfortable that the
code changes the selected RFMs must perform are applied automatically (hidden
from us).

Configurable compression libraries. ZipMe7 is a library to access ZIP archives,
Raroscope8 is a library to access RAR archives, and TrueZip9 can access TAR
archives. The used versions of ZipMe and Raroscope are configurable, i.e., differ-
ent library variants can be composed for each of them from selectable features
like Checksum. Furthermore, we developed a graphical tool that used an old
library to analyze files inside ZIP archives (file names, last modification date,
uncompressed footprint) and decompress them. We wanted to replace the old
library with ZipMe, Raroscope, and TrueZip to also analyze RAR and TAR
archives with our tool. But all variants of these libraries were incompatible with

7 http://sourceforge.net/projects/zipme/
8 http://code.google.com/p/raroscope/
9 https://truezip.dev.java.net
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our tool. We applied a number of RFMs to automatically restructure variants of
the libraries such that they can be reused in our tool (e.g., in ZipMe we renamed
class ZipArchive into ZipFile).

We observed that some incompatibilities cannot be eliminated by refactoring
the library variants. This was the case for creating archive representations – our
tool passes a File argument but all variants of the libraries take a FileInputStream

or String argument. We added a feature module with a single factory method to
each library and call the methods in order to bridge this gap. For TrueZip the
feature module also encapsulates a method to access streams of single archive
entries with certain parameters. Raroscope provides no such streams, so we dis-
abled decompression here (still we can analyze archives). Again, RFMs do not
replace refinements but complement them to integrate programs.

Technically, the version of ZipMe can be composed from 13 features to 26 dif-
ferent variants. The version of Raroscope can be composed from 5 features to 24

different variants. We composed different variants of the configurable ZipMe and
Raroscope libraries and all were compatible with our tool automatically when
we selected the refactoring features.10 Interestingly, the variants were compatible
although only the fully-fletched versions had been composed before.

After we applied RFMs to TrueZip, its implementation became compatible
with our tool. We now also can analyze and decompress TAR archives with our
tool. Beside of renaming and moving the TrueZip representations of archives
and archive entries, we had to rename the archive method getArchiveEntries

into entries because our tool expects this name. For TrueZip, RFMs automate
adaptation changes when new versions of TrueZip are released.

Graph library. We integrated a configurable library of GDTs [17] (15 features, 55
library variants) with RFMs into an incompatible environment that used origi-
nally the graph library OpenJGraph11. Beside renaming and moving Graph and
Vertex classes, we had to encapsulate 6 fields in these classes with access methods
using RFMs and had to extract interfaces for these classes. With refinements we
added five methods. With RFMs, we can now configure multiple GDT variants
to be compatible with the OpenJGraph client.

Eclipse library. Dig et al. reported on incompatible environments of the Eclipse
library ’workbench.texteditor’ (16K lines of source code) [5]. We applied three
RFMs to automatically restructure ’workbench.texteditor’ such that it can be
reused in these environments. One RFM renames class Levenshtein into Leven-

stein because this name was expected in the environment and two RFMs re-
name fields from levenshtein into levenstein. In this study, three simple RFMs
automatically integrate the large library (and its future releases) with aforesaid
environments.

10 Informally, we performed primitive performance tests and found that our tool decom-
pressed ZIP archives ∼5% faster with (fully-fletched) ZipMe than with the replaced
old library, i.e., integrating ZipMe was beneficial.

11 http://sourceforge.net/projects/openjgraph/
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Abstract data types. Our running example of Figure 1 (Container class with its
wrapper class Deque) leans on a configurable library of ADTs (5 features, 7 li-
brary variants) [2]. We reimplemented this feature-oriented design with RFMs
as we have shown in Figure 4. With RFMs, we can now automatically integrate
differently configured library variants just by selecting refactoring features. In
this study, we removed wrapper classes and methods, that provided access to
classes and methods under a different name but became obsolete with RFMs.

Summary. RFMs integrate well with feature-oriented refinements. RFMs allow
libraries to be reused in environments they were incompatible with before. Specif-
ically, RFMs can apply (sequences of) pre-defined refactorings to hand-written
or synthesized programs automatically. After defining RFMs, any number of
variants of a configurable library can be configured to be compatible with an en-
vironment. While renaming appears most important, RFMs in our perspective
may encapsulate any transformation which affects structure but not semantics,
e.g., ’Extract Interface’ refactoring [6] (cf. GDT study).

We observed that RFMs complicate debugging because the refactored classes
of the debugged program differ from the developed classes inside the feature mod-
ules. Hence, we need advanced debugging tools that keep track of the performed
refactorings such that changes to the program’s classes are triggered back to the
feature modules automatically.

5 Related Work

Different styles of wrapper modules (a.k.a. adapters) forward method calls to
wrapped objects in order to integrate incompatible code and to increase reuse,
e.g., [8, 14, 4]. Wrappers exist simultaneously with their wrapped objects and so a
wrapper is a second way of accessing a wrapped object. RFMs transform bodies
of classes such that there is no second way to access objects of a transformed
class. However, RFMs avoid problems that wrappers have: Wrappers increase
implementation and maintenance effort when they add methods and classes [18,
9]. The forwarding methods of wrappers impact negatively on performance and
footprint of the resultant program [9]. Wrappers are complex because (a) wrapper
objects have different identities than the wrapped object [5, 23, 9] and (b) they
cause type problems as their location in a type hierarchy differs from the location
of the wrapped class (redundant hierarchies emerge) [9, 23].

Meta-programming approaches like [20, 25, 3] restructure programs beyond
refactoring and generally do not guarantee that generated programs are com-
pilable. Refactoring units parameterize pre-defined meta-programs implemented
globally in plugins of our composer. Therefore, developers of RFMs do not care
whether generated programs are compilable (ensured by our composer). Some re-
searchers propose refactoring meta-programs [26, 13] or refactorings as language
concepts [15]. They all do not integrate refactoring with feature transformations
and do not provide a general model of configurable and reusable software.

In order to adapt a program composed from feature modules using contempo-
rary refactoring engines like Eclipse [7] every program variant has to be composed
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first and then refactorings are applied to each variant. Since possibly many (up
to millions) combinations of feature modules can be composed this approach is
not feasible [10]. Re-applying a common set of refactorings with such engines
on constantly updated incompatible programs is error-prone and laborious as
well [18, 9]. RFMs automate refactorings and sequences of refactorings. RFMs
are selected in a configuration process and thus apply at the time a program
is composed (in case their feature is selected) – thus, RFMs make refactored
programs available even if refactorings were not recorded for them individually.

ReBA [5] helps to integrate a library into environments that use the library
but rely on an outdated interface of that library. ReBA uses a trace of edits
and refactorings, which lead from the old to the evolved library version. Using
this trace, ReBA adds code which allows using the evolved instead of the old
version, e.g., elements, that are deleted in the evolved version, are added back
when referenced. RFMs can bridge incompatibilities that occur when a library
A is replaced by a completely different library B. Thereby, in general no helpful
trace is available, which maps all code of A to all code of B.

In KIDS, users select correctness-preserving code transformations that im-
prove performance and footprint, e.g., partial evaluation [24]. Refactoring trans-
formations keep correctness too. When selected, RFMs restructure a program
to simplify its reuse. Note, by inlining methods and classes with refactorings,
RFMs may also improve performance and footprint of a composed program.

Feature-oriented refactoring [16] and aspect-oriented refactoring [21] decom-
pose a program into feature modules of a feature-oriented design and aspects
respectively. In contrast, RFMs perform object-oriented refactorings on a pro-
gram which is composed from features.

6 Conclusion

The structure and features (increments in functionality) of a program are im-
portant for the program to be reused by an environment. When the interface
of a generated program and a client-desired interface mismatch, the generated
program cannot be reused by this client. In current technology, transformations
to alter the structure of programs (e.g., refactorings) and to alter the features
of programs (e.g., feature modules) are still treated as disjoint concepts. In this
paper, we have introduced refactoring feature modules (RFMs), which integrate
feature modules with refactorings. An RFM automatically alters the structure
of programs, which are composed from feature modules. We have implemented
support for RFMs and demonstrated in a number of case studies that RFMs
can help to reuse programs. Specifically, we showed that with RFMs the studied
programs can be integrated automatically and reused in environments they were
incompatible with before, i.e., RFMs simplify the reuse of code.
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12. M. Kuhlemann, D. Batory, and C. Kästner. Safe composition of non-monotonic

features. In GPCE, 2009.
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