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Abstract: With feature-oriented programming (FOP) and generics programmershave proper means for structuring soft-
ware so that its elements can be reused and extended. This paper addresses the issue whether both approaches
are equivalent. While FOP targets at large-scale building blocks and compositional programming, generics
provide fine-grained customization at type-level. We contribute an analysis that reveals the individual ca-
pabilities of both approaches with respect to program customization. Therefrom, we extract guidelines for
programmers in what situations which approach suffices. Furthermore, we present a fully implemented lan-
guage proposal that integrates FOP and generics in order to combine their strengths. Our approach facilitates
two-staged program customization: (1) selecting sets of features; (2) parameterizing features subsequently.
This allows a broader spectrum of code reuse to be covered – reflectedby proper language level mechanisms.
We underpin our proposal by means of a case study.

1 INTRODUCTION

Feature-oriented programming (FOP)aims at feature
modularity in software product lines (Batory et al.,
2004). Featuresare increments in program function-
ality and reflect stakeholder requirements. The key
idea of FOP is to map features one-to-one tofea-
ture modules. A feature module encapsulates all soft-
ware artifacts that contribute to a feature in a cohe-
sive unit. FOP targets mainly at large-scale compo-
nents and compositional programming. Hence, pro-
gram customization takes place at the level of feature
modules, i.e., by selecting and composing a set of de-
sired modules. It is not obvious how this scales down
to fine-grained customization needs.

Fine-grained program customization is exactly the
aim of an alternative approach,generic and parame-
terized programming (GPP)(Goguen, 1989; Austern,
1998). The key idea of GPP is to implement program
structures as generic as possible and to use these in
different contexts by parameterization. This approach
is known as very fine-grained since it enables adjust-
ing the types of program elements; but it is not well
explored whether GPP is capable for program cus-
tomization and reuse at a larger scale.

In this paper we examine the differences of FOP

and GPP and how do they influence their program
customization capabilities. Thereof we derive a set of
guidelines in what situations to use which paradigm.
Furthermore, we propose a language-driven approach
of integrating FOP and GPP to cover a broad spectrum
of scales of customization, which we callgeneric
feature modules. Generic feature modules support
two-staged program customization: (1) the desired
features of a program are selected; (2) the corre-
sponding feature modules are parameterized for fine-
grained customization. Besides customizability, this
promotes reuse of feature modules and offers poten-
tial for reasoning about explicitly represented config-
uration knowledge in form of parameters.

To underpin our proposal, we present a fully func-
tional compiler on top of FEATUREC++1. We use our
compiler to apply generic feature modules to a case
study.

In this paper we make the following contributions:
• We compare FOP and GPP with respect to program

customization; we infer guidelines in what situa-
tions which paradigm suffices.

• We propose an integrated language approach that
integrates FOP and GPP.

• We contribute a fully functional compiler that im-

1http://wwwiti.cs.uni-magdeburg.de/itidb/fcc



plements our language proposal.
• We underpin our proposal by means of a case study.

2 BACKGROUND

2.1 Feature-Oriented Programming

FOP studies the modularity of features in product
lines (Batory et al., 2004). The idea of FOP is to build
software (individual programs) by composing featu-
res that are first-class entities in design and imple-
mentation. Features refine other features incremen-
tally. Hence, the termrefinementrefers to the changes
a feature applies to others. Thisstep-wise refinement
leads to conceptually layered software designs.
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Figure 1: Mixin layers.

Feature modules. Fea-
ture modules implement
features. Mixin layers is
one implementation tech-
nique that aims at source
code artifacts (Smarag-
dakis and Batory, 2002).2

Typically, features are not
implemented by single
classes; often, a whole set ofcollaborating classes
contributes to a feature. Classes play differentroles
in different collaborations. A mixin layer is a static
component encapsulating fragments of several differ-
ent classes (roles) so that all fragments are composed
consistently. Figure 1 depicts a stack of three mixin
layers (L1 − L3) in top down order. Mixin layers
crosscut multiple classes (CA − CC). White boxes
represent mixins and gray boxes feature modules.

Feature modules in C++. FEATUREC++ is an ex-
tension to C++ that supports FOP (Apel et al., 2005).
Feature modules contain classes and refinements to
classes, which are declared byrefines. Figure 2 de-
picts a class that implements a simple list (Lines 1-4)
and a refinement that determines its size (Lines 5-8).
Refinements may introduce new attributes and meth-
ods or may extend methods of their parent classes.
In our example, the refinement introduces asizefield
(Line 6), agetSizemethod (Line 6), and extends the
putmethod by code for item counting (Line 7). To ac-
cess the extended method thesuperkeyword is used
(Line 7). The classList and its refinement belong to
two distinct development steps implementing two in-
dividual features: a basic list feature (list) and a fea-
ture for determining its size (size).

2Feature modules may contain manifold types of soft-
ware artifacts, not only source code (Batory et al., 2004).

1 c l a s s List {

2 Item *head;

3 vo id put(Item *i) { i->next = head; head = i; }

4 };

5 r e f i n e s c l a s s List {

6 i n t size; i n t getSize() { re turn size; }

7 vo id put(Item *i) { super::put(i); size++; }

8 };

Figure 2: Refining a list with code for determining the size.

2.2 Generic and Parameterized
Programming

GPP is about generalizing software components so
that they can be easily reused in a wide variety of
situations (Goguen, 1989; Czarnecki and Eisenecker,
2000). It serves the need for customizing compo-
nents to specific requirements. In this paper we
use C++ templates as a representative approach of
GPP (Austern, 1998).

They key idea of GPP is that software components
often do not rely on specific data types, but can oper-
ate with arbitrary types. In order to reuse these com-
ponents for all possible kinds of types, they are imple-
mented against type parameters that act as placehold-
ers for different concrete data types. To use a generic
component in a specific context, it has to be instanti-
ated by passing a concrete type to the component.

Figure 3 depicts a standard GPP example: a generic
list implementation (Lines 1-5). It is generic because
it relies on a template parameterItemT (Line 1).
Therefore, it can be used polymorphically in different
contexts. When instantiating a list object a program-
mer has to pass a concrete data type to the list, e.g.
Itemor Thread(Line 6).

1 templa te <typename _ItemT> c l a s s List {

2 t ypede f _ItemT ItemT;

3 ItemT *head;

4 vo id put(ItemT *i) { i->next = head; head = i; }

5 }; ...

6 i n t main() { List<Item> il; List<Thread> tl; }

Figure 3: A generic list and two concrete variants.

3 ANALYSIS OF FOP AND GPP

In this section, we analyze the different capabilities of
FOP and GPP to implement customizable software by
means of an example.



3.1 A Product Line of Linked Lists

As example, we choose a standard problem: a product
line of linked lists (list product line– LPL), adopted
from (Czarnecki and Eisenecker, 2000). Figure 4 de-
picts the feature model of LPL.
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Figure 4: Feature model of LPL.

The featureItemTypeabstracts over possible data
types of items that are stored in the list; it is manda-
tory. Lists can have different ownership relationships
to their stored items: (1) references to items are main-
tained externally; (2) lists own references to items and
therefore they are responsible for releasing the allo-
cated memory when items are removed; (3) lists copy
items that are stored; they are responsible for clean-
ing up when items are removed. These features are
alternative– only one variant can be selected for a
concrete list. Furthermore, lists have different mor-
phologies: (1) a list stores items of the same type
only (monomorphic) or (2) of different types (poly-
morphic). Only one feature variant can be selected.
Lists may have anoptionallength counter feature that
counts the number of stored elements. The counter
itself can be implemented using different data types
(short, int, ...). Finally, lists have an optional feature
for tracing the operations on list objects.

3.2 Implementation of LPL

Ideally, when implementing this product line the pro-
grammer implements each feature via one feature
module. This is in line with the methodology and
principles of FOP. Applying this methodology to our
example, we would have to implement at least 11 fea-
ture modules, assuming one basic list, three different
length counter types, and one item type.

FOP implementation. Figure 5 shows a basic list
and a tracing feature implemented in FEATUREC++.
It can be seen that both features are implemented as
mixins, encapsulated in feature modules (not shown).
Up to here FOP works fine. But implementing other
features reveals the weaknesses of FOP. For example,
it is not obvious how to implement different variants
of the item type feature, i.e., different types of items.
One can implement for each type a distinct basic list,

e.g., a list of item objects and a list of thread objects.
Unfortunately, this results in replicated code (one fea-
ture module per type) for the base feature and all sub-
sequent added features!

1 c l a s s List {

2 Item *head;

3 vo id put(Item *i) { i->next = head; head = i; }

4 };

5 r e f i n e s c l a s s List {

6 vo id put(Item *i) { super::put(i); trace(i); }

7 };

Figure 5: Refining a list with a tracing feature.

Another approach would be introducing an abstract
base class of all items. Hence, the list implementation
becomes invariant with respect to the item type. New
item types inherit from the abstract base class. This
solution imposes performance penalties and a higher
resource consumption due to dynamic binding; it may
demand for dynamic type checking.

Similar problems occur when implementing other
features that come in slightly different variants, e.g.,
the length counter type, an allocator or iterator type.

GPP implementation. Readers familiar with GPP
may notice that the problematic features could be eas-
ily implemented using template parameters or alter-
native mechanisms for generics. Figure 6 depicts a
generic list that expects an item type and a type for
a length counter, as well as two concrete variants, an
item object list with integer counter and a thread list
with short integer counter. With GPP, a programmer
can define a concrete variant at compile time in a type
safe manner. However, one has always to anticipate
a potential variation point when implementing a fea-
ture. Moreover, it is not obvious how GPP can imple-
ment larger program features, e.g., implementing the
size feature.

1 templa te <typename _ItemT, typename _SizeT>

2 c l a s s List {

3 t ypede f _ItemT ItemT; t ypede f _SizeT SizeT;

4 ItemT *head; SizeT size;

5 vo id put(ItemT *i){i->next=head; head=i; size++;}

6 }; ...

7 i n t main() {

8 List<Item, i n t > iil; List<Thread,shor t > tsl;

9 }

Figure 6: A generic list implementation.



3.3 A Comparison of FOP and GPP

It seems that both, FOP and GPP, are necessary to im-
plement a highly customizable software. While fea-
ture modules encapsulate large-scale features, GPP
allows for fine-grained tuning. The questions that
arise are what approach is useful under which circum-
stances? Are both approaches equally expressible?
How to integrate both in a consistent way? In this
section we shed more light on these issues and pro-
vide guidelines for the efficient use of FOP and GPP.

FOP. Feature modules usually contain a set of
classes. These classes are introductions or refine-
ments to existing classes. Thus, feature modules im-
plement mainly increments to a program’s function-
ality. A refinement may extend existing methods by
executing code around a method execution. Although
refinements rely on a reasonable structure of the base
program, they do not expect explicitly represented
variation points (e.g.hooks) for being applicable. A
feature module binds to the natural structure of the
base program and may apply unanticipated changes.
A consequence of its encapsulation property is that a
feature module can implement a variant that concerns
multiple variation points, e.g., a synchronization fea-
ture extends simultaneously a listand its iterator.

However, the fact that feature modules rely on
given structural abstractions defines the minimal
granularity of customization of software built of fea-
ture modules. It is not possible to refine a base fea-
ture at statement level to change existing types, etc.
However, achieving even so customizability at type
level (1) imposes performance penalties due to dy-
namic binding, i.e., implementing a feature against an
abstract class, and (2) it results in redundant code, i.e.,
for each type a distinct feature module. That is, FOP
imposes a complexity overhead at small scales.

GPP. GPP supports program customizability at a
smaller scale than FOP. For example, templates en-
able the programmer to customize program structures
down at type level by parameterizing types of used
variables and arguments. This methodology implies
that programmers have to anticipate changes to and
variants of a program. Variation points are explicit
and fixed; they are an inherent part of the referring
modules. n variation points demand forn parame-
ters. This in-language approach to customization fa-
cilitates static type-safety.

Although templates can be used to implement en-
tire feature modules (Smaragdakis and Batory, 2002),
they are mainly suited for fine-grained customization.
This is because the overhead of complexity to main-
tain the template expressions grows considerably for
large-scale features.

Table 1 summarizes our observation of the prop-
erties of FOP and GPP achieving customizability and
reusability. It is intended to serve as guideline for pro-
grammers to decide when to use which technique.

FOP GPP
scale large small
granularity methods, classes statements, types
var. points implicit explicit
extensions unanticipated anticipated
locality multiple points single point

Table 1: Comparison of FOP and GPP.

4 GENERIC FEATURE MODULES

As our analysis revealed, both, GPP and FOP, have
strengths at different scales of customization. Con-
sequently, we propose the notion ofgeneric feature
modulesthat integrates mechanisms of GPP into FOP.

Templates. Mixins within feature modules can de-
clare a list of template parameters (Fig. 7). In con-
trast to traditional classes, subsequently applied re-
finements to a class may extend its (possibly empty)
template parameter list. This is useful because in this
way the set of parameterizable types has not to be an-
ticipated up front. Figure 8 depicts a refinement to the
basic list that implements the size feature. The type of
the counter is passed via template parameter; for that,
the template list is extended (Line 1).

1 templa te <typename _ItemT> c l a s s List {

2 t ypede f _ItemT ItemT;

3 ItemT *head;

4 vo id put(ItemT *i) { i->next = head; head = i; }

5 };

Figure 7: A list template.

1 templa te <typename _ItemT, typename _SizeT>

2 r e f i n e s c l a s s List {

3 t ypede f _ItemT ItemT; t ypede f _SizeT SizeT;

4 SizeT size;

5 vo id put(ItemT *i) { super::put(i); size++; }

6 };

Figure 8: Extending the parameter list in a refinement.

However, extending the parameter list implies that
clients have two provide a set of expected parameters,
which may vary depending on the current feature se-
lection. We address this issue later.



Parameterizing feature modules. Templates can
be used to parameterize feature modules statically by
a set of types. Figure 9 depicts a stack of generic
feature modules. Each feature module extends ex-
isting structures, but also the template parameter list.
This enables the individual features to declare new
parameters that are intended for customizing them-
selves. Composing a concrete program out of this set
of features allows the final program to be parameter-
ized with concrete types.

This example illustrates the two-staged nature of
the configuration process imposed by generic feature
modules: (1) a subset of features is selected; (2) the
selected features are parameterized.

Sync

Size

Trace

List
ItemType

SizeType

StreamType

LockType

Figure 9: Generic fea-
ture modules.

1 c l a s s ListConfig {

2 t ypede f Item ItemT;

3 t ypede f shor t LengthT;

4 t ypede f Array ArrayT;

5 t ypede f ostream StreamT;

6 };

Figure 10: Example of a con-
figuration repository.

Configuration repositories. Since each refinement
may potentially extend the template parameter list,
the programmer may easily get lost in the mass of
parameters and values (constants and types). In or-
der to simplify the parameterization and to improve
code readability without constraining its expressibil-
ity and flexibility, we adopt the notion ofconfigura-
tion repositories(Czarnecki and Eisenecker, 2000).
A configuration repository encapsulates the overall
configuration knowledge that is passed via parameters
(Fig. 10).

The key benefit of using configuration repositories
in generic feature modules is that now classes and re-
finements expect only one parameter, namely a repos-
itory. Each refinement takes out only this configura-
tion information that it depends on. That solves the
problem that each client has to know what set of pa-
rameters are expected by the current selection of fea-
ture modules. Instead, the configuration repository
can be defined in one location; clients do not need
to know about its overall structure.

Figure 11 depicts a reimplementation of the basic
list and the size feature. Both use different subsets of
this repository.

5 CASE STUDY

For demonstrating the practical applicability of our
integrated language approach, we extended the LPL

1 templa te <typename _Config> c l a s s List {

2 t ypede f _Config Config;

3 t ypede f typename Config::ItemT ItemT;

4 ItemT *head;

5 vo id put(ItemT *i) { i->next = head; head = i; }

6 };

7 templa te <typename _Config> r e f i n e s c l a s s List {

8 t ypede f _Config Config;

9 t ypede f typename Config::ItemT ItemT;

10 t ypede f typename Config::SizeT SizeT;

11 SizeT size;

12 vo id put(ItemT *i) { super::put(i); size++; }

13 };

Figure 11: Customizing features via repositories.

by several new features, all implemented in FEA-
TUREC++: LPL consists of 20 features and 11 pa-
rameters. Each feature expects on average 3 param-
eters, up to 6 parameters in maximum. Table 2 sum-
marizes all features of LPL and the number of the pa-
rameters used. Note that some parameters are used by
more than one feature. This study demonstrates that
in highly configurable libraries, such as LPL, there is
a demand for parameterizing features. The parame-
ters increase the possible solution space of LPL sig-
nificantly.

Feature No. Feature No. Feature No.
Base 6 Alloc 3 Contain 3
Length 3 Bounded 3 Connect 3
Trace 3 Sync. 4 Delete 2
DblLink 4 Array 4 Stack 3
Iter 3 Compare 3 Queue 3
Sorted 3 Clone 2 Set 2
Insert 3 Persist 3 Map 4

Table 2: Features and numbers of their parameters.

Discussion. An alternative version of LPL that
omits templates could be implemented using abstract
classes. Each parameter would be passed as object
reference via the list’s constructor. Different parame-
ter settings would be implemented by subclassing ab-
stract classes that serve for representing parameters.

Besides the mentioned penalties imposed by ab-
stract classes, it is not obvious how to bundle param-
eters in repositories without type definitions and tem-
plates. Nevertheless, many design and customization
decisions are made upfront. In contrast to using FOP
standalone, generic feature modules provide a well-
aligned symbiosis between GPP and FOP that sup-
ports customizable large-scale components with con-
figuration support and static type safety.



6 RELATED WORK

GenVocais an architectural model for large-scale
components and collaboration-based designs (Batory
and O’Malley, 1992). Principally, GenVoca dis-
tinguishes between horizontal and vertical parame-
ters. The vertical parameters are instrumental in
defining the vertical refinement hierarchies of layers,
whereas the horizontal parameters provide for vari-
ability within a single layer (Goguen, 1996). Mapping
this to our approach, concrete configuration reposi-
toriesencapsulatehorizontal parameters; vertical pa-
rameters are the classes that will be refined. Interest-
ingly, we integrate the configuration repositories into
the GenVoca layers themselves, enabling subsequent
refinement.

Our notion of configuration repositories builds on
an earlier proposal: They are implemented astrait
classes, i.e., classes that aggregate a set of types and
constants to be passed to a template as a parame-
ter (Myers, 1995). Additionally, we provide means
for integrating configuration repositories into feature
modules.

Consul is an integrated approach to manage vari-
abilities and customization (Beuche et al., 2004). It
provides a proprietary component model and a logic-
based representation of configuration knowledge. The
component model lacks the flexibility of mixin com-
position and compositional reasoning; the logic-based
approach of customization is powerful, but relies on a
complex program transformation approach. Issues as
type-safety are not discussed.

Making configuration knowledge and management
explicit is a kind of meta-programming. A compre-
hensive overview of static meta-programming in C++
is given in (Czarnecki and Eisenecker, 2000). There
it is shown how configuration repositories can be fur-
ther processed to automatically determine parameter
settings on the basis of partially specified configura-
tions.

7 CONCLUSION

In this paper, we examined the capabilities of FOP
and GPP for implementing reusable software: FOP
performs well for implementing composable large-
scale building blocks, but it imposes a complexity
overhead when implementing fine-grained customiz-
able features; GPP focuses mainly on reuse in the
small by providing proper means for fine-grained pro-
gram customization, but lacks abstraction and compo-
sition capabilities for programming in the large. Con-
sequently, we proposed an integrated language-level
approach for supporting both kinds of customization
and reuse. Generic feature modules impose a two-

staged program customization: After selecting and
composing features, they can be parameterized to
adapt them to a specific application context. A dis-
tinguishing feature of our approach is that we inte-
grate the configuration knowledge into the associated
feature modules to improve the encapsulation proper-
ties. For implementation, C++ templates are only a
first attempt to demonstrate our ideas. Exploring so-
phisticated mechanisms for representing and reason-
ing about configuration knowledge is part of further
work.
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