
FEATUREHOUSE: Language-Independent, Automated Software Composition

Sven Apel
Department of Informatics

and Mathematics
University of Passau
apel@uni-passau.de

Christian Kästner
School of Computer Science

University of Magdeburg
ckaestne@ovgu.de

Christian Lengauer
Department of Informatics

and Mathematics
University of Passau

lengauer@uni-passau.de

Abstract

Superimposition is a composition technique that has
been applied successfully in many areas of software de-
velopment. Although superimposition is a general-purpose
concept, it has been (re)invented and implemented indi-
vidually for various kinds of software artifacts. We unify
languages and tools that rely on superimposition by using
the language-independent model of feature structure trees
(FSTs). On the basis of the FST model, we propose a gen-
eral approach to the composition of software artifacts writ-
ten in different languages, Furthermore, we offer a support-
ing framework and tool chain, called FEATUREHOUSE. We
use attribute grammars to automate the integration of ad-
ditional languages, in particular, we have integrated Java,
C#, C, Haskell, JavaCC, and XML. Several case studies
demonstrate the practicality and scalability of our approach
and reveal insights into the properties a language must have
in order to be ready for superimposition.

1. Introduction

Software composition is the process of constructing soft-
ware systems from a set of software artifacts. An artifact
can be any kind of information that is part of or related to
software, e.g., code units (packages, classes, methods, etc.)
or supporting documents (models, documentation, make-
files, etc.). One popular approach to software composi-
tion is superimposition. Superimposition is the process of
composing software artifacts by merging their correspond-
ing substructures. For example, when composing two Java
files, two constituent classes with the same name, say Foo,
are merged, and the result is called again Foo. The sub-
structures of Foo are merged in turn recursively.

Superimposition has been applied successfully to the
composition of class hierarchies in multi-team software de-
velopment [33], the extension of distributed programs [13],
the implementation of collaboration-based designs [38],

feature-oriented programming [8, 36], multi-dimensional
separation of concerns [39], aspect-oriented program-
ming [28,30], and software component adaptation [12]. Al-
though very different, all these applications pursue super-
imposition of hierarchically organized program constructs
on the basis of their nominal and structural similarities.

It has been noted that, when composing software, not
only code artifacts – possibly written in different program-
ming languages – have to be considered but also non-code
artifacts, e.g., models, documentation, grammar files, or
makefiles [8]. Thus, as a composition technique, super-
imposition should be applicable to a wide range of software
artifacts. While there are various tools that support super-
imposition for code artifacts [4, 8, 9, 20, 28, 31, 32, 34, 37]
and non-code artifacts [1, 8, 14, 16, 18, 21], they appear all
different, are dedicated to and embedded differently in their
respective host languages, and their implementation and in-
tegration requires a major effort. A reason is that, usually,
the developers of languages and tools did not address (or
realize) the general nature of superimposition. This hinders
coordinated efforts to advance composition technology.

We propose a general approach to the composition of
software artifacts written in different languages and of-
fer a supporting framework and tool chain, called FEA-
TUREHOUSE. FEATUREHOUSE is a descendant of Batory’s
AHEAD program generator [8] and builds on our previous
work on language-independent software representation [6]
and composition [5], as we will explain.

In a nutshell, we propose a general architecture that
captures the essential properties of superimposition that
are common to all software languages. FEATUREHOUSE
is a framework for software composition on the basis of
superimposition into which new languages can be plugged
on demand. The integration of a new language, say C#
or Haskell, requires only a few hours of effort. Tech-
nically, FEATUREHOUSE relies on three ingredients: (1)
a language-independent model of software artifacts, (2)
superimposition as a language-independent composition
paradigm, and (3) an artifact language specification based

on attribute grammars.
We have used FEATUREHOUSE to demonstrate that our

approach of software composition is indeed general. We
have integrated several, very different languages into FEA-
TUREHOUSE almost automatically, in particular Java, C#,
C, Haskell, JavaCC, and XML. That is, FEATUREHOUSE
can be used to compose software artifacts written in these
languages. We did not need to extend the languages them-
selves, as would be necessary in related tools such as
AHEAD [8] or FeatureC++ [4], which relieved us from a
lot of tedious and error-prone implementation work.

The integration of a new language is almost entirely
based on the language’s grammar specification plus some
attributes added as annotations and some rather small com-
position rules (usually not more than 10 to 20 LOC). We
have applied FEATUREHOUSE to compose software sys-
tems of different sizes (1 KLOC–60 KLOC), written in dif-
ferent languages (Java, C#, C, Haskell, JavaCC, and XML).
Our studies demonstrate the practicality and scalability of
our approach and tools and provide insights into mandatory
and desirable properties that a language must have in order
to be ready for superimposition.

In summary, we make the following contributions:
1. We highlight the generality of superimposition as a

composition technique.
2. We propose a general approach to software composi-

tion that is applicable to different languages.
3. We provide a framework and tool chain and report on

experiments with six languages and eight software sys-
tems.

4. We initiate a discussion of language and granularity
issues of software composition by superimposition.

2. FEATUREHOUSE

FEATUREHOUSE is a general architecture of software
composition supported by a framework and tool chain.
FEATUREHOUSE provides facilities for feature composi-
tion based on a language-independent model of software
artifacts and an automatic plug-in mechanism for the inte-
gration of new artifact languages. FEATUREHOUSE gener-
alizes and integrates a previous software composition tool
for software composition, called FSTCOMPOSER [5], and
improves over prior work on AHEAD in that it imple-
ments language-independent software composition; while
AHEAD provides a language-independent model based on
nested vectors, the support for different languages has been
implemented for each language from scratch (see Sec. 6).
The code of FEATUREHOUSE as well as examples and case
studies can be downloaded from the project’s website.1

We begin with a brief review of FSTCOMPOSER and

1http://www.fosd.de/fh

proceed with a description of the overall FEATUREHOUSE
architecture and how it integrates FSTCOMPOSER.

2.1. Composition

FSTCOMPOSER relies on a general model of the struc-
ture of software artifacts, called the feature structure tree
(FST) model. FSTs are designed to represent any kind of
artifact with a hierarchical structure. An FST represents
the essential modular structure of a software artifact and
abstracts from language-specific details. For example, an
artifact written in Java contains packages, classes, meth-
ods, etc., which are represented by nodes in the FST. An
XML document (e.g., XHTML) may contain elements that
represent the underlying document structure, e.g., headers,
sections, paragraphs. A makefile or build script consists of
definitions and rules that may be nested.

Each node of an FST has (1) a name that corresponds
to the name of the artifact’s structural element it represents
and (2) a type that corresponds to the syntactical category
the structural element belongs to. For example, a class Foo
is represented by a node Foo of type class. Essentially, an
FST is a stripped-down abstract syntax tree (AST): it con-
tains only information that is necessary for the specification
of the modular structure of an artifact. The inner nodes of
an FST denote modules (e.g., classes and packages) and the
leaves store the modules’ content (e.g., method bodies and
field initializers). We call the inner nodes non-terminals
and the leaves terminals. For illustration, Figure 1 depicts
an excerpt of a class of a database system taken from one of
our case studies (Sec. 4). The complete class is located in a
subpackage structure and contains 13 fields, 2 constructors,
58 methods, and 4 inner classes.

The answer to the question of which structural elements
are represented as inner nodes and leaves, respectively, de-
pends on the degree of granularity at which software ar-
tifacts are to be composed [23]. In our example, differ-
ent granularities would be possible, e.g., we could repre-
sent only packages and classes but not methods or fields as
FST nodes (a coarse granularity), or we could also repre-
sent statements or expressions (a fine granularity). In any
case, the structural elements not represented in the FST are
stored as text content of terminal nodes, e.g., the body of
a method. However, we have made the experience that the
granularity of Figure 1 is usually sufficient for composition.
We will return later to this issue.

The composition of software artifacts proceeds by the
superimposition of the corresponding FSTs, denoted by ‘•’.
Two FSTs are superimposed by merging their nodes, iden-
tified by their names, types, and relative positions, starting
from the root and descending recursively. Figure 2 illus-
trates the process of FST superimposition with our database
example. The artifact BASEDB is superimposed with an

2

http://www.fosd.de/fh

1 package com.sleepycat;
2 public class Database {
3 private DbState state;
4 private List triggerList;
5 protected void notifyTriggers(Locker locker, DatabaseEntry priKey,
6 DatabaseEntry oldData, DatabaseEntry newData) throws DatabaseException {
7 for(int i=0; i<triggerList.size(); i+=1) {
8 DatabaseTrigger trigger = (DatabaseTrigger)triggerList.get(i);
9 trigger.databaseUpdated(this, locker, priKey, oldData, newData);

10 }
11 } // over 650 further lines of code...
12 }

sleepycat

com

notifyTriggerstriggerListstate

Database

BaseDB

field method

class

package

...

...

Figure 1. Java code and FST of the artifact BASEDB.

artifact called LATCHES, of which again only a subset is
shown. Their composition results in a class Database
consisting of the union of the members of its instances in
BASEDB and LATCHES. Basically, composing LATCHES
with BASEDB adds two new methods acquireReadLock
and releaseReadLock and extends the method notifyTrig-
gers of BASEDB via overriding (the keyword original de-
fines how two method bodies are composed, which is simi-
lar to Java’s super).

Generally, the composition of two leaves of an FST
that contain further content, e.g., the two bodies of no-
tifyTriggers demands a special treatment. The reason is
that the content is not represented as a subtree but as plain
text. For example, method bodies are composed differ-
ently from fields, XML text elements, or JavaCC gram-
mar productions. The solution is that, depending on the
artifact language and node type, different rules for com-
position are used. Often simple rules like replacement,
concatenation, specialization, or overriding suffice, but the
approach is open to more sophisticated rules known from
multi-dimensional separation of concerns [34] or software
merging [29]. For example, in our case studies, we merge
two methods bodies via overriding, where original defines
how the bodies are merged. Note that original is not a new
keyword added to Java but only a meta-notation that dis-
appears after composition. The Java parser treats original
like a method call. During the composition of two method
bodies, original is searched and substituted for the original
method body modulo some renaming. This requires not to
use original as name for ordinary methods.

Technically, multiple software artifacts (e.g., code and
corresponding documentation) can be grouped in a so-
called unit of composition. FSTCOMPOSER expects a list
of units to be composed. The artifacts of a composition unit
may be organized in a subdirectory structure. Without any
further preparation, FSTCOMPOSER interprets subdirecto-

ries as non-terminals and the files located inside a subdirec-
tory as terminals. Of course, if we intend to achieve a finer
composition granularity (e.g., at the level of XML elements,
classes and methods, and grammar rules), we can add fur-
ther levels of non-terminals representing the artifacts’ sub-
structures, as we will explain next.

2.2. Generation and Automation

FEATUREHOUSE is a general framework and tool chain
for software composition into which new languages can be
plugged easily. The idea is that, although artifact languages
are very different, the process of software composition by
superimposition is very similar. Previous approaches that
rely on superimposition did not take advantage of this simi-
larity. For example, the developers of AHEAD [8] and Fea-
tureC++ [4] have extended the artifact languages Java and
C++ by constructs and mechanisms for composition. They
have each implemented a parser, a superimposition algo-
rithm, and a pretty printer2 – all specific to the artifact lan-
guage. In our previous work, we have introduced the FST
model in order to be able to express superimposition inde-
pendently of an artifact language [5]. Nevertheless, we had
to provide for each language, in particular, for Java, C#, and
XML:

1. a parser and corresponding framework classes repre-
senting the parse tree,

2. an adapter that maps the parse tree to the FST,
3. language-specific composition rules, e.g., for merging

method bodies, and
4. a pretty printer for writing superimposed FSTs to disk.
Overall, the process of implementing and integrating

language support manually was time-consuming and error-
prone. Usually, we (or our students) spent several weeks

2With ‘pretty printer’ we refer to a tool that takes a parse tree or an FST
and generates source code.

3

1 package com.sleepycat;
2 public class Database {
3 private void acquireReadLock() throws DatabaseException { ... }
4 private void releaseReadLock() throws DatabaseException { ... }
5 protected void notifyTriggers(Locker locker, DatabaseEntry priKey,
6 DatabaseEntry oldData, DatabaseEntry newData) throws DatabaseException {
7 acquireReadLock();
8 original(locker,priKey,oldData,newData);
9 releaseReadLock();

10 } // 50 further lines of code...
11 }

•

sleepycat

com

Database

notifyTriggers ...

...

Latches

acquireReadLock

releaseReadLock

1 package com.sleepycat;
2 public class Database {
3 private DbState state;
4 private List triggerList;
5 protected void notifyTriggers(Locker locker, DatabaseEntry priKey,
6 DatabaseEntry oldData, DatabaseEntry newData) throws DatabaseException {
7 for(int i=0; i<triggerList.size(); i+=1) {
8 DatabaseTrigger trigger = (DatabaseTrigger)triggerList.get(i);
9 trigger.databaseUpdated(this, locker, priKey, oldData, newData);

10 }
11 } // over 650 further lines of code...
12 }

=

sleepycat

com

notifyTriggerstriggerListstate

Database

...

...

BaseDB

1 package com.sleepycat;
2 public class Database {
3 private DbState state;
4 private List triggerList;
5 private void acquireReadLock() throws DatabaseException { ... }
6 private void releaseReadLock() throws DatabaseException { ... }
7 protected void notifyTriggers(Locker locker, DatabaseEntry priKey,
8 DatabaseEntry oldData, DatabaseEntry newData) throws DatabaseException {
9 acquireReadLock();

10 for(int i=0; i<triggerList.size(); i+=1) {
11 DatabaseTrigger trigger = (DatabaseTrigger)triggerList.get(i);
12 trigger.databaseUpdated(this, locker, priKey, oldData, newData);
13 }
14 releaseReadLock();
15 } // over 700 further lines of code...
16 }

sleepycat

com

Database

state

triggerList

...

Latches

BaseDB

acquireReadLock

...

releaseReadLock

notifyTriggers

Figure 2. Java code of LATCHES • BASEDB.

on making the parsers, adapters, and pretty printers work.
Often, the initial versions of the manually implemented and
integrated parsers, adapters, and pretty printers contained
numerous bugs so that we spent lots of time on debugging.

2.2.1. FSTGENERATOR

These problems motivated us to pursue the automation of
the integration of an additional language and base it largely
on the language’s grammar. This allows us to generate
most of the code that must otherwise be provided and in-
tegrated manually (parser, adapter, pretty printer) and to ex-
periment with different representations of software artifacts,
as we will illustrate in Section 2.2.2. We have developed
a tool, called FSTGENERATOR, that generates almost all
code that is necessary for the integration of a new language.
FSTGENERATOR expects the grammar of the language in
a proprietary format, called FEATUREBNF. FEATUREBNF
is similar to the Backus-Naur-Form but supports some ex-

tensions [40] and annotations, some of which are used by
FSTGENERATOR, as we will explain. Using a grammar
written in FEATUREBNF, FSTGENERATOR generates an
LL(k) parser that directly produces FST nodes and a corre-
sponding pretty printer. After the generation step, composi-
tion proceeds as follows: (1) the generated parser receives
artifacts written in the target language and produces one
FST per artifact; (2) FSTCOMPOSER performs the compo-
sition; (3) the generated pretty printer writes the composed
artifacts to disk. For the composition of the content of ter-
minal nodes, we have developed and integrated a library
of composition rules, e.g., a rule for method overriding or
for the concatenation of the statements of two constructors.
Figure 3 illustrates the interplay between FSTGENERATOR
and FSTCOMPOSER and Table 1 lists some examples of
composition rules.

4

Java C XML

Generator

...C#

Parser Composer Pretty Printer

Source Code Source CodeFST

Library of Composition Rules

Haskell JavaCC

FSTFST

FeatureBNF

FSTGenerator

FSTComposer

Figure 3. The architecture of FEATUREHOUSE.

rule description
method
overriding

merges two method bodies; original is used
to inline one body into the other

grammar rule
overriding

merges two grammar rules; original is used
to inline the body of one rule into the other

constructor
concatenation

appends the statements of one constructor
to the statements of the other

field
specialization

assigns an initial value to a field in the case
it did not have one before

implements
list union

takes the union of the types of two imple-
ments lists, excluding duplicates

Table 1. Examples of composition rules.

2.2.2. Attributes

In order to specify how artifacts of a language are repre-
sented as FSTs, programmers can annotate the language’s
grammar with attributes. We explain the role of attributes
using a simplified Java grammar. In Figure 4, we depict
an excerpt of the grammar, that is relevant for class and
method declarations, in FEATUREBNF. For example, the
rule ClassDecl defines the structure of classes containing
fields (VarDecl), constructors (ClassConstr), and methods
(MethodDecl).

As mentioned, without any attributes, FSTGENERATOR
would create, for each production rule, a corresponding ter-
minal node (e.g., for a class declaration rule a node is cre-
ated that stores information of that declaration), and only
the top-level terminals would appear in the generated FST;
in our case, beside a non-terminal denoting the enclosing
Java file, there would only be a terminal node per class dec-
laration, and the class’ member declarations would appear
as text in the terminal’s content. Since this granularity is
too coarse for our purposes, we use attributes to annotate
those production rules that are non-terminals, i.e., that con-
tain further nodes.

Figure 5 depicts an annotated version of our simple Java
grammar. The attribute @FSTNonTerminal above the rule
ClassDecl states that classes are non-terminals that con-

1 ClassDecl : "class" Type "extends" ExtType "{"
2 (VarDecl)* (ClassConstr)* (MethodDecl)*
3 "}";
4 VarDecl : Type <IDENTIFIER> ";";
5 MethodDeclaration :
6 Type <IDENTIFIER> "(" (FormalParamList)? ")" "{"
7 "return" Expression ";"
8 "}";

Figure 4. An excerpt of a simplified Java
grammar.

tain further elements. It follows from the grammar that a
node representing a class may have children representing
its name, supertype, fields, constructor, and methods. The
attribute’s parameter name is used to assign the name of a
class to the FST node representing the class.

1 @FSTNonTerminal(name="{Type}")
2 ClassDecl : "class" Type "extends" ExtType "{"
3 (VarDecl)* (ClassConstr)* (MethodDecl)*
4 "}";

Figure 5. An excerpt of a simplified Java
grammar with annotations.

With a single attribute, we have refined the composition
granularity of Java artifacts. Now, Java FSTs have three
levels (omitting packages and imports): (1) a root that rep-
resents the Java file, (2) classes that are non-terminals, and
(3) type names, methods, constructors, and fields that are
terminals. Without the attribute of Figure 5, Java FSTs have
only two levels: (1) a root and (2) classes. In Figure 6, we
show the difference between the two levels of granularity.

Beside @FSTNonTerminal, FSTGENERATOR sup-
ports several further attributes. For example, the attribute
@FSTTerminal is used to mark terminal nodes. Although
all production rules that are not annotated are interpreted
as terminals, this attribute allows a programmer to define
the format of the name that appears in the FST node and

Content

notifyTriggerstriggerListstate

Database

Content Content Content

...

...

Database.java

finer granularity

...

Database.java

Database

coarse granularity

Figure 6. Two granularities of representing
Java artifacts as FSTs.

5

the composition rule for merging the content of two cor-
responding terminals. For example, in Figure 7, we spec-
ify that the name of a node representing a Java method
receives the method’s name (<IDENTIFIER>) followed
by its formal parameters (FormalParamList). Production
rules without explicitly assigned names receive proper stan-
dard names.

Note that, without the possibility to specify the name of
an FST node, in many cases a superimposition would not
be feasible. Recall that two nodes are superimposed only if
their names (and types) are identical. For example, we can
use the parameter name to define that two classes are com-
posed if their identifiers are identical (name=”{Type}”) or
only if their identifiers and their supertypes are identical
(name=”{Type} {ExtType}”). Due to the lack of space,
we omit a description of the pattern language for the speci-
fication of FST node names.

Using the parameter compose, we define which compo-
sition rule from the library is used when composing terminal
nodes. In our simple Java grammar, we define that methods
are composed via method overriding, hence, ‘JavaMethod-
Overriding’ refers to an artifact-specific composition rule
that is part of the library of composition rules (see Fig. 3).

1 @FSTTerminal(name="{<IDENTIFIER>}({FormalParamList})",
2 compose="JavaMethodOverriding")
3 MethodDecl :
4 Type <IDENTIFIER> "(" (FormalParamList)? ")" "{"
5 "return" Expression ";"
6 "}";

Figure 7. Annotating a method declaration
with a name and a composition rule.

3. Integrating Languages

Next we report on some observations we made while in-
tegrating languages into FEATUREHOUSE. First, we dis-
cuss our general observations and, subsequently, we com-
pare the FEATUREHOUSE approach, which we call genera-
tive approach, with the approach taken previously by FST-
COMPOSER, which we call manual approach. In Table 2,
we provide a summary of the languages that we have in-
tegrated, listing the overall number of grammar rules, the
number of rules annotated to represent non-terminals, the
number of rules annotated to represent terminals, and the
overall number of attributes.

3.1. General Observations

Language properties. From our experience with the in-
tegration of artifact languages and from theoretical discus-
sions [6], we have inferred four properties that a language

Java C# C Haskell JavaCC XML
rules 135 229 45 78 170 14
non-terminals 10 17 2 13 16 6
terminals 13 18 9 9 16 6
attributes 42 53 21 24 61 15

Table 2. Overview of the languages integrated
in FEATUREHOUSE.

must have in order to be ready for superimposition and to
be plugged into FEATUREHOUSE:

1. The substructure of a software artifact must be a tree.
2. Every element of an artifact must provide a name that

becomes the node’s name and must belong to a syntac-
tical category that becomes the node’s type.

3. An element must not contain two or more direct child
elements with the same name and type.

4. Elements that do not have a hierarchical substructure
represented in the FST (terminals) must provide com-
position rules, or must not be composed.

The first property implies that it would even be possible to
compose unstructured text when it is considered as a sin-
gle terminal node. In this case, two text nodes would be
merged via string concatenation. The more structure is ex-
posed in an FST, the more fine-grained the composition can
be (which typically makes the composition more expres-
sive and easier to implement), but there is usually a nat-
ural limit. For example, representing and superimposing
arithmetic expressions is certainly not useful because ex-
pressions do not have unique identifiers.

Exceptions. We have found that the languages and granu-
larities we looked at have the properties shown above, with
one exception that demanded a special treatment: XML is
a template for languages. Simply parsing and composing
XML elements on the basis of the tags’ names is oftentimes
not appropriate. For example, in XHTML, we cannot com-
pose the elements of a list by name. The reason
is that, in general, the elements of do not have unique
names, which contradicts the third of our properties. To
solve this problem, we have added the possibility to assign
a specific name attribute to each XML tag. A more elegant
solution would be to annotate the XML grammar, so that,
for instance, for each list entry, a unique name is generated.
Actually, an XML schema defines the meaning of the dif-
ferent elements of an XML language. Consequently, we
would have to annotate the XML schema directly. In this
sense, an annotated XML schema would play the same role
as an annotated FEATUREBNF grammar.

Effort. For every language, we were able either to trans-
form an existing grammar in JavaCC or ANTLR to FEA-

6

TUREBNF (as we did for Java, C#, and JavaCC) or to write
our own grammar (as we did for C, Haskell, and XML). In
the former cases, we spent usually only few hours. The
main issue in the transformation was the conversion of
nested ANTLR or JavaCC production rules into flat FEA-
TUREBNF production rules. This is a technical limitation
in generating a pretty printer without overhead. Writing
grammars from scratch was more time-consuming – usu-
ally around one or two days – but was reduced by parsing
only the portion of an artifact’s content that is relevant for
the FST.

A further, interesting observation was that annotating the
C# grammar was more complicated and time-consuming
than annotating the Java grammar. There are two reasons
for this: (1) C# contains more language constructs, and (2)
the developers of the original ANTLR grammar we used for
C# had the goal to minimize the lookahead, which results in
a more complex specification.

Generality. Although they are not object-oriented, we
were able to integrate C and Haskell well into FSTCOM-
POSER. However, neither of the two languages offers many
candidates for non-terminals. C is an imperative language
that is built around structures and procedures, and Haskell
is a functional language that is based on data types and
functions. We represented C and Haskell files, modules,
and data structures (struct, data) as non-terminals and their
declarations such as functions and typedefs as terminals.

We were even able to integrate the language JavaCC into
FSTCOMPOSER. As a basis, we used a grammar, written it-
self in JavaCC, and translated it to FEATUREBNF. A pecu-
liarity of JavaCC is that it contains rules for grammar spec-
ification and rules for embedded Java code. For the Java
part, we reused our existing solution. Annotating the gram-
mar part was straightforward: the overall grammar speci-
fication is a non-terminal that consists of several terminals
representing tokens and production rules.

3.2. Manual vs. Generative Approach

Granularity. In the manual approach, the granularity of
composition is fixed. The adapter that translates a parse tree
to an FST sets the granularity, i.e., decides which structural
elements are represented as non-terminals and terminals.
In the generative approach, the attributes of the grammar
define which structural elements are represented by non-
terminals and terminals. Changing the attributes is a matter
of minutes; changing the adapter is tedious and error-prone.
Hence, the generative approach enabled us to experiment
with different granularities in the first place. For example,
in Haskell, it was not clear which degree of granularity of
superimposition is appropriate. It was clear that function
definitions are terminals but not whether data type defini-

manual approach generative approach
adapter pretty

printer
comp.
rules

comp.
rules

attributes

Java 1366 424 214 178 42
C# 2851 374 518 53* 53
XML 454 75 42 14 15

* For C#, we could reuse most of the composition rules of Java.

Table 3. Amount of boilerplate code (LOC).

tions are terminals or non-terminals. After playing with
some examples, we realized that it is quite useful to rep-
resent data types as non-terminals, so that data type def-
initions can be extended by adding new type constructors
(see Sec. 4), e.g.:

data BinOp = Sub deriving Eq; •

data BinOp = Add deriving Show; =

data BinOp = Add | Sub deriving Show, Eq;

Boilerplate code. In the generative approach, we mini-
mize the amount of boilerplate code a programmer has to
write. In Table 3, we list the amount of code we had to write
in the manual and the generative approach for integrating
Java, C#, and XML. We did not count generated code and
the code of the language specifications, which were often
publicly available. On average, the generative approach re-
duces the need for code writing to 6 % of that in the manual
approach.

Composition rules. Based on our experience, we have
extracted some terminal composition rules that we col-
lected in a library. These rules were reused in the inte-
gration of several languages. Specifically, we have im-
plemented composition rules for constructor concatenation,
method overriding, field overriding, grammar rule overrid-
ing, implements list merging, modifier specialization, re-
placement, and text content concatenation (see Tab. 1).
In some cases, we were able to reuse the implementa-
tion of a rule for merging the content of different types
of terminals, e.g., the method overriding rule is used for
merging Java methods and C functions. Via attributes
we can specify declaratively for which kind of termi-
nal we use which composition rule from the library, e.g.,
compose=”JavaMethodOverriding” (see Sec. 2.2).

Expenditure of time. As mentioned in Section 3.1, in the
generative approach, the effort of the integration of a new
language was on the order of hours. In the manual approach,
the effort was higher – on the order of days.

7

Susceptibility to error. Finally, writing a parser, pretty
printer, and adapter code is tedious and error-prone. After
the manual integration of the Java parser into the initial ver-
sion of FSTCOMPOSER, we detected lots of errors caused
by bugs in the adapter code and in the pretty printer or by
misconceptions regarding the role of some structural ele-
ments in the FST. For example, in the manual approach,
we neglected to represent inner classes as non-terminals. In
the generative approach, we stumbled early over this issue
since it was exposed by the grammar because we annotated
grammars top-down, starting from the root production and,
at some point, we reached inner classes and interfaces. An-
other example are (static) initializers of Java classes. In the
manual integration, we simply did not think of the possibil-
ity to merge them, until needed in a case study (Berkeley
DB; see Sec. 4). When annotating the grammar top-down,
this option became obvious.

4. Composing Software Systems

In order to demonstrate the practicality of FEATURE-
HOUSE, we have composed software systems of different
sizes written in different languages. In Table 4, we summa-
rize information on the software systems and their composi-
tions. We highlight here only some interesting observations.
The source code of all software systems of our study can be
downloaded at the FEATUREHOUSE website.

Scalability. In order to learn about scalability, we used
FEATUREHOUSE to compose a variant of Berkeley DB,
which we refactored before into superimposeable units us-
ing a product line tool [23]. Overall, we have composed 99
units of composition of Berkeley DB with almost 60 thou-
sand lines of code. Our study shows that, even though FEA-
TUREHOUSE is an unoptimized prototype, it scales well to
medium-sized software projects (24 sec. composition time).

Generality. Despite some subtle differences, the Java and
C# versions of the Graph Product Line (GPL) are very
similar before and after composition. This demonstrates
the generality of superimposition and the necessity for a
language-independent model and tool chain.

Furthermore, we confirmed that superimposition is in-
deed not limited to object-oriented languages. Decompos-
ing the C program GraphLib demonstrated that, even at the
level of pure functions, superimposition is an appropriate
composition mechanism. However, we noted also a prob-
lem: sometimes we wanted to add a new #include state-
ment in front of a file or between other #include state-
ments. This is a problem since the order of #include state-
ments matters. Using superimposition, we had to divide
some units of composition into a part that adds the #in-
clude statement and a part that extends the code below in

the file. By subdividing features, which is a kind of Par-
nas’ sandwiching [35], we were able to control the order of
#include statements in the composed C code. This prob-
lem does not occur with Java’s import statements or C#’s
using statements because the Java and C# grammars pre-
scribe that these statements have to appear before the class
declarations and the statements’ order does not matter. In
this sense, at the chosen granularity, Java and C# are better
suited for superimposition than C is. For C, the problem
was manageable since it occurred only a few times.

We were also able to support and compose Haskell arti-
facts. As with C, it was straightforward to merge files con-
taining different data type declarations and functions. How-
ever, in Haskell, a function definition may have a signature
and multiple equations that are distinguished by their argu-
ment lists. In contrast to Java or C#, the order in which
the equations appear in a Haskell file affects the execution
order, since some patterns of arguments may overlap. Basi-
cally, we have the same problem as with C’s #include, and
we solved the problem in the same way. Nevertheless, such
a language feature does not abet superimposition.

Non-code artifacts. We found some use cases for com-
posing non-code artifacts. We have extended 9 units of
composition of GPL with a simple documentation in form
of a basic XHTML file and several refinements that extend
the documentation. We have used FEATUREHOUSE suc-
cessfully to generate documentations based on selections of
composition units. As mentioned in Section 2.1, the super-
imposition of XHTML documents required special prepa-
ration: we had to assign to each tag (e.g., a list or a sec-
tion) that we wanted to extend (to merge with another tag) a
unique identifier that has been used during superimposition.

Furthermore, on the language Feature Featherweight
Java (FFJ) [3], we have demonstrated the capability to com-
pose JavaCC grammars. In a different line of work, we
discussed type systems for different extensions of Feath-
erweight Java (FJ) [3]. In order to let the FJ parser rec-
ognize the new syntactical elements of FFJ, we added and
overrode several JavaCC production rules. For example, we
added new keywords for class refinements and method re-
finements.

Finally, Violet has 83 units of composition that contain,
in summary, 98 property files. A property file stores text-
based configuration information of the UML editor, e.g.,
edge1.tooltip=Association. Individual composition units
of Violet provide individual configuration information. We
have successfully used FEATUREHOUSE to compose prop-
erty files, thus, even artifacts with unstructured content align
well with our approach.

8

COM CLA LOC TYP TIM Description
FFJ 2 – 289 JavaCC < 1 s Feature Featherweight Java Grammar [3]
Arith 15 – 442 Haskell < 1 s Arithmetic expression evaluator
GraphLib 13 – 934 C 1 s Low-level graph librarya

GPL 26 57 2,439 Java, XML 2 s Graph Product Line (Java Version) [26]
GPL 26 57 2,148 C# 2 s Graph Product Line (C# Version)
Violet 88 157 9,660 Java, Text 7 s UML Editorb

GUIDSL 26 294 13,457 Java 10 s Configuration management tool [7]
Berkeley DB 99 765 58,030 Java 24 s Oracle’s Embedded Storage Engine [23]

COM: number of units of composition; CLA: number of classes; LOC: lines of code; TYP: types of contained artifacts; TIM: time to compose
a http://keithbriggs.info/graphlib.html b http://www.horstmann.com/violet/

Table 4. Overview of the case studies.

5. Lessons Learned

Let us summarize the most significant observations we
made and insights we won during the integration of differ-
ent languages and the composition of different software sys-
tems:

1. Superimposition of FSTs scales to medium-sized soft-
ware projects.

2. The time for annotating grammars is moderate and the
depths of the generated FSTs depend on the composi-
tion granularity and the complexity of the language.

3. Artifacts written in languages whose structural ele-
ments may have identical names (whose elements are
distinguished by the lexical order) have to prepared, in
order to be superimposed. Basically, each FST node
receives a unique name, as in GPL’s XHTML docu-
mentation.

4. The order of an artifact’s elements represented by FST
nodes (terminals or non-terminals) may matter. If it
matters, as in the case of #include, the technique of
sandwiching can be used as a workaround.

5. Non-code or even unstructured artifacts, such as plain
text files or binaries, can be integrated seamlessly with
FSTCOMPOSER.

6. In practice, only a few composition rules are needed,
which can be reused by different languages and which
follow even fewer rule patterns.

7. Superimposition is applicable to a wide range of code
and non-code languages including object-oriented lan-
guages, functional languages, imperative languages,
document description languages, and grammar speci-
fication languages.

6. Related Work

Although manifested and implemented differently, sev-
eral languages provide support for superimposition of dif-
ferent kinds of artifacts, e.g., Jiazzi [28], Classbox/J [9],
Hyper/J [34] and Jak [8] for Java, ContextL [15] for Lisp,

FeatureC++ [4] for C++, Xak [1] for XML, and oth-
ers [8, 10, 14, 16, 21, 37].

While it has been noted that there is a unique core of
all composition mechanisms based on superimposition [8],
researchers have not condensed the essence of super-
imposition into a general methodology and tool chain for
software composition. A notable exception is the work of
Batory et al. who, for the first time, stressed the language-
independent nature of software composition by super-
imposition [8]. Batory et al. have proposed the AHEAD
model for superimposition based on nested records that was
a starting point for our work. We have adapted and evolved
the model toward our FST model. In contrast to AHEAD’s
nested records, in the FST model, we distinguish between
terminals and non-terminals and presume a fixed order of
elements. This and the tree structure poses the FST model
closer to the implementation level and allowed us to derive
directly an implementation, which was not done in the case
of AHEAD (each AHEAD tool for each language has been
developed from scratch). So, we believe that our FST model
captures more precisely the essence of superimposition. It is
language-independent and automates the integration of new
languages. We envision further algorithms to be integrated
in FEATUREHOUSE that operate on FSTs (and their alge-
braic representations [6]) to compose, visualize, optimize,
and verify software. Thus, FEATUREHOUSE provides a
general framework not only for different languages but also
for different algorithms that aim at reasoning about software
language-independently.

We have developed an algebra and two calculi of feature
composition which are consistent with the FST model [2,3,
6]. They allow us to explore general properties of software
composition and typing issues. Results of these projects
have been incorporated into FEATUREHOUSE, e.g., the fact
that superimposition is associative. Similarly, practical is-
sues arising from composing software systems with FEA-
TUREHOUSE had an impact on theory, e.g., the observation
that the degree of composition granularity influences the al-
gebraic properties of composition.

9

Beside superimposition, also other composition tech-
niques have been proposed. For example, composition
by quantification, as used in aspect-oriented program-
ming [27], is a frequently discussed technique. In the con-
text of our FST model, quantification can be modeled as a
tree walk [6], in which each node is visited and a predicate
specifies whether the node is modified or not. Harrison et
al. [19] propose a sophisticated set of rewriting rules that
are based on tree walks.

Recent work in model composition [11, 17, 25] aims at
developing a general framework for composing different
kinds of models. Our approach is even more general in
that it aims also at non-modeling languages. In preliminary
work, we have used FEATUREHOUSE to compose UML
class and state diagrams serialized in XMI files.

Software composition is related to the broad field of soft-
ware merging. Software merging attempts to merge differ-
ent versions of a software system not only at the module
level but at all levels of granularity by using syntactic, se-
mantic, and evolutionary information [29]. Especially for
the implementation of artifact-specific composition rules,
superimposition can benefit from these developments.

In a parallel line of research, we have implemented a
product line tool, called CIDE, that allows a developer to
decompose a legacy software system into a product line, to
type-check all products of a product line, and to visualize
and resolve feature interactions [22,23]. CIDE pursues also
a generative approach of integrating new languages [24]
based on the same grammar format we use in FEATURE-
HOUSE but on different attributes; initially, FEATUREBNF
has been developed for CIDE. It uses the entire parse tree,
thus, it does not require a mapping to terminals and non-
terminals of an FST. The coordinated development of FEA-
TUREHOUSE and CIDE allows us to use grammars in both
projects. CIDE has been used to refactor Berkeley DB, one
of our case studies.

7. Conclusion

We model software artifacts by tree structures and com-
position by tree superimposition. The FST model abstracts
from the specifics of a particular programming language or
tool. Any reasonably structured software artifact that can be
represented as an FST can be composed by our approach.

We have presented a general approach to software com-
position based on FST superimposition, and we offer a set
of accompanying tools integrated in the FEATUREHOUSE
framework. FSTGENERATOR generates, on the basis of
an attribute grammar, an FST representation and a pretty
printer for a given language. FSTCOMPOSER composes
FSTs generically via superimposition. From the integra-
tion of various languages and the application to several pro-
grams of different sizes, written in different languages, we

learned much about our approach and the properties and
problems of languages to be integrated (cf. Sec. 5).

Presently, we are working on a formalization of the FST
model and on further tools to be integrated into FEATURE-
HOUSE that operate on FSTs, e.g., a tool that visualizes
FSTs and a tool that analyzes interactions between pieces of
software. Furthermore, we are working on support for type
checking and safe composition, and we intend to integrate
other composition techniques such as quantification and as-
pect weaving. We have reason to believe that these align
well with the FST model [6]. Finally, we will explore how
XML languages can be integrated better. In this respect, we
will evaluate whether an XML schema plus attributes can
play the role of FEATUREBNF.

Acknowledgments

We thank Don Batory for helpful comments on earlier
drafts of this paper, Sebastian Scharinger and Alexander
von Rhein for implementing the Java and C# parsers of
FSTCOMPOSER, Abhinay Kampasi for refactoring Violet
into composeable units, and Marko Rosenmüller and Nor-
bert Sigmund for their support in developing the C gram-
mar. This work has been supported in part by the German
Research Foundation (DFG), project number AP 206/2-1.

References

[1] F. Anfurrutia, O. Dı́az, and S. Trujillo. On Refining XML
Artifacts. In Proc. Int’l. Conf. Web Engineering, volume
4607 of LNCS, pages 473–478. Springer-Verlag, 2007.

[2] S. Apel and D. Hutchins. An Overview of the gDeep Cal-
culus. Technical Report MIP-0712, University of Passau,
2007.

[3] S. Apel, C. Kästner, and C. Lengauer. Feature Feather-
weight Java: A Calculus for Feature-Oriented Programming
and Stepwise Refinement. In Proc. Int’l. Conf. Generative
Programming and Component Engineering, pages 101–112.
ACM Press, 2008.

[4] S. Apel, T. Leich, M. Rosenmüller, and G. Saake. Fea-
tureC++: On the Symbiosis of Feature-Oriented and Aspect-
Oriented Programming. In Proc. Int’l. Conf. Generative
Programming and Component Engineering, volume 3676 of
LNCS, pages 125–140. Springer-Verlag, 2005.

[5] S. Apel and C. Lengauer. Superimposition: A Language-
Independent Approach to Software Composition. In Proc.
Int’l. Symp. Software Composition, volume 4954 of LNCS,
pages 20–35. Springer-Verlag, 2008.

[6] S. Apel, C. Lengauer, B. Möller, and C. Kästner. An Algebra
for Features and Feature Composition. In Proc. Int’l. Conf.
Algebraic Methodology and Software Technology, volume
5140 of LNCS, pages 36–50. Springer-Verlag, 2008.

[7] D. Batory. Feature Models, Grammars, and Propositional
Formulas. In Proc. Int’l. Software Product Line Conf., vol-
ume 3714 of LNCS, pages 7–20. Springer-Verlag, 2005.

10

[8] D. Batory, J. Sarvela, and A. Rauschmayer. Scaling Step-
Wise Refinement. IEEE Trans. Software Engineering,
30(6):355–371, 2004.

[9] A. Bergel, S. Ducasse, and O. Nierstrasz. Classbox/J: Con-
trolling the Scope of Change in Java. In Proc. Int’l. Conf.
Object-Oriented Programming, Systems, Languages, and
Applications, pages 177–189. ACM Press, 2005.

[10] L. Bergmans and M. Aksit. Composing Crosscutting Con-
cerns Using Composition Filters. Comm. ACM, 44(10):51–
57, 2001.

[11] P. Bernstein, A. Halevy, and R. Pottinger. A Vision for Man-
agement of Complex Models. SIGMOD Rec., 29(4):55–63,
2000.

[12] J. Bosch. Super-Imposition: A Component Adapta-
tion Technique. Information and Software Technology,
41(5):257–273, 1999.

[13] L. Bouge and N. Francez. A Compositional Approach to
Superimposition. In Proc. Int’l. Symp. Principles of Pro-
gramming Languages, pages 240–249. ACM Press, 1988.

[14] S. Clarke, W. Harrison, H. Ossher, and P. Tarr. Subject-
Oriented Design: Towards Improved Alignment of Require-
ments, Design, and Code. In Proc. Int’l. Conf. Object-
Oriented Programming, Systems, Languages, and Applica-
tions, pages 325–339. ACM Press, 1999.

[15] P. Costanza, R. Hirschfeld, and W. de Meuter. Efficient
Layer Activation for Switching Context-Dependent Behav-
ior. In Proc. Joint Modular Languages Conf., volume 4228
of LNCS, pages 84–103. Springer-Verlag, 2006.

[16] K. Czarnecki and M. Antkiewicz. Mapping Features to
Models: A Template Approach Based on Superimposed
Variants. In Proc. Int’l. Conf. Generative Programming and
Component Engineering, volume 3676 of LNCS, pages 422–
437. Springer-Verlag, 2005.

[17] J. Dingel, Z. Diskin, and A. Zito. Understanding and Im-
proving UML Package Merge. Software and Systems Mod-
eling, 7(4):443–467, 2008.

[18] G. Freeman, D. Batory, and G. Lavender. Lifting Transfor-
mational Models of Product Lines: A Case Study. In Proc.
Int’l. Conf. Model Transformation, volume 5063 of LNCS,
pages 16–30. Springer-Verlag, 2008.

[19] W. Harrison, H. Ossher, and P. Tarr. General Composition
of Software Artifacts. In Proc. Int’l. Symp. Software Com-
position, volume 4089 of LNCS, pages 194–210. Springer-
Verlag, 2006.

[20] D. Hutchins. Eliminating Distinctions of Class: Using Pro-
totypes to Model Virtual Classes. In Proc. Int’l. Conf.
Object-Oriented Programming, Systems, Languages, and
Applications, pages 1–19. ACM Press, 2006.

[21] T. Kamina and T. Tamai. Lightweight Scalable Components.
In Proc. Int’l. Conf. Generative Programming and Compo-
nent Engineering, pages 145–154. ACM Press, 2007.

[22] C. Kästner and S. Apel. Type-checking Software Prod-
uct Lines – A Formal Approach. In Proc. Int’l. Conf. Au-
tomated Software Engineering, pages 258–267. IEEE CS
Press, 2008.

[23] C. Kästner, S. Apel, and M. Kuhlemann. Granularity in Soft-
ware Product Lines. In Proc. Int’l. Conf. Software Engineer-
ing, pages 311–320. ACM Press, 2008.

[24] C. Kästner, S. Apel, S. Trujillo, M. Kuhlemann, and D. Ba-
tory. Language-Independent Safe Decomposition of Legacy
Applications into Features. Technical Report 02/2008, Uni-
versity of Magdeburg, 2008.

[25] D. Kolovos, R. Paige, and F. Polack. Merging Models with
the Epsilon Merging Language (EML). In Proc. Int’l. Conf.
Model Driven Engineering Languages and Systems, volume
4199 of LNCS, pages 215–229. Springer-Verlag, 2006.

[26] R. Lopez-Herrejon and D. Batory. A Standard Problem
for Evaluating Product-Line Methodologies. In Proc. Int’l.
Conf. Generative and Component-Based Software Engi-
neering, volume 2186 of LNCS, pages 10–24. Springer-
Verlag, 2001.

[27] H. Masuhara and G. Kiczales. Modeling Crosscutting
in Aspect-Oriented Mechanisms. In Proc. Europ. Conf.
Object-Oriented Programming, volume 2743 of LNCS,
pages 2–28. Springer-Verlag, 2003.

[28] S. McDirmid and W. Hsieh. Aspect-Oriented Programming
with Jiazzi. In Proc. Int’l. Conf. Aspect-Oriented Software
Development, pages 70–79. ACM Press, 2003.

[29] T. Mens. A State-of-the-Art Survey on Software Merging.
IEEE Trans. Software Engineering, 28(5):449–462, 2002.

[30] M. Mezini and K. Ostermann. Conquering Aspects with
Caesar. In Proc. Int’l. Conf. Aspect-Oriented Software De-
velopment, pages 90–100. ACM Press, 2003.

[31] N. Nystrom, S. Chong, and A. Myers. Scalable Extensibility
via Nested Inheritance. In Proc. Int’l. Conf. Object-Oriented
Programming, Systems, Languages, and Applications, pages
99–115. ACM Press, 2004.

[32] M. Odersky and M. Zenger. Scalable Component Abstrac-
tions. In Proc. Int’l. Conf. Object-Oriented Programming,
Systems, Languages, and Applications, pages 41–57. ACM
Press, 2005.

[33] H. Ossher and W. Harrison. Combination of Inheritance Hi-
erarchies. In Proc. Int’l. Conf. Object-Oriented Program-
ming, Systems, Languages, and Applications, pages 25–40.
ACM Press, 1992.

[34] H. Ossher and P. Tarr. Hyper/J: Multi-Dimensional Sepa-
ration of Concerns for Java. In Proc. Int’l. Conf. Software
Engineering, pages 734–737. IEEE CS Press, 2000.

[35] D. Parnas. Designing Software for Ease of Extension and
Contraction. In Proc. Int’l. Conf. Software Engineering,
pages 264–277. IEEE CS Press, 1978.

[36] C. Prehofer. Feature-Oriented Programming: A Fresh Look
at Objects. In Proc. Europ. Conf. Object-Oriented Pro-
gramming, volume 1241 of LNCS, pages 419–443. Springer-
Verlag, 1997.

[37] M. Sihman and S. Katz. Superimpositions and Aspect-
Oriented Programming. Computer J., 46(5):529–541, 2003.

[38] Y. Smaragdakis and D. Batory. Mixin Layers: An Object-
Oriented Implementation Technique for Refinements and
Collaboration-Based Designs. ACM Trans. Software Engi-
neering and Methodology, 11(2):215–255, 2002.

[39] P. Tarr, H. Ossher, W. Harrison, and S. Sutton, Jr. N Degrees
of Separation: Multi-Dimensional Separation of Concerns.
In Proc. Int’l. Conf. Software Engineering, pages 107–119.
IEEE CS Press, 1999.

[40] D. Wile. Abstract Syntax from Concrete Syntax. In Proc.
Int’l. Conf. Software Engineering, pages 472–480. ACM
Press, 1997.

11

