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ABSTRACT

Building software product lines (SPLs) with features is a challeng-
ing task. Many SPL implementations support features with coarse
granularity — e.g., the ability to add and wrap entire methods. How-
ever, fine-grained extensions, like adding a statement in the middle
of a method, either require intricate workarounds or obfuscate the
base code with annotations. Though many SPLs can and have been
implemented with the coarse granularity of existing approaches,
fine-grained extensions are essential when extracting features from
legacy applications. Furthermore, also some existing SPLs could
benefit from fine-grained extensions to reduce code replication or
improve readability. In this paper, we analyze the effects of feature
granularity in SPLs and present a tool, called Colored IDE (CIDE),
that allows features to implement coarse-grained and fine-grained
extensions in a concise way. In two case studies, we show how CIDE
simplifies SPL development compared to traditional approaches.

Categories and Subject Descriptors: D.2.3 [Software]: Software
Engineering—Coding Tools and Techniques; D.2.6 [Software]:
Software Engineering—Programming Environments; D.3.3 [Soft-
ware]: Software Engineering—Language Constructs and Features

General Terms: Design, Languages

Keywords: Software product lines, virtual separation of concerns,
feature refactoring, IDE

1. INTRODUCTION

A software product line (SPL) aims at generating tailored programs
from a set of features. Each feature represents an increment in func-
tionality relevant to stakeholders. Different programs tailored for
a given task or environment can be created by selecting a particu-
lar subset of features. Using SPLs it is possible to create program
families of related programs for a domain.

A feature’s implementation extends the program in one or more
places. In prior work, we successfully created SPLs, e.g., [1, 22, 30],
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with several different implementation approaches like AHEAD [4],
mixin layers [44], aspectual feature modules [2], or aspects [24]. At
that time, we have not been aware of the importance of granularity
on feature implementation.

In a recent case study, we decomposed a legacy application —
Berkeley DB, an embedded database engine! — into features in order
to transform it into an SPL [22]. We factored out 38 features, so that
users could configure Berkeley DB to optionally include features
such as transactions, statistics, or logging. We noticed that this
decomposition was much more difficult than our prior SPL imple-
mentations. Several features were hard to implement because they
needed to introduce statements in the middle of methods, or add
parameters to existing methods. The modularization of features
became very difficult to understand and maintain. Though some
problems were caused by limitations of Aspect]), we found that
other languages like Jak [4], Jiazzi [36], or Hyper/J [49] also poorly
support extensions of such fine granularity.

What we observed is that languages that are based on collaboration-
based design [40] focus on adding new members to existing classes,
new classes, and extending existing methods [3]. These capabilities
are sufficient for many applications. But for decomposing Berkeley
DB, we needed much more fine-grained extensions. For example,
when adding transaction and synchronization mechanisms to the
database system, we extended the program in over 240 places, often
in places not trivially to access, like in the middle of a method [22].
To realize such extensions, we had to use workarounds that ob-
fuscated the code. In the end, we even considered restarting from
scratch using preprocessor directives such as ‘#ifdef” and ‘#endif’
to surround feature-specific code, but refrained because of other
problems this would have introduced [45], which we discuss later.

Fine-grained extensions pose a major challenge for current ap-
proaches to feature-based SPL development, especially when creat-
ing a SPL by decomposing a legacy application. Alerted by these
results we analyzed the granularity of extensions in SPLs we created
earlier. Even though fine-grained extensions were required less fre-
quently than in Berkeley DB, we found potential for improvements
where current implementations replicate code or use workarounds
that obfuscate the source code. We did not notice this potential
earlier because we accepted the limitations of the given languages.

In this paper, we explore effects of granularity of different ap-
proaches on SPL development. We show that existing approaches
are not able to implement fine-grained extensions satisfactorily and
analyze possible solutions that allow implementing SPLs without
sacrificing understandability. We present a tool, called Colored IDE

! http://www.oracle.com/database/berkeley-db
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(CIDE), that combines the strengths of existing approaches and adds
support to overcome the granularity problem. Finally, we illustrate
the benefits of CIDE in two case studies, the initial Berkeley DB
case study and a small, existing SPL, in which we did not realize
granularity effects at first.

2. BACKGROUND: APPROACHES TO SPL
IMPLEMENTATION

There are two common ways to implement an SPL: the composi-
tional approach and the annotative approach.

2.1 The Compositional Approach

Compositional approaches implement features as distinct modules.
To generate a product line member, a set of modules is composed,
usually at compile-time or deploy-time. There is a large body of
work on feature composition usually employing component tech-
nologies [48], or specialized architectures and languages like frame-
works [20], mixin layers [44], AHEAD [4], multi-dimensional sepa-
ration of concerns [49], and aspects [24].

In Figure 1, we show an example of 3 modules implemented with
Jak (AHEAD Tool Suite) [4], a compositional approach, that uses
mixin technologies. The first module (Lines 1-5) implements the
basic stack. The other two modules implement extensions for the
two features locking and logging. In Jak a feature can extend an
existing class using the refines keyword and introduce new methods
or extend existing ones with wrappers (by overriding using the Super
keyword to call the original implementation).

class Stack {
boolean push (Object o) {
elementData[size++] = o;
}
}

refines class Stack {
boolean push (Object o) {
Lock 1l=lock (0);
Super.push (o) ;
l.unlock ();
}
Lock lock (Object o) {
}

/xoox/ )

refines class Stack {
boolean push (Object o) {
Super.push (o) ;
log("added " + 0);
}
void log(String msg) {
}

k.. k) }

Figure 1: A basic stack and two features implemented in Jak.

2.2 The Annotative Approach

Annotative approaches implement features with some form of ex-
plicit or implicit annotations of the source code. Typical exam-
ples of explicit annotations are ‘#ifdef” and ‘#endif’ statements of
C/C++ style preprocessors to surround feature code. Others use
Java annotations or new language constructs in the code to be ex-
tended. Examples are explict programming [7], Frames/XVCL [18],
Spoon [39], Gears [28], software plans [9], metaprogramming with
traits [52], and aspects using annotations [27]. Alternatively, im-
plicit annotations exploit existing language facilities. For example,
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deliberately introduced empty methods can be used as hooks for
extensions, or naming conventions can be employed for extensions
like “synchronize all methods starting with ‘sync_"". In some ap-
proaches, features are partly modularized leaving just annotations in
the code, at which feature code is later introduced, while in others
the whole SPL including alternative and mutually exclusive features
are encoded in a single code base and configurations are created by
removing or deactivating code fragments.

Especially common is the use of preprocessors to configure a
program. For example, with the C implementation of Berkeley DB a
user can configure 11 different features at compile-time. An example
code fragment from Berkeley DB with ‘#ifdef’ statements for the
features HAVE_QUEUE and DIAGNOSTIC is shown in Figure 2.

static int __rep_queue_filedone (dbenv,
DB_ENV *dbenv;
REP *rep;
__rep_fileinfo_args *rfp; {
#ifndef HAVE_QUEUE
COMPQUIET (rep, NULL);
COMPQUIET (rfp, NULL);
return (__db_no_queue_am (dbenv));
telse
db_pgno_t first,
u_int32_t flags;
int empty, ret, t_ret;
#ifdef DIAGNOSTIC
DB_MSGBUF mb;
#tendif
// over 100 lines of additional code
tendif
}

rep, rfp)

last;

Figure 2: Code excerpt of Berkeley DB.

Most SPL implementations can be categorized into compositional
and annotative approaches. Additionally, some approaches like as-
pects can be included in both groups, depending on how they are
used, or combine approaches from both groups. However, there
are techniques that do not fit into either group, e.g., those based
solely on tool support [6], based on model-driven development [51],
or on generative programming [10]. Still, in this paper we focus
on compositional and annotative approaches because they cover
a significant fraction of contemporary SPL implementations and
reveal interesting differences concerning granularity of extensions.

3. GRANULARITY

Features can extend a program with additional code. Extensions
with coarse granularity add new classes or methods to the pro-
gram or extend explicit extension points. Plug-in architectures in
frameworks and component approaches are typical approaches that
provide possibilities for such extensions. However, this might not
be sufficient. Developers might want to introduce new statements
into existing methods and extend expressions or even method sig-
natures. These are fine-grained extensions and require additional
support. For example, they arise when legacy applications are
feature-refactored [32]. (These applications were not designed with
feature granularity in mind, and consequently fine-grained exten-
sions are commonly needed when extracting features). We evaluate
possible levels of granularity and typical problems for both compo-
sitional and annotative approaches.

3.1 Compositional Approaches

Existing compositional techniques usually allow coarse-grained
extensions only. Many provide mechanisms to define explicit ex-
tension points, which are the only points that can be extended by
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a feature. Others like AHEAD and Aspect] can extend virtually
every method of the system. In most approaches it is only possible
to introduce new classes, methods, or fields and to extend whole
methods using wrappers (a.k.a. around advice, method refinements,
or method overriding) [3].

class Stack {
void push (Object o, Transaction txn) {
if (o==null txn==null) return;
Lock l=txn.lock(o);
elementData[size++] = 0;
l.unlock ();
fireStackChanged () ;

Figure 3: Fine-grained extension example.

We [22] and others [37] noticed several limitations when imple-
menting fine-grained extensions compositionally. We exemplify the
three most common limitations by means of the code snippet in
Figure 3, in which the underlined code belongs to a synchronization
feature and should be implemented in its own module.

1. Statement Extensions. In most compositional approaches
it is not possible to introduce statements in the middle of
an existing method in order to extend certain statements or
sequences of statements therein.? For example, consider how
to synchronize only the statement in Line 5. Simple wrap-
pers around the whole method are not sufficient. Instead, we
have to introduce the locking statements in Lines 4 and 6
specifically. Note, statement extensions might also access
local variables. Usually, workarounds borrow from annotative
approaches and introduce artificial extensions points for ex-
tension. Typically, a developer would introduce calls to empty
hook methods [37] or perform an Extract Method refactor-
ing [13] that moves Line 5 to its own method so that it can be
extended with a wrapper. Local variables, if accessed in the
extension, are passed as parameters. Either workaround re-
quires explicit or implicit annotations and severely obfuscates
the source code [37, 22].

2. Expression Extensions. Extensions to an individual expres-
sion can occur as well. An example is shown in Line 3, in
which the condition of the if statement is extended. A typi-
cal workaround again creates a new method and moves the
expression there, so that it can be extended with wrappers.

3. Signature Changes. To the best of our knowledge, there
is no compositional approach that allows to introduce an
additional parameter into an existing method signature, as
the zxn parameter in Line 2. Instead, method signatures are
considered unchangeable. Typical workarounds store the
additional parameters in thread-safe fields, duplicate code, or
use complex language mechanisms like the Wormhole Pattern
in Aspect] [29]. However, all of these workarounds introduce
different problems and reduce code quality [42, 21]. Note that
it is also necessary to adapt all calls to the extended method.

A possible implementation of the base code and its extensions
using Jak is shown in Figure 4. Statements and expression exten-
sions are implemented with the two hook methods /1 and /2. The
parameter is passed with a thread-safe field pushTxn and the original
push method is deactivated by throwing an exception. Apparently,

2 A notable exception is AspectJ that enables to extend method calls
or field access inside specific methods [25, 22]. This feature can be
used to emulate statement extensions in some cases (cf. Sec. 5.1).
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the extension code in Figure 4 is much larger than the amount of
underlined code in Figure 3.

class Stack {

void push (Object o) {
if (o==null || h1())
h2 (o) ;
fireStackChanged () ;

}

boolean hl () { return false; }

void h2 (Object o) {
elementData[size++] = o0;

}

return;

refines class Stack {
ThreadLocal <Transaction> pushTxn =
new ThreadLocal<Transaction>();
void push (Object o, Transaction txn) {
pushTxn.set (txn);
Super.push (o) ;
}
void push (Object o) {
throw new UnsupportedOperationException (
"Call push(Object, Transaction) instead");
}
boolean hl () {
return pushTxn.get ()
}
void h2 (Object o) {
Lock 1 = pushTxn.get ().lock(o);
Super.h2 (o) ;
l.unlock ();
}
}

null;

Figure 4: Fine-grained extension with AHEAD.

Extending compositional approaches with new language con-
structs for fine-grained extensions is not trivial either because of
several conceptual problems. Firstly, signatures are used to identify
the methods that are to be extended. If changing method signa-
tures for an optional feature was possible, another naming scheme
would need to be used to identify methods. Consequently, most
languages consider signatures as immutable, and do not account for
the possibility of signature changes.

Secondly, compositional approaches only introduce new code
fragments in positions in which the order does not matter. Thus, it
is possible to introduce new classes into the program or new meth-
ods into a class, but not new statements at a fixed position inside a
method. This target position is not known when implementing the
feature and could move if other features introduced statements as
well. Therefore, compositional approaches usually offer only wrap-
pers that add statements at the beginning and/or the end of a method,
but not at a finer granularity. Similarly, parameters in method sig-
natures are ordered, which makes parameter introductions difficult.

The coarse granularity of compositional approaches leads to sev-
eral problems when developers use them to implement fine-grained
extensions anyway. Workarounds often obfuscate the source code
and are verbose and hard to understand. Many workarounds repli-
cate code or use heavy-weight architectures that induce performance
penalties [37, 22, 42, 21].

3.2 Annotative Approaches

Conceptually, annotations can mark code fragments at arbitrary
levels of granularity. They simply introduce markers at the exact
positions that should be extended. Typical examples are C/C++ style
preprocessors, which although they annotate only whole physical
lines, are sufficient for even the finest extensions due to the ability
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to isolate language constructs in separate lines. A possible prepro-
cessor implementation of our example from Figure 3 is shown in
Figure 5. Other annotation approaches allow similarly fine-grained
extensions, e.g., [19, 9].

class Stack {
void push (Object o
#ifdef TXN
, Transaction txn
#endif
) |
if (o==null
#ifdef TXN
|| txn==null
tendif
) return;
#ifdef TXN
Lock l=txn.lock (o);
#endif
elementData[size++] =
#ifdef TXN
l.unlock ();
#endif
fireStackChanged () ;
b}

o;

Figure 5: Fine-grained extension with C/C++ preprocessor.

Annotations do not share the conceptual limitations regarding
ordered statements and fixed signatures because they indicate the
final position in the base code. Therefore, a method can always be
identified by its final signature and also the position of a statement
or a parameter in an ordered list can always be determined.

Still, our experience3 and reports by others, e.g., [45, 5], show
that annotations have problems as well. Firstly, annotations them-
selves obfuscate the source code as apparent in Figure 5. Secondly,
annotating arbitrary code fragments, whether they make sense or not,
is problematic. For example, it is possible to annotate an opening
bracket with one feature and the closing bracket with another. This
makes annotations error-prone and raises complexity. Thirdly, there
may be problems dealing with separating terminals like commas
between parameters. There are frequent situations when such simple
syntactic elements must be annotated for features as well.

In Figure 6 we show an example: an init method with two parame-
ters, in which the first parameter is included only if fransactions are
enabled in the system, and the second is included only if logging is
enabled. However, when annotating this code fragment with C/C++
style preprocessors we have to split the method declaration into
multiple lines and even include the comma inside a nested ‘#ifdef’
statement so that all derivable variants are syntactically correct.

Despite these problems, annotative approaches support fine-grained
extensions better than compositional approaches. However, they
provide no perceptible form of modularity.

4. CIDE
4.1 Overview

Motivated by the problems of both compositional and annotative ap-
proaches, we built an Eclipse-based prototype tool for decomposing
legacy applications into features that may have a fine granularity.*
It uses the semantics of preprocessors, i.e., it can be classified as

3In the FAME-DBMS project, colleagues analyzed and decom-
posed the C version of Berkeley DB, which employs an annotation
approach (funded by the German Research Foundation, project
no. SA 465/32-1).

4The tool can be downloaded at http://wwwiti.cs.uni-magdeburg.de/
iti_db/research/cide.
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void init (Transaction txn, */}

LoggingLevel level) {/*impl.

void init (

#ifdef TRANSACTION
Transaction txn

tifdef LOGGING

tendif
tendif
#ifdef LOGGING
LoggingLevel level
tendif

) {/*impl. x/}

Figure 6: Decomposition with preprocessors.
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Figure 7: CIDE Screenshot.

annotative approach, but avoids the pollution of source code. De-
velopers start with a fully composed application with all features
implemented in a single code base, typically a legacy application.
Then, they make features explicit by successively associating code
fragments with one or more features, i.e., they mark the correspond-
ing code. Alternatively, developers can also extend the application
with new features and associate all new code fragments with those
features. Just as with ‘#ifdef’ statements, code fragments are only
included when all associated features are selected in a given config-
uration.

In contrast to traditional preprocessors as in C/C++, we do not
obfuscate the source code with additional annotations. Instead, we
use the representation layer of the editor to indicate the associated
features with different background colors. Thus, developers can
directly recognize whether a code fragment is associated with a
feature. In case a code fragment is associated with multiple features,
which is traditionally done with nested preprocessor statements, we
mix the according background colors (e.g., red + blue = purple).
Feature names are shown in tool-tips on request. Note that it is
usually not possible to recognize the features of a code fragment
solely by background colors, especially when many features overlap.
However, colors are sufficient to determine the beginning and the
end of a code fragment associated with a set of features, and it is
convenient to look up the actual features using tool-tips. Because
of its colorful appearance (cf. Fig. 7) we named the tool Colored
Integrated Development Environment (CIDE).

As with preprocessors it is still possible to insert or edit code,
while the colors remain assigned to the code fragments. But even
though CIDE is based on preprocessor semantics, we do not as-
sign features to arbitrary code fragments to avoid the problems of
meaningless associations and syntactical elements illustrated in Sec-




tion 3.2. Instead, we assign features to structural code elements of
the source code. The form of such structural elements depends on
the artifact type. For example, programs in many languages can
be expressed as abstract syntax tree (AST), not only Java programs.
In all these cases we use this underlying structure and associate
features to structural elements.

4.2 Coping with Feature Granularity

We illustrate the mechanisms used in CIDE by the example of Java
code and its AST representation. An AST contains all structural ele-
ments that are relevant for the source code. It is possible to recreate
the source code from the AST (except its original formatting). In
Figure 8, we exemplify a small Java code snippet and a correspond-
ing AST. Note, the AST does not include syntactical elements like
commas or brackets.

ClassDeclaration
Name=C

MethodDeclaration
Name=m

class C {
void m(int p){

sl () ; ReturnType Parameter
52 true); Type=void Name=p

MethodCall
Name=s1

}
}

AN AW -

MethodCall
Name=s2

Parameter
Value=true

Parameter
Value=p

Figure 8: AST Example.

Instead of using offset and length to specify code fragments, we
assign features directly to subtrees of the AST as defined by the
language grammar. For example, we can assign a feature to a class
node and all its children (i.e., making a class optional), or to a
statement and its children as highlighted in Figure 8 (i.e., statements
are optional child nodes of block nodes). It is even possible to
assign a single parameter node to a feature (i.e., an optional child
node of a method node). However, nodes that are not optional
in the AST (i.e., that cannot be removed without invalidating the
AST), like the return type of a method cannot be associated with
features individually. Developers can but are not required to view
the code as AST, usually, in the editor they assign the selected code
fragments directly to features, which CIDE automatically maps to
AST elements.

For Java code, we carefully defined two kinds of exceptions from
the subtree rule exemplified in Figure 9. Firstly, statements that
embrace other statements can be associated with features without
necessarily associating its child elements. So, it is possible to re-
move individual if, for, while, try, and similar statements without
removing the statements they surround. Secondly, children of bi-
nary expression nodes can be associated with features even though
they are not optional AST elements (every binary expression node
requires two child expressions). This allows us do decompose ex-
pression statements as in Figure 3. We decided to include these
exceptions for increased granularity.

The restriction of assigning only optional AST subtrees to features
enforces decomposition into ‘reasonable’ code fragments. Thus,
developers can no longer associate only an opening bracket but not
the closing one with a feature. Furthermore, they do not need to
deal with syntactical elements such as commas in Figure 6 at all.
We allow only AST operations that create a well-formed AST as
output, so the Java compiler can parse the generated code of any
configuration. At the same time, the AST structure is extremely

MethodDeclaration
Name=m

1| void m(boolean

a, boolean

b) {
2 a=a || sl() Assignment IfStatement

1l b;
3 if a { VariableRef BinaryOR- Expression
4 s2.(); Name=a ’ Expr ‘ Name=b ’ Block ‘
5 } [
6|} VariableRef BinaryOR- MethodCall
Name=a Expr Name=s2

MethodCall VariableRef
Name=s1 Name=b

Figure 9: Exceptions to the optional subtree rule.

flexible, allowing developers to associate arbitrary statements or
even parameters or parts of expressions with features. Decomposing
a code snippet like the one introduced in Figure 3 is straightforward,
because parameters, statements and expressions are all AST nodes
that can simply be ‘colored’.

Note, the granularity of CIDE is not as fine as that provided by
C/C++ like preprocessors. For example, developers cannot specify
two alternative result types of a method, because the AST only al-
lows one child element for the result type per method. In practice
we have not yet found any cases where this was a limitation. Fur-
thermore, for reasons of simplicity developers can assign only a set
of features to a code fragment and not a propositional formula [11].
Consequently, it is not possible to specify a code fragment to be
included if a feature is not selected (#ifndef). However, we are able
to work around these problems by modeling features differently in
a feature model (e.g., specify two alternative features instead of a
single optional one). If future case studies showed the demand for
such expressibility, we could still extend CIDE at the cost of a more
complicated user interface.

4.3 Feature Management

Feature implementations with fine-grained extensions are difficult
to understand in both compositional and annotative techniques, as
illustrated in Section 3. Even though compositional approaches can
implement features cohesively, workarounds make it hard to under-
stand extensions. Also the feature code in annotative approaches is
hard to understand because it is scattered and annotations obfuscate
the source code.

CIDE enhances feature management (navigation, selection, com-
position) with tool support. Firstly, navigation support allows de-
velopers to jump between code fragments associated with a certain
feature set to diminish the problems of missing feature cohesion.
This makes it easy to find all code fragments associated with a
feature. Because feature code is still placed where it extends the pro-
gram, and it is therefore obvious to see how it extends the program,
it is simple to understand how a feature is implemented (cf. Fig. 3).
The navigation support is in line with prior approaches of concern
graphs [41] and the map metaphor [14] that choose tool support
over complex modular implementations.

Secondly, a projection facility can hide all code associated with a
feature in the editor during development, so that the remaining code
can be viewed in isolation. The projection facility is implemented
like code folding in modern development environments, in which
bodies of methods or comments can be folded and unfolded on
request. When the developer requests a feature to be hidden, CIDE
just leaves a marker to indicate hidden code. Thus, the developer can
focus on selected features and hide feature code that is not relevant



to the current task. The markers are still useful for modifications as
they alert the developer of feature extensions that might be necessary
to adapt as well.

Finally, we implemented a mechanism to export the marked
code into cohesive modules implemented with compositional ap-
proaches [23]. Our prototype currently provides exports to Jak and
to Aspect]. This way, feature implementations can be used indepen-
dently of CIDE, e.g., for further code generation and optimization
steps.

We argue that, compared to existing compositional and annotative
approaches, CIDE makes it easier to develop feature-based SPLs
because it hides all programming language concepts of refinements,
aspects, hook methods, annotations, and similar for implementing
features that are necessary in these approaches. It provides different
views on the source code. Developers can hide features, navigate
between them, and even export them. Even though CIDE cannot re-
place cohesive modules, it supports understanding scattered feature
implementations and enables developers to choose the best view on
the source code for each task.

5. CASE STUDIES

In order to support our proposal, we conducted two case studies.
Firstly, we analyze our decomposition of the embedded database en-
gine Berkeley DB, a large scale legacy application with 84,000 LOC.
Secondly, we study a small SPL of graph algorithms with 2,000 LOC
designed as an SPL using a compositional approach. In both, we
compare their implementations with CIDE. The code for both case
studies is available for download from the CIDE web page.’

5.1 Berkeley DB

Our initial insight that the granularity of existing compositional
approaches was insufficient came from a case study, in which we de-
composed a large scale legacy application - the embedded database
engine Berkeley DB JE — into 38 features to make features explicit
in its design and to make it configurable as an SPL. To decompose
Berkeley DB, we first located and marked feature code, then re-
moved this feature code, and finally reintroduced it using feature
modules implemented with Aspect] [25], a compositional approach.
Due to space restrictions, we limit our report to statistics and the
most important insights in anecdotical form.

Berkeley DB was not designed as an SPL with features in mind.
Instead it was implemented as a single application with a clean
object-oriented design modularized in classes and packages. Some
configurability was achieved using external parameters and runtime
checks. Consequently, feature code was scattered all over the appli-
cation. Some larger features like Synchronization and Transaction
affected up to 30 (of 300) classes in Berkeley DB in over 150 places
(cf. [21, 22] for detailed statistics).

Decomposition with Aspect]. When decomposing Berkeley DB we
were confronted with fine-grained extensions in almost every feature.
For example, feature code was often located right in the middle of
a method. Of 1,144 extensions used to implement the 38 features,
640 extensions (56 %) introduced new classes, methods, or fields.
214 other extensions (19 %) were simple method extensions that
added wrappers to existing methods. They were well supported by
Aspect]. However, 261 extensions (23 %) were required at statement
level and 24 (2 %) at expression level, which posed major problems.

Statement extensions were implemented in two different ways.
Firstly, Aspect] supports extensions finer than just wrappers around
methods: it is possible to extend methods calls or field accesses in-

Shttp: //wwwiti.cs.uni-magdeburg.de/iti_db/research/cide

side specific methods by combining call, set, or get with withincode
pointcut designators. We used such extensions to emulate statement
extensions when the feature code was placed directly before, after,
or around a single method call or field access. This was sufficient
for 121 extensions (46 % of all statement extensions). However,
our solution was rather fragile, because any changes to the inter-
nal implementation of the base code might require the pointcuts
to be altered. For the remaining 140 statement and 24 expression
extensions we had to introduce hook methods and extend those.

We also faced the problem that certain method parameters of the
code base belonged to a feature and should be removed when the
feature is not selected. This made it very difficult to detach some
features in Berkeley DB, because Aspect], like other compositional
approaches, does not permit changes to method signatures. We first
noticed the problem when we decomposed the part of the transaction
system that is responsible for atomicity. To group several operations
as a single transaction, the user can create a Transaction object
and pass it to operations like put, get, or delete. This object is
then passed further along the control flow to acquire suitable locks.
Inside Berkeley DB, such a parameter is included in the signature of
59 methods. Without the transaction feature, none of these methods
should include a transaction parameter.

We experimented with different possibilities to implement the
Transaction feature. We removed the parameter from the base code
and introduced a second method for each operation with the ad-
ditional parameter that calls the first method. We could pass the
parameter in a thread-protected field, use method objects [13], use
dummy or default parameters, employ Aspect]’s wormhole pat-
tern [29], or use parameter objects that encapsulate all parameters.
Unfortunately, all options obfuscate the source code. Firstly, excited
by Aspect)’s advanced constructs, we implemented the wormhole
pattern in 16 pieces of advice as exemplified in Figure 10. There,
all calls to getWritebleLocker(Environment) are replaced by calls to
getWriteableLocker(Environment, Transaction), and the transaction
parameter is captured from interface methods like openDatabase
and get using the cflow pointcut designator. Eventually, we found
this too fragile and too hard to understand [22]. Finally, we settled
with parameter objects named OperationContext and interface meth-
ods that created those objects for internal use. To extend the method,
we only needed to extend the parameter objects.

While we could work around the parameter limitation for the
transaction feature, we did not attempt any further decomposition
of features, in which a large amount of parameters were involved.
Especially the Locking feature appeared unmanageable with com-
positional approaches as it had to introduce parameters like locker,
lockMode, or lockType 289 times. Decomposing the Locking feature
would either result in utterly unreadable code or require a complete
preliminary redesign of the whole database engine.

Together, workarounds for fine-grained extensions of statements,
expressions, and parameter lists made the decomposition very dif-
ficult and the implementation tedious. Though it was possible to
decompose most features, code quality suffered and the resulting
code base became hard to understand and maintain.

Decomposition with CIDE. After these discouraging initial results,
we experimented with other compositional approaches and with de-
composing Berkeley DB using a C/C++ preprocessor but limitations
discussed in Section 3.2 held us from trying them on a case study
of this size. Finally, we decomposed Berkeley DB once more into
the same features using CIDE. In CIDE, fine-grained extensions
were no problem, because we could directly associate single state-
ments, exceptions, or even parameters with features. This avoids
all previously required workarounds. Because we did not need to
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pointcut interfaceCallWithTransaction(Transaction txn)
(execution (* Environment.openDatabase (..)) && args (txn,*,*)) ||
(execution (* Database.get (..)) && args(txn,*,*,*)) [| ...;
pointcut getWritableLocker (Environment env): call (Locker LockerFactory.getWritableLocker (Environment)) && args (env);
Locker around (Environment env, Database db, Transaction txn)
getWritableLocker (env) && this (db)
{ return LockerFactory.getWritableLocker (env,

throws DatabaseException :
&& cflow (interfaceCallWithTransaction (txn))
txn); }

Figure 10: Using the Wormbhole Pattern to pass a parameter.

perform any manual decomposition or implementation of feature
modules, but only assign features to code fragments inside the IDE,
the decomposition of Berkeley DB was more convenient and much
faster (3 days instead of 1 month)®. CIDE’s finer granularity sup-
ported decomposing Berkeley DB significantly. We were even able
to decompose the Locking feature with its 289 parameter extensions.

By using CIDE, understanding the SPL became simpler, because
neither do additional statements obfuscate the source code, nor is
it necessary to understand complex workarounds like in Figures 4
and 10. Moreover, the projection facilities helped to reason about
features in isolation or in concert with other features.

5.2 The Graph Product Line

The graph product line (GPL) is a small SPL of graph algorithms
with about 2,000 LOC. It was designed from scratch as an SPL
and suggested as a benchmark for SPL technologies [33]. The do-
main of graphs was chosen because it is well understood and the
algorithms are well known in computer science. It consists of 14 fea-
tures: edges can be directed, undirected and optionally weighted,
there are two search methods breadth first search (BFS) and depth
first search (DFS), and finally there are several graph algorithms
like cycle checking, shortest path, strongly connected, or minimum
spanning tree. The implementation as an SPL makes it possible
to select the graph properties and algorithms needed for a given
problem [33]. The original version of GPL was implemented with
mixin layers [44], but other implementations e.g. in Aspect] [34]
and Hyper/J [35] are available. All these implementations use com-
positional approaches with similar results regarding the following
analysis.

Graph Vertex Neighbor Workspace Main
-edges -name -vertex
-vertices -neighbors -edge +init_vertex() +main()
+addEdge() -visited +preVisit()
+addVertex() +bftSearch() +postVisit()
+findEdge() +dftSearch()
+findVertex() +display()
+display()
FrnBenchmark() Edge gionWorkspace| [T kspace
+connectedComponents() -start
+computeTranspose() -end
+shortestPath() -weight

+display()

Figure 11: UML class model of GPL (excerpt).

Although the GPL case study and the figures below appear almost
trivial, we intentionally chose it because it is well suited to show
that there are benefits from implementation approaches that support
fine-grained extensions, even for SPLs that are (1) not extracted
from legacy applications but designed from scratch and (2) small
and simple.

In Figure 11 we show the basic class structure of GPL. Details of
some features are omitted. The architecture is simple: a Graph class

The second decomposition was also faster because we were already
familiar with the source code. Still, the difference is significant.

holds the graph consisting of edges and vertices. Most features add
a method to the Graph class and extend the run method used for
benchmarks. Some features like Number, Shortest, or Weighted add
fields for temporary values to Vertex and Edge and extend their dis-
play method to show the additional values. Features like Connected
or Cycle also depend on methods implemented in previous features
like search algorithms.

Feature CI CR MI Extended Methods

Prog 1 0 0 -

Benchmark 0 1 7 -

Directed 4 0 0 -

Undirected 4 0 0 -

BFS 2 1 3 Vertex.display

DFS 2 1 3 Vertex.display

Weighted 0 2 2 Edge.display, Edge.adjust
Transpose 0 1 1 -

Connected 1 2 1 Vertex.display, Graph.run
Cycle 1 2 1 Vertex.display, Graph.run
MSTKruskal 0 2 1 Vertex.display, Graph.run
MSTPrim 0 2 1 Vertex.display, Graph.run
Number 1 2 1 Vertex.display, Graph.run
Shortest 0 2 1 Vertex.display, Graph.run
StronglyC. 2 2 1 Vertex.display, Graph.run

CI: class introductions; CR: class refinements; MI: method introductions

Table 1: Feature Statistics for GPL.

Implementation with Mixin Layers. The granularity required to
implement GPL is coarse. As illustrated in Table 1 most features
introduce only new code fragments (25 methods and 21 fields into
existing classes and 18 new classes). Methods were rarely extended
(by means of method overriding). Of 84 methods in GPL only
4 were ever extended: the method Verfex.display was extended
by 9 features, the benchmark method Graph.run was extended by
7 features and Edge.display and Edge.adjust were extended once.
Not a single hook method was used to implement extensions at
statement or expression level.

Even though all features could be implemented with the coarse
granularity provided by the language, we found some code replica-
tion that could have been avoided if fine-grained extensions were
available. Firstly, the mutually exclusive search features BF'S and
DFS, as well as Directed and Undirected, introduced similar meth-
ods that differ only in minor parts. Alternative implementations
could use hook methods inside a common base feature to avoid code
replication. In CIDE both variants can be combined in a single code
base, in which both features only extend a single line as shown in
Figure 12 (feature code is italicized and underlined respectively).

Secondly, the extension of the Weighted feature introduces a
second addAnEdge method and a second Edge constructor with an
additional parameter, though conceptually the addAnEdge method
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public void search (Workspace w) {

int s = vertices.size();

if (s == 0) return;

for (int c = 0; c < s; c++)
vertices.get (c).init_vertex (w);

for (int c = 0; c < s; c++) {
Vertex v = vertices.get(c);
if (!v.visited) {

w.nextRegionAction (v);
v.dfSearch (w) ;
v.bfSearch (w);
}
}

Figure 12: Search method differs only in a single line.

and the constructor of the Edge class should be both extended with
an additional weight parameter. So, with the Weighted feature
enabled there were two addAnEdge methods, one with two and
one with three parameters, even though only the method with three
parameters should be used by clients.

Implementation with CIDE. In CIDE, we have composed the whole
code base including several mutually exclusive features in a single
code base, in which different code fragments are associated with
features. This way, the file containing the code of the class Graph
became fairly large (772 LOC), of which 88 % were associated with
features. The projection facility came in handy to see only relevant
code fragments.

We were surprised that despite GPL’s apparent coarse granularity,
we could still identify several situations, in which we benefit from
CIDE’s fine granularity and could reduce code replication. For ex-
ample, we integrated both search methods that only differ in one
line as shown in Figure 12. Similar code replication between the
Directed and Undirected features could be avoided as well. Further-
more, we could implement the additional parameter for the Weighted
feature much simpler without additional methods or constructors as
shown in Figure 13. We simply associated all weight parameters
with the Weighted feature (underlined). Because of reduced code
replication and because we do not need implementation overhead of
mixin layers, the code size of GPL in CIDE is 36 % smaller than in
the original implementation (1,222 LOC instead 1,920 LOC).

class Edge {

Edge (Vertex start, Vertex end, int weight) {
this.start = start; this.end = end;
this.weight = weight;

}

}
class Graph {

Edge addAnEdge (Vertex start, Vertex end, int weight) {
Edge theEdge = new Edge (start, end, weight);
edges.add (theEdge) ;
start.addNeighbor (new Neighbor (end,
return theEdge;

theEdge));

Figure 13: Parameter extension for addAnEdge.

6. RELATED WORK

SPL Adoption. Krueger distinguishes between three different adop-
tion models for SPLs [28]. Firstly, the proactive adoption model re-
lates to the waterfall approach of conventional software engineering.

The SPL is planned up front and designed with all features in mind,
therefore few carefully planned extension points are often sufficient
and fine-grained extensions arise infrequently. Due to their coarse
granularity, compositional approaches are well suited, though in our
GPL case study we still discovered possibilities for improvement.

In contrast, the extractive adoption model converts an existing
legacy applications to an SPL by decomposing its features — aim-
ing to reduce adoption time, cost and risk. In legacy applications,
features were not planned in the design phase and consequently
dissolved in the implementation. Redesigning the complete legacy
application is usually out of the question, because the additional ef-
fort could exceed the gained benefit of reduced time, costs, and risk.
Extracting scattered feature implementations requires the ability to
implement fine-grained extensions, so that annotative approaches
and especially CIDE are better suited for SPL implementation. The
Berkeley DB case study illustrates the need for fine-grained exten-
sions when extracting features.

Finally, the reactive adoption model, which relates to spiral soft-
ware engineering in conventional software, stands between the proac-
tive and extractive adoption models. Not all features are foreseen
and designed from scratch, but the SPL is extended in iterative steps.
In this model, most extensions are preplanned, but it is not possible
to design for extensibility in every case. So, we expect a medium to
high number of fine-granular extensions as well.

This emphasizes the relevance of fine-grained extensions and the
applicability of CIDE in SPLs beyond only decomposing legacy
applications.

Related Tool Approaches. The concept of using the representa-
tion layer to show additional information without obfuscating the
source code as in CIDE was already used by several development
environments. Recent examples are presentation extension [12],
AspectBrowser [14] and Spotlight [9].

IDEs for visual programming and intentional programming ab-
stract from traditional code representations and store code in internal
tree formats close to ASTs. The idea of storing program code in
databases to allow flexible queries to create different views on the
code goes back to Linton [31]. Modern examples are Snippets [54],
effective views [17], and the Domain Workbench [43], that store all
code in internal tree structures, similar to how features are assigned
to code in CIDE.

There is also an impressive body of work on feature annotations
of source code. However, such work usually does not aim at SPLs
but at virtual separation of concerns to make concerns or features
explicit. For example, Robillard and Murphy suggested concern
graphs where developers can collect methods belonging to a feature
in an external window [41]. Work on visual separation of concerns
(VSC) extends this and provides aggregated views on the source
code by features [8]. Furthermore, the AspectBrowser [14] and
JQuery [16] use pattern expressions or queries to find code frag-
ments belonging to a certain feature. Similarly to CIDE, feature
annotations are stored externally, the code itself is not changed.
While FEAT, ConcernMapper, VSC, and JQuery work at method
level, thus providing only coarse granularity, AspectBrowser works
on character level of unparsed code. In contrast to CIDE, these tools
are used exclusively for source code exploration and navigation,
whereas CIDE is designed as a software product line tool suite, that
uses additionally annotations to configure the program.

Closest to our work on SPLs is an extended UML modeling en-
vironment suggested by Czarnecki and Pietroszek, in which users
can assign individual model elements to features [11]. A tool uses
this information to check whether all possible configurations are
well-formed. However, while CIDE assigns only one or more fea-



tures to elements, they can assign arbitrary propositional formulas
like ‘entity X is only included if feature X is selected or feature Y
is not’. Compared to CIDE, this raises the complexity for both the
user interface and the back-end.

Cross-Section Views. Projections on features in CIDE resemble
cross-section views, e.g., in 3D engineering or tomography. They
hide all details unnecessary for the current task and let the user
focus on certain details from different views. An early example of
such cross-section views in software engineering is the concept of
program slicing [53], in which the source code is projected to the
fragments relevant for a certain control flow. Typically, it shows
all code that can affect a selected variable and hides all other code.
Program slicing helps abstracting from the whole program and
to focus on a concrete, usually comprehension or maintenance
focused task. Instead of projecting by control flow, CIDE projects
(structurally) on individual features. This enables developers to
understand programs by features and supports switching between
different views dynamically.

Also the notion of on-demand remodularization follows the vision
of cross-section views on a program. On-demand remodularization
as introduced by Ossher and Tarr is the ability to extract a concern
of an application into a new module without affection other con-
cerns [38]. Typically, it is desired to decompose a program in one di-
mension first, e.g., data and classes, and later extract a concern in an-
other dimension, e.g., features, which was not considered in the first
decomposition. On-demand remodularization permits developers to
identify and encapsulate new concerns at any time without necessity
to rearchitect the software. This enables the developer to create only
those modularizations that they need and as they need them [38].

Additionally to the virtual separation of concerns approaches in-
troduced above, there are several approaches based on composition
languages and tool support that physically remodularize the source
code. An example is effective views [17] that are however limited
to two dimensions, classes and ‘modules’. Though modules are
similar to features, they may not overlap. Another proposed tool for
supporting remodularization in multiple dimensions is the concern
manipulation environment that is aimed at describing and extract
concerns [15]. Similarly, CIDE is a tool-based approach and allows
to incrementally decompose a system into further features by asso-
ciating code fragments with (potentially overlapping) features. Fea-
tures can also be extracted in later development steps when needed.
The key difference however is that CIDE aims directly at SPLs.

Feature Cohesion and Modular Reasoning. Implementing features
modularly is a fundamental goal of compositional approaches. The
motivation is that developers are able to understand and modify fea-
tures in isolation without resorting to global reasoning or affecting
other parts of the system if they are implemented cohesively [47].
There is a large body of work that discusses modular reasoning
for different programming paradigms and languages, e.g., [46, 26].
Furthermore, Tarr et al. postulate that it should be possible to de-
compose a system in different dimensions and still implement all
concerns modularly [49]. However, in our observation, such cohe-
sive feature modules tend to become so complex that the benefit
of modular reasoning diminishes in the presence of fine-grained
extensions and with current compositional approaches.

In contrast, annotative approaches like preprocessors do not imple-
ment features cohesively. On the contrary, feature implementations
are scattered throughout the system, preventing modular reasoning.
To understand a feature, developers must search the feature code as
a first step. However, approaches for virtual separation of concerns
listed above like concern graphs support identifying and reasoning
about scattered code. Although CIDE still provides exports into

feature modules, it follows these ideas and provides tools to rea-
son about scattered feature implementations instead of enforcing
complex cohesive implementations.

Feature Model and Consistency.CIDE, as most other approaches
for implementing extensions for features, does not deal directly with
consistency constraints or use a feature model. A feature model
on top of CIDE that describes the relationships between features,
e.g., that one feature depends on another feature, is necessary for
a holistic approach, but not relevant for the granularity discussion
in this paper. Once features are related to each other, CIDE can
check the feature association of all AST elements to ensure that
every configuration is not only parseable, but also compilable. This
requires that several constraints are fulfilled, e.g., that the target
methods of all method calls are defined in all configurations. These
checks follow the concepts of Czarnecki and Pietroszek [11] and
Thaker et al. [50] but their discussion exceeds the scope of this paper.

7. CONCLUSION

There are many ways to implement features. However, when fea-
tures have fine-grained extensions, as common when decomposing
a legacy application, their implementations tend to become compli-
cated, unreadable, and unmaintainable. Compositional approaches
do not support fine-grained extensions, so that workarounds are
required which raise the implementation’s complexity. In contrast,
annotative approaches can implement fine-grained extensions but
introduce readability problems by obfuscating the source code.

To avoid these problems when developing SPLs with fine-grained
extensions in a concise fashion, we built a tool, called CIDE, that
simplifies SPL development. It is based on preprocessor semantics
but uses background colors instead of source code statements and by
providing the possibility to hide features it avoids obfuscating the
code. CIDE restricts features to structural code elements in order to
simplify usage for developers while still providing fine granularity.
Finally, CIDE supports developers in understanding features with
navigation and projection facilities and the possibility to export the
SPL into distinct feature modules.

In two case studies we showed the advantage of CIDE over ex-
isting compositional approaches. It was possible to implement
fine-grained features including statement and expression extensions
and even signature changes without resorting to workarounds. With
CIDE we could implement additional features that were not rea-
sonably possible with compositional approaches and reduce code
replication of earlier implementations.

In ongoing and future work, we add support for additional artifact
types (e.g., C, C#, JavaScript, Grammars, XML) and formalize the
criteria when an element can be colored. We intend to extend our
export facility with additional target languages to analyze modular
reasoning. Further, we plan to extend CIDE as a round-trip engineer-
ing tool where it is possible to edit the exported code and reimport it
back to CIDE. This will eventually enable us to use CIDE to provide
additional views on existing SPLs.
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