
Shorter Identifier Names Take Longer to Comprehend
Johannes Hofmeister

University of Passau, Germany
johannes.hofmeister@uni-passau.de

Janet Siegmund
University of Passau, Germany
janet.siegmund@uni-passau.de

Daniel V. Holt
Heidelberg University, Germany

daniel.holt@psychologie.uni-heidelberg.de

Abstract—Developers spend the majority of their time com-
prehending code, a process in which identifier names play a key
role. Although many identifier naming styles exist, they often lack
an empirical basis and it is not quite clear whether short or
long identifier names facilitate comprehension. In this paper, we
investigate the effect of different identifier naming styles (letters,
abbreviations, words) on program comprehension, and whether
these effects arise because of their length or their semantics. We
conducted an experimental study with 72 professional C# devel-
opers, who looked for defects in source-code snippets. We used
a within-subjects design, such that each developer saw all three
versions of identifier naming styles and we measured the time
it took them to find a defect. We found that words lead to, on
average, 19% faster comprehension speed compared to letters and
abbreviations, but we did not find a significant difference in speed
between letters and abbreviations. The results of our study suggest
that defects in code are more difficult to detect when code contains
only letters and abbreviations. Words as identifier names facilitate
program comprehension and can help to save costs and improve
software quality.

I. INTRODUCTION

Identifier names are important for program comprehension.
Their relevance has been discussed for more than 30 years now,
for example, by Brooks [7], and Soloway and Ehrlich [27],
who explained that they serve as key beacons to program plans,
which activate higher level knowledge about the program and
facilitate program comprehension.

Identifiers make up major parts of source code: For example,
Deissenboeck and Pizka found that identifier tokens account
for approximately 33% of the code of Eclipse 3.1.1 [14].
Developers are free to choose identifier names at their own
discretion, which can lead to varying results depending on
experience, skill, and mood [26]. In most modern program-
ming languages, identifier names underly only few syntactic
limitations, and the actual word can be chosen arbitrarily. For
example, developers might be inclined to use single letters as
identifier names to save typing effort. When the chosen identi-
fier names are meaningless, developers are most likely slower
in comprehending the program’s functionality, especially when
they are unfamiliar with the code [27]. To alleviate this well-
known problem, communities of many programming languages
promote style guides, and companies establish specific naming
conventions, all with the goal to improve understandability and
maintainability of source code. Unfortunately, style guides and
conventions only scratch the surface. For example, most style
guides prominently encourage the use of a particular separation
style for compound identifier names and other structural prop-
erties. However, especially semantic properties are often left

unmentioned or are limited to the type of word (e.g., classes
should have nouns as names [1]). Furthermore, conventions
often lack a sound empirical basis [29]. Thus, it is quite
unclear how important the influence of identifier naming on
comprehensibility and maintainability really is. Understanding
the individual aspects of identifier naming can help to choose
a particular naming style that optimally supports program com-
prehension, which in turn can help to improve productivity, and
enhance software quality and reduce cost.

Ideally, an identifier name designates a concept from the
problem domain, but it does not have to. For example, if
a class is named DataInfoContainer, but it represents
a customer of a shopping site, this makes it difficult to de-
duce that it actually carries a person’s information, because
the name is unrelated to the concept (i.e., that it contains
data of a customer). This problem has been addressed by
other authors: For example, Deissenboeck and Pizka classified
bad identifier names along the dimensions of correctness and
consistency [14]. From this viewpoint, an identifier named
DataInfoContainer is incorrect, because its name is nei-
ther a subordinate nor superordinate name of the designated
concept person. Deissenboeck and Pizka’s work provides an
excellent meta-linguistic framework to discuss the issue, but
does not evaluate empirically how inconsistent or incorrect
identifier names actually affect developers. Only few authors
provide empirical evaluations of the actual impact of names on
comprehensibility and maintainability.

In this paper, we describe an experimental study, in which
we quantified the impact of length and semantics1 of identifier
names on program comprehension. To this end, we invited
professional software developers to find defects in code that
followed different identifier naming conventions (i.e., single
letters, abbreviations, words).

We make two contributions in this paper:
• Empirical evidence that full words as identifiers positively

influence maintainability and comprehensibility of source
code

• A replication package of our experiment and data to help
other researchers confirm and extend our results2

In the following section, we explain why both single letters
and words can have a positive effect on program compre-
hension. In Section III, we derive and explain our research

1We use the term semantics to refer to the meaning of words in the linguistic
sense, rather than a token’s semantics in the context of a programming lan-
guages, for example, the behavior of the ++ operator.

2http://brains-on-code.org/



hypotheses. Section IV describes the experimental setup. We
report our findings in Section V and discuss our results in
Section VI. We address threats to validity in Section VII.

II. WORD-LENGTH AND SEMANTICS

In this paper, we focus on two main aspects of identifier
names, that is, length and semantics. On the one hand, devel-
opers might optimize their code for brevity and choose short
identifier names, because they want to reduce typing effort, or
because an algorithm is implemented close to a mathematical
equation. Abbreviations are also common, resulting in short-
ened identifier names, for example configuration can be
shortened to config, or cfg. On the other hand, identifiers
should convey the concept they represent as clearly as possi-
ble [3], which is best achieved by using words that actually
represent the concept (e.g., a customer is best represented by
an identifier named customer, not data). Words are longer
than abbreviations, but their meaning is clearer. Optimizing for
either style should not be left to chance or personal preference,
but should be based on empirical data with focus on human
developers.

Psychological research has long been studying readability
and comprehensibility of natural-language texts, and we can
find results supporting both short strings and full words as
identifier names: On the one hand, very short identifier names,
such as abbreviations and letters, require less effort to process
cognitively during program comprehension than longer ones,
as predicted by the word-length effect [4]. This effect describes
that lists of short strings are easier to remember than lists of
long strings. Thus, developers’ performance could be positively
affected by very short identifier names, because more items fit
into working memory, which helps developers to keep a better
overview of the code.

Further findings indicate that the length interacts with the
cognitive processing of text. Longer strings take longer to pro-
nounce [5] and have a higher naming latency (i.e., are uttered
with delay) than shorter strings [30]. This affects non-words,
such as arbitrary strings or nonexistent words (e.g., “awek”,
“enemenemoo”), as well as low-frequency words (e.g. “penul-
timate”, or “hypochondriasis”), but not common words (e.g.,
“awake”, “hat”), which is called the word-frequency effect.
Studies that controlled for the ease of articulation showed that
not the process of articulation, but rather the required synthesis
of the string’s phonetics is responsible for the delay [30].

The Dual Route Cascade Model (DRC, [12]) explains these
findings: Words that are common in natural language (e.g.,
“awake”, “hat”) are stored in a mental lexicon (i.e., a dictionary
that maps concept to read or spoken words). When they are
perceived they can be accessed via a lexical route (i.e., they
activate a concept or meaning from the mental lexicon). Words
that do not exist in this mental lexicon cannot be immediately
accessed, because their phonetics have to be synthesized on the
fly, thus activating a phonetic-graphemic route, a process that is
serial in its nature and therefore depends on word length.

In contrast to the word-length effect (shorter words are easier
to remember), the word-superiority effect predicts that normal

words can positively affect program comprehension [23], [28].
Psychological research on the word-superiority effect shows
that single letters are easier to detect when they are embedded in
words, as opposed to non-words or on their own. The presence
of words might facilitate the processing of source code in a
similar way and support its comprehension.

When comprehending source code, working memory plays
a crucial role, because developers have to work with sev-
eral programming constructs (e.g., variables, methods). Human
working-memory is limited3, and a word’s semantics help re-
lieve cognitive resources through a process called chunking [4],
in which items are regrouped to more meaningful units. As an
example, consider the following method:
drawCell(a, b, c, d, e, f)
It accepts six floating point value parameters. It is unclear

what the variables represent and it is difficult to deduce what
they are used for. The method can be refactored to:
drawCell(x, y, size, r, g, b)
The method still accepts six individual parameters, but their

semantics ease reorganizing them in the following manner:
drawCell(point, size, color)
Thus, instead of six, developers can work with three pa-

rameters. Such changes in code are analogous to the mental
chunking process and might help relieve working memory.

Additionally, a word’s semantics influence how adjacent
words are processed, an effect that is called semantic priming
[11]. This effect may play a role in discovering inconsistencies.
When code is too abstract, it might become more difficult to
detect semantic defects, as illustrated in Listings 1 and 2:

v(u, p):
u1 = d.u()
p1 = d.p()
return u == u1 and p == u1

Listing 1: A login function using letter identifier names

login(username, password):
user = db.username()
pass = db.password()
return username == user and password == user

Listing 2: The same function using word identifier names

The codes are equivalent in their structure; only the identifier
names have changed. Both codes are syntactically valid, but
the inconsistency is (arguably) easier to detect in Listing 2,
when more concrete contextual semantics are present. Since
Listing 1 uses only abstract identifier names, it is difficult
to detect the semantic defect. However, refactoring the code
snippet as in Listing 2 reveals that the wrong comparison
is made (password against user). Thus, meaningful, full
word identifier names activate context semantics, which allow
developers to evaluate code against its purpose.

To summarize, shortness and semantics of identifier names
seem to contradict each other regarding their effect on program

3Miller [20] originally argued for a capacity limit of about 7±2 items, while
newer research shows that working memory capacity is likely limited to 3 to 5
items [13].



comprehension, and it is unclear from which effect developers
could benefit more.

III. HYPOTHESES

In this study, we address the following research question:
How do identifier name length and semantics affect develop-

ers’ performance during program comprehension?
We reasoned about possible answers to this question: If pro-

gram comprehension benefits most from an identifier name’s
semantics, then comprehension of code using words as iden-
tifier names, such as customer or request, should be
faster than code using non-words as identifier names, such
as abbreviations (e.g., cus or req), or letters (e.g., c or r).
If an identifier name’s length is in fact more important for
comprehension than its semantics, then shorter (but potentially
less meaningful) identifier names should make code faster to
understand than code using words as identifier names.

However, determining the actual impact of length is difficult,
because different predictions can be drawn from the aforemen-
tioned psychological effects. On the one hand, the processing
of non-words depends on their length. Thus, abbreviations,
compared to single letters should require an increased effort
to process, as they are longer than single letters, which should
decrease program comprehension performance. On the other
hand, the residual semantic properties of abbreviations might
facilitate higher cognitive processes (i.e., ease of lexical ac-
cess, semantic priming, chunking) and therefore, abbreviations
should lead to faster comprehension than code with letters as
identifier names. Still, it can be expected that the meaning of
words is accessed lexically, so abbreviations should still be
slower to comprehend than full words.

Further, we reasoned that identifier names’ semantic prop-
erties affect program comprehension, rather than the perceptual
processing of code. Therefore, the performance of working with
code without trying to comprehend it should not be positively
influenced by the presence of full words. However, it is possi-
ble, that, on such a low-level of processing, the reduced amount
of code leads to faster processing. When the meaning of an
identifier is irrelevant (e.g., to find a missing semicolon), then
fewer characters imply less code to read and thus could even
improve the performance in such tasks.

To answer our research question, we designed a controlled
experiment, in which we evaluated the following hypotheses:

RHWords:Non-Words: Words as identifier names lead to
faster comprehension of source code compared to
non-words.

RHAbbreviations:Letters: Abbreviations as identifier
names lead to faster comprehension of source code
compared to single letters.

RHSyntax: Identifier naming style has no effect on
locating syntactical errors

A. Independent variables

To test the relationship between semantics and length, we
tested comprehension performance in three conditions: letters,

abbreviations, and words. Letters are the smallest possible iden-
tifier names (an identifier cannot be shorter than one character).
Words carry more semantics, but also have an increased length.
Abbreviations form a compromise between these two.

B. Dependent variables

We operationalized the performance of comprehension by
measuring how long developers investigated a snippet of code
until they had found a defect. We assumed that code can only
be corrected when it is understood, because developers cannot
evaluate the consequences of their changes otherwise. We re-
quired developers to indicate when they had found a semantic
defect to approximate the exact moment of comprehension.

As a control condition, we also tested whether identifier
naming style affects the performance in tasks in which no
deep understanding of the code is required. This allowed us to
evaluate whether our conditions actually interfered with pro-
gram comprehension, or whether some other process is being
measured. To accomplish this, we measured how much time
developers needed to locate a syntax error. Syntax errors, such
as missing brackets or semicolons, render the code invalid and
require no deep understanding of its identifier names’ meanings
to be corrected.

IV. STUDY DESIGN

We tested our hypotheses in a web-based experimental study.
Participants were asked to find and correct a defect in six
snippets of code. We measured how much time they spent
on the task. The scope of our experiment was to analyze
identifier naming styles for the purpose of quantifying their
effect on program comprehension with respect to participants’
comprehension speed in the context of C# development. An
overview of the experiment following the template provided by
Wohlin et al. [33] can be found in Table I.

A. Participants

We recruited 72 professional C# developers (age M ± SD:
35.3 ± 6.8 years). The overall programming experience was
14.0±5.8 years. Their experience with C# was 7.8±3.6 years.
We invited them to our experiment via online platforms, such
as Twitter and Xing. Additionally, we approached participants
of German technology industry conferences.

Overall, 221 people started to participate in the experiment
and 135 completed it. The records of 63 participants were
removed after applying exclusion criteria to ensure high data
quality (see below). The remaining participants were randomly
assigned to the experimental sequences. Their details are dis-
played in Table II.

To obtain the data, we implemented a web application, which
is available at the project’s website. Since we conducted the
experiment online, we could not guarantee an undisturbed
working environment. To reduce this potential threat to valid-
ity, we controlled our data for disturbances and other factors
that could affect their validity. For example, participants were
required to have sufficient natural language skills to understand
instructions and code comments and had to have a minimum



TABLE I: Experiment overview

Goal Study the impact of identifier names on
program comprehension

Independent Variable Identifier naming style (Word,
Abbreviation, Letter)
Task (Semantic Defect, Syntax Error)

Task Identify semantic defect

Control Identify syntax error

Dependent Variables Time to find defect

Secondary Factors Visual Attention, Correctness

Confounding Factors Materials, inter-individual
differences, item order

Design Within-subjects

TABLE II: Descriptive participant data

Category Percent

School Abitur / A-Level 2 81%
Mittlere Reife / GCSE 3 11%
Other 8%

Higher Education Master’s 42%
Bachelor’s 18%
Vocational training 18%
No higher ed. 15%
Other 7%

Employment Status Employed 81%
Freelance 17%
Student 2%

Job Description Software Developer 51%
Consultant 12.5%
Software Engineer 12.5%
Project Manager 10%
Software Architect 8%
Other 6%

2Equivalent to 12 to 13 years of schooling
3Equivalent to 10 years of schooling

of one year experience with C# in practical use. They provided
self-ratings of their language proficiency on a scale from 1 to
6 for German and English. Since the code was written using
English identifier names and the instructions were given in
German, the data of participants with ratings below 4 in either
category were excluded. We targeted professional developers
and avoided selecting students; however, in the final sample
the records of two students remained. They stated appropriate
experience with C# to be considered professional developers.
All exclusion criteria and number of affected records are listed
in Table III.

B. Task

The participants’ task was to find one defect in a snippet of
code. The task was repeated six times: After they had worked
on three snippets finding semantic defects, they were asked to
work on three more snippets but to look for syntax errors now.

To gather coarse-grained data about participants’ visual fo-
cus, we used an implementation of the restricted focus viewer
[16], which also helped us to detect distracted participants. In

TABLE III: Exclusion criteria

Criterion n

Language German (1 - 6) <4 2
Level English (1 - 6) <4 9

Programming C# Skill (1 - 5) <4 24
Experience C# Experience (Years) <1 8

Behavior Encountered distractions? Yes 17
Worked on task conscientiously? No 1

Attempts to succeed >3x 15
Freeze, AFK (No interaction) >1 min 4

Too Slow (time per trial) >10 min 14

Other Participated in pilot study? Yes 4
Participated before? Yes 8

Total (Criteria not mutually exclusive) 63

our implementation, participants’ view on the code was limited
to 7 lines at once (approximately one third of the complete
snippet), but the frame could be shifted up and down using the
arrow keys to reveal the rest of the code. We called this feature
the letterbox, because it mimics spying through the letter slit in
a door or mailbox.

When participants had found the defect, they pressed the
space bar, freezing the letterbox, and opening a dialog screen,
in which participants entered the line number of the defect,
its description, and a correction. We measured the time how
long participants looked at the code until they indicated that
they had found the defect. In other words, from the entire
duration of the task, we subtracted the time spent answering the
dialog and only evaluated the time that participants interacted
with code. This way, we analyzed only the time required to
comprehend the code. Participants who had failed to find the
defect in a snippet after three attempts were allowed to finish
the experiment, but their data was excluded.

We used the time required to find semantic defects as a
measure of program comprehension. This is easy to score for
correctness and the response has a well-defined time point,
allowing for reaction time analyses. Furthermore, finding se-
mantic defects requires that the intentions behind the code
(what should it do?) and the semantics of its operation (what
does it do?) are understood to give a correct response. Be-
cause the study was conducted online, we ruled out think-
aloud protocols. Locating defects is a common programming
task, which renders it a relevant target for studying program
comprehension.

C. Materials

We developed eleven code snippets containing simple algo-
rithms. We created new code to ensure that no participant had
seen it before. The snippets needed to be simple enough to
be comprehensible in a reasonable time frame, but complex
enough for defects to “hide” in the code. Each snippet consisted
of a self-contained static function, with a length of 15 lines.
Listing 3 shows an example. We limited the code to language
features from C# 2.0, such as loops, conditionals, and basic
.NET API calls. We avoided more complex structures, such



TABLE IV: Examples of the different identifier naming styles
used.

Type Example

Word request, histogram
Abbreviation rqs, hst
Letter a, b

as recursion, or specific APIs (e.g., Language-Integrated Query
(LINQ)), to avoid bias due to extensive C# experience. Each
snippet came in three versions, in which the identifier names
were altered to either words, abbreviations or letters. Examples
are shown in Table IV. Each snippet had one version with a
semantic defect and a one with a syntax error. The errors were
placed in similar locations in the code to avoid bias due to
different locations of the errors.

Each snippet was built with expressive word identifier names
first. From this version, two derived versions were generated
by replacing the identifier names in an automated process.
Abbreviations were generated by removing vowels from iden-
tifier names and leaving the first three remaining consonants in
place (e.g., request became rqs), such that they would still
contain traces of the original word. For some words, which are
commonly abbreviated using the first three letters (e.g., len
for length), we used these abbreviations instead. In the letter
version, identifiers were named alphabetically, in the order
of occurrence, ensuring the validity of the code. We decided
on alphabetical replacement, to guarantee that the identifiers
did not resemble the original identifier names in any way.
The standard .NET API was left intact (e.g., identifiers like
List, Dictionary were not abbreviated). Each function
was commented on top. The first line contained an explanatory
description of the method’s desired functionality. The following
lines documented the variables and, in the abbreviation and
letter versions, showed their original meaning.

We evaluated the snippets’ suitability in a pilot study. Partic-
ipants were shown three snippets with word identifier names,
and we measured the time until participants found a semantic
defect. The data of the pilot study were not used to answer our
research question. We had recruited two different samples of
participants online, but could not prevent a slight overlap be-
tween the samples. In order to prevent learning effects, records
of people who took part in the pilot study were excluded.

We removed five snippets after the pilot study, because the
measured times exposed too much variance (i.e. the difference
between fast and slow participants was too high), or because
they where too difficult (i.e. all participants were comparatively
slow). To minimize differences in comprehension performance
caused by variances in the snippets, we used six out of eleven
snippets for the actual experiment.

Listings 3, 4, and 5 show three snippet versions, all of which
show the same algorithm that naı̈vely concatenates two lists.
The defect resides in Line 21 and its correction could be:
result[index + length] = second;.

1: // ConcatLists: Concatenates two lists of the
same length

2: // start: collection of elements at the start
3: // end: collection of elements to append
4: // length: length
5: // result: result
6: // index: index
7: // first: first
8: // second: second
9:
10: public static int[] ConcatLists(int[] start,

int[] end)
11: {
12: int length = start.Length;
13: var result = new int[length * 2];
14:
15: for (int index = 0; index < length; index++)
16: {
17: int first = start[index];
18: int second = end[index];
19:
20: result[index] = first;
21: result[index + 1] = second;
22: }
23: return result;
24: }

Listing 3: Snippet using words as identifier names

1: // Cnc: Concatenates two lists of the same
length

2: // str: collection of elements at the start
3: // end: collection of elements to append
4: // len: length
5: // rsl: result
6: // idx: index
7: // frs: first
8: // scn: second
9:
10: public static int[] Cnc(int[] str, int[] end)
11: {
12: int len = str.Length;
13: var rsl = new int[len * 2];
14:
15: for (int idx = 0; idx < len; idx++)
16: {
17: int frs = str[idx];
18: int scn = end[idx];
19:
20: rsl[idx] = frs;
21: rsl[idx + 1] = scn;
22: }
23: return rsl;
24: }

Listing 4: Snippet using abbreviations as identifier names

1: // a: Concatenates two lists of the same length
2: // b: collection of elements at the start
3: // c: collection of elements to append
4: // d: length
5: // e: result
6: // f: index
7: // g: first
8: // h: second
9:
10: public static int[] a(int[] b, int[] c)
11: {
12: int d = b.Length;
13: var e = new int[d * 2];
14:
15: for (int f = 0; f < d; f++)
16: {
17: int g = b[f];
18: int h = c[f];
19:
20: e[f] = g;
21: e[f + 1] = h;
22: }
23: return e;
24: }

Listing 5: Snippet using letters as identifier names



D. Procedure

Participants were invited to a public website where they
found an introduction text, legal information related to in-
formed consent, and a privacy statement. From there, they
entered the experiment, starting with several questionnaires.
They were asked to provide information about their education,
employment status, and professional experience. They contin-
ued with a tutorial that gradually familiarized them with the
actual experiment.

After the tutorial, an overview of the upcoming task was pre-
sented. On the next screen, participants were instructed to press
the space bar to start the trial. The participants inspected the
code, searching for a defect. When they had found the defect,
they pressed the space bar again, opening the aforementioned
correction dialog. After filling out the dialog, participants re-
ceived feedback whether their answer was correct to motivate
them to continue.

After the experiment, a final questionnaire asked for some
demographic data, and whether or not they had been distracted
during the experiment.

E. Design

The goal of our experiment was to quantify the effect of
identifier naming styles on program comprehension. To isolate
the effect as much as possible, we controlled several factors that
could affect comprehension performance, namely the effects
of inter-individual differences between participants, difficulty
of the snippets, and order effects. This resulted in the design
illustrated in Figure 1.

1) Inter-Individual Differences: To control for inter-
individual differences, we used a within subjects-design, such
that every participant saw all realizations of the different iden-
tifier naming styles. This compensated participants’ different
skill levels, for example, that slow readers would be slower in
every task.

2) Material Effects: To reduce side-effects caused by our
materials (e.g., a complex problem takes longer to comprehend,
but not because of its identifier naming style), we grouped the
snippets into two sets of three snippets each, depending on their
difficulty (Group Easy and Group Difficult) established in the
pilot study. In the final experiment, half on the participants were
shown three snippets with semantic defects from Group Easy
first, followed by three snippets containing syntax errors from
Group Difficult, vice versa for the other half of participants.
Furthermore, we permuted the order of snippets within each
group to counterbalance snippet-specific difficulty and order
effects.

3) Effects of Condition Order: To reduce the effects of
condition order, which may lead to increased or decreased per-
formance over the course of the experiment, we also permuted
the order of identifier naming styles in each group. Table V
shows an example trial for one participant, with Group Easy
consisting of Snippets 1, 2, and 3, Group Difficult consisting of
Snippets 4, 5, and 6.

Combining and permuting these factors, we generated 72
different sequences of snippets (3! identifier naming style ×

TABLE V: Example trial sequence for one participant

Sequence Group Task Snippet Style

1 Difficult Semantic Defect 6 Letter
2 Difficult Semantic Defect 4 Word
3 Difficult Semantic Defect 5 Abbreviation
4 Easy Syntax Error 1 Word
5 Easy Syntax Error 2 Abbreviation
6 Easy Syntax Error 3 Letter

Fig. 1: We used a balanced design to control for learning effects
and effects caused by our stimulus material. Snippet Group
Easy: 1,2,3. Snippet Group Difficult: 4,5,6. The groups were
permuted and multiplied with the identifier type: Word (W),
Abbreviation (A), Letter (L). Each ordering contained 36 sets.
Each set consisted of 6 trials, for example 6L-4W-5A-1W-2A-
3L.

3! snippet order × 2 difficulty order), which also defined the
sample size.

In summary, every participant saw:
• Three semantic defects first, then three syntax errors
• All identifier naming styles
• All six snippets, encountering each snippet only once
During the pilot study, we had observed that syntax er-

rors where found much faster than semantic defects. Thus, to
prevent participants from being discouraged by the upcoming
amount of work and drop out of the experiment, we explained
that the last three items together (syntax errors) required about
as much time as one of the previous items (semantic defects).
Altogether, we explained that the total duration of the experi-
ment was 20 to 30 minutes.

V. RESULTS

To test our hypotheses, we analyzed the response time data of
participants (i.e., the time they viewed code until they pressed
the space bar). In this section, we first present data preparation
and the descriptive statistics, and then the test of our hypothe-
ses.

A. Data Preparation and Descriptive Statistics

Table VI and Figure 2a show summaries of the raw reaction
time data, split by identifier naming styles. As illustrated in Fig-
ure 2a, the data are skewed, such that fast responses accumulate
on the left and with a tail of slow outliers on the right side of



Identifier Naming Style

D
ur

at
io

n 
(S

ec
o

nd
s)

Semantic Defects

Letter Abbreviation Word

(a) Untransformed response times, grouped
by identifier naming style. The distributions
were skewed. The plots disregard the inter-
individual differences which we controlled for
in our statistical tests

Letter Abbreviation Word

Identifier Naming Style

R
es

po
ns

e
 S

pe
ed

 (
de

fe
ct

 / 
m

in
) Semantic Defects

(b) When looking for semantic defects, par-
ticipants detected them faster when code con-
tained words as identifier names, in compari-
son to letters or abbreviations. There was no
significant difference between abbreviations
and letters. The vertical bars show 95% con-
fidence intervals.

Letter Abbreviation

Syntax Errors

Word

Identifier Naming Style

R
es

po
ns

e
 S

pe
ed

 (
de

fe
ct

 / 
m

in
)

(c) Although there appears to be an effect of
identifier names on finding syntax errors, it
is not statistically significant. Overall, syntax
errors were found much faster. The vertical
bars show 95% confidence intervals.

Fig. 2: Effect of identifier naming style on response times and speed

TABLE VI: Duration of interaction with code, split by identifier
naming styles. Values show median and interquartile range
(IQR) in mm:ss (minutes, seconds).

Semantic Syntactic

Type Median IQR Median IQR

Word 01:24.48 01:12.78 00:39.42 0:49.00
Abbreviation 01:38.57 01:05.37 00:36.71 0:53.92

Letter 01:40.36 01:24.87 00:35.74 0:30.22

the distribution, a phenomenon common for reaction times [22].
Under these circumstances common descriptive statistics, such
as mean and standard deviation, become difficult to interpret. In
this case, the median as a measure of central tendency and the
interquartile range (IQR4) as a measure of dispersion are more
suitable [31].

The presence of outliers can reduce the power of experimen-
tal analyses. According to Ratcliff [22], outliers are “response
times generated by processes that are not the ones being stud-
ied”; for example, participants could have been distracted, or
might have lost attention. There are several ways to reduce
the impact of outliers and retain the power of statistical tools,
including trimming, winsorizing, and transforming. Trimming
removes outlier data points above a certain cutoff threshold,
winsorizing replaces them with the threshold value, and trans-
forming the data changes the data distribution, thus prioritizing
certain values [22], [19].

We chose to transform the data using an inverse transfor-
mation, which represents a good compromise between reduc-
ing the impact of outliers, data retention, and interpretability
when applied to reaction times [22]. We preferred an inverse
transformation over a logarithmic transformation as inversely
transformed response time data have an intuitive interpretation.

4IQR = Q3 − Q1; where Q1 (i.e., the first Quartile) contains the 25%
of the fastest response times, and the following 3 quartiles the remaining three
quarters of the data.

TABLE VII: Response and Comment Speed (data transformed
with 1/RT ) during the semantic and syntax tasks, split by
identifier naming style.

Semantic Syntactic

Measure Type M SD M SD

Defects / Minute Word 0.78 0.42 1.76 1.13
Abbreviation 0.65 0.31 1.81 1.31

Letter 0.66 0.39 1.96 1.39

Inverted Comment Word 3.27 2.96 17.85 12.66
Reading Time Abbreviation 2.64 2.59 14.34 10.75

Letter 2.33 1.88 14.77 10.37

The transformed values simply express defects per minute
rather than minutes per defect, i.e., the speed of finding defects.
The data are displayed in table VII. For example, when finding
semantic defects in code with words instead of abbreviations
and letters, participants found on average 19% more defects per
minute and thus were faster when words were used as identifier
names.

B. Hypothesis Testing

We calculated inferential statistics for semantic defects and
syntax errors separately. We concentrated our analysis on the
semantic task and used more economical methods for the anal-
ysis of the syntax task, because the syntax task was designed as
control condition and a sanity check for our main hypotheses.
We define a significance level of α = .05 for all tests.

1) Semantic Defects: We tested the effect of identifier nam-
ing style on semantic defects using linear contrasts [32]. Anal-
ysis of variance (ANOVA) approaches use an omnibus F-test to
establish whether there is an overall effect of an experimen-
tal factor (e.g., identifier naming style), but without exactly
locating the effect [2]. Linear contrasts test groups of factor
levels (e.g., words and non-words) against each other, which
allows to test more specific hypotheses. As explained in Section



II, we had assumptions about the relationship between words,
abbreviations and letters, and thus were able to formulate a
priori linear contrasts. The test creates a weighted contrast
variable, which is then tested with a Student’s t-test [32]. As
the inverse transformation has a normalizing effect on reaction
time data and t-tests are robust against small deviations from
distributional assumptions when the sample size is sufficiently
large, deviations from normality are not a problematic issue for
the present analyses.

We compared words against non-words, by grouping letters
and abbreviations in a contrast comparison (ΨWords:Non-Words).
We then compared letters against abbreviations and omitted
words (ΨLetters:Abbreviations). Aligned with our statistical hypothe-
ses, we tested:

ΨWords:Non-Words : Performancew >

(Performancea + Performancel)
ΨLetters:Abbreviations : Performancea > Performancel

With Performance : Comprehension Performance Speed as 1/RT ,
where higher values indicates better performance.

We found a statistically significant difference
between comprehension speed for words and non-words
(tΨWords:Non-Words(71) = 2.73; p = .004). There was no
significant difference between letters and abbreviations
(tΨLetters:Abbreviations(71) = 0.07; n.s.). The difference between
words and non-words indicated a small to medium-sized effect
(dz = 0.32, [10]). The effect is illustrated in Figure 2b.

2) Syntax Errors: We had reasoned that identifier naming
style would not influence locating syntactical errors, and thus
used the more economical omnibus ANOVA approach, rather
than specifying contrasts for the effect. We could not find a
significant effect of identifier naming styles on the detection
of syntax errors, as illustrated in Figure 2c, (F (2, 142) = 0.8;
n.s.). Considering that our study has 80% statistical power to
detect effect sizes as small as η2 = .04, we interpret this result
as support for the assumption that identifier names have at most
a negligible effect on finding syntax errors.

C. Visual Attention

Additionally, we analyzed the visual attention data, which
were obtained with the letterbox. The identifier naming style
affected how much time participants spent reading (and re-
reading) the comments at the beginning of the snippet, see
Table VII (FSem(2, 142) = 5.35; p = .006; η2

Sem〈Style〉 = 0.07;
FSyn(2, 142) = 3.60; p = .03; η2

Syn〈Style〉 = 0.05). This affected
the semantic and syntactic tasks equally.

VI. DISCUSSION

To summarize the results, our data show that participants
found semantic defects significantly faster when the presented
code used normal words as identifier names, compared to
non-words (i.e., abbreviations and letters). When code used
abbreviations or letters as identifier names, participants were
equally fast. Finding syntax errors appears to be unaffected by
identifier naming style.

These results indicate that program comprehension benefits
from explicit identifier names, as comprehension of code with
words as identifier names was on average 19% faster, compared
to abbreviations and letters.

Although the word-length effect predicts that shorter strings
are easier to remember, letters and abbreviations did not lead
to an improvement of comprehension performance. Instead,
longer words seemed to facilitate comprehension, as seman-
tic defects were discovered faster when words were used as
identifier names. Moreover, contrasting the semantic tasks with
the syntactic tasks shows that purely perceptual properties of
identifier names, such as their length, are also insufficient to
explain performance differences even when the task does not
require semantic judgments. However, in this case the word
identifiers’ semantic content is not a benefit either. The ob-
served differences in comprehension performance are likely
caused by the words’ semantic content, which facilitates cog-
nitive processes of developers, such as chunking or semantic
priming, and generally relieves working memory. This is also
supported by the fact that in the word condition, participants
scrolled less frequently to the comments of the source code to
retrieve the meaning of a variable.

In other words, word identifier names allow developers to
access the meaning of a concept represented by an identifier
directly, which may allow them to reason about the code more
easily. However, to distinguish the precise nature of these
processes, further experiments are necessary.

Considering these results, arguments in favor of non-words
seem questionable. For example, the disadvantage of increased
typing effort of longer words is outweighed by the benefits
of their increased semantics, especially when considering that
code is more often read than written. In practice, this drawback
could be diminished with appropriate tooling. For example,
modern IDEs provide auto-completion facilities, which already
reduce typing effort. In future studies, it would be interesting to
quantify the relationship between typing effort in modern IDEs
and comprehensibility.

To summarize, our data indicate that using words as identifier
names benefits comprehensibility and maintainability of source
code. Thus, we provide evidence that developers should follow
this convention, because it will most likely result in compre-
hensible and maintainable code, which in turn has an effect on
code quality.

VII. THREATS TO VALIDITY

A. Internal validity

We used only 33% of all obtained data records, which could
be interpreted as a sampling bias, but was in fact a result of
our strict filtering rules that were applied to improve the quality
of our data by reducing the effect of nuisance factors (e.g.,
language barriers, distractions).

B. Construct validity

Another threat is raised by our operationalization of program
comprehension as ”time to find a defect”. Possibly, the time to



find a defect has a certain overhead, compared to comprehen-
sion in isolation, and may not be a fully equivalent measure
for program comprehension performance. However, we expect
a large overlap between these two constructs. For example,
identifying that something ”is a car” is arguably an easier task
than to identify the reason why it will not start, but the former
process is required to enable the latter. Similarly, identifying
that a code snippet sorts an array is a different task than to
find out the complexity of the algorithm, or whether or not it
contains a defective corner-case.

C. External validity

We limited our sampling criteria to a very specific popula-
tion, namely German professional C# developers. Thus, our
findings should not be overgeneralized. Only two participants
identified as female in the initial raw data, but their records
were not included in the final dataset after applying exclusion
criteria. However, program comprehension is a complex cog-
nitive activity, and we expect that professional education and
experience would outweigh potential gender differences.

Our stimulus materials were limited to procedural, algo-
rithmic problems and therefore do not allow us to draw
conclusions about the impact of identifier naming styles in
complex, object-oriented environments, where identifiers like
AbstractSingletonProxyFactoryBean can be com-
mon. These very long identifier names try to be explicit, but
they might be too abstract to provide meaningful semantics to
facilitate program comprehension, thus hindering the perfor-
mance of program comprehension. Also, the word-length effect
might play a stronger role here. However, this conclusion needs
to be tested in following experiments.

In our study, we instructed participants to search for a seman-
tic defect somewhere in the code. These instructions may have
activated additional resources for the comprehension of code,
such as knowledge about defects, search strategies, or direction
of attention. Under normal circumstances, such priming does
not necessarily occur, and developers might be required to iden-
tify whether there exists a problem in the code at all, and it is
possible that comprehending code without such hints is a more
tedious process. Thus, our instructions might have influenced
our measures of performance by activating additional resources
that would otherwise not affect the comprehension process,
thus reducing the size of the effect of identifier naming style.
Without additional instructions, words as identifier names with
rich semantics might be even more valuable.

For our experimental setup, we chose tasks that were relevant
to developers’ daily work (i.e., finding semantic defects), but in
order to reach out to participants, these tasks were performed
online, rather than in an actual IDE, and thus might be regarded
as artificial. Our web-application might have slowed down
comprehension performance by means of the restricted focus
viewer, and comprehension should be faster under normal cir-
cumstances. Because this impediment was present to all partici-
pants in all experimental conditions, it may have normalized the
response times and helped to accentuate the effect of identifier
naming styles, resulting in an improved power of our tools.

Finally, it should be noted that modern, complex code bases
can have millions of lines of code. The observed effect size
of dz = 0.32 indicates a small to medium-sized effect, which
we observed in only 15 lines of code. We suspect the effect of
identifier naming styles to be even more pronounced in larger
programs. Participants were, on average, 19% faster in com-
prehending 15 lines of code with word identifier names, which
could save hours or even weeks of time required to comprehend
code, when more code must be investigated. However, it is
difficult to predict this effect with certainty: It is possible that
common abbreviations in a larger code base are memorized
quickly, and developers do not suffer a penalty during program
comprehension. For example, the use of the letter i as an index
in a for-loop can be considered idiomatic. A similar effect
might be found for a company’s domain-specific identifier
names.

Although we controlled many factors, further studies are
necessary to fully understand the effect. Ideally, the effect can
be isolated by conducting the study in a laboratory setting, or
possibly with stimulus material written in other programming
languages.

VIII. RELATED WORK

Lawrie and others performed a similar experiment, in which
participants read code with letters, abbreviations, and words
[17]. They found that responses for identifier names using ab-
breviations showed similarities to responses for normal words,
whereas in our experiment, they were more similar to responses
for letters. However, our findings are congruent with theirs, in
that words as identifier names lead to a better comprehension
compared to letters. We attribute this difference to the strategies
used for building abbreviations. Lawrie and others abbreviated
longer composite identifier names rather than single words
(e.g., isPrimeNumber to isPriNum). Such abbreviations
retain more similarities to the original identifier name compared
to the identifiers used in our study. Thus, we see their results in
accordance with ours and understand them as and extension of
our hypotheses.

In a subsequent paper, Lawrie and others found indications
that identifier name length interacts with working memory
to such an extent that words and abbreviations are easier to
identify in recognition tasks than single letters [18]. Again,
this applies to the longer abbreviations in their study. In these
results, we find further confirmation for our results, that seman-
tics are relevant for the comprehension of source code and that
purely perceptual explanations of differences in comprehension
performance are insufficient.

Epelboim [15] conducted a study of identifier separation
styles, a topic that was also addressed by Binkley and oth-
ers [6], as well as Sharif and Maletic [25], who replicated
the study of Binkley and others [6]. All these studies agree
that under_scores in identifier names facilitate program
comprehension compared to camelCase. Sharif and Maletic
[25] emphasize the influence of familiarity with a style in this
regard, showing that novices benefit from underscores more
than experts.



Although we found that semantic properties are more im-
portant for program comprehension than low-level percep-
tual properties of identifier names, the research on identifier-
splitting techniques shows that both aspects should be consid-
ered as complementary. Syntactic properties of identifier names
may facilitate perceptual processes, whereas semantic prop-
erties facilitate higher level cognitive processes. Both aspects
should be considered to write code that people can understand
optimally.

Further, both the studies by Sharif and Maletic, and Bink-
ley and others found that better comprehension was achieved
when participants were presented with code that was congruent
with their previous experiences. The study by Binkley and
others showed that participants who were experienced with
camelCase took less time to identify camelCase identifiers
compared to under_score identifiers. Aligning their own
results with these findings, Sharif and Maletic conclude that
”with more experience (training), the effect of identifier style
on performance is reduced, but not eliminated” [25]. Thus,
experience seems to play a role when determining relevant
factors of program comprehension. Our data exhibit similar
characteristics. We found that the observed effects (the impact
of identifier naming styles) reside in the middle and the tail of
the distribution of reaction time data. This indicates that experts
(i.e., the fastest developers in our sample) were less influenced
by shorter or abbreviated identifier names than developers with
average performances.

Ceccato and others [9] analyzed different code-obfuscation
techniques that intentionally make code difficult to compre-
hend. They could show that renaming identifiers to single char-
acters is an effective obfuscation technique to hinder program
comprehension, although it does not render it impossible. These
results underline the importance of good identifier naming
styles, as comprehending code seems to be easier when words
are used and impeded when letters are present.

Scalabrino and others found that using ’textual’ properties
of source code, including semantic aspects, such as coherence
and narrowness of identifier names, improve the prediction of
readability over and above using structural aspects such as line
lengths, number of identifiers, or number of parentheses [24].
In the work of Scalabrino, as well as other code readability
studies (e.g., [8], [21]), readability is often operationalized as
participants’ subjective judgments whether or not a snippet is
readable. In contrast to subjective ratings such as these, our
experiment employed response times as a behavioral perfor-
mance measure. Ideally, subjective and objective measures of
readability will lead to converging results, but this relationship
should be investigated further to clearly define the validity of
either construct.

IX. CONCLUSION

Given that maintenance and program comprehension play a
crucial role in software development (most likely more than
actually typing code), it seems advisable to use explicit full-
word identifiers. Our results indicate that abbreviations and

letters reduce a program’s comprehensibility, and their presence
might be an indicator for lower quality code.

We could show that shorter identifier names are not neces-
sarily better, because words’ semantic properties of identifier
names enable cognitive processes that facilitate comprehension.
Developers should optimize their code to support these cogni-
tive processes by using explicit identifier names.

To facilitate comprehension as much as possible, appropriate
rules for style guides should consider perceptual and semantic
properties, and discourage the use of abbreviations and letters,
and encourage the use of explicit, clear identifier names - given
that they wish to improve the quality of software, and reduce its
development and maintenance costs.

In future work, we intend to replicate the study with an eye-
tracker to gain more data about participants’ eye movements.
Additionally, we also plan to recruit participants from different
populations. Specifically, beginning programmers are an inter-
esting group to understand the effect of words designating the
implemented concept on program comprehension. In general,
we welcome replications of the results presented here to eval-
uate their robustness in different contexts. For this purpose, we
provide a replication package with all required materials on the
project website (see Footnote 2).

ACKNOWLEDGMENTS

This work has been supported by the DFG grant SI 2045/2-1.

REFERENCES

[1] Class Naming Guidelines [online]. available:
https://msdn.microsoft.com/en-us/library/4xhs4564(v=vs.71).aspx.

[2] T. Anderson and J. D. Finn. The New Statistical Analysis of Data.
Springer, New York, NY, USA, 1996.

[3] N. Anquetil and T. Lethbridge. Assessing the Relevance of Identifier
Names in a Legacy Software System. In Conf. Centre for Advanced
Studies on Collaborative Research, CASCON ’98, pages 1–10, Toronto,
Ontario, Canada, 1998. IBM Press.

[4] A. D. Baddeley, N. Thomson, and M. Buchanan. Word Length and the
Structure of Short-Term Memory. Journal of Verbal Learning and Verbal
Behavior, 14(6):575 – 589, 1975.

[5] D. A. Balota and J. I. Chumbley. The Locus of Word-Frequency Effects
in the Pronunciation Task: Lexical Access and/or Production? Journal of
Memory and Language, 24(1):89 – 106, 1985.

[6] D. Binkley, M. Davis, D. Lawrie, and C. Morrell. To CamelCase or
under score. In Proc. Int’l Conf. Program Comprehension (ICPC), pages
158–167, May 2009.

[7] R. Brooks. Towards a Theory of the Comprehension of Computer
Programs. Int.ĺ Journal of Man-Machine Studies, 18(6):543 – 554, 1983.

[8] R. P. L. Buse and W. R. Weimer. Learning a Metric for Code Readability.
IEEE Trans. Softw. Eng. (TSE), 36(4):546–558, July 2010.

[9] M. Ceccato, M. Di Penta, P. Falcarin, F. Ricca, M. Torchiano, and
P. Tonella. A Family of Experiments to Assess the Effectiveness and
Efficiency of Source Code Obfuscation Techniques. Empirical Softw.
Eng., 19:1040–1074, 2014.

[10] J. Cohen. Statistical Power Analysis for the Behavioral Sciences. Erl-
baum, Hillsdale, NJ, 1988.

[11] A. M. Collins and E. F. Loftus. A Spreading-Activation Theory of
Semantic Processing. Psychological Review, 82(6):407–428, Nov. 1975.

[12] M. Coltheart, K. Rastle, C. Perry, R. Langdon, and J. Ziegler. DRC: A
Dual Route Cascaded Model of Visual Word Recognition and Reading
Aloud. Psychological Review, 108(1):204 – 256, 2001.

[13] N. Cowan. The Magical Number 4 in Short-Term Memory: A Recon-
sideration of Mental Storage Capacity. Behavioral and Brain Sciences,
24(1):87 – 185, 2001.

[14] F. Deissenboeck and M. Pizka. Concise and Consistent Naming. Software
Quality Control, 14(3):261–282, Sept. 2006.



[15] J. Epelboim, J. R. Booth, R. Ashkenazy, A. Taleghani, and R. M. Stein-
man. Fillers and Spaces in Text: The Importance of Word Recognition
During Reading. Vision Research, 37(20):2899–2914, Oct. 1997.

[16] A. R. Jansen, A. F. Blackwell, and K. Marriott. A Tool for Tracking Visual
Attention: The Restricted Focus Viewer. Behavior Research Methods,
Instruments, & Computers, 35(1):57–69, 2003.

[17] D. Lawrie, C. Morrell, H. Feild, and D. Binkley. What’s in a Name? A
Study of Identifiers. In Proc. Int’l Conf. Program Comprehension (ICPC),
pages 3–12, June 2006.

[18] D. Lawrie, C. Morrell, H. Feild, and D. Binkley. Effective Identifier
Names for Comprehension and Memory. Innovations in Systems and
Software Engineering, 3(4):303–318, 2007.

[19] R. Leonhart. Lehrbuch Statistik. Einstieg und Vertiefung. Hans Huber,
Hogrefe AG, Bern, 2nd edition, 2009.

[20] G. A. Miller. The Magical Number Seven, Plus or Minus Two: Some
Limits on Our Capacity for Processing Information. Psychological
Review, 101(2):343 – 352, 1994.

[21] D. Posnett, A. Hindle, and P. Devanbu. A Simpler Model of Software
Readability. In Proc. Working Conf. on Mining Software Repositories
(MSR), pages 73–82, New York, NY, USA, 2011. ACM.

[22] R. Ratcliff. Methods for Dealing With Reaction Time Outliers. Psycho-
logical Bulletin, 114(3):510–532, Nov. 1993.

[23] G. M. Reicher. Perceptual Recognition as a Function of Meaningfulness
of Stimulus Material. Journal of Experimental Psychology, 81(2):275–
280, Aug. 1969.

[24] S. Scalabrino, M. Linares-Vsquez, D. Poshyvanyk, and R. Oliveto. Im-
proving code readability models with textual features. In Proc. Int’l Conf.

Program Comprehension (ICPC), pages 1–10, May 2016.
[25] B. Sharif and J. I. Maletic. An Eye Tracking Study on camelCase and

Under score Identifier Styles. In Proc. Int’l Conf. Program Comprehen-
sion (ICPC), Proc. Int’l Conf. Program Comprehension (ICPC), pages
196–205, Washington, DC, USA, 2010. IEEE Computer Society.

[26] H. Sneed. Object-oriented COBOL Recycling. In Reverse Engineering,
1996., Proceedings of the Third Working Conference on, pages 169–178,
Nov. 1996.

[27] E. Soloway and K. Ehrlich. Empirical Studies of Programming Knowl-
edge. IEEE Trans. Softw. Eng., SE-10(5):595–609, Sept. 1984.

[28] K. Spalek. Wortverarbeitung. In B. Hhle, editor, Psycholinguistik, pages
68–80. Akademie Verlag, Berlin, 1. edition, 2010.

[29] W. F. Tichy. Should Computer Scientists Experiment More? In IEEE
Computer, 1998.

[30] B. S. Weekes. Differential Effects of Number of Letters on Word and
Nonword Naming Latency. The Quarterly Journal of Experimental
Psychology Section A, 50(2):439–456, May 1997.

[31] R. Whelan. Effective Analysis of Reaction Time Data. The Psychological
Record, 58(3):475, 2008.

[32] T. Wickens and G. Keppel. Design and Analysis: A Researcher’s
Handbook. Prentice Hall, Upper Saddle River, N.J., 4th international
edition edition, July 2004.

[33] C. Wohlin, P. Runeson, M. Hst, M. C. Ohlsson, B. Regnell, and A. Wessln.
Experimentation in Software Engineering. Springer, Berlin, Heidelberg,

2012.


