
Empirical Software Engineering manuscript No.
(will be inserted by the editor)

Preprocessor-Based Variability in Open-Source and
Industrial Software Systems:
An Empirical Study

Claus Hunsen · Bo Zhang ·
Janet Siegmund∗ · Christian Kästner ·
Olaf Leßenich · Martin Becker ·
Sven Apel

Received: date / Accepted: date

Abstract Almost every sufficiently complex software system today is config-
urable. Conditional compilation is a simple variability-implementation mecha-
nism that is widely used in open-source projects and industry. Especially, the
C preprocessor (cpp) is very popular in practice, but it is also gaining (again)
interest in academia. Although there have been several attempts to under-
stand and improve cpp, there is a lack of understanding of how it is used in
open-source and industrial systems and whether different usage patterns have
emerged. The background is that much research on configurable systems and
product lines concentrates on open-source systems, simply because they are
available for study in the first place. This leads to the potentially problematic
situation that it is unclear whether the results obtained from these studies are
transferable to industrial systems. We aim at lowering this gap by compar-

∗ This author published previous work as Janet Feigenspan.

This work was partially supported by the DFG (German Research Foundation, 206/4-1,
AP 206/5-1, AP 206/6-1) under the Priority Programme SPP1593 (Design For Future –
Managed Software Evolution) and by NSF grant CCF-1318808. Furthermore, this work was
partially sponsored by the Innovation Center Applied System Modeling, which is funded by
Fraunhofer and the state Rhineland Palatinate of the Federal Republic of Germany.

Claus Hunsen), Janet Siegmund, Olaf Leßenich, Sven Apel
University of Passau, Germany
E-mail: {hunsen,siegmunj,lessenic,apel}@fim.uni-passau.de

Bo Zhang
University of Kaiserslautern, Germany
E-mail: bo.zhang@cs.uni-kl.de

Christian Kästner
Carnegie Mellon University, USA
E-mail: kaestner@cs.cmu.edu

Martin Becker
Fraunhofer Institute of Experimental Software Engineering, Germany
E-mail: martin.becker@iese.fraunhofer.de

2 Claus Hunsen et al.

ing the use of cpp in open-source projects and industry—especially from the
embedded-systems domain—based on a substantial set of subject systems and
well-known variability metrics, including size, scattering, and tangling met-
rics. A key result of our empirical study is that, regarding almost all aspects
we studied, the analyzed open-source systems and the considered embedded
systems from industry are similar regarding most metrics, including systems
that have been developed in industry and made open source at some point. So,
our study indicates that, regarding cpp as variability-implementation mecha-
nism, insights, methods, and tools developed based on studies of open-source
systems are transferable to industrial systems—at least, with respect to the
metrics we considered.

Keywords C preprocessor · cppstats · variability · configurable systems ·
open-source systems · industrial systems · software product lines

1 Introduction

Almost every sufficiently complex software system today is configurable. Con-
figuration and variability mechanisms form the technical basis for software-
product-line engineering, as they facilitate to create families of software sys-
tems that share common assets [Pohl et al., 2005; Clements and Northrop,
2001]. The commonality and differences between the variants of a config-
urable system are often characterized by features—possibly optional or al-
ternative end-user-visible behaviors or program characteristics [Kang et al.,
1990; Clements and Northrop, 2001].

There are many mechanisms available to implement configurable systems,
in general, and software product lines, in particular [Pohl et al., 2005; Czar-
necki and Eisenecker, 2000; Clements and Northrop, 2001; Apel et al., 2013].
Here, we concentrate on conditional compilation, as supported by the C pre-
processor (cpp). cpp supports conditional compilation through preprocessor
directives (e.g., #ifdef), which enable the programmer to include or exclude
parts of the code base by providing a corresponding configuration. cpp is
widely used for the implementation of highly-configurable systems both in the
open-source and the industrial world [Liebig et al., 2010; Ernst et al., 2002;
Baxter and Mehlich, 2001; Ganesan et al., 2009; Pech et al., 2009; Jepsen and
Beuche, 2009; Pearse and Oman, 1997]. One of the most prominent examples
is the Linux kernel, which uses the preprocessor to allow the developer to
choose among 12 000 distinct options or features at build time [Tartler et al.,
2011; Berger et al., 2010].

There have been many attempts to understand and improve cpp [Mc-
Closkey and Brewer, 2005; Weise and Crew, 1993; Favre, 1997; Vo and Chen,
1992; Krone and Snelting, 1994; Feigenspan et al., 2013; Kästner et al., 2008a;
Adams et al., 2009; Kumar et al., 2012; Tomassetti and Ratiu, 2013; Kull-
bach and Riediger, 2001; Erwig and Walkingshaw, 2011; Singh et al., 2007;
Ribeiro et al., 2011], but there is a lack of understanding of how it is used in
open-source and industrial systems and whether different usage patterns have

Preprocessor-Based Variability in Software Systems 3

emerged. Most research on configurable systems and product lines concen-
trates on open-source systems, simply because they are available for study in
the first place. However, it is unclear whether study results from open-source
systems are transferable to industrial systems.

Although open-source projects face the same challenges as industrial proj-
ects (e.g., quality assurance or release management), both differ in the means
that are taken to solve the problems, including tools, development techniques,
and organization structures [Mauerer and Jaeger, 2013]. For example, many
open-source projects are characterized by large teams that are often spread
all over the world [Mauerer and Jaeger, 2013]; or, as open-source software
is available for everyone to use and adapt, novel ways of developing software
have emerged, such as the use of open-source components in industrial systems
[Godfrey and Germán, 2014].

As it is often hard for researchers to get hold of substantial industrial case
studies, public availability is one of the main reasons for studying open-source
systems in academia, although it is unknown whether the research results and
conclusions apply also to industrial systems. We aim at shedding light at this
issue by comparing the use of cpp in open-source projects and industry. The
overarching goal is to understand similarities and differences of open-source
and industrial systems regarding the use of cpp and to initiate a discussion
and further research in this direction. Observing a similarity of both worlds
would allow us to transfer insights, methods, and tools that have been proved
useful for open-source systems also to industrial systems—at least, regarding
the characteristics of the use of cpp that we study. A similarity would lead
to a higher external validity of studies of software systems from either world,
especially, as industrial case studies are rarely available. In the past, researchers
have concentrated either only on open-source systems or on industrial systems
[Liebig et al., 2010, 2011; Zhang et al., 2013; Ernst et al., 2002]; in this study,
we compare both worlds to learn about their similarities and differences.

In an empirical study, we studied 20 open-source systems from different
domains and 7 industrial systems from the embedded domain, written in C
with cpp as variability-implementation mechanism, and of varying sizes and
ages. As references for comparison, we applied several established size, scat-
tering, tangling, and nesting metrics. For measurement, we extended our tool
cppstats1, and applied it to all subject systems. Based on the measurement
results, we evaluated whether the use of cpp differs between open-source and
industrial systems by means of statistical tests. To take into account that some-
times there is no sharp line between open-source and industrial systems, we
have analyzed 7 further open-source software systems from varying domains
that had been proprietary until some point in their history (e.g., Netscape
Navigator, which is developed open-source as SeaMonkey today). We chose
two versions of each of these systems—the first open-source version and the
most recent open-source version—to study their evolution regarding the use
of cpp (from closed source to open source).

1 http://www.fosd.net/cppstats/

4 Claus Hunsen et al.

The key result of our study is that the analyzed open-source and indus-
trial systems are similar regarding most metrics measuring the use of cpp
(one exception is the fraction of variable code, which is significantly higher
in the industrial systems). This suggests that previous research on preproces-
sor variability based on open-source systems, including insights, methods, and
tools, is applicable to industrial systems, of course, in the limits of the metrics
we studied. Furthermore, systems that made a transition from a closed-source
industrial context to open-source projects are not per se similar to the ana-
lyzed “pure” open-source or industrial systems, neither in their early industrial
versions nor in the latest open-source versions.

In summary, we make the following contributions:

– We collected a substantial set of open-source and industrial subject sys-
tems, which are of different sizes and from varying domains, including
open-source systems that have been developed in an industrial context
until some point in their history.

– We enhanced the tool cppstats for our analysis of cpp directives, and we
present our collected measurement results for all software systems under
consideration.

– We performed a statistical analysis on the obtained data and discuss the
implications.

All experimental data are available at a supplementary website.2

The remainder of this paper is structured as follows: In Section 2, we give
a detailed problem statement by describing cpp-based variability implementa-
tion and related research questions, and we present our experimental design.
In Section 3, we give an overview of our tool cppstats, which we used for
measurement, and the detailed execution of the experiment. Next, we analyze
and discuss the results in the Sections 4 and 5, respectively. We address threats
to validity in Section 6 and related work in Section 7. We conclude the paper
in Section 8.

2 Problem Statement, Research Questions, and Metrics

By means of a running example, we introduce the C preprocessor (cpp) and
the terminology that we use throughout the paper in Section 2.1. Then, we
pose our research questions in Section 2.2, followed by our experimental de-
sign, for which we use the goal-question-metric approach (GQM) [Basili et al.,
1994]. Finally, in Section 2.3, we refine our research hypotheses with respect
to the cpp characteristics of interest, and we present the subject systems in
Section 2.4.

2 http://www.fosd.de/oss_vs_is/

Preprocessor-Based Variability in Software Systems 5

2.1 Characteristics of the C Preprocessor

The C preprocessor (cpp) has been developed to enhance the C programming
language with simple lightweight meta-programming capabilities [Kernighan
and Ritchie, 1988]. However, cpp operates at the level of text tokens, so it
is able to handle any textual language artifact, including Java, C#, C++,
HTML, PHP, and so forth. cpp is heavily used in practice, for example, in
all Linux distributions and the Apache HTTP Server. Furthermore, it has
been studied in many research projects (cf. Section 7).

cpp supports file inclusion (#include), the definition of object-like and
function-like macros (#define), and conditional compilation (#ifdef). Object-
like macro definitions and conditional compilation are the two most-frequently
used features of the preprocessor [Kernighan and Ritchie, 1988], and we set our
focus on them. For readability reasons, we will refer to the various conditional-
compilation directives (#ifdef, #if, #ifndef, #else, #elif, and #endif)
concisely as #ifdef, as #ifdef annotations, or as cpp annotations.

In Figure 1, we illustrate the use of the C preprocessor by means of the
method log_file_line, taken from the code base of the Apache HTTP
Server. When an error occurs during Apache’s execution, this method takes
the error-environment information (represented by the info argument) and
dumps the file name and line number, at which the error occurred, to the given
buffer buf. First, this method retrieves the file path from the info argument
as a string, and then processes it according to the system’s architecture, which
is expressed via cpp configuration constants (e.g., Lines 9 and 12). This way,
system-specific file-path characteristics—such as the path separator “\” on
Windows (Lines 12–16), in contrast to “/” on other systems—can be handled
flexibly.

The source code in Figure 1 contains three distinct configuration constants:
_OSD_POSIX, WIN32, and __MVS__. These three constants are associated with
the three operating systems BS2000/OSD, Windows 32-bit, and Multi-
ple Virtual Storage, on which Apache can be installed, among others.
Any other system supported by Apache is covered by the #else branch be-
tween the Lines 33 and 40. The code for extracting the file name from the
path is variable and works effectively on the system for which the Apache
WebServer is built.

NULL in Line 4 is a macro that is defined in file stdio.h; it acts as a null-
pointer replacement. This macro is not used for configuration though, but as
an ordinary constant.

Generally, a developer, maintainer, or end-user can define configuration
constants before compilation. Only if a constant and its associated behavior
is desired, it is defined as a macro (e.g., #define Win32 or #define NULL 0).
Generally, macros can be defined within the same file or in files that are in-
cluded. They can also be set by makefiles or by compiler flags that are passed
during compiler invocation [Kernighan and Ritchie, 1988]. In our study, we
consider only macros that occur in #ifdef conditions inside a project’s source
code (excluding system libraries) and that are used in the sense of configu-

6 Claus Hunsen et al.

1 static int log_file_line(const ap_errorlog_info *info, const char *arg,
2 char *buf, int buflen)
3 {
4 if (info->file == NULL) {
5 return 0;
6 }
7 else {
8 const char *file = info->file;
9 #if defined(_OSD_POSIX) || defined(WIN32) || defined(__MVS__)
10 char tmp[256];
11 char *e = strrchr(file, ’/’);
12 #ifdef WIN32
13 if (!e) {
14 e = strrchr(file, ’\\’);
15 }
16 #endif
17
18 /∗ In OSD/POSIX, the compiler returns for __FILE__
19 ∗ a string like: __FILE__="∗POSIX(/usr/include/stdio.h)"
20 ∗ (it even returns an absolute path for sources in
21 ∗ the current directory). Here we try to strip this
22 ∗ down to the basename.
23 ∗/
24 if (e != NULL && e[1] != ’\0’) {
25 apr_snprintf(tmp, sizeof(tmp), "%s", &e[1]);
26 e = &tmp[strlen(tmp)-1];
27 if (*e == ’)’) {
28 *e = ’\0’;
29 }
30 file = tmp;
31 }
32
33 #else /∗ _OSD_POSIX || WIN32 ∗/
34 const char *p;
35 /∗ On Unix, __FILE__ may be an absolute path in a
36 ∗ VPATH build. ∗/
37 if (file[0] == ’/’ && (p = ap_strrchr_c(file, ’/’)) != NULL) {
38 file = p + 1;
39 }
40 #endif /∗_OSD_POSIX || WIN32 ∗/
41 return apr_snprintf(buf, buflen, "%s(%d)", file, info->line);
42 }
43 }

Fig. 1 The variable method log_file_line in server/log.c of Apache HTTP Server
(version 2.4.6)

ration constants to realize variability. We do not consider macro expansion
outside #ifdef conditions (e.g., NULL in Line 4), function-like macros (which
accept parameters, but are used mostly as abstractions and not for configura-
tion purposes), and include guards (which ensure that the content of a file is
only included once).

Defining different sets of configuration constants (macros) will result in
different compiled programs—the variants of the software system. Configura-
tion constants can control whether functionality is included (features, in this
sense), decide among hardware-specific characteristics (WIN32, for example, to
support the operating system Windows), and may affect other options. In
this study, we do not distinguish between these different uses of configuration
constants.

Preprocessor-Based Variability in Software Systems 7

Configuration constants can be composed to form conditional expressions
using bit operators (e.g., &) or logical operators (e.g., &&). These conditions
are used in #ifdefs, such as in Line 9, and act as guards for the code that
is enclosed between an opening #ifdef and its closing complement (Lines
10 to 32). If the given conditional expression in Line 9 evaluates to a non-
zero value (i.e., true), the annotated code is included; otherwise the code
within the #else branch is included (Lines 34 to 39). Thus, the definition
of configuration constants influences the evaluation of conditional expressions
and, consequently, the presence or absence of annotated code at any level of
granularity. We refer to conditionally-compiled code along with their according
#ifdef annotation as #ifdef block or variation point (VP) [Pohl et al., 2005].

Although the syntax of cpp is simple, several problems arise when using
the cpp excessively. On the one hand, constants may be scattered, that is,
they are used within multiple conditions or files (e.g., WIN32 is used in the
Lines 9 and 12). On the other hand, multiple constants may be used in one
place (a single file or a single condition), which is called tangling (e.g., Line
9). Furthermore, #ifdefs may be nested into already existing #ifdefs, where
the inner depends on the evaluation of its own condition and, additionally, on
the evaluation of the surrounding #ifdef [Krone and Snelting, 1994].

The excessive use of cpp is also called “#ifdef hell” [Lohmann et al., 2006],
because it may easily obfuscate the source code. In particular, high degrees
of scattering, tangling, and nesting can complicate program comprehension
and maintenance [Favre, 1996; Ernst et al., 2002; Kästner, 2010; Liebig et al.,
2011]. Therefore, scattering, tangling, and nesting metrics are often used in
empirical studies, to characterize and compare different systems. In our study,
we use corresponding metrics, along with common size-based metrics, as we
will introduce in Section 2.2.3.

2.2 Research Questions and Experimental Design

Although both industrial software systems (IS) and open-source software sys-
tems (OSS) have to cope with the same problems during development and
evolution [Mauerer and Jaeger, 2013], their different organizational processes
suggest that they also differ with respect to the use of variability. This differ-
ence may have an effect on the application of tools and development methods,
for example, in that open-source projects use other tools than industrial in-
house projects, which in turn may lead to different patterns of using conditional
compilation and different degrees of scattering, tangling, and nesting.

However, a similar use of variability implementations in industrial systems
and open-source systems would ease tool development and application, be-
cause any tool developed for the special needs of industrial systems would be
applicable to open-source systems, and vice versa. This situation would also be
convenient for researchers who could base their work on open-source systems,
and be certain that the results are transferable to industrial systems, at least,
within certain limits.

8 Claus Hunsen et al.

Our study aims at providing a basis for answering questions regarding the
use of cpp in industrial and open-source systems, in particular, with respect
to scattering, tangling, and nesting. To this end, we analyze a substantial
set of configurable open-source and industrial systems, which we describe in
Section 2.4. In particular, we aim at answering the following questions:

RQ1. How do open-source and industrial systems differ with respect to
their use of cpp annotations?

To substantiate our findings regarding RQ1, we additionally select a set of for-
merly closed-source software systems (FCS) that are now open-source. These
systems have been developed closed-source originally for several years, but
their source code was released publicly later. We analyze these systems by
comparing two versions: the very first version of the software systems that
was publicly available (FCS1) and the most recent released version (FCS∞).
The comparison of both versions shows us how formerly closed-source systems
evolved regarding their use of cpp after the public release of their source code
and how they are characterized in general. Furthermore, we ask whether either
older revisions of the systems in this category or more recent revisions can be
used as substitutes for industrial systems. This is relevant, especially, if there
are significant differences between industrial systems and general open-source
systems.

RQ2. Are formerly closed-source systems more like industrial or more
like open-source systems in terms of the cpp usage patterns? How do
they evolve?

Regarding the use of cpp, there is a large set of metrics that can be used to
compare the different kinds of software systems (IS, OSS, and FCS). To con-
duct the analysis systematically, we pursue the goal-question-metric (GQM)
approach [Basili et al., 1994], to specify our goals operationally and to link
the goals directly to the actual measurement results. The GQM approach
structures software measurement into three levels: goals, questions, and met-
rics. The goal level defines a set of conceptual goals to be achieved, which are
described by questions at the question level. This second level characterizes
the way of achievement of a specific goal operationally. The questions address
selected quality aspects of the selected software products. The metrics are
associated with the appropriate questions to answer them quantitatively. We
show the GQM model of our study in Figure 2, and we discuss the three levels
next.

2.2.1 Goals

The main goal of our research is to explore whether cpp is used differently
in industrial and open-source systems (G1) to answer the question of whether
research is transferable from one system category to the other. This would
affect tools, techniques, and development methods.

Preprocessor-Based Variability in Software Systems 9

Goals

Questions

Metrics

Analysis of the difference between open-source and industrial systems
with respect to their use of CPP (G1)

How is CPP used in
IS, FCS, and OSS? (Q1)

Scattering?
(Q1.2)

Tangling?
(Q1.3)

Nesting?
(Q1.4)

Size?
(Q1.1)

Statistical analyses
between categories

Δ between different
versions of FCS

Number of
LOF, CC, VP

... over #ifdefs
... over files

Average
Maximum

How do IS, FCS, and OSS
differ from each other? (Q2)

How do FCS
evolve? (Q3)

Fig. 2 GQM model of our study. (LOF: lines of normalized cpp-annotated code; VP: num-
ber of variation points (#ifdef blocks); CC: number of configuration constants; IS: industrial
systems; OSS: open-source systems; FCS: formerly closed-source systems)

2.2.2 Questions

At the question level, we first examine how industrial and open-source sys-
tems use cpp to implement variability (Q1). This includes questions regarding
general use and size (Q1.1), scattering (Q1.2), tangling (Q1.3), and nesting
(Q1.4) of #ifdefs and configuration constants, respectively, as they charac-
terize conditionally-compiled software systems in practice. Next, and based on
the answer of question Q1, we study differences and similarities of open-source,
industrial, and formerly closed-source systems, to determine whether the three
system categories differ in their use of cpp (Q2). Finally, we ask how formerly
closed-source systems evolve (Q3), which is especially important if there are
differences found while answering Q2.

While the question Q1 is the basis for answering the other questions, the
question Q2 mainly refers to our research question RQ1 and (parts of) RQ2.
Question Q3 focuses on the last part of research question RQ2.

2.2.3 Metrics

The metrics level of our GQM model contains all metrics that we selected
to measure cpp usage, and also provides methods for comparison and for
monitoring the evolution of the systems from the FCS category. We give more
details on the measurement process we used in our study in Section 3.

Measurement of cpp usage. Measuring the characteristics of using cpp in the
software systems under consideration answers the questions Q1.1 to Q1.4. To
this end, we collected a set of metrics based on previous work [Liebig et al.,
2010, 2011; Zhang et al., 2013], as listed in Table 1. We divided the metrics
into four categories according to the questions stated before: size, scattering,
tangling, and nesting metrics. Next, we introduce the metrics.

10 Claus Hunsen et al.

Table 1 List of metrics and corresponding descriptions, based on previous work [Liebig
et al., 2010, 2011; Zhang et al., 2013]

Metrics Description

Size metrics
LOC Lines of normalized code
LOF Lines of normalized cpp-annotated code
PLOF Fraction of cpp-annotated code (LOF/LOC)
VP Number of variation points (#ifdef blocks)
CC Number of configuration constants

Scattering metrics
SD#ifdef Average number of #ifdefs per CC
SDfile Average number of files per CC

Tangling metrics
TD#ifdef Average number of CCs per #ifdef
TDfile Average number of CCs per file

Nesting metrics
NDavg Average nesting depth of #ifdefs
NDmax Maximum nesting depth of #ifdefs

The size metrics quantify how many configuration constants are used (con-
figuration constants, CC), and in how many #ifdef annotations (variation
points, VP). Moreover, we measure the overall system size (lines of code,
LOC) and the total number of cpp-annotated lines of code (LOF). The frac-
tion of annotated lines of code (PLOF) characterizes the dimension of using
cpp relative to the system’s size. For measuring scattering, we count in how
many #ifdef annotations (SD#ifdef) and files (SDfile) a configuration con-
stant is used, on average. To characterize the degree of tangling, we count how
many configuration constants are used, on average, per #ifdef annotation
(TD#ifdef) and per file (TDfile). For both scattering and tangling metrics, we
combine syntactically equivalent #ifdef conditions within one file. Finally, we
measure the average and maximum nesting depth (NDavg and NDmax, respec-
tively) to characterize the nesting degree of a software system. A non-nested
#ifdef annotation has a nesting degree of 1, and the value increases with each
nesting level by 1.

We omit metrics that characterize granularity and extension type, although
such metrics have been used in previous studies [Liebig et al., 2010, 2011], be-
cause we could not measure these consistently in all systems. The granularity
measure determines at which level the cpp is used to make extensions to the
source code (e.g., addition of whole functions, extensions of expressions, or
optional parameters to a function). The extension type captures the fact that
a single configuration expression can be used in different parts of the systems
to manage distinct extensions to the code within each block (heterogenous ex-
tensions) or the same extension within all blocks using code duplicates (homo-
geneous extensions). For some industrial systems, our industrial partners pro-
vided only an abstraction of the source code that contained all preprocessor

Preprocessor-Based Variability in Software Systems 11

directives and the number of lines of code they contained, but no C code, so
we could not compute the described granularity and extension-type metrics.

Comparison of industrial and open-source systems. Regarding Q2, we compare
the different categories of software systems (OSS, IS, and FCS) with respect
to the metrics of Table 1. To this end, we employ a statistical analysis to
determine the differences between categories, as we explain in Section 3.

Evolution of formerly closed-source systems. To answer Q3, we analyze the
evolution of the seven formerly closed-source systems. We compare their first
version of the open-source releases (FCS1) and the current version (FCS∞)
to the “pure” open-source and industrial systems with respect to the defined
metrics, and we characterize their evolution in terms of searching for changes
regarding our metrics.

2.3 Hypotheses

As previously mentioned during the discussion of our research questions, we
expect that the use of cpp indeed differs between industrial and open-source
systems. Furthermore, we expect that formerly closed-source systems, in their
earlier versions, use cpp similarly to industrial systems and, in their later ver-
sions, similarly to open-source systems—that is, we expect that their transition
from closed source to open source manifests in measurable changes.

Overall, this leads to the following hypotheses. For simplicity, we omit
to mention the expected evolution of the formerly closed-source systems and
transitively implied comparisons in each hypothesis.

RH1. Industrial systems and the first public releases of formerly closed-
source systems have larger fractions of code annotated with #ifdefs
than the systems from the other categories.

PLOF(IS) > PLOF(OSS) PLOF(FCS1) > PLOF(FCS∞)
PLOF(IS) ≈ PLOF(FCS1) PLOF(FCS∞) ≈ PLOF(OSS)
PLOF: fraction of cpp-annotated code; IS: industrial systems; OSS: open-source
systems; FCS: formerly closed-source systems

The rationale of RH1 is that the industrial systems follow a close and likely
rigid development process that facilitates systematic variability management
and implementation, as well as enforced coding guidelines. Furthermore, in-
dustrial projects are often closer tied to specific market segments and the
pressure to serve them timely and efficiently, but also individually in the form
of customer-specific extensions. These aspects may lead to a higher fraction of
cpp-annotated code in the industrial systems.

12 Claus Hunsen et al.

RH2. Industrial systems and the first public releases of formerly closed-
source systems are coarser grained with regard to their variability im-
plementation than the systems from the other categories.

SDfile(IS) < SDfile(OSS) SDfile(FCS1) < SDfile(FCS∞)
SDfile(IS) ≈ SDfile(FCS1) SDfile(FCS∞) ≈ SDfile(OSS)

SD#ifdef(IS) < SD#ifdef(OSS) SD#ifdef(FCS1) < SD#ifdef(FCS∞)
SD#ifdef(IS) ≈ SD#ifdef(FCS1) SD#ifdef(FCS∞) ≈ SD#ifdef(OSS)

SDfile: average number of files per configuration constant (CC); SD#ifdef: average
number of #ifdefs per CC; IS: industrial systems; OSS: open-source systems; FCS:
formerly closed-source systems

As RH2, we expect a lower degree of scattering across files and #ifdefs in
the industrial systems, because we expect cpp annotations being used there
in a more disciplined and planned way, due to a more hierarchical organiza-
tional structure and more cohesive development teams. The delivery pressure
of product development in industry likely influences the organization and the
upfront planning of the industrial systems in an important way. This would
affect not only the establishment of responsible teams per module or system
part, but would accordingly also affect coding guidelines and the systems’
architecture (according to Conway’s law [Conway, 1968]). Although the orga-
nization of open-source systems evolved much over the last years [Fitzgerald,
2006], we expect to see a significantly more modular implementation with less
cpp scattering in the industrial systems and less sharing.

RH3. Industrial code and code of the first public releases of formerly
closed-source systems have a higher tangling degree regarding #ifdefs
and files than the systems from the other categories.

TDfile(IS) > TDfile(OSS) TDfile(FCS1) > TDfile(FCS∞)
TDfile(IS) ≈ TDfile(FCS1) TDfile(FCS∞) ≈ TDfile(OSS)

TD#ifdef(IS) > TD#ifdef(OSS) TD#ifdef(FCS1) > TD#ifdef(FCS∞)
TD#ifdef(IS) ≈ TD#ifdef(FCS1) TD#ifdef(FCS∞) ≈ TD#ifdef(OSS)

TDfile: average number of configuration constants (CC) per file; TD#ifdef: average
number of CCs per #ifdef; IS: industrial systems; OSS: open-source systems; FCS:
formerly closed-source systems

The idea behind expecting higher tangling in industrial systems is that, given
a planned variability and development phase in general to serve customers
timely, efficiently, and also individually, the industrial systems may exhibit a
higher number of configuration constants in their files in comparison to the
other systems. In industrial systems that are shipped to customers or resellers,
it is not uncommon to include customer-specific adaptations in the form of
patches or features in the code base. We expect that such practice further
increases the number of #ifdefs and the tangling degree in files as well as
#ifdefs.

Preprocessor-Based Variability in Software Systems 13

RH4. Industrial systems and the first public releases of formerly closed-
source systems have higher nesting degrees than the systems from the
other categories.

NDavg(IS) > NDavg(OSS) NDavg(FCS1) > NDavg(FCS∞)
NDavg(IS) ≈ NDavg(FCS1) NDavg(FCS∞) ≈ NDavg(OSS)

NDavg: average nesting depth of #ifdefs; IS: industrial systems; OSS: open-source
systems; FCS: formerly closed-source systems

Finally, we expect that industrial code is more complex than open-source code
in terms of #ifdef nesting. Nesting is closely related to scattering and tan-
gling, but represents an independent dimension of complexity. Nesting #ifdefs
is useful to maximize code reuse, but at the cost of code maintainability
[Spencer and Collyer, 1992]. Along the lines of the argumentation for RH1,
we expect that the systematic planning for variability and reuse, as found in
industrial systems, will manifest in more deeply nested #ifdef directives. Fur-
thermore, customer-specific extensions of the code base may also influence the
number of dependencies between different configuration options in industrial
systems and thus lead to deeper nesting.

2.4 Subject Systems

We consider different categories of subject systems. On the one side, we study
configurable industrial systems from the embedded domain, which are dis-
tributed as proprietary closed-source applications. On the other side, we exam-
ine two types of open-source systems from varying domains: “pure” open-source
software and formerly closed-source software systems. The “pure” open-source
systems have been developed as open-source projects from the beginning. The
formerly closed-source software systems have been initially developed as closed
source, but have been relicensed as open source later in their history, and have
been maintained by a broader community for several years until today. These
systems may be used as a substitute for industrial systems in research if a
researcher is not able to get hold of a sufficient industrial case study—relying
on the assumption that there is difference between industrial and open-source
systems and, additionally, a substantial similarity of the formerly closed-source
systems in their early versions to the industrial ones. We visualize our classi-
fication in Figure 3.

In total, we have selected 20 open-source and 7 industrial systems, as well
as 7 formerly closed-source software systems. We provide a complete list of all
subject systems in Table 2.

All systems are written mostly in C and use cpp as variability-implemen-
tation mechanism. Some of the systems do not consist of C code only (but
also of C++ and other code). C is the most-used language in all systems.
Note that some of the considered systems do not use only cpp for variability
implementation (e.g., build-system variability, or dynamically loadable mod-

14 Claus Hunsen et al.

Systems

Open-sourced Closed-source/industrial
(IS)

First open-source
version
(FCS1)

Current
version
(FCS∞)

Open-source
(OSS)

Formerly
closed-source

(FCS)

Fig. 3 Subject-system classification by closed-source and open-source licensing; abbrevia-
tions in brackets.

ules) [Tartler, 2013], but cpp makes up a substantial part of the systems’
variability. However, we analyzed only cpp in our study.

To increase external validity, we attempted to sample systems of varying
sizes (from 12 000 up to 10 million LOC), varying ages (two to 30 years of
development), and from various domains. For open-source systems, we could
select from a large number of potential systems to study. For industrial sys-
tems and formerly-open-source systems, we had less choice and had to rely on
convenience sampling, which biased the selection of industrial systems toward
the embedded-systems domain, but also the selection of formerly-closed-source
systems, as we will describe.

Next, we describe the selection process of the subject systems by category.

2.4.1 Open-Source Systems (OSS)

The systems from the open-source category are taken from a corpus that has
been used in previous studies by Liebig et al. [2010, 2011]. We selected a
subset only to maintain a better balance (in terms of the number of subject
systems) with the other system categories, which contain only 7 systems each.
We selected the subset randomly from the corpus, but it still covers various
sizes and domains, such as graphic editors, web servers, operating systems,
and virtual machines. All systems have been developed for more than 4 years
by their communities and for 17.9 years, on average.

2.4.2 Formerly Closed-Source Systems (FCS)

For the category of formerly closed-source systems, we opportunistically se-
lected all systems written in C that were relicensed as open source and that
we could get hold of. Our sample spans multiple domains, including oper-
ating systems, security applications, and virtual machines. All systems have
been developed closed-source by a company for years until some point in their
history. Most are widely known and commonly used in the open-source com-
munity. For each of these systems, we consider the first publicly available

Preprocessor-Based Variability in Software Systems 15

Table 2 Full list of subject systems, divided by licensing aspects.

Software system Version Dev. Time Domain C [%]

Open-source systems (OSS)
Apache 2.4.6 (2013; 18) Web server 95
BerkeleyDB 6.0.20 (2013; 27) Database system 69
BusyBox 1.21.1 (2013; 19) Unix tool collection 98
Cherokee 1.2.101 (2013; 12) Web server 64
FreeBSD 9.1.0 (2013; 20) Operating system 87
GIMP 2.8.6 (2013; 15) Graphics editor 91
Gnumeric 1.10.15 (2011; 10) Spreadsheet application 97
gnuplot 4.6.3 (2013; 27) Plotting tool 81
libxml2 2.9.0 (2012; 13) XML library 85
Linux 3.9 (2013; 22) Operating system 97
OpenVPN 2.3.2 (2013; 11) Security application 90
Parrot 5.0.0 (2013; 4) High-level virtual machine 39
PostgreSQL 9.3.0 (2013; 18) Database system 97
QEMU 1.6.1 (2013; 10) System-level virtual machine 97
Sendmail 8.14.7 (2013; 30) Mail transfer agent 96
SQLite 3.8.0.2 (2013; 13) Database system 90
Subversion 1.8.1 (2013; 13) Revision control system 86
Vim 7.3 (2010; 19) Text editor 65
xfig 3.2.5b (2013; 28) Vector graphics editor 100
xterm 296 (2013; 29) Terminal emulator 95

Formerly closed-source systems: first version (FCS1) and current version (FCS∞)
Android System Core 1.0 (2007; 2) Mobile operating system 88

4.4_r1.2 (2013; 6) 80
Blender 2.26 (2003; 5) 3D graphics editor 99

2.69 (2013; 10) 57
KornShell (ksh93) 12-02-29 (2000; 17) Terminal emulator 85

12-08-01 (2012; 12) 85
mDNSResponder 22 (2002; 4) mDNS networking service 93

541 (2013; 11) 85
Netscape/SeaMonkey 98-3-31 (1998; 4) Internet suite 77

2.23 (2013; 15) 25
(Open-)Solaris 1.0 (2005; 14) Operating system 88

13-10-28 (2013; 8) 95
VirtualBox 1.6.0 (2007; 3) System-level virtual machine 61

4.3.2 (2013; 6) 66

Industrial systems (IS)
A – (2013; 8) Combustion-engine control –
B – (2013; 7) Frequency converter –
C – (2009; 5) Embedded automation controller –
D – (2011; 6) Inertial sensor controller –
E – (2012; 7) Frequency converter rail domain –
F – (2013; 10) Audio processing solutions –
G – (2013; 7) Inertial sensor controller –

Versions without explicit version numbering are marked with the date of commit (YY-MM-DD).
The development time is given in the format: (year of release; years of development time before
release). The percental share of the C programming language is calculated using GitHub’s tool
Linguist (https://github.com/github/linguist).

version (FCS1) and the most recent version (FCS∞). All considered systems
have been developed as closed-source systems for, at least, 2 years (7 years,
on average), and after that for, at least, 6 years (9.7 years, on average) with
an open-source license. Moreover, some of the systems are mainly developed
by companies (e.g., mDSNresponder and Android), others evolved into
community-driven projects (e.g., Blender and OpenSolaris).

16 Claus Hunsen et al.

The selected systems have been all developed for many years as closed-
source systems, and also a long time as open-source; we considered systems
that have different ratios of closed-source and open-source development time,
as shown in the second column of Table 3. Additionally, all systems (but
one) changed substantially as a open-source systems; hence, we can expect
significant changes in their use of cpp between the first (FCS1) and most
recent open-source release (FCS∞). As shown in the last column of Table 3,
the relative code churn (changed lines of code/total lines of code) between the
two analyzed releases is higher than 1 for all systems except for KornShell
(0.015), which indicates a quite active development for all but one of the
systems. In the case of KornShell, the lower amount of code churn seems
not very unusual for a shell—the very popular bash has a relative code churn
of 0.6 over the last 13 years despite two major releases and quite a lot of new
functionality. Due to the mentioned considerations, we think of the selected
subject systems as good representatives for formerly closed-source systems.

Likely the best known system in the FCS category is SeaMonkey. The
core of this Internet application suite was developed and distributed by the cor-
poration Netscape under the name Netscape Communicator until 1998.
The software system was released as Mozilla Suite later—after Netscape
has made the source code publicly available through the Mozilla Orga-
nization. Today, the suite has been superseded by SeaMonkey, which is
developed by the community. So, in our comparison, we consider the first
open-source version of Netscape’s source code3 from March 31st, 1998, and
the current SeaMonkey version 2.23. The other systems have a similar his-
tory from closed-source to open-source development.

Table 3 List of formerly closed-source systems, including ratio of development time and
code churn.

Software System Ratio Open-/Closed-Source Relative Code Churn
Development Time [years]

Android System Core 6/ 2 1.618
Blender 10/ 5 1.224
KornShell (ksh93) 12/17 0.015
mDNSResponder 11/ 4 1.056
Netscape/SeaMonkey 15/ 4 1.206
(Open-)Solaris 8/14 1.586
VirtualBox 6/ 3 1.326

2.4.3 Industrial Systems (IS)

Also for the industrial category, we opportunistically included all systems we
were able to locate and that have been developed primarily in C/C++ with
cpp. We obtained the industrial systems from contractors and partners of
the Fraunhofer Institute for Experimental Software Engineering. This leads

3 ftp://ftp.mozilla.org/pub/mozilla.org/mozilla/source/

Preprocessor-Based Variability in Software Systems 17

to a biased selection with a focus on the embedded-software domain. Within
this domain, the systems cover multiple application domains, ranging from
electrical frequency converter, to combustion-engine control, to inertial sensor
control, to audio-media processing.

Each industrial system is highly configurable, developed for, at least, 5
years, and is managed to a large extent as a product line that contains com-
monality and variability to derive a portfolio of related products. All analyzed
systems use cpp to implement variability.

3 Execution

Our study execution consists of two parts, measurement and statistical analy-
sis, as we explain next.

3.1 Measurement

To compute the metrics described in Section 2.2.3, we extended our tool cpp-
stats, which captures the variability of C source code implemented with cpp.
As the first processing step, cppstats applies syntactic normalizations to the
C source code, so that different programming styles become comparable: it
strips all comments and blank lines, removes all indentation, and formats the
code uniformly (pretty printing). Additionally, cppstats removes all include
guards, and it rewrites all nested #ifdefs as separate #ifdef blocks, each with
a condition that conjoins their own conditional expression with the enclosing
ones; information on the nesting depth is preserved.

After normalization, cppstats transforms the source code into an XML
representation using src2srcml.4 The XML representation holds all informa-
tion of the C code (including the preprocessor statements) in the form of an
approximated abstract syntax tree (AST), on which we perform our analysis.

For our initial example from Figure 1, cppstats reports the following
measurements: The total number of code lines (LOC) is 33 (after normal-
ization). cppstats identifies 3 different variation points (VP) in the code:
the explicit ones on Lines 9 and 12, and the #else annotation on Line 33,
which is rewritten as negation of the presence condition of Line 9. Addi-
tionally, the #ifdef on Line 12 is transformed into a conjunction with the
enclosing #ifdef from Line 9. This will yield #if (defined(_OSD_POSIX) ||
defined(WIN32) || defined(__MVS__)) && (defined(WIN32)) as the con-
ditional expression. After transformation, all three #ifdefs consist of 3 con-
figuration constants (CC) and enclose 17 lines in total (LOF). Consequently,
52% of the code sample is annotated by cpp directives (PLOF). Furthermore,
we obtain scattering (SD#ifdef) and tangling degrees (TD#ifdef) of 3. The file-
related scattering (SDfile) is 1, as there is only one file. The tangling degree over
files (TDfile) is 3, because the code contains 3 distinct configuration constants.

4 http://www.srcml.org/

18 Claus Hunsen et al.

Regarding the nesting degree, the outer #ifdef starts in Line 9 and ends in
Line 40 (nesting degree of 1), whereas there is one nested #ifdef (nesting
degree of 2). Thus, the average nesting depth is 1.5 (NDavg); the maximum
is 2 (NDmax).

3.2 Statistical Analysis

After measurement, we compare the measurement results obtained from the
systems of the categories IS, OSS, and FCS1, and FCS∞. For this purpose, we
use the tool R for the statistical analysis.5

Using a statistical analysis of the four different system categories, we check
the influence of the system category on the measured values for this cate-
gory, or, statistically spoken, we analyze whether the systems differ signifi-
cantly. We used the following procedure [Anderson and Finn, 1996]: We con-
ducted a Shapiro-Wilk test to check whether the values of a metric are nor-
mally distributed—we found that, for all metrics, the data are not normally
distributed. Due to the non-normally distributed data and the small sizes
of the different categories of software systems, we used the non-parametric
Mann-Whitney U test and applied it in a pair-wise manner, instead of using
ANOVA (analysis of variance), which is not stable in the given circumstances.
We combined the statistical test with False Discovery Rate (FDR) control,
which is a common method for multiple comparisons to minimize the Type-
I error [Benjamini and Hochberg, 1995]. To measure the magnitudes of the
significant differences that have been found with the Mann-Whitney U tests,
we calculate Cliff’s Delta as a statistical measure of effect size [Cliff, 1996].

The test’s null hypothesis is that the data of the different system categories
do not differ. We rejected the null hypothesis for p-values < 0.05, which is a
commonly used level of significance [Cowles and Davis, 1982].

4 Measurement Results

In this section, we present the measurement results guided by the research
hypotheses of Section 2.3. In Table 4 on Page 34, we provide the collected raw
data of our analysis. We discuss data relevant for our hypotheses by means of
scatter and violin plots, along with the results of the statistical analysis.6

All data are characterized either by absolute values or arithmetic mean val-
ues and standard deviations (a±s). We test all hypotheses using the procedure
described in Section 3.2.

5 http://www.r-project.org/
6 In a violin plot, the white dot indicates the median, the small black horizontal bar shows

the mean value, the wide black vertical bar spans from first to third quartile, and the shape
describes the kernel density.

Preprocessor-Based Variability in Software Systems 19

4.1 RH1: Fraction of cpp-annotated code (PLOF)

The open-source systems have an average of 24± 22% of cpp-annotated code
lines. Looking closer, 13 open-source systems have a smaller fraction of anno-
tated code than the average, while only few systems have a value of above 50%
(e.g., libxml2 and OpenVPN). Linux and FreeBSD, as operating systems,
have only 9% and 14% of all code lines annotated with cpp.

The industrial systems have a larger fraction of cpp-annotated C code:
50± 17%, on average, which is twice as high as for the open-source systems.
Only the systems G (18%) and D (38%) have a percentage below 50; all other
systems have more than half of their total lines of code annotated with cpp
directives.

The early versions of the formerly closed-source systems (FCS1) consist of
18± 10% of conditionally-compiled lines of code, on average. The current ver-
sions of these systems (FCS∞) have an increased average fraction of 21± 7%;
four systems have a smaller or equal amount of conditional code than before;
three have more.

In Figure 4, we show the scatter and violin plots and the results of hy-
pothesis testing for RH1. The results show that there is a significant difference
between the industrial systems and all other system categories. We expected a
difference of the industrial systems and the categories FCS∞ and OSS in RH1,
and indeed both comparisons exhibit a substantial difference of 0.84 and 0.62,
respectively, in terms of Cliff’s Delta (effect size). The first open-source ver-
sions (FCS1) and the industrial systems (IS) differ significantly in the fraction
of CPP-annotated code, but we hypothesized in RH1 that they are compara-
ble. Cliff’s Delta even reports an effect size of 0.88 for these two categories of
software systems. We also found no significant difference between the FCS1
versions and their more recent counterparts from the FCS∞ category, although
we assumed that in RH1. Furthermore, there is no significant difference be-
tween open-source systems and both versions of the formerly closed-source
systems. So, we reject this research hypothesis.

RH1: Rejected.

10K 100K 1M 10M

10

30

50

70

P
LO

F

LOC
OSS IS FCS1 FCS∞

●

●

●

●

−

−

− −

Mann-Whitney U test

OSS IS FCS1

IS W=114*
FCS1 W=71 W=3*
FCS∞ W=80 W=4* W=30

* for p < 0.05

OSS IS FCS1 FCS∞

Fig. 4 Results for the metric PLOF (fraction of cpp-annotated code): Scatter plot of the
raw data (left); violin plot for each system category (middle); results of the Mann-Whitney
U test (right). (IS: industrial systems; OSS: open-source systems; first (FCS1) and most
recent versions (FCS∞) of formerly closed-source systems)

20 Claus Hunsen et al.

4.2 RH2: Scattering of Configuration Constants within Files and #ifdefs
(SDfile, SD#ifdef)

The open-source systems have a single configuration constant in, on average,
2.59± 1.37 files and 7.22± 4.30 #ifdefs. Most of the systems have an average
between 1 and 3 files—only a few use configuration constants in up to 4 files—,
and an SD#ifdef value between 3 and 11.

The industrial systems have an average of 2.98± 1.42 files per configuration
constant, whereas almost all systems have an average between 2 and 3 files.
Furthermore, in industrial systems, the configuration constants also scatter
extensively over #ifdefs (12.2± 76.1, on average).

The average scattering degree over files for the formerly closed-source sys-
tems is for both versions around 2.85; there is no significant evolution in any
direction; the scattering degree regarding #ifdefs, however, increases from
7.17± 2.38 to 9.39± 4.85.

The results of our statistical tests (Figures 5 and 6) do not provide sup-
port for our hypothesis regarding the scattering degrees of different kinds of
systems.

RH2: Rejected.

10K 100K 1M 10M

5
10

15
20

25

S
D

#i
fd

ef

LOC
OSS IS FCS1 FCS∞

●

●

●

●

−

−

−
−

Mann-Whitney U test

OSS IS FCS1

IS W=109
FCS1 W=79 W=10
FCS∞ W=93 W=19 W=30

OSS IS FCS1 FCS∞

Fig. 5 Results for the metric SD#ifdef (average number of #ifdefs per configuration con-
stant): Scatter plot of the raw data (left); violin plot for each system category (middle);
results of the Mann-Whitney U test (right). (IS: industrial systems; OSS: open-source
systems; first (FCS1) and current versions (FCS∞) of formerly closed-source systems)

10K 100K 1M 10M

1
2

3
4

5
6

7

S
D

fil
e

LOC
OSS IS FCS1 FCS∞

●

●

●
●− − − −

Mann-Whitney U test

OSS IS FCS1

IS W=86
FCS1 W=83 W=23
FCS∞ W=82 W=23 W=27

OSS IS FCS1 FCS∞

Fig. 6 Results for the metric SDfile (average number of files per configuration constant):
Scatter plot of the raw data (left); violin plot for each system category (middle); results
of the Mann-Whitney U test (right). (IS: industrial systems; OSS: open-source systems;
first (FCS1) and current versions (FCS∞) of formerly closed-source systems)

Preprocessor-Based Variability in Software Systems 21

4.3 RH3: Tangling of Configuration Constants within Files and #ifdefs
(TDfile, TD#ifdef)

In the open-source systems, 1.95± 0.74 configuration constants are used, on
average, per #ifdef, and 8.39± 7.05, on average, per file.

The industrial systems contain slightly, but not significantly, more config-
uration constants per #ifdef (2.29± 0.58) than the open-source systems. The
tangling degree within a file is 4.27± 1.02, on average.

The formerly-closed-source systems have a TD#ifdef value of 2.32± 1.07,
while, on average, 4.42± 1.63 configuration constants are used per file. Over
time, #ifdef tangling decreases to 1.87± 0.50 as well as the average number
of constants within a single file decreases to 4.33± 1.17.

The results of our statistical tests (Figures 7 and 8) do not support our
hypothesis of differing tangling degrees in the different kinds of systems.

RH3: Rejected.

10K 100K 1M 10M

2
3

4

T
D

#i
fd

ef

LOC
OSS IS FCS1 FCS∞

●

●

●

●

−
− −

−

Mann-Whitney U test

OSS IS FCS1

IS W=103
FCS1 W=94 W=20
FCS∞ W=67 W=13 W=17

OSS IS FCS1 FCS∞

Fig. 7 Results for the metric TD#ifdef (average number of configuration constants per
#ifdef): Scatter plot of the raw data (left); violin plot for each system category (middle);
results of the Mann-Whitney U test (right). (IS: industrial systems; OSS: open-source
systems; first (FCS1) and current versions (FCS∞) of formerly closed-source systems)

10K 100K 1M 10M

5
10

15
20

25

T
D

fil
e

LOC
OSS IS FCS1 FCS∞

●

●
● ●

−
− − −

Mann-Whitney U test

OSS IS FCS1

IS W=38
FCS1 W=43 W=27
FCS∞ W=42 W=26 W=25

OSS IS FCS1 FCS∞

Fig. 8 Results for the metric TDfile (average number of configuration constants per file):
Scatter plot of the raw data (left); violin plot for each system category (middle); results
of the Mann-Whitney U test (right). (IS: industrial systems; OSS: open-source systems;
first (FCS1) and current versions (FCS∞) of formerly closed-source systems)

22 Claus Hunsen et al.

4.4 RH4: Nesting of #ifdefs (NDavg, NDmax)

The open-source systems have an average nesting degree of 1.17± 0.14. All
systems have a value between 1.55 (gnuplot) and 1.04 (Gnumeric).

The industrial systems have a slightly higher nesting degree regarding their
implemented #ifdef directives; the #ifdefs are nested between 1 and 2 times
(average of 1.29± 0.13).

The formerly closed-source systems have an average nesting degree that is
below the average of “pure” open-source systems, for both versions we consid-
ered (1.14). We did not observe substantial changes in their evolution (from
FCS1 to FCS∞), except for Blender.

Regarding the maximum nesting degree, all systems have an NDmax value
between 4 and 9, and all categories have about the same values. The outliers
are the system B from the IS category, with a maximum depth of 12 and
the operating system FreeBSD from the open-source category, which has an
extraordinarily high NDmax value of 24 (cf. left plot in Figure 10).

For both NDavg and NDmax, there is no statistical evidence that there is a
significant difference between the different kinds of systems, as also shown by
the statistical analysis results in Figures 9 and 10.

RH4: Rejected.

10K 100K 1M 10M

1.
1

1.
2

1.
3

1.
4

1.
5

N
D

av
g

LOC
OSS IS FCS1 FCS∞

●

●

●
●

−

−

− −

Mann-Whitney U test

OSS IS FCS1

IS W=105
FCS1 W=70 W=9
FCS∞ W=74 W=9 W=26

OSS IS FCS1 FCS∞

Fig. 9 Results for the metric NDavg (average nesting depth of #ifdefs): Scatter plot of
the raw data (left); violin plot for each system category (middle); results of the Mann-
Whitney U test (right). (IS: industrial systems; OSS: open-source systems; first (FCS1)
and current versions (FCS∞) of formerly closed-source systems)

10K 100K 1M 10M

5
10

15
20

N
D

m
ax

LOC
OSS IS FCS1 FCS∞

●

●

● ●− − − −

Mann-Whitney U test

OSS IS FCS1

IS W=68.5
FCS1 W=75.5 W=24.5
FCS∞ W=89.5 W=29.0 W=28.0

OSS IS FCS1 FCS∞

Fig. 10 Results for the metric NDmax (maximum nesting depth of #ifdefs): Scatter plot
of the raw data (left); violin plot for each system category (middle); results of the Mann-
Whitney U test (right). (IS: industrial systems; OSS: open-source systems; first (FCS1)
and current versions (FCS∞) of formerly closed-source systems)

Preprocessor-Based Variability in Software Systems 23

5 Interpretation

In this section, we discuss the measurement results for each hypothesis, and
we answer our research questions based on this discussion.

5.1 RH1: Fraction of cpp-Annotated Code

In RH1 (Section 2.3), we formulated our expectation that industrial systems
and early versions of formerly closed-source systems have a larger fraction
of code lines that are annotated with cpp’s conditional-compilation direc-
tives. Indeed, we found that industrial systems contain a higher fraction of
cpp-annotated lines of code—often, more than half the code can be com-
piled conditionally—than open-source and and both versions of the formerly
closed-source systems, typically with 10 to 30 percent of cpp-annotated lines
of code. This difference is statistically significant (Mann-Whitney U with
FDR control) and also substantial in terms of effect size (0.62 up to 0.88).

We see a reason for this difference in cpp-annotated code in the differences
in the development process and the specifics of the domains. The industrial
systems that we considered have been developed as product lines to some de-
gree. Furthermore, all the systems are from the embedded-systems domain.
Product-line development in this context encourages explicit variability man-
agement, which systematically flows into the code base. Moreover, there are
strategic aspects that press product-line developers to increase variability and
code reuse, to serve the target market segment properly, and to improve re-
turn on investment. Furthermore, the domain of the industrial systems—all
are from the embedded-systems domain—implies more fine-grained configura-
bility in the code due to extensive non-functional requirements, which relies
even more on a more disciplined planning of variability in general. So, both
development process and the systems’ domain likely influence the fraction of
annotated code directly due to the requirements that are necessary for the
development process. This result is likely representative, as all systems under
consideration have matured over several years—as shown in Section 2.4.

Although we assumed that formerly closed-source systems use cpp simi-
larly to industrial systems directly after their public release, we found as a
second key result that these first open-source versions differ significantly from
the industrial systems in their relative amount of cpp-annotated lines of code.
A possible reason are the specifics of the different domains of the systems we
considered for each category. Moreover, the industrial development teams may
have refactored their products before their open-source release with respect to
general amount of cpp use (e.g., reduction of functionality), so that the last
closed-source releases of the formerly closed-source systems may have exhib-
ited a higher fraction of annotated code (in comparison to the first open-source
release).

As another result, we found no significant change in the PLOF metric
between the two versions of the formerly closed-source systems, indicating

24 Claus Hunsen et al.

that they have not changed with respect to that metric. We did not expect
this, because the systems have evolved for several years during their open-
source development (as shown in Section 2.4.2). We see a possible reason in
the refactoring process we mentioned before, which means that the industrial
developers might have already adopted the first public releases of the formerly
closed-source systems with respect to the general use of cpp.

The processes of the open-source and formerly closed-source projects that
we looked at differ considerably from classic product-line development, which
is likely a reason for less variable code. Those systems often have to support
many different hardware platforms and usage scenarios in a domain, but do
not need to actively distinguish different products for different customers as a
strategy for revenue. In addition, some of the open-source systems are known
for relying, beside cpp, on other variability mechanisms. In particular, Linux
and FreeBSD, although being highly configurable, do not make particularly
much use of cpp (9% and 14% of cpp-annotated lines of code), but addition-
ally use other variability mechanisms, such as dynamically loadable modules,
parameter-based configuration, and build-system variability [Tartler, 2013],
which mostly interact with the preprocessor-based variability implementation.
Nevertheless, there are some open-source systems that exhibit a substantial
fraction of cpp-annotated code, for example, Vim, OpenVPN, and libxml2.
Although not product lines in the classic sense, most open-source systems are
highly configurable; for example, libxml2 can be configured with XML’s ex-
tensive language facilities, such as schemas, compression, parsers, and dialects.
However, the embedded-systems domain of the industrial systems restricts the
development teams from extensively using other variability mechanisms, due
to their possible overhead to runtime and binary size.

5.2 RH2–RH4: Scattering, Tangling, and Nesting

In Section 2.3, we expected less scattering for the industrial systems and the
first public release of formerly-closed source systems due to a more planned de-
velopment process, but we found similar scattering degrees regarding files and
#ifdefs across all system categories. The observed differences are not statisti-
cally significant. An explanation is that scattering, in general, impairs mainte-
nance and evolution. Being successful, developers need to resort to some kind
of disciplined use of cpp, to handle the inherent system complexity. Coding
conventions, such as in Linux-kernel development7, make this point explicit,
and seem to be adopted more and more in open-source and also industrial
development practice.

Much like for scattering, we found a similar situation for tangling and nest-
ing across all categories, again without any statistically significant differences.
Since scattering, tangling, and nesting are closely related, the reason for this
situation is likely the same as for scattering.

7 https://www.kernel.org/doc/Documentation/CodingStyle

Preprocessor-Based Variability in Software Systems 25

5.3 Importance of the Results

With the empirical results described and discussed before, we now return to
our research questions that we stated in Section 2.2.

5.3.1 RQ1: Differences and Similarities Between Open-Source and Industrial
Use of cpp

Except for the significantly larger fraction of variable code (PLOF) in indus-
trial systems, we found no statistical evidence that open-source and industrial
systems differ with respect to any cpp characteristic that we identified in Sec-
tion 2.1. The different organizational processes and domains of the open-source
and industrial development projects do not seem to affect the use of cpp in
software systems with respect to scattering, tangling, and nesting: there are
variations between projects, but no systematic variations among the different
categories of systems; that is, cpp is used similarly in the open-source and
industrial systems—except for the higher fraction of cpp-annotated code in
the industrial systems.

Following these considerations, the similar use of cpp indicates that re-
search on a sample of open-source systems can be likely transferred to indus-
trial systems, and vice versa—at least, in certain limits. This has immediate
effect on research regarding tools and methods that have been developed for
both industrial and open-source systems, as research effort may not need to
be specialized and results are transferable to some extent. This is especially
important for researchers who are not always able to get hold of industrial
case studies. However, our study is just a first—but promising—step toward
the goal of identifying proper substitutes for industrial systems in academia.

5.3.2 RQ2: Similarity and Evolution of Formerly Closed-Source Systems

Referring to the discussion of the research hypotheses RH1 to RH4, we found an
indication that the systems from the FCS category are, on the one hand, similar
to the open-source systems with respect to some cpp characteristics (SD#ifdef,
NDavg), and, on the other hand, similar to the industrial systems with respect
to other characteristics (TD#ifdef, TDfile), although there is no significant sta-
tistical evidence. Regarding the relative amount of cpp-annotated code, the
formerly closed-source systems are more similar to the open-source systems (cf.
the results in Figure 4), and less to the industrial systems (as supported by
the statistical tests that found a significant difference between the industrial
systems and all three other kinds of systems).

Moreover, changes in the metrics between the first and the current version
of the formerly closed-source systems are only minor and do not follow a
common trend (we found no statistically significant relation). In fact, there
are systems for which we observed a decrease regarding some of the metrics
and an increase regarding others.

26 Claus Hunsen et al.

We considered systems that are still developed by companies (e.g., mDSN-
responder and Android) as well as community-driven projects (e.g., Blen-
der and OpenSolaris), but there is no particular pattern. The dissimilarity
to either open-source or industrial systems with regard to the use of cpp led us
to rejecting our hypotheses about the increasing influence of the open-source
community over time, or about effort of the industrial maintainers to adjust
their systems to open-source standards and conventions. With the limited
differences in cpp use overall, this is not surprising. A more detailed study
on the evolution of the metrics might give more insight into the change the
systems underwent by becoming open-source projects and being developed
until today.

Overall, our findings—although only being a first step with a limited num-
ber of industrial case studies—indicate that formerly closed-source systems as
well as open-source systems may be considered as substitutes for industrial
case studies in the context of cpp research.

6 Threats to Validity

6.1 Internal Validity

In our analysis, we considered all cpp-annotated code except include guards.
Include guards are used to prevent the multiple inclusion of header files (cf.
Section 2.1) and would bias our results, because they are not a mechanism
to implement variability. The remaining cpp code is treated equally, that is,
we make no further distinction between #ifdefs implementing end-user visi-
ble functionality and #ifdefs used for portability means or hardware-specific
code.

While developers could use other mechanisms to encode variability, we
concentrated on the use of cpp, because it is a widely used tool in the devel-
opment of highly-configurable systems and software product lines, both in the
open-source and the industrial world.

Furthermore, we have not considered whether coding conventions concern-
ing preprocessor usage have been enforced during the development of the sub-
ject systems. Such policies could have an effect on nesting depth or complexity
of #ifdef annotations in the respective projects. However, the large number
of projects we analyzed, across various domains, limits the influence of this
confounding factor.

An additional threat to internal validity is the selection of metrics that
we use for comparison. Some of the metrics that we used in previous work
[Liebig et al., 2010, 2011] could not be applied to the industrial systems due
to lack of source-code access (e.g., extension type and granularity metrics).
This prevented us from performing an even more detailed analysis and limited
us in the number of factors open to interpretation.

While conducting our experiments, less than 0.1% of all files and #ifdefs
could not be processed by cppstats and had to be excluded, because either

Preprocessor-Based Variability in Software Systems 27

src2srcml was not able to parse the file, or the #ifdef condition contained
too complex expressions (e.g., due to extensive use of arithmetics). However,
due to the small fraction, we do not expect this to affect the big picture of our
study.

6.2 External Validity

A threat to external validity is the selection of subject systems, which applies
especially to the selection of industrial and formerly closed-source systems, as
they are hard to get hold of. Regarding the open-source and formerly closed-
source projects, we were able to choose software systems from various domains,
whereas the industrial case studies are all from the embedded-systems domain.
Furthermore, the industrial systems have been developed as software product
lines and the companies behind them seeked support, because they perceive
a problem with their current practice. It is quite conceivable that some do-
mains imply more platform-specific code than others, so the limitation to the
embedded-systems domain threatens the generalizability of our results, as does
the product-line-oriented development process. In future studies, we hope to
get access to more industrial systems from further domains, to further increase
external validity.

Also, the age of a system and the time of its peak development phase
might threaten external validity, as coding styles, tools, and education of de-
velopers likely changed within a time span of 30 years. For example, a deeply
nested #ifdef structure is probably easier to understand and maintain today
with large screens and syntax highlighting available, than in the 1980s using
terminals or monochrome monitors. We selected both old and young subject
systems that have been developed for several years (for formerly closed-source
systems both before and after their public release) and that are still devel-
oped actively by a company or community. Also, we considered some quite
old projects (e.g., BerkeleyDB from the 1980s) and some younger projects
(e.g., Android from 2005), so their main development time may imply differ-
ing coding styles present when starting development. Thus, we consider the
subject systems as representatives for their corresponding system category as
they come from different periods of time and all evolved over time. A further
exploration of correlations between the metrics and the development time of
the considered software systems is well beyond the scope of this study. We
plan to analyze the successive evolution of the metrics over the whole time of
development in future work.

Finally, we have analyzed only C code, whereas cpp itself can handle any
textual artifacts (e.g., C++, Java, or just plain text). Thus, our results are
applicable to languages related or similar to C. When a sample project used
several languages, we ignored everything except C. However, we considered
only projects with C as most-used language.

28 Claus Hunsen et al.

7 Related Work

Many researchers have stated that the use of cpp is likely to result in error-
prone code that is difficult to understand and maintain [Spencer and Collyer,
1992; Favre, 1997; Lohmann et al., 2006; Schulze et al., 2013]. However, espe-
cially in the context of highly-configurable systems and software product lines,
the preprocessor is still the standard tool [Jepsen and Beuche, 2009; Ganesan
et al., 2009], and several researchers work on improved versions that avoid
many of the pitfalls [Kästner et al., 2008b; Favre, 1997; Erwig and Walking-
shaw, 2011; McCloskey and Brewer, 2005; Weise and Crew, 1993], on tools
to migrate to alternative implementations [Adams et al., 2009; Kumar et al.,
2012; Tomassetti and Ratiu, 2013; McCloskey and Brewer, 2005], and on tools
to cope with existing cpp implementations [Vo and Chen, 1992; Krone and
Snelting, 1994; Feigenspan et al., 2013; Kullbach and Riediger, 2001; Singh
et al., 2007; Ribeiro et al., 2011].

Ernst et al. [2002] have conducted a large-scale study of cpp in 26 open
source systems. Their analysis was focused primarily on macro use and corre-
sponding pitfalls, whereas we focus on conditional compilation. Several tools
have been developed to analyze the structure of conditional-compilation direc-
tives [Krone and Snelting, 1994; Tartler et al., 2011; Sutton and Maletic, 2007;
Pearse and Oman, 1997], while ignoring the underlying source code. Only few
tools analyze how conditional compilation affects the underlying source code
[Adams et al., 2009; Liebig et al., 2010, 2011, 2013; Ribeiro et al., 2011; Käst-
ner et al., 2011, 2012; Queiroz et al., 2014], but not considering the difference
between open-source and industrial systems.

The largest family of studies in this context centers around a corpus of 40
open-source systems collected by Liebig et al. [2010]. This corpus has been
studied using various metrics regarding conditional compilation and its impli-
cations [Liebig et al., 2010, 2011; Ribeiro et al., 2011]. We selected a subset
of the open-source projects from this corpus and use several metrics proposed
by Liebig et al.

For few systems, especially the Linux kernel, variability has been studied
in depth [Lotufo et al., 2010; Tartler et al., 2011; Passos et al., 2012]. Baxter
and Mehlich [2001] as well as Sutton and Maletic [2007] informally report
on conditional-compilation practices from few commercial projects. However,
in contrast to all prior work, our study is the first to compare the use of
conditional compilation between open-source and industrial projects.

Closest to our work, Spinellis [2008] has investigated the difference among
four operating-system kernels, two open source (FreeBSD, Linux), a for-
merly closed-source (OpenSolaris), and one proprietary (Windows Re-
search Kernel). Spinellis found a lower preprocessor usage in Solaris and
the Windows Research Kernel than in Linux and FreeBSD. He con-
jectured that companies such as Sun or Microsoft are discouraging the use
of cpp. We cannot confirm this observation in our experiments for a larger
sample with industrial systems from the embedded-systems domain.

Preprocessor-Based Variability in Software Systems 29

8 Conclusion

The C preprocessor (cpp) is widely used both in open-source and industrial
systems. Being one of the most successful tools for implementing variable and
configurable systems, including software product lines, it has gained consid-
erable attention in academia, especially, in the recent years. However, most
scientific studies on the use of cpp concentrate on open-source systems. The
main reason is that researchers often do not have access to systems developed
in industry. This circumstance raises the issue of whether the insights and
conclusions drawn from studying open-source systems can be transferred to
industrial systems—at least, in certain limits. The importance of this issue
cannot be underestimated, as it has an immediate influence on the relevance
of methods and tools developed in academia and on where further research
should go.

By means of an empirical study on a substantial set of open-source and
industrial systems, we aim at shedding light at this issue. Specifically, we
compared open-source and industrial systems using a set of well-established
size, scattering, tangling, and nesting metrics that characterize the use of cpp
for variability implementation. The key finding is that open-source systems and
industrial systems are very similar in this respect (except for that industrial
systems have larger fractions of variable code, but with similar complexity),
which we did not expect due to the different development processes and largely
differing domains of the selected subject systems.

In addition, we analyzed open-source systems that have been developed
closed-source until some point in their history. For each system, we examined
the first open-source version and the most current version, and we compared
them to the “pure” open-source and industrial systems. We analyzed the evolu-
tion of these formerly closed-source systems by means of searching for changes
regarding our metrics over their lifetime. We found no significant difference
between these systems and the “pure” industrial and open-source systems ei-
ther, except that they also exhibit a significantly lower fraction of variable
code compared to the industrial systems.

What one can learn from our study is that research based on open-source
systems, such as developing tools on top of cpp, is likely to be applicable
to systems developed in industry. Although, our findings are just a first—
but promising—step toward the goal of comparing industrial and open-source
systems regarding their use of cpp, and have to be verified with industrial
systems from other domains than the embedded-systems domain, there is a
good indication that open-source and formerly closed-source systems can be
considered as substitutes for industrial case studies.

References

Adams B, De Meuter W, Tromp H, Hassan AE (2009) Can We Refactor Con-
ditional Compilation into Aspects? In: Proc. Int. Conf. Aspect-Oriented

30 Claus Hunsen et al.

Software Development (AOSD), ACM, pp 243–254
Anderson TW, Finn JD (1996) The New Statistical Analysis of Data. Springer
Apel S, Batory D, Kästner C, Saake G (2013) Feature-Oriented Software Prod-
uct Lines: Concepts and Implementation. Springer

Basili V, Caldiera G, Rombach H (1994) Goal Question Metrics Paradigm.
Encyclopedia of Software Engineering pp 528–532

Baxter I, Mehlich M (2001) Preprocessor Conditional Removal by Simple
Partial Evaluation. In: Proc. Working Conference on Reverse Engineering
(WCRE), IEEE, pp 281–290

Benjamini Y, Hochberg Y (1995) Controlling the False Discovery Rate: A
Practical and Powerful Approach to Multiple Testing. Journal of the Royal
Statistical Society Series B (Methodological) 57(1):289–300

Berger T, She S, Lotufo R, Wąsowski A, Czarnecki K (2010) Variability Mod-
eling in the Real: A Perspective from the Operating Systems Domain. In:
Proc. Int. Conf. Automated Software Engineering (ASE), ACM, pp 73–82

Clements PC, Northrop L (2001) Software Product Lines: Practices and Pat-
terns. SEI Series in Software Engineering, Addison-Wesley

Cliff N (1996) Ordinal Methods for Behavioral Data Analysis. Erlbaum
Conway ME (1968) How Do Committees Invent? Datamation 14(5):28–31
Cowles M, Davis C (1982) On the Origins of the .05 Level of Statistical Sig-
nificance. American Psychologist 37:553–558

Czarnecki K, Eisenecker UW (2000) Generative Programming – Methods,
Tools and Applications. Addison-Wesley

Ernst MD, Badros GJ, Notkin D (2002) An Empirical Analysis of C Prepro-
cessor Use. IEEE Transactions on Software Engineering (TSE) 28(12):1146–
1170

Erwig M, Walkingshaw E (2011) The Choice Calculus: A Representation
for Software Variation. ACM Transactions on Software Engineering and
Methodology (TOSEM) 21(1):6:1–6:27

Favre JM (1996) Preprocessors from an Abstract Point of View. In: Proc. Int.
Conf. Software Maintenance (ICSM), IEEE, pp 329–339

Favre JM (1997) Understanding-In-The-Large. In: Proc. Int. Workshop on
Program Comprehension (WPC), IEEE, pp 29–38

Feigenspan J, Kästner C, Apel S, Liebig J, Schulze M, Dachselt R, Papendieck
M, Leich T, Saake G (2013) Do Background Colors Improve Program Com-
prehension in the #ifdef Hell? Empirical Software Engineering 18(4):699–
745

Fitzgerald B (2006) The Transformation of Open Source Software. MIS Quar-
terly 30(3):587–598

Ganesan D, Lindvall M, Ackermann C, McComas D, Bartholomew M (2009)
Verifying Architectural Design Rules of the Flight Software Product Line.
In: Proc. Int. Software Product Line Conference (SPLC), ACM, pp 161–170

Godfrey MW, Germán DM (2014) On the Evolution of Lehman’s Laws. Jour-
nal of Software: Evolution and Process 26(7):613–619

Jepsen HP, Beuche D (2009) Running a Software Product Line – Standing
Still is Going Backwards. In: Proc. Int. Software Product Line Conference

Preprocessor-Based Variability in Software Systems 31

(SPLC), ACM, pp 101–110
Kang K, Cohen SG, Hess JA, NovakWE, Peterson AS (1990) Feature-Oriented
Domain Analysis (FODA) Feasibility Study. Tech. Rep. CMU/SEI-90-TR-
21, Carnegie-Mellon University, Software Engineering Institute

Kästner C (2010) Virtual Separation of Concerns: Toward Preprocessors 2.0.
Logos Verlag Berlin

Kästner C, Apel S, Kuhlemann M (2008a) Granularity in Software Product
Lines. In: Proc. Int. Conf. Software Engineering (ICSE), ACM, pp 311–320

Kästner C, Trujillo S, Apel S (2008b) Visualizing Software Product Line Varia-
bilities in Source Code. In: Proc. Int. SPLC Workshop Visualisation in Soft-
ware Product Line Engineering (ViSPLE), Lero Int. Science Centre, Uni-
versity of Limerick, Ireland, pp 303–312

Kästner C, Giarrusso PG, Rendel T, Erdweg S, Ostermann K, Berger T (2011)
Variability-Aware Parsing in the Presence of Lexical Macros and Conditional
Compilation. In: Proc. Int. Conf. Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), ACM, pp 805–824

Kästner C, Ostermann K, Erdweg S (2012) A Variability-Aware Module Sys-
tem. In: Proc. Int. Conf. Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA), ACM, pp 773–792

Kernighan BW, Ritchie D (1988) The C Programming Language, Second Edi-
tion. Prentice-Hall

Krone M, Snelting G (1994) On the Inference of Configuration Structures from
Source Code. In: Proc. Int. Conf. Software Engineering (ICSE), IEEE, pp
49–57

Kullbach B, Riediger V (2001) Folding: An Approach to Enable Program
Understanding of Preprocessed Languages. In: Proc. Working Conference
on Reverse Engineering (WCRE), IEEE, pp 3–12

Kumar A, Sutton A, Stroustrup B (2012) Rejuvenating C++ Programs
Through Demacrofication. In: Proc. Int. Conf. Software Maintenance
(ICSM), IEEE, pp 98–107

Liebig J, Apel S, Lengauer C, Kästner C, Schulze M (2010) An Analysis of the
Variability in Forty Preprocessor-Based Software Product Lines. In: Proc.
Int. Conf. Software Engineering (ICSE), ACM, pp 105–114

Liebig J, Kästner C, Apel S (2011) Analyzing the Discipline of Preprocessor
Annotations in 30 Million Lines of C Code. In: Proc. Int. Conf. Aspect-
Oriented Software Development (AOSD), ACM, pp 191–202

Liebig J, von Rhein A, Kästner C, Apel S, Dörre J, Lengauer C (2013) Scalable
Analysis of Variable Software. In: Proc. Europ. Software Engineering Con-
ference and the Int. Symposium on the Foundations of Software Engineering
(ESEC/FSE), ACM, pp 81–91

Lohmann D, Scheler F, Tartler R, Spinczyk O, Schröder-Preikschat W (2006)
A Quantitative Analysis of Aspects in the eCos Kernel. In: Proc. Int. Eu-
roSys Conference (EuroSys), ACM, pp 191–204

Lotufo R, She S, Berger T, Czarnecki K, Wasowski A (2010) Evolution of
the Linux Kernel Variability Model. In: Proc. Int. Software Product Line
Conference (SPLC), Springer, pp 136–150

32 Claus Hunsen et al.

Mauerer W, Jaeger MC (2013) Open Source Engineering Processes. it – Infor-
mation Technology 55(5):196–203

McCloskey B, Brewer E (2005) ASTEC: A New Approach to Refactoring C.
In: Proc. Europ. Software Engineering Conference and the Int. Symposium
on the Foundations of Software Engineering (ESEC/FSE), ACM, pp 21–30

Passos LT, Czarnecki K, Wasowski A (2012) Towards a Catalog of Variability
Evolution Patterns: The Linux Kernel Case. In: Proc. Int. Workshop on
Feature-Oriented Software Development (FOSD), ACM, pp 62–69

Pearse TT, Oman PW (1997) Experiences Developing and Maintaining Soft-
ware in a Multi-Platform Environment. In: Proc. Int. Conf. Software Main-
tenance (ICSM), IEEE, pp 270–277

Pech D, Knodel J, Carbon R, Schitter C, Hein D (2009) Variability Man-
agement in Small Development Organizations – Experiences and Lessons
Learned from a Case Study. In: Proc. Int. Software Product Line Confer-
ence (SPLC), ACM, pp 285–294

Pohl K, Böckle G, van der Linden F (2005) Software Product Line Engineer-
ing – Foundations, Principles, and Techniques. Springer

Queiroz R, Passos LT, Valente MT, Apel S, Czarnecki K (2014) Does Feature
Scattering Follow Power-Law Distributions? An Investigation of Five Pre-
Processor-Based Software Families. In: Proc. Int. Workshop on Feature-
Oriented Software Development (FOSD), ACM, pp 23–29

Ribeiro M, Queiroz F, Borba P, Tolêdo T, Brabrand C, Soares S (2011) On
the Impact of Feature Dependencies When Maintaining Preprocessor-Based
Software Product Lines. In: Proc. Int. Conf. Generative Programming and
Component Engineering (GPCE), ACM, pp 23–32

Schulze S, Liebig J, Siegmund J, Apel S (2013) Does the Discipline of Prepro-
cessor Annotations Matter?: A Controlled Experiment. In: Proc. Int. Conf.
Generative Programming and Component Engineering (GPCE), ACM, pp
65–74

Singh N, Gibbs C, Coady Y (2007) C-CLR: A Tool for Navigating Highly Con-
figurable System Software. In: Proc. AOSD Workshop on Aspects, Compo-
nents, and Patterns for Infrastructure Software (ACP4IS), ACM, 6 pages

Spencer H, Collyer G (1992) #ifdef Considered Harmful, or Portability Expe-
rience With C News. In: USENIX Summer Technical Conference, USENIX
Association, pp 185–197

Spinellis D (2008) A Tale of Four Kernels. In: Proc. Int. Conf. Software Engi-
neering (ICSE), ACM, pp 381–390

Sutton A, Maletic JI (2007) How We Manage Portability and Configuration
with the C Preprocessor. In: Proc. Int. Conf. Software Maintenance (ICSM),
IEEE, pp 275–284

Tartler R (2013) Mastering Variability Challenges in Linux and Related
Highly-Configurable System Software. PhD thesis, Friedrich-Alexander-
Universität Erlangen-Nürnberg

Tartler R, Lohmann D, Sincero J, Schröder-Preikschat W (2011) Feature
Consistency in Compile-Time-Configurable System Software: Facing the
Linux 10,000 Feature Problem. In: Proc. Int. EuroSys Conference (EuroSys),

Preprocessor-Based Variability in Software Systems 33

ACM, pp 47–60
Tomassetti F, Ratiu D (2013) Extracting Variability from C and Lifting it to
mbeddr. In: Int. Workshop on Reverse Variability Engineering (REVE), pp
9–16

Vo K, Chen Y (1992) Incl: A Tool to Analyze Include Files. In: Proc. USENIX
Conference, USENIX Association, pp 199–208

Weise D, Crew R (1993) Programmable Syntax Macros. In: Proc. Int. Conf.
Programming Languages Design and Implementation (PLDI), ACM, pp
156–165

Zhang B, Becker M, Patzke T, Sierszecki K, Savolainen JE (2013) Variability
Evolution and Erosion in Industrial Product Lines: A Case Study. In: Proc.
Int. Software Product Line Conference (SPLC), ACM, pp 168–177

34 Claus Hunsen et al.

T
ab

le
4

C
ollected

raw
data

of
the

sub
ject

system
s

S
u
b
ject

sy
stem

L
O
C

L
O
F

P
L
O
F

V
P

C
C

S
D

#ifdef
S
D
fi
le

T
D

#ifdef
T
D
fi
le

N
D
a
v
g

N
D
m
a
x

O
p
en

-so
u
rce

sy
stem

s
(O

S
S
)

A
pach

e
1
5
4
4
7
1

1
5
3
9
4

1
0

2
1
7
6

6
2
4

3
.9
±

9
.1

2
.0
±

3
.8

1
.5
±

1
.2

5
.2
±

7
.6

1
.0
±

0
.0

6
B

er
k
eley

D
B

5
1
7
4
2
3

1
7
0
6
1
0

3
3

1
2
3
4
6

1
6
8
1

7
.6
±

2
2
.8

2
.6
±

4
.9

1
.7
±

1
.1

7
.2
±

2
9
.9

1
.1
±

0
.1

6
B

u
sy

B
o
x

1
8
4
9
9
2

4
1
2
4
8

2
2

5
1
3
1

1
3
7
6

3
.4
±

5
.5

1
.5
±

2
.6

1
.5
±

1
.3

4
.9
±

8
.8

1
.1
±

0
.0

4
C

h
ero

k
ee

6
3
9
2
0

9
0
9
8

1
4

1
1
1
5

3
6
6

3
.6
±

7
.6

1
.9
±

6
.0

1
.6
±

1
.1

3
.9
±

5
.8

1
.0
±

0
.0

4
F
r
eeB

S
D

8
2
9
2
3
5
5

1
1
7
4
5
9
3

1
4

1
2
5
9
4
8

1
7
9
0
7

1
0
.7
±

5
0
1
.8

3
.1
±

2
1
.6

2
.5
±

1
.5

4
.5
±

1
1
.3

1
.1
±

0
.0

2
4

G
IM

P
7
0
4
2
8
6

2
8
2
2
3

4
2
7
4
9

5
9
0

5
.6
±

1
4
.4

2
.8
±

7
.7

1
.7
±

1
.5

3
.0
±

5
.2

1
.0
±

0
.0

6
G

n
u
m
er

ic
2
6
3
5
8
3

1
2
2
2
0

5
1
6
0
3

7
3
8

1
.7
±

3
.1

1
.0
±

0
.6

1
.2
±

1
.2

7
.8
±

5
3
.5

1
.0
±

0
.0

6
g
n
u
plo

t
8
4
8
8
2

1
7
9
6
4

2
1

1
9
0
4

4
2
0

5
.6
±

1
4
.9

2
.0
±

4
.2

1
.9
±

1
.5

7
.0
±

1
2
.6

1
.1
±

0
.1

6
libx

m
l2

2
3
6
1
1
7

1
5
1
8
6
6

6
4

1
1
8
2
0

2
0
7
3

8
.4
±

8
9
.8

1
.4
±

2
.6

4
.8
±

3
.0

1
9
.9
±

1
3
3
.5

1
.5
±

0
.3

8
L
in

u
x

1
0
6
6
4
8
9
8

9
6
8
6
7
3

9
8
1
3
6
5

1
2
1
8
9

5
.9
±

4
2
.9

3
.0
±

1
8
.6

1
.4
±

1
.2

2
.8
±

5
.6

1
.0
±

0
.0

5
O

pen
V

P
N

5
5
0
7
5

3
7
2
8
2

6
8

1
8
9
4

3
1
8

7
.6
±

2
0
.2

3
.1
±

7
.1

1
.9
±

1
.4

6
.6
±

1
1
.7

1
.3
±

0
.2

4
P
a
r
ro

t
1
0
4
9
9
4

5
8
1
0

6
1
0
6
4

3
4
3

4
.0
±

6
.4

1
.3
±

1
.1

1
.9
±

1
.6

4
.4
±

9
.3

1
.1
±

0
.0

8
P
o
stg

r
eS

Q
L

7
4
1
0
7
6

3
9
0
1
7

5
6
5
4
8

1
2
7
8

7
.3
±

3
3
.3

2
.3
±

6
.1

2
.1
±

1
.7

5
.1
±

2
3
.2

1
.1
±

0
.0

6
Q

E
M

U
7
2
2
9
4
4

8
6
8
7
3

1
2

8
0
6
2

1
3
9
3

5
.9
±

2
3
.2

1
.9
±

5
.1

1
.8
±

2
.2

3
.8
±

1
2
.4

1
.0
±

0
.0

4
S
en

d
m
a
il

9
2
0
0
0

3
2
4
9
7

3
5

3
6
5
9

8
8
7

5
.2
±

1
0
.7

1
.9
±

2
.1

1
.8
±

1
.1

1
0
.9
±

3
5
.1

1
.2
±

0
.1

5
S
Q

L
ite

1
3
7
7
9
9

7
4
8
8
6

5
4

3
0
0
7

3
9
5

9
.0
±

1
9
.5

3
.5
±

5
.4

1
.8
±

1
.0

7
.6
±

1
4
.7

1
.3
±

0
.2

4
S
u
bv

er
sio

n
7
9
4
1
0
1

2
2
1
4
1

3
6
4
7
6

3
6
5

1
8
.4
±

4
7
.5

7
.3
±

1
2
.2

1
.7
±

1
.2

7
.9
±

2
1
.6

1
.0
±

0
.0

4
V

im
2
8
9
5
6
7

1
6
9
4
7
5

5
9

1
4
5
2
4

9
6
9

1
7
.7
±

8
3
.0

4
.3
±

7
.4

2
.3
±

1
.4

2
8
.2
±

3
6
.6

1
.4
±

0
.3

9
x
fig

7
4
8
1
8

5
3
7
4

7
4
6
5

1
0
8

4
.6
±

6
.6

1
.7
±

2
.4

1
.9
±

2
.0

3
.1
±

7
.5

1
.0
±

0
.0

7
x
ter

m
5
9
8
5
6

2
2
5
7
2

3
8

2
6
5
8

4
6
2

7
.4
±

1
5
.7

2
.1
±

2
.5

2
.0
±

1
.7

2
3
.0
±

4
1
.5

1
.2
±

0
.2

6

F
o
rm

erly
clo

sed
-so

u
rce

sy
stem

s
(F
C
S
);

fi
rst

(F
C
S
1
)
an

d
cu

rren
t
v
ersio

n
(F
C
S
∞
)

A
n
d
ro

id
C

o
r
e

1
.0

5
4
7
0
2

6
8
3
9

1
3

9
6
4

2
9
7

3
.4
±

7
.3

1
.6
±

2
.8

1
.3
±

0
.7

3
.5
±

6
.6

1
.1
±

0
.0

4
A

n
d
ro

id
C

o
r
e

4
.4

8
6
8
5
7

9
3
8
0

1
1

1
1
9
9

3
0
0

3
.8
±

8
.2

1
.9
±

4
.3

1
.4
±

1
.0

2
.7
±

5
.1

1
.0
±

0
.0

4
B

len
d
er

2
.2

6
2
0
4
2
0
1

1
2
5
9
1

6
1
9
5
3

2
3
7

7
.3
±

2
7
.7

4
.5
±

2
2
.1

4
.6
±

8
.2

2
.0
±

2
.2

1
.0
±

0
.0

4
B

len
d
er

2
.6

9
9
5
0
3
6
0

1
5
3
5
1
4

1
6

1
2
2
8
9

1
9
8
3

1
8
.0
±

1
6
2
.4

2
.6
±

1
0
.8

1
.3
±

1
.1

3
.5
±

2
6
.5

1
.0
±

0
.0

7
K

o
r
n
S
h
ell

1
2
-0

2
-2

9
1
6
1
7
5
8

3
9
0
0
4

2
4

5
7
6
2

1
5
2
6

6
.1
±

2
0
.8

1
.9
±

5
.8

2
.2
±

2
.1

5
.2
±

9
.4

1
.2
±

0
.1

7
K

o
r
n
S
h
ell

1
2
-0

8
-0

1
1
6
2
6
5
7

3
9
2
2
0

2
4

5
8
0
4

1
5
3
7

6
.1
±

2
0
.8

1
.9
±

5
.9

2
.2
±

2
.1

5
.2
±

9
.4

1
.2
±

0
.1

7
m
D

N
S
R

espo
n
d
er

2
2

5
1
1
7
5

6
3
1
9

1
2

1
2
0
5

2
6
4

5
.3
±

9
.0

1
.7
±

2
.4

1
.9
±

1
.7

5
.2
±

1
1
.2

1
.1
±

0
.1

4
m
D

N
S
R

espo
n
d
er

5
4
1

8
8
3
1
1

2
6
8
8
1

3
0

1
7
5
8

3
6
2

5
.3
±

8
.8

1
.8
±

2
.4

1
.9
±

1
.4

5
.5
±

1
1
.1

1
.1
±

0
.1

4
O

pen
S
o
la

r
is

1
.0

5
7
3
3
8
5

1
3
5
5
4
2

2
4

1
1
4
5
7

1
4
8
1

8
.1
±

3
0
.6

3
.2
±

1
1
.1

2
.1
±

2
.2

4
.5
±

6
.9

1
.1
±

0
.0

8
O

pen
S
o
la

r
is

1
3
-1

0
-2

8
2
5
4
7
7
1
8

5
0
5
5
2
2

2
0

4
8
1
9
3

7
6
2
8

9
.2
±

3
9
.1

3
.0
±

1
2
.1

1
.7
±

1
.4

4
.5
±

1
3
.9

1
.1
±

0
.0

9
S
ea

M
o
n
k
ey

9
8
-3

-3
1

4
8
4
5
6
6
5

5
2
3
4
9
2

1
1

7
1
6
6
3

7
3
3
5

1
0
.1
±

7
1
.9

4
.2
±

4
8
.9

1
.7
±

1
.4

3
.2
±

1
0
.7

1
.1
±

0
.0

8
S
ea

M
o
n
k
ey

2
.2

3
8
6
5
9
7
9
4

1
5
0
0
2
7
0

1
7

9
3
4
8
4

8
9
9
2

1
0
.9
±

1
0
3
.3

4
.6
±

6
3
.3

1
.7
±

1
.3

3
.2
±

9
.0

1
.1
±

0
.1

8
V

irtu
a
lB

o
x

1
.6

.0
1
1
5
1
5
7
2

3
9
0
7
3
2

3
4

3
9
5
0
6

6
0
9
4

9
.6
±

6
2
.8

2
.4
±

6
.4

2
.5
±

2
.7

7
.0
±

3
7
.4

1
.2
±

0
.1

8
V

irtu
a
lB

o
x

4
.3

.2
3
2
3
9
8
3
7

9
8
0
0
2
7

3
0

1
2
5
9
5
2

9
2
7
5

1
2
.1
±

7
7
.3

3
.6
±

1
7
.3

2
.8
±

2
.7

5
.4
±

2
4
.5

1
.1
±

0
.0

8

In
d
u
strial

sy
stem

s
(IS

)
A

1
6
9
8
0
1
8

1
0
3
2
2
6
3

6
1

5
1
8
9
2

6
5
0
2

1
3
.8
±

6
9
.4

2
.1
±

6
.2

2
.8
±

2
.0

3
.9
±

1
3
.1

1
.2
±

0
.2

8
B

1
6
8
6
4
1
4

1
1
0
1
8
6
8

6
5

4
2
3
7
0

7
7
6
1

1
0
.6
±

5
7
.2

2
.4
±

1
0
.6

2
.9
±

3
.8

4
.8
±

1
2
.6

1
.4
±

0
.2

1
2

C
1
2
2
9
6

6
1
3
7

5
0

3
4
0

3
1

7
.3
±

1
4
.6

2
.8
±

3
.4

1
.3
±

0
.5

3
.2
±

2
.4

1
.2
±

0
.1

3
D

4
2
1
5
1

1
5
9
6
5

3
8

2
7
2
8

4
1
3

6
.9
±

1
7
.8

1
.7
±

2
.4

1
.8
±

0
.9

4
.4
±

7
.3

1
.2
±

0
.1

5
E

5
4
6
3
2
6

2
8
3
8
0
4

5
2

1
8
3
0
7

7
1
9

2
8
.6
±

3
0
7
.9

6
.0
±

2
3
.6

2
.6
±

0
.7

3
.9
±

3
.3

1
.3
±

0
.1

5
F

2
7
4
1
9
6

1
7
1
2
2
5

6
2

1
2
2
8
5

1
4
5
4

1
0
.2
±

1
9
.3

3
.0
±

4
.3

2
.4
±

1
.8

6
.1
±

1
1
.0

1
.4
±

0
.2

6
G

1
7
5
3
1

3
2
3
9

1
8

5
4
6

1
0
4

7
.9
±

1
4
.6

2
.6
±

4
.5

1
.9
±

0
.9

3
.3
±

3
.9

1
.0
±

0
.0

5

L
O
C
:
lines

of
norm

alized
code;

L
O
F
:
lines

of
norm

alized
cpp-annotated

code;
P
L
O
F
:
fraction

of
cpp-annotated

code
(L

O
F
/L

O
C
);
V
P
:
num

ber
of

variation
points

(#ifdef
blocks);

C
C
:
num

ber
of

configuration
constants;

SD
#ifdef :

average
num

ber
of

#ifdefs
per

C
C
;
SD

fi
le :

average
num

ber
of

files
per

C
C
;
T
D

#ifdef :
average

num
ber

of
C
C
s
per

#ifdef;
T
D
fi
le :

average
num

ber
of

C
C
s
per

file;
N
D
av
g :

average
nesting

depth
of

#ifdefs;
N
D
m
ax :

m
axim

um
nesting

depth
of

#ifdefs

