
Noname manuscript No.
(will be inserted by the editor)

On the Fulfillment of Coordination Requirements in
Open-Source Software Projects:
An Exploratory Study

Claus Hunsen · Janet Siegmund · Sven Apel

Received: date / Accepted: date

Abstract In large-scale open-source software projects, where developers are of-
ten distributed across the entire planet, coordination among developers is crucial.
To estimate whether a state of socio-technical congruence is achieved, which is
associated with software quality and project success, we assess the alignment of
collaboration and communication in such software projects in terms of coordination

requirements. By means of an empirical study on a substantial set of large-scale
open-source software projects—the development histories of all projects sum up to
over 180 years—we aim at shedding light on this issue. To this end, to take a more
semantic view on this phenomenon in comparison to previous work, we do not
only identify coordination requirements arising from files and functions only, but
also those arising from features. We found that open-source developers fulfill co-
ordination requirements intentionally, but mostly those coordination requirements
that arise from coupled source-code artifacts, while they resolve simpler ones inde-
pendently. Furthermore, neither of the considered abstraction levels of source-code
artifacts (files, functions, features) is more suitable to construct coordination re-
quirements with respect to their fulfillment. This finding strongly indicates that
features do not play an as important role in the development process as expected
and commonly believed by the research community in the area of feature-oriented
and feature-driven development. Finally, we identified notable evolutionary trends
in the fulfillment of coordination requirements and showed that far-reaching so-
cial events (such as organizational issues) have a huge impact on their fulfillment,

Claus Hunsen
University of Passau
Passau, Germany
E-mail: hunsen@fim.uni-passau.de

Janet Siegmund
Chemnitz University of Technology
Chemnitz, Germany
E-mail: janet.siegmund@informatik.tu-chemnitz.de

Sven Apel
Saarland University, Saarland Informatics Campus
Saarbrücken, Germany
E-mail: apel@cs.uni-saarland.de

2 Claus Hunsen et al.

both negatively and positively. The key findings of our empirical study are that
socio-technical relations are important to understand open-source development
communities and that the incorporation of different abstraction levels for devel-
oper collaboration does yield important insights to further improve the evolution
in open-source software projects.

Keywords coordination requirements · socio-technical congruence · features ·
social-network analysis · coronet · Codeface · open-source software systems ·
configurable systems · software product lines · feature-oriented software
development

1 Introduction

Developing open-source software heavily relies on the participation and, mostly,
voluntary contribution of many developers. To contribute efficiently, developers
need to collaborate and coordinate their work with others [15, 43]. Today, open-
source software (OSS) development projects, such as QEMU, LLVM, or OpenSSL,
are complex and decentralized projects that require large development communi-
ties, which are often scattered across the entire planet. Such large and distributed
teams make coordination and organization difficult, requiring considerable disci-
pline, especially for communication [41].

To understand whether developers collaborate and communicate sufficiently,
researchers have looked at how coordination requirements are fulfilled by commu-
nication [18, 65, 100]: A coordination requirement arises among two developers if
they work on the same parts (e.g., the same files) of the project and, thus, are
required to coordinate their work, for example, to resolve interdependencies [65],
to avoid duplication of work, or even breaking code [15, 18, 45, 47, 102]. Develop-
ers can fulfill their coordination requirements by communicating with each other,
for example, by exchanging e-mails or text messages, by talking via phone, or
by informal conversations over coffee—basically, everything that enables them to
coordinate their work. Cataldo et al. [17, 18, 19] argued that the gap between
required coordination and the actual coordination should be low to achieve a state
of socio-technical congruence. That is, the higher the socio-technical congruence,
the better the chances for project success or successful evolution.

In line with these and other studies [1, 10, 11, 53], we are interested in un-
derstanding the actual coordination activities among developers—especially, the
alignment with coordination requirements. Specifically, a better understanding of
coordination requirements allows us to assess and facilitate how shared mental
models emerge among developers, which, in turn, would increase the team perfor-
mance during development [30, 66, 82]. However, going beyond previous studies,
we argue it is reasonable to expect that a more semantic perspective, such as con-
sidering features instead of files, is more suitable as constructional argument for
coordination requirements. The background is that, in the past, researchers mainly
extracted coordination requirements from purely technical aspects of the software
projects under consideration. For example, when two developers contributed code
to the same file, a coordination requirement was defined among them [17, 18, 50].
Beyond the abstraction level of files, we additionally analyze the abstraction levels
of functions and features. Functions are also a technical, but more fine-grained

On the Fulfillment of Coordination Requirements in OSS Projects 3

D1

D2
D3

D4
D5

D6

A1

A2

A3

A4

A5
A6

Fig. 1 An exemplary coordination-requirement network. Circles () represent developers,
dashed edges among developers () represent coordination effort. Squares () represent
artifacts, dashed edges among artifacts () represent coupling among the connected arti-
facts. Developers are connected to artifacts (solid edges,) if they worked on that artifact
in a commit.

aspect of software compared to files and also provide small semantic chunks of
code. By analyzing functions, we assume that a file may contain various inde-
pendent functionality. In addition, we analyze coordination requirements arising
from semantically related source code in terms of features. Technically, the source
code belonging to a feature may be scattered across multiple files, and multiple
features may be tangled within one file [3]. We hypothesize that the semantic view
on source code that is induced by features reflects the developers’ mental model of
the software better than files, because features represent and implement require-
ments, providing the corresponding functionality [3]. Thus, the semantic meaning
of features should induce more meaningful coordination requirements and devel-
opers should rely on features for communication and coordination.

To test this hypothesis, we conduct an empirical study of ten substantial open-
source software projects (including QEMU and LLVM). Specifically, we answer
three research questions targeting three different aspects of the state of socio-
technical congruence: We investigate on (i) the state of socio-technical congruence
for the subject systems by assessing the extent to which coordination require-
ments are fulfilled, (ii) the level of abstraction for source-code artifacts which
aligns best with actual developer communication, and (iii) how the ratios of ful-
filled coordination requirements evolve over time. To this end, we identify and
analyze coordination requirements arising from different levels of abstraction (i.e.,
files, functions, and features), which represent different semantic levels or, rather,
units of comprehension [51]. We extract coordination requirements from concur-
rently changed code artifacts (co-changed artifacts) [104], while their fulfillment is
indicated by social interaction [94] (i.e., they are fulfilled via the contribution of
the involved developers to the same thread on their project’s mailing list [93]). To
study coordination requirements and their fulfillment, we use a network-analytic
approach [63, 98]. Specifically, we construct coordination-requirement networks with
the following properties (see example shown in Figure 1): We represent develop-
ers () and source-code artifacts () as vertices, and we represent their relationship

4 Claus Hunsen et al.

as edges. By encoding coordination requirements as network motifs (i.e., as pat-
terns to search for in the networks) [90], we can identify whether a coordination
requirement is fulfilled or not. For example, both the developers D1 and D2 work
on artifact A1 and, thus, give rise to a coordination requirement (). In
line with previous work [17, 18], we view a high fraction of fulfilled coordination
requirements as an indicator for sufficient coordination and sustainable evolution.

In our study, we found three key results: (i) First, the identified coordination
requirements of the subject systems are fulfilled not by chance. This indicates
that the coordination process in open-source systems is guided by the needs in the
development process. (ii) Second, the abstraction level does not matter, when as-
sessing the fulfillment of coordination requirements. For most subject systems, the
fraction of fulfilled coordination requirements is similar across all considered ab-
straction levels—although the set of identified coordination requirements may vary
significantly. To this end, our results indicate that features are not as prominently
placed in the development process of our subject systems as expected (especially,
not be researchers in the area of feature-oriented software development [3] and
feature-driven development [73]). (iii) Third, we found that the coordination in
our subject systems changes substantially over time. We identified and discuss
a number of far-reaching events that shaped the evolution of subject systems in
terms of communication (e.g., the finding of the Heartbleed bug in OpenSSL).
(iv) In the end, all our findings emphasize that the socio-technical analysis of soft-
ware projects is valuable for understanding the dynamics in such projects and for
influencing their evolution.

In summary, we make following contributions:

– Based on previous work, we devise an extended formal analysis framework to
extract coordination requirements and construct corresponding coordination-
requirement networks for the application of network-analytic methods at dif-
ferent levels of abstraction for source-code artifacts (file, function, and feature).

– We apply our analysis framework to mailing-list data and commit data from
the history of ten open-source projects to identify (un-)fulfilled coordination
requirements over time. Our results indicate that coordination requirements
are fulfilled on purpose and do not differ significantly across abstraction levels.
Nevertheless, we emphasize that a differentiation among abstraction levels does

matter as different coordination requirements are identified.
– We reveal factors that may influence coordination in software projects over time

(such as public announcement of critical bugs or a change in maintainership)
by conducting a qualitative study on the evolution of our subject projects
investigating the fulfillment of coordination requirements over time.

– We show that socio-technical analyses can yield useful insights into the commu-
nication and coordination of open-source developers and should be employed
in further contexts.

All scripts and data are available on our supplementary website:
https://se-sic.github.io/paper-coordination-requirements/.

2 A Network Approach

In this section, we provide the necessary background on developer coordination and
collaboration. We formalize our approach to construct coordination-requirement

https://se-sic.github.io/paper-coordination-requirements/

On the Fulfillment of Coordination Requirements in OSS Projects 5

networks, and we show how to encode coordination requirements as networks mo-
tifs, which enables us to analyze the coordination-requirement networks in an
automated manner at different levels of abstraction.

2.1 Coordination Requirements

Communication for the sake of coordination is crucial for the progress and sus-
tainability of large-scale software projects. However, coordination breakdowns (i.e.,
failing coordination) occur often and in various forms, and project teams need to
spend effort and take precautions to prevent them [17, 25]. In today’s open-source
software projects, such as the Linux kernel or QEMU, with decentralized and dis-
tributed development teams, coordination is even more important for the project’s
success [26, 41, 44, 45, 47, 57], but also more difficult to achieve (e.g., due to differ-
ent time zones or geographical distance) [41]. As a consequence, it is important to
know whom to contact [41] and, generally, whom to share knowledge with across
the project [25, 43] to achieve the project’s goals. In general, proper communica-
tion in projects will likely increase the speed and quality of development due to
accurate planning and division of tasks [18, 47].

A central idea to guide coordination efforts in a software project is to align
the communication with the tasks arising from the project’s goals to guarantee
progress and purposeful effort achieving a state of socio-technical congruence [18, 19,
47]. While Conway hypothesized that this alignment is a result directly arising from
the software architecture [22], Parnas proposed the idea of manual modularization,
where a module is a ”work item” (not necessarily a subprogram) [74]. The basic
idea behind both views is that the software artifacts and their decomposition guide
the team structure and, consequently, the communication process [22, 26, 40].

As a pragmatic way to observe the state of socio-technical congruence [19],
Cataldo and others proposed the notion of coordination requirements [18, 65]. If two
developers work on the same part of the project (e.g., the same file or function),
a coordination requirement arises among them—to fulfill that requirement, they
need to communicate. The rationale for studying coordination requirements is
that the lack of communication may lead to problems in the development process:
To avoid duplication of work, breaking code due to conflicting changes, merge
conflicts, and, as a consequence of such problems, project delay in any sense,
developers need to resolve interdependencies by coordinating their activities [15,
18, 45, 47, 65]. In other words, developers should aim at fulfilling their coordination
requirements to increase the chance for project success or successful evolution [17,
18]. Developers may exchange e-mails or text messages, or communicate via a
bug tracker (e.g., using change requests, pull requests, or issues) to fulfill their
coordination requirements [17, 18, 44].

In our study, we consider two types of coordination requirements, which can be
formalized as network motifs: the triangle motif and the square motif, both illus-
trated in Figure 2. Both motifs have been studied (implicitly) before [17, 18, 98].
The triangle motif resembles the idea that two developers work on the same source-
code artifact, so coordination is crucial to avoid conflicts or inconsistencies of
any kind. The square motif incorporates information on interdependencies among
source-code artifacts in addition to the information which developer works on
which artifact. For example, in the case that one function relies on another func-

6 Claus Hunsen et al.

tion, this causes a problem if two developers each work on one of them without
coordinating or even without being aware of the other’s work.

We discuss the importance of the choice of which abstraction level to choose for
the source-code artifacts when deriving coordination requirements in Section 2.4.

2.2 Coordination-Requirement Networks

To analyze the fulfillment of coordination requirements in a software project, we
construct coordination-requirement networks, which we can analyze with network-
analytic methods. We show an exemplary coordination-requirement network in
Figure 1. Formally, such a network is defined as an undirected graph G = (D∪A,E),
where we encode developers (, set D) and artifacts (, set A) as vertices; E is
the set of edges among the vertices. Following previous work [98], we encode the
following three relations in the edges:

Developer–artifact relation (). Developers work on code artifacts while
committing to the project’s version control system. Such artifacts may
be files, functions, or features. EDA denotes the set of edges between de-
velopers and source-code artifacts (i.e., developers worked on artifacts):
EDA = {{d, a} ∈ E | d ∈ D, a ∈ A}. In isolation, the set EDA describes a
bipartite graph between developers and artifacts and is the main source for
the identification of coordination requirements.

Artifact–artifact relation (). Artifacts can be related in various ways:
For example, two functions can be related if one function calls the other,
which is called dynamic coupling [5]; they can contain similar semantic
functionality, which is called semantic coupling [78]; or the artifacts are
related as they are concurrently changed in a commit or belong to the
same change or pull request, which is called logical coupling [18, 35, 104].
Hence, edges in the set EAA represent coupling among artifacts (EAA =
{{a1, a2} ∈ E | a1, a2 ∈ A}).

Developer–developer relation (). Finally, developers may coordinate their
work with other developers. In previous studies, researchers analyzed mail-
ing lists [10, 42, 94], IRC [18, 42], bug trackers of any kind [18], or their
combination [1, 85] as means for coordination. Accordingly, the set EDD =
{{d1, d2} ∈ E | d1, d2 ∈ D} represents coordination effort among developers
and is the main source to assess the fulfillment of coordination requirements.

Ultimately, E = EDD ∪EAA ∪EDA. As E is a set with unique entries, G is conse-
quently a simple graph, i.e., it does not contain any loops or multiple edges among
any two vertices.

On the Fulfillment of Coordination Requirements in OSS Projects 7

2.3 Network Motifs

To automatically identify coordination requirements in coordination-requirement
networks, we encode coordination requirements or, rather, the patterns they rep-
resent as network motifs. Network motifs are recurrent sub-graphs in a given net-
work [90]. Motifs can be described formally as a set of vertices (e.g., {d1, d2, a1})
with specific edges connecting them, but are more illustrative and intuitive. We
show two network motifs for coordination requirements in Figure 2, the triangle
motif and the square motif.

d1 d2

a1

(a) Triangle motif mM

d1 d2

a1 a2

(b) Square motif m�

Fig. 2 Triangle and square motifs. Edges among artifacts () represent coupling, while a
developer is connected to an artifact (), if they worked on that artifact. An edge among two
developers () represents coordination, where the edge’s existence indicates the fulfillment
of the encoded coordination requirement.

The triangle motif (Figure 2a) captures the idea that two developers () work
on the same code artifact (). The motif applies, for example, in a situation where
two developers work on the same file while committing code to the repository,
independent of the fact whether they coordinate or not (see above). The corre-
sponding graph representation of this motif is the following: An artifact vertex
has two incident edges from two distinct developer vertices. We formally define
the motif as

mM = {d1, d2, a1}, where {d1, a1} ∈ EDA, {d2, a1} ∈ EDA, and d1 6= d2.

The square motif in Figure 2b represents a coordination requirement of two
developers working on two related code artifacts: There are two developer ver-
tices () connected to two artifact vertices (), while the two artifact vertices are
connected by an edge. The square motif applies therefore, for example, in a situ-
ation in which two developers work on two distinct functions, where one function
eventually calls the other function. Formally, we define

m� ={d1, d2, a1, a2}, where

{d1, a1} ∈ EDA, {d2, a2} ∈ EDA, {a1, a2} ∈ EAA, a1 6= a2, and d1 6= d2.

For both motifs, the edge {d1, d2} ∈ EDD () among the developers rep-
resenting coordination effort may exist or not, based on the premise that the
coordination effort occurred within a reasonable time window (see Section 3.2.1
for details). If the edge exists, the coordination requirement is fulfilled; otherwise,
it is not.1

1 We could define “positive” and “negative” motifs to capture the fulfillment of coordination
requirements directly; but to keep the analysis simple, we define only motifs for the coordi-
nation requirements as such and analyze whether the identified coordination requirements are
fulfilled or not.

8 Claus Hunsen et al.

Looking at the example given in Figure 1, there are two fulfilled coordination
requirements: {D1, D2, A1} (triangle motif mM) and {D4, D5, A5, A6} (square mo-
tif m�). Regarding unfulfilled coordination requirements, there are: {D5, D6, A6}
(mM), {D1, D3, A1, A3} (m�), {D2, D3, A1, A3} (m�), and {D4, D6, A5, A6} (m�),
as all sets of vertices miss the edge indicating coordination among the involved
developers.

2.4 Levels of Abstraction

In previous work [12, 17, 18], researchers have tracked concurrent or simultaneous
contributions of developers on the same file to derive coordination requirements.
We conjecture that this view may be too technical to capture the richness of co-
ordination. Thus, we use the two code-artifact abstractions function and, most
importantly, feature to infer coordination requirements at different levels of ab-
straction. Although such abstraction levels are based on heuristics, some have
been shown to be reliable in multiple previous studies [12, 50, 51, 63, 67]. Addi-
tionally, with regard to network construction, the abstraction file has been shown
to produce dense networks that often hinder community detection [14, 50]. It has
been already shown that a function-level view is more accurate [51]. While the
function-level view has been used in previous studies [12, 51] (e.g., by live-tracking
editing actions in an IDE), we revisit it for long-term analysis of coordination
requirements based on commit information (see Section 4.1 for details).

Functions are also a technical, but more fine-grained aspect of software struc-
ture compared to files. Functions contain semantic chunks of code as they repre-
sent abstractions that modularize a dedicated functionality for re-use. To this end,
when two developers working on the same function, they likely work on the same
functionality in the source code. The inferred coordination requirements in this
scenario are more specific than the ones derived at the abstraction level of files, as
they exclude developers working on different functions in the same file.

Furthermore, features provide a semantic, behavior-driven view on a software
system: Features represent and implement requirements, providing the correspond-
ing functionality, often implemented in a cross-cutting manner [3]. They closely
resemble the developers’ shared mental model of the project structure, because
they act as an interface between developers and implementation [30]. Using con-
current change on features as constructional argument, we assume to obtain more
precise coordination requirements.

For illustration, we show how strongly the choice of abstraction level influ-
ences the extraction of coordination requirements by means of the triangle motif
and its manifestation in the source-code excerpt listed in Figure 3. The source
code contains two files (db.c, actions.c), four functions (persist, execute, delete, and
lockOnAction), and two features (PERSIST and LOCKING, implemented with the help
of the C preprocessor via #ifdef directives). In file db.c (Figure 3a), the function-
ality of a database connection is provided, while, in file actions.c (Figure 3b), the
functionality of deleting data and locking is implemented. Over time, three devel-
opers (Dev A, B, and C) change parts of the code (illustrated by patches and boxes
with the developer’s name) due to changed requirements or bug fixes. Based on
the performed changesets, coordination requirements arise at different abstraction
levels, which we illustrate in Figure 4. Regarding co-changes on the same file, both

On the Fulfillment of Coordination Requirements in OSS Projects 9

1 #ifdef PERSIST Dev A
2 -void persist () {
3 - // old code
4 -}
5 +void persist(char *filename) {
6 + // completely re -written new code
7 +}
8 #endif
9

10 void execute(struct DBConn *conn ,
11 struct DBAction *action) { Dev B
12 - // old code
13 + // code with bugfixes
14 }

(a) File db.c

1 void delete (struct DBconn *conn , char *command) {
2 // ... Dev C
3 +#ifdef PERSIST
4 + persist(Config.filename);
5 +#endif
6 }
7

8 #ifdef LOCKING
9 void lockOnAction(struct DBAction *action) { Dev C

10 - // old code
11 + // code with changes
12 Dev B
13 - if(data == NULL) {
14 + if(data != NULL) {
15 // ...
16 }
17 #endif

(b) File actions.c

Fig. 3 Code example containing two files, four functions, and two features (controlled by #ifdef
directives). Lines starting either with + or − indicate patch blocks applied by an developer,
which are additionally annotated with the name of the responsible developer.

Dev A Dev B Dev C

db.c actions.c

(a) File-based

Dev A Dev B Dev C

PERSIST LOCKING

(b) Feature-based

Dev A Dev B Dev C

db.c/
persist

db.c/
execute

actions.c/
lockOnAction

actions.c/
delete

(c) Function-based

Fig. 4 Coordination-requirement networks (excluding coordination edges) extracted from the
source code in Figure 3 for each of the abstraction levels file, function, and feature.

10 Claus Hunsen et al.

Devs A and B as well as Devs B and C should coordinate their work according to
the triangle motif (Figure 4a), while, for functions (Figure 4c), only Devs B and C
need to coordinate, as they both change the function lockOnAction. As illustrated
in Figure 4b, the coordination requirements for features resemble the need for co-
ordination arising from the actual performed changes in the code more naturally:
Dev C relies on the functionality of the function persist of the feature PERSIST,
which is completely changed by Dev A. The implied coordination requirement for
the Devs A and C has not been identified for any of the other abstraction levels.
Additionally, the other important coordination requirement (Devs B and C) is
also identified. Thus, the identification of coordination requirements on more fine-
grained and more semantically meaningful levels of abstraction seems reasonable.

3 Study Design

In this section, we provide details on our study design for analyzing the fulfill-
ment of coordination requirements at different levels of abstraction. Based on our
research questions and operationalization (Sections 3.1 and 3.2), we develop hy-
potheses in Section 3.3. In Section 3.4, we discuss the criteria for the selection of
subject projects.

3.1 Research Questions

The overarching goal of our study is to understand coordination in open-source
software projects. To this end, we extract coordination requirements and determine
whether they are fulfilled or not using our network approach. In particular, we aim
at answering the following research question, which is inspired by previous studies
on coordination requirements [17, 18, 19]:

Research Question RQ1. Does developer communication align with artifact-

based coordination requirements in real-world open-source software projects, such

that the coordination requirements are fulfilled?

Even more importantly, when using different levels of abstraction for source-
code artifacts (i.e., files, functions, features) in our analysis, we are able to as-
sess their semantics: The arising coordination requirements may vary significantly
across abstraction levels. In Section 2.4, we specifically argued that the semantic
abstraction level of features is a more precise means for studying coordination
requirements. Thus, we formulate our second research question:

Research Question RQ2. Does developer communication align better with fea-

ture-based coordination requirements than with function-based or file-based coordi-

nation requirements?

It is reasonable to assume that the coordination efforts in a project evolve
and, eventually, mature while the project matures itself. Consequently, when con-
sidering the evolution of the considered software projects into our analysis, we
can observe whether the communication also evolves, which means that the ratios

On the Fulfillment of Coordination Requirements in OSS Projects 11

of fulfilled coordination requirements change over time, rendering socio-technical
congruence a dynamic state [4, 8, 18, 84]. Especially, when looking at the different
levels of abstraction regarding source-code artifacts, we potentially gain impor-
tant insights on how the shared mental model of developers evolves along with the
coordination requirements.

Research Question RQ3. Does the degree of fulfillment of coordination require-

ments change for different levels of abstraction during project evolution?

3.2 Experiment Variables and Formal Framework

We provide an overview of the dependent and independent variables of our analy-
sis framework (and our study) as well as their operationalization in Table 1. Our
framework is based on previous work (e.g., Cataldo et al. [18, 19], Valetto et al.
[98], and Kwan and Damian [55]; for more details, see Section 8), but provides
a more formal and holistic approach to the analysis of coordination requirements
(for example, a formal definition of all configurable relations and motifs, while di-
rectly incorporating the evolutionary perspective and, most importantly, different
artifact abstraction levels), enabling easier configuration of future studies and also
easier comparison of existing studies.

3.2.1 Independent Variables

The independent variables of our study are the choices that we have for our data
extraction and network-construction procedures: (i) the length of the time win-
dow to consider for network construction and the identification of coordination
requirements, (ii) the kind of developer–developer relation representing coordi-
nation efforts, (iii) the abstraction levels of artifacts to consider in the analysis,
(iv) the kind of artifact–artifact relation representing coupling among artifacts,
and (v) the kind of network motif to search for in coordination-requirement net-
works.

First, we consider only coordination requirements among developers if their
concurrent activities occur within a reasonable time window. We consider a coordi-
nation requirement fulfilled if there is coordination effort among the developers in-
volved also within the same time window. As a consequence, we consider only data
from a specific time window for the construction of a coordination-requirement
network and, thus, obtain several time-consecutive networks for a single subject
system. While similar results have been found for one-month time windows [67],
we use three months of time for such time windows, since this represents the sweet
spot between sufficient data and avoiding overfitting [51, 52, 53, 67].

As developer–developer relation, we consider contributions of the developers to
their project’s mailing list: In line with the work by Bird et al., we assume that
two developers coordinate their work if and only if they contribute to the same
thread on the mailing list [10]. For that reason, we only analyze projects in our
study that have a “strong” and central mailing list, which means that the mailing
list is the primary way of communication and coordination in the project (see Sec-
tion 3.2.3), which is supported by previous studies on mailing-list-based developer

12 Claus Hunsen et al.

networks [42, 53, 85, 94, 102]. Consequently, we can conclude that, with e-mails
as a preferred channel of communication for developers [93] and “strong” mail-
ing lists, concurrent contribution to threads on the mailing list are meaningful as
means of coordination [102].

We consider three abstraction levels for artifacts: files, functions, and features.
Files and functions are encoded by their project-relative path to avoid ambiguities
and can be extracted directly from commit data. In detail, we assess the line
numbers to map the changes in a commit to respective functions. We extract
information on features by means of the C preprocessor that we compute with the
help of Codeface and cppstats. More detailed information on the extraction of
feature information is given in Section 4.

For the artifact–artifact relation, we consider co-changes to describe logical cou-
pling among artifacts. The term “co-changes” refers to artifacts that are concur-
rently changed in a single commit in the project’s version control system. Co-
changes have been used as a means to represent relations among code artifacts in
various studies before [11, 18, 35, 51, 87, 100, 104] (by assessing commit informa-
tion or merge requests, for example) and are considered to have more impact than
call or data dependencies [19].

Table 1 Independent and dependent variables of our analysis framework, along with their
corresponding description and the considered levels.

Variable Description Levels

Independent variables

Length of time window Concurrent work and coordination effort
within this time window induce coordina-
tion requirements and their fulfillment

3 months

Developer–developer
relation
(coordination effort)

Developers who coordinate fulfill their ex-
isting coordination requirements

E-mail exchange in
the same thread

Code artifacts
(abstraction levels)

Type of code artifact that is the construc-
tional argument for coordination require-
ments

Files, functions,
features

Artifact–artifact
relation
(coupling relation)

Coupling among code artifacts considered
in the square motif m�: logical coupling
arising from concurrently changing arti-
facts in a commit (co-change)

Co-change

Network motifs
(model for coordination
requirements)

Patterns of coordination requirements de-
scribing concurrent work on the same ar-
tifact (mM) or coupled artifacts (m�)

Triangle motif mM,
square motif m�

Dependent variables

Fraction of fulfilled
coordination require-
ments
fraccr(a,m) =
|cr full(a,m)| /
|cr found(a,m)|

Indicator for “good” socio-technical con-
gruence; parameters: code-artifact type a
as constructional argument for coordina-
tion requirements and motif m to match
coordination requirements in networks
(see Section 3.2 and Equation 1)

ranges from
0 (bad) to
1 (good)

On the Fulfillment of Coordination Requirements in OSS Projects 13

We use the motifs mM and m� as network motifs that encode coordination
requirements, as defined and described in Section 2.3. A coordination requirement
matched by either motif is labeled as fulfilled if the coordination edge in the motifs
is present, otherwise, it is unfulfilled.

We give the more technical details on how to extract the described data for a
project in Section 4.

3.2.2 Dependent Variables

To analyze the alignment of the email-based developer coordination and the actual
artifact-based collaboration, we measure the fraction of fulfilled coordination require-

ments. Given a coordination-requirement network constructed using one type of
code artifact (i.e., file, function, or feature) and a motif m to identify coordination
requirements, we define the fraction fraccr(a,m) of fulfilled coordination require-
ments as follows:

fraccr(a,m) =
|cr full(a,m)|

|cr found(a,m)|
, where (1)

cr found(a,m) = {c | matched instance c of motif m for artifact a

in the current network},
cr full(a,m) = {cf | cf ∈ cr found(a,m), cf is fulfilled}.

cr found(a,m) represents the set of identified coordination requirements for the
given artifact (i.e., the list of matched motif instances) and cr full(a,m) is a subset
of cr found(a,m) with only the fulfilled coordination requirements. Evidently, the
range of the fraction fraccr(a,m) is [0, 1], where 0 describes that not a single iden-
tified coordination requirement is fulfilled and 1 that all have been fulfilled. Note
that the artifact–artifact relation (only effective for the square motif m�) is fixed
to “co-change” in our study and, consequently, is directly encoded in the given
coordination-requirement networks.

3.2.3 Selection Criteria

Finally, we select specific software projects from the list of potential candidates:
All projects use Git as version-control system, C as programming language, and
the C preprocessor for features and their configuration. This way, we increase in-
ternal validity. The selected projects are developed in a distributed manner (i.e.,
developers are often scattered across the entire planet) and are diverse in their ap-
plication domain (including the embedded-systems domain, database management
systems, servers, and a version control system). Furthermore, we select only soft-
ware projects with a long history of mailing-list-based communication. Finally, the
selected projects exhibit different patterns in commits per developer and commits
per analyzed artifact abstraction.

Regarding features, we stick to software systems that heavily use #ifdef di-
rectives to implement feature-specific functionality: In line with previous studies
[49, 61], we consider C macros that occur in #ifdef conditions inside a project’s
source code and that are, hence, used in the sense of configuration constants to
implement variability.

14 Claus Hunsen et al.

We discuss threats to validity arising from the selection criteria in Section 7.

3.2.4 Null Model

We evaluate the identified fulfillment of coordination requirements against a null
model to control for the probability of obtaining results by chance and also to assess
the validity of our results. If we find a statistically significant difference between
the empirical coordination-requirement networks and their equivalent null models
in terms of fulfillment of coordination requirements, we can conclude that it is
improbable that the topological structure of the empirical network arose from
a random process. In other words, if there is a significant difference, it is more
likely explained by an organized process, such as a communication effort guided
by coordination requirements.

We construct the null-model networks for a subject system for each time win-
dow and abstraction level of source-code artifacts that we analyze. For this pur-
pose, we conduct a standard approach [37, 68] also used in previous studies [11, 51],
where vertices are connected uniformly at random—under the condition that the
degree distribution is identical to the empirical network. For this purpose, we
employ a rewiring procedure that maintains the amount of communication (i.e.,
number of edges) for each developer, but ignores the idea that each communication
effort may be guided by a real-world coordination requirement [8].

Most importantly, for constructing the null-model networks, we need to care-
fully respect all kinds of relations in our coordination-requirement networks sepa-
rately, as described in the following.

Developer–artifact relation. Developers perform well-defined tasks on various code
artifacts which they add to the repository by means of commits. Accordingly,
randomizing these edges in the networks would destroy the semantic meaning of
changes to the repository, thus, we do not change the edges within this relation
for the null model.

Artifact–artifact relation. As the code artifacts and their coupling is defined by the
source code itself, we do not randomize this part of the coordination-requirement
networks for the generation of null models.

Developer–developer relation. Our main idea for the null model is that the coordi-
nation effort among developers can occur randomly and, hence, is not driven by
present coordination requirements. Consequently, we randomize the corresponding
edges among all developers while keeping the degree distribution in the network
stable [37], so that the amount of coordination effort and the topology stay the
same in the null-model networks compared to the empirical networks.

Technically, we construct the coordination-requirement networks by construct-
ing the individual networks for the different relations before merging them to a
single coordination-requirement network. This way, we are able to add any trans-
formation step to any independent relation-related network before merging: In
our analysis, we randomized the edges of the developer–developer network. For
technical details, see Section 4.3.

On the Fulfillment of Coordination Requirements in OSS Projects 15

In the following, to refer to the null-model data and results, we mark the
metrics defined in Formula 1 (see Section 3.2.2) as crnull

found, crnull
full , and fracnullcr ,

respectively.
In addition to validating our results against a null model as described above, we

perform a sensitivity analysis following Kossinets [54] to investigate the stability of
our results in the context of incomplete or missing information sources. For more
details and the corresponding results, please see Section 5.2.

3.3 Hypotheses

We formulate four hypotheses that capture our assumption of a “good” alignment
of coordination and actual collaboration, all of which are also supported by the
literature (e.g., [8, 17, 18, 19]).

The rationale of our first hypothesis is straightforward: Who works on the
same artifacts in the project repository should coordinate. The idea is that a high
fraction of fulfilled coordination requirements is an indicator for a good socio-
technical congruence [19]. On the other side, unrelated and independent co-changes
on the same files, functions, or features may cause major conflicts in the code base,
so coordination is necessary. We (and others [52]) assume that the probability that
two collaborating developers coordinate via the mailing list (i.e., fraccr(a,mM)) is
likely high for healthy and well-working projects that put a high emphasis on the
mailing list (as is the case in our subject projects). Consequently, a high number
of identified coordination requirements is likely fulfilled—such that the fulfillment
is not just a product of random processes (e.g., noise), such as the null model
defined in Section 3.2.4. Following research question RQ1, our first hypothesis is:

Hypothesis RH1. In comparison to the null model, a significantly higher number

of developer pairs collaborating on the same artifacts do exchange e-mails on the

same threads of the mailing list to fulfill arising coordination requirements.

fraccr(a,m) > fracnull
cr (a,m), with a ∈ {file, function, feature} and m ∈ {mM,m�}

Developers may be aware of other developers working on the same artifact,
but they may not be aware of which artifacts are coupled with the artifacts they
work on. Consequently, more coordination requirements with the triangle motif mM
might get fulfilled during mailing-list conversation than coordination requirements
with the square motif m�.

Hypothesis RH2. The fraction of fulfilled coordination requirements is lower for

the square motif than for the triangle motif, independent of the observed artifact

abstraction a.

fraccr(a,m�) < fraccr(a,mM)

Following research question RQ2 and the discussion in Section 2.4, we assume
that developers coordinate based on their shared mental model of the software
project [30], which is resembled closely by the semantic concept of features. Fea-
tures are used in the source code to represent and trace requirements of a user to

16 Claus Hunsen et al.

the software and they provide the corresponding functionality [3].2 Therefore, the
abstraction level of features makes them generally a better user-perceivable unit
in the software project and, thus, we hypothesize that features are a more precise
abstraction level to reason about coordination requirements. In contrast, functions

are likely a too fine-grained unit of comprehension and may only be suitable to
coordinate on if a possible error has been traced back to a specific function. In the
same vein, files are likely too large and unstructured to include them as a whole
into the coordination process as a standalone unit of comprehension.

Hypothesis RH3. The fraction of fulfilled coordination requirements differs for

the different levels of abstraction, and is highest for the abstraction level of features.

fraccr(feature,m) > fraccr(file,m) and fraccr(feature,m) > fraccr(function,m),

where m ∈ {mM,m�}

Over time, the developers of a project tend to take over more responsibility
(e.g., they become a subsystem maintainer) and also develop a more structured
way to coordinate their work with the other developers [52], although their men-
tal models may diverge due to the emergence of experts [59, 88]. Following from
research question RQ3, we argue that a consequence of this is that more coordi-
nation requirements get fulfilled in later stages of development, when the project
and also the developers mature. A reason may be, when the project matures, the
maintainers may publish a clear guideline on how to contribute and get in touch
with the correct project member for a specific task. This way, potential chaos in
developer coordination may stabilize or even decrease over time.

Hypothesis RH4. In later stages of development, the fraction of fulfilled co-

ordination requirements fraccr(a,m) is higher than in earlier stages for all mo-

tifs m ∈ {mM,m�} and artifacts a ∈ {file, function, feature}.

3.4 Subject Projects

For our study, we selected ten projects using the selection criteria described in
Section 3.2.3: Apache HTTP, BusyBox, FFmpeg, Git, LLVM, OpenSSL, Post-

greSQL, QEMU, U-Boot, and Wine. We considered all commits and e-mails
until 2016 (or early 2017), making up more than 12 years of project history for
each project and over 180 years in total for all projects. In total, we analyzed
roughly 600,000 commits and roughly 2,600,000 e-mails across all projects. Over
time, more than 55,000 distinct developers contributed to the projects, either via
e-mail or by committing to the respective repositories. We summarize the details
on the subject projects in Table 2.

Furthermore, our subject projects exhibit a great diversity in terms of the
number of commits per developer and commits per source-code artifact. On aver-
age, developers created 23.50 to 1,048 commits each, with maxima up to 26,580,
while the distributions per subject project are heavily skewed with few develop-
ers creating a high number of commits. Similar properties hold for the number of

2 There are various techniques to implement features, we analyze preprocessor annotations.
More details in Section 4.1.

On the Fulfillment of Coordination Requirements in OSS Projects 17

commits created per artifact abstraction: The number of commits ranges from 7 to
38 for files, from 2 to 5 for functions, and from 5 to 86 for features, all on average.
All distributions are heavily skewed, with few source-code artifacts changed in a
high number of commits. These data indicate that the contribution patterns of
our subject projects differ significantly, corroborating our selection criteria and,
thus, our analysis. We present more detailed statistics with regard to the number
of commits on our supplementary website.

The subject projects have a strict policy that developers need to send their
patches for review purposes to the mailing list first3—that is, the project forces
developers to coordinate their work with others before it is accepted. In detail, in
the review process, the relevant developers are asked to take part in the mailing-
list discussion to fulfill inherent coordination requirements by either identifying
potential problems with the proposed patches or accepting the patch.

4 Data Extraction and Study Execution

For data extraction, we mainly use the tool Codeface (Section 4.1). Based on the
Codeface results, we construct and analyze coordination-requirement networks
using our network-construction library coronet (Section 4.3). All scripts and data
are available on our supplementary website.

4.1 Project Analysis using Codeface

We use Codeface4 to perform commit and mailing-list analyses for any given
software project [51]. Codeface stores all results in a linked database, so that we
can extract the data to perform further analyses.

Codeface’s commit analysis yields the following information for each commit:
(i) the commit hash and further meta-data, (ii) the commit author, and (iii) the list
of artifacts (file, function, feature) that have been touched by the commit author.

There are three points to note regarding the extraction of artifact data: (1) For
the artifacts function and file, the artifact is defined by its relative path in the soft-
ware project to avoid ambiguities. For example, the function delete in Figure 3b is
encoded as actions.c/delete.5 (2) To identify C-preprocessor annotations and fea-
tures induced by their presence conditions, the tool cppstats6 [49, 61] is used
internally by Codeface (see also Section 4.2 for more details). (3) We limit the
developer–artifact data to files that are implementation-related, so header files,
documentation files, and build files are not considered in our study. This is neces-
sary as the function-related and feature-related analyses inside Codeface do not
work on non-implementation files and, thus, would cause an imbalance among the
different abstraction levels.

Running the mailing-list analysis of Codeface, we obtain all meta-data for
each e-mail on the mailing list of a given project: (i) the sender of the e-mail,

3 E.g., see http://wiki.qemu.org/Contribute/SubmitAPatch (accessed: 2018-11-05).
4 http://siemens.github.io/codeface/
5 In our analysis implementation, we use “::” as separator, but for readability reasons, we

write “/” in this paper.
6 http://fosd.net/cppstats/

http://wiki.qemu.org/Contribute/SubmitAPatch
http://siemens.github.io/codeface/
http://fosd.net/cppstats/

18 Claus Hunsen et al.

T
a
b
le

2
L

ist
o
f

su
b

ject
p

ro
jects,

co
m

b
in

ed
w

ith
th

eir
em

p
irica

l
d

a
ta

o
n

fu
lfi

lled
co

o
rd

in
a
tio

n
req

u
irem

en
ts.

P
r
o
je
c
t

T
im

e
#

C
o
m

m
it
s

#
E
-M

a
ils

#
D
e
v
e
lo

p
e
r
s

A
r
t
ifa

c
t

#
A
r
t
ifa

c
t
s

T
r
ia
n
g
le

m
o
t
if
m
M

S
q
u
a
r
e

m
o
t
if
m
�

c
r
fo

u
n
d

c
r
fu

ll
fra

c
c
r

c
r
fo

u
n
d

c
r
fu

ll
fra

c
c
r

A
pa

c
h
e

H
T

T
P

1
9
9
6
–
2
0
1
7

2
9
,7

0
4

5
4
,9

2
1

2
,1

4
6

fi
le

1
,3

6
6

5
,7

1
0

2
,8

1
8

0
.4

9
3
1
6
,4

1
7

1
3
4
,9

9
3

0
.4

3
fu

n
c
tio

n
1
6
,8

6
9

2
,8

3
0

1
,6

1
2

0
.5

7
1
7
3
,3

6
4

1
2
1
,2

8
1

0
.7

0
fea

tu
re

1
,3

5
7

6
5
4

3
2
2

0
.4

9
7
,2

2
4

4
,3

8
0

0
.6

1

B
u
sy

B
o
x

1
9
9
9
–
2
0
1
6

1
4
,3

1
3

4
2
,0

1
3

2
,7

3
6

fi
le

1
,3

7
0

2
,0

2
1

9
0
7

0
.4

5
1
8
1
,2

3
6

6
9
,7

7
1

0
.3

8
fu

n
c
tio

n
1
0
,9

4
2

1
,6

6
1

7
5
6

0
.4

6
1
6
4
,8

5
3

2
9
,1

2
2

0
.1

8
fea

tu
re

2
,5

3
4

6
7
0

3
1
2

0
.4

7
1
8
,3

8
4

3
,4

0
7

0
.1

9

F
F

m
p
e
g

2
0
0
0
–
2
0
1
7

8
0
,6

0
5

2
4
2
,2

9
5

5
,9

9
8

fi
le

3
,2

5
7

4
2
,9

7
8

1
8
,2

7
7

0
.4

3
4
,0

3
0
,7

2
6

1
,8

8
6
,1

6
8

0
.4

7
fu

n
c
tio

n
3
3
,0

7
8

1
9
,3

0
3

8
,6

5
8

0
.4

5
1
,1

5
4
,3

9
9

4
3
8
,9

2
7

0
.3

8
fea

tu
re

2
,0

7
9

5
,7

4
2

2
,3

6
9

0
.4

1
1
1
0
,6

0
0

5
1
,9

7
2

0
.4

7

G
it

2
0
0
5
–
2
0
1
7

3
4
,8

9
8

3
3
8
,5

0
0

9
,2

4
6

fi
le

1
,7

4
0

1
3
,6

9
0

4
,7

9
8

0
.3

5
2
4
0
,1

0
3

7
7
,4

4
3

0
.3

2
fu

n
c
tio

n
1
1
,9

3
7

7
,1

5
1

2
,4

7
3

0
.3

5
1
2
8
,5

7
2

3
9
,9

2
8

0
.3

1
fea

tu
re

1
7
5

1
8
5

1
1
9

0
.6

4
2
0
9

1
7
7

0
.8

5

L
L
V

M
2
0
0
1
–
2
0
1
7

1
5
8
,5

6
2

7
0
6
,7

1
6

6
,4

0
7

fi
le

5
,6

1
9

1
1
9
,4

2
8

4
2
,2

1
9

0
.3

5
9
,9

7
4
,7

4
3

3
,8

3
2
,9

1
7

0
.3

8
fu

n
c
tio

n
5
0
,2

0
1

1
7
,6

4
7

8
,4

5
7

0
.4

8
1
,0

0
7
,9

1
2

5
7
1
,7

3
5

0
.5

7
fea

tu
re

9
3
7

8
,4

9
5

2
,4

3
2

0
.2

9
2
6
,5

0
8

9
,4

2
0

0
.3

6

O
p
e
n
S
S
L

1
9
9
8
–
2
0
1
6

1
8
,1

4
3

3
2
,6

5
9

4
,7

8
6

fi
le

1
,4

4
4

5
,2

9
5

1
,9

2
2

0
.3

6
7
1
2
,7

5
6

3
0
7
,1

1
3

0
.4

3
fu

n
c
tio

n
1
2
,9

4
1

3
,0

4
4

1
,1

9
5

0
.3

9
1
8
3
,0

9
1

8
8
,8

5
1

0
.4

9
fea

tu
re

1
,1

3
2

3
,4

4
5

1
,1

3
4

0
.3

3
1
5
3
,2

3
6

6
8
,4

6
4

0
.4

5

P
o
st

g
r
e
S
Q

L
1
9
9
6
–
2
0
1
7

4
4
,0

6
2

3
2
0
,7

1
1

4
,6

4
7

fi
le

2
,1

9
2

2
1
,7

9
8

1
6
,6

7
1

0
.7

6
5
,1

4
7
,1

2
3

4
,2

1
6
,0

0
0

0
.8

2
fu

n
c
tio

n
3
4
,9

6
0

1
4
,2

3
7

1
0
,7

9
7

0
.7

6
3
,1

9
3
,3

2
2

2
,5

5
1
,0

7
8

0
.8

0
fea

tu
re

1
,0

6
1

1
,7

6
4

1
,3

3
9

0
.7

6
1
9
,7

5
3

1
3
,1

5
8

0
.6

7

Q
E

M
U

2
0
0
3
–
2
0
1
6

4
6
,6

3
3

4
3
0
,5

6
1

7
,2

0
5

fi
le

3
,2

2
7

3
6
,4

6
7

2
3
,0

9
6

0
.6

3
3
,4

6
6
,4

5
2

2
,4

8
6
,0

4
0

0
.7

2
fu

n
c
tio

n
5
7
,9

5
5

1
5
,3

9
4

1
0
,3

6
5

0
.6

7
1
,1

6
6
,7

3
0

8
1
0
,7

7
5

0
.6

9
fea

tu
re

1
,7

5
3

1
3
,8

9
2

5
,4

3
3

0
.3

9
1
5
6
,2

8
9

5
9
,6

5
8

0
.3

8

U
-B

o
o
t

1
9
8
8
–
2
0
1
7

4
4
,7

3
6

3
1
9
,1

6
0

7
,9

2
4

fi
le

8
,2

5
7

1
1
,0

9
6

5
,7

5
5

0
.5

2
3
0
7
,8

1
6

1
8
5
,9

0
6

0
.6

0
fu

n
c
tio

n
6
3
,0

6
7

4
,6

6
4

2
,6

8
0

0
.5

7
1
6
2
,2

5
7

1
0
0
,4

1
5

0
.6

2
fea

tu
re

7
,0

6
5

2
0
,7

1
1

6
,9

3
1

0
.3

3
4
2
3
,3

2
8

1
4
7
,4

3
4

0
.3

5

W
in

e
1
9
9
3
–
2
0
1
7

1
2
1
,8

1
5

1
1
1
,3

3
3

4
,0

8
7

fi
le

5
,5

6
8

4
5
,0

8
8

2
0
,0

1
9

0
.4

4
1
,4

6
3
,8

4
3

8
1
7
,6

5
4

0
.5

6
fu

n
c
tio

n
1
6
4
,0

7
3

2
3
,6

6
5

1
2
,5

0
6

0
.5

3
1
,4

3
1
,2

1
1

8
1
8
,9

6
6

0
.5

7
fea

tu
re

1
,6

8
7

6
,3

4
8

2
,3

2
8

0
.3

7
3
2
,5

0
1

1
2
,8

8
4

0
.4

0

On the Fulfillment of Coordination Requirements in OSS Projects 19

(ii) the date and the time-zone offset, (iii) the subject, and (iv) the thread ID.
While the first three parts of information are extracted directly from each e-mail,
we extract thread information based on the In-Reply-To and References fields in
the e-mail headers. Each identified thread of e-mails is assigned a unique number.

4.2 Feature Identification

We concentrate on C-preprocessor annotations (#ifdefs) as a central mechanism for
implementing configurable features. That is, based on the specific set of configured
configuration constants (macros) used for preprocessing and compilation, one can
obtain different compiled programs or, more accurately, variants of the subject
system. Configuration constants can control whether annotated functionality is
included (features, in this sense), decide among hardware-specific characteristics,
and may affect other options. In this study, we do not distinguish between these
different uses of configuration constants (i.e., kinds of features; see also our previous
study [49]).

Shared code among features is identified by incorporating tangling and nesting
information when analyzing #ifdefs. The tool cppstats, which we use, rewrites all
nested #ifdefs as separate #ifdef blocks, each with a condition that conjoins their
own conditional expression with the enclosing ones. As a consequence, we are able
to attribute shared feature code to the features involved and, thus, distinguish
them from two separate and perfectly modularized pieces of feature code.

While this definition of features is one among many (see Berger et al. [7])
and, thus, possibly threatens validity, as we discuss in Section 7, the variability
implemented using preprocessor annotations is a major source for feature imple-
mentation in our subject projects and is still widely used in open-source software
projects implemented using the programming language C [49, 61].

4.3 Network Construction and Motif Analysis

For the construction of the coordination-requirement networks based on the col-
lected data from Section 4.1, we encode the three types of relations in the network:
developers–artifact relations, artifact–artifact relations, and developer–developer
relations. We perform the encoding of the relations for each revision range that
we consider as described in the following.

Using the data of Codeface’s commit analysis, we can directly construct both
the developer–artifact relations (which developer touched which artifact in a com-
mit) and artifact–artifact relations denoting co-change (which artifacts change
concurrently in a commit), as the desired information for the edges is directly
present in the data. Using the e-mail meta-data from Codeface, we are able
to construct developer–developer relations for our coordination-requirement net-
works: We consider developers to coordinate their work if they send e-mails to
the same thread in the same revision range. In line with previous work [72, 104],
we skip any e-mail thread or commit information that would create more than

20 Claus Hunsen et al.

1 million edges in a coordination-requirement network, as they would likely stem
from non-implementation-related changes [48].7

For data processing and network construction, we use the statistical-computing
language R [80] and our network-construction library coronet8. Internally, we
use the package igraph [24] for network representation and analysis: We use
its functionality to construct the individual networks for each relation defined
in Section 3.2, their merge to coordination-requirement networks, and any sub-
sequent network-analytic measures. This also includes motif matching: We de-
fine the motifs as small networks directly arising from the sets of vertices mM
and m� and the inherent set of edges, as defined in Section 2.3. The small net-
works representing the coordination requirements can be passed to igraph’s func-
tion igraph::subgraph isomorphisms to obtain results (i.e., motif matchings), for a
given coordination-requirement network. To construct the null-model networks
(see Section 3.2.4), we use the R package BiRewire [39] and its predefined func-
tion birewire.rewire.undirected for edge randomization that is needed before merging.

For both the commit and the mailing-list handling, we use three-month time
ranges, called revision ranges, which are considered appropriate in previous work [51,
53, 67] and can be used as a basis for a historical analysis. This way, coronet

divides the projects’ version history into windows of three months each, starting
with the very first commit. In general, each revision range is defined by two com-
mit hashes (i.e., start and end) and their associated author date. Using the same
division into revision ranges, also the mailing-list data of our subject projects are
split into three-month revision ranges by assigning e-mails from the mailing list to
a revision range based on their date. All e-mails not falling into a revision range are
omitted by the network-construction algorithm and, thus, our analysis. We also
omit all revision ranges at the start and the end of the subject projects’ considered
time frame, for which no e-mails are available. At the end, we obtain commit data
and mailing-list data grouped by revision range, which enables us to construct
coordination-requirement networks with the help of coronet for consecutive time
frames to analyze our subject projects’ evolution, instantiating the time-window
variable of our study (see Section 3.2).

5 Results

In this section, we present our results, guided by the research hypotheses presented
in Section 3.3. In the plots (but not the statistics and tables) that follow, we will
focus on the triangle motif mM; the complete set of data and plots is available on
the supplementary website.

We discuss data relevant for our hypotheses mainly by means of violin plots and
bar plots, along with the results of our statistical analysis. All data presented in
this section are characterized either by absolute values or arithmetic mean values
and standard deviations (a± s).

7 As a simple scenario, changing indentation from tabs to spaces in 1,415 files at once gives
rise to more than 1 million edges representing logical coupling among these files. However,
such far-spreading changes are likely not functionality changes [48], so we aim at reducing
their impact by omitting them during network construction.

8 http://github.com/se-passau/coronet/

http://github.com/se-passau/coronet/

On the Fulfillment of Coordination Requirements in OSS Projects 21

5.1 Basic Statistics

In general, the extracted data for all hypotheses are shaped as follows: For each
subject project and each of their analyzed three-month revision range, we assess
the statistics defined in Section 3.2.2: the number of identified coordination re-
quirements (cr found), the number of fulfilled coordination requirements (cr full),
and the fraction of fulfilled coordination requirements (fraccr). We collect each
of these statistics for each of the defined network motifs (mM and m�) and each
artifact (file, function, and feature).

When considering the Hypotheses RH1, RH2, and RH3—for which we view
the data on a subject-project level—, we sum up cr found and cr full while grouping
the data by subject project, motif, and artifact. Consequently, we need to re-
calculate the fraccr value to obtain a single value for each subject project. For the
Hypothesis RH4, we use the raw data and do not perform any aggregation.

In Table 2, we provide the collected raw data of our analysis (on the right side
of the table).

5.2 Hypothesis RH1: Are Most Collaborations Coordinated on Purpose?

Hypothesis RH1. In comparison to the null model, a significantly higher number

of developer pairs collaborating on the same artifacts do exchange e-mails on the

same threads of the mailing list to fulfill arising coordination requirements.

fraccr(a,m) > fracnull
cr (a,m), with a ∈ {file, function, feature} and m ∈ {mM,m�}

For RH1, we need to determine fraccr for each motif and artifact (see also
Section 5.1)—for both the empirical data and the null-model data. On the data
that we use for each of the violin-plot pairs in Figure 5, we perform a paired two-
sample Wilcoxon signed-rank test9 to determine the inequality of the empirical
distributions’ mean to the null-model distributions’ mean, independently for each
artifact a and motif m (statistical null hypothesis H0: fraccr(a,m) ≤ fracnull

cr (a,m)).
As presented in Table 3, the results for the statistical tests show that the fraction
of fulfilled coordination requirements for all motifs and artifacts is indeed signif-
icantly higher than for the corresponding null-model data (all p-values ≤ 0.02).
Cliff’s δ effect size shows values ≥ 0.30 for the triangle motif mM and slightly lower
values ≥ 0.12 for the square motif m�. We can also confirm this result by exam-
ining Figure 5. The mean value fraccr(a,mM) for all subject projects and artifacts
is 0.48± 0.14, while the respective mean for fraccr(a,m�) is slightly higher with
0.50± 0.18, although there is slightly more deviation for the square motif. In more
detail, the mean values for the null model are fracnullcr (a,mM) ≈ 0.41± 0.13 and
fracnullcr (a,m�) ≈ 0.44± 0.15, respectively. In the end, the empirical values illus-
trate that roughly half of all identified coordination requirements in all subject
projects are fulfilled by corresponding coordination effort. Consequently, we can

9 We use the Wilcoxon signed-rank test because the number of available data points is
rather small in our analysis and the data for some subject projects cannot be assumed to be
normally distributed (Shapiro-Wilk test, p < 0.1). This also holds for other hypotheses and
corresponding statistical analyses.

22 Claus Hunsen et al.

Table 3 Paired Wilcoxon signed-rank test regarding Hypothesis RH1, data paired by motif m
and artifact a (H0: fraccr(a,m) ≤ fracnull

cr (a,m), N = 10 for all tests).

Paired Wilcoxon signed-rank test

H0: fraccr(•,mM) ≤ fracnull
cr (•,mM) fraccr(•,m�) ≤ fracnull

cr (•,m�)

fraccr(file, •) W ≈ 54, p < 0.01∗, δ = 0.42 W ≈ 48, p ≈ 0.02∗, δ = 0.12

fraccr(function, •) W ≈ 53, p < 0.01∗, δ = 0.48 W ≈ 53, p < 0.01∗, δ = 0.24

fraccr(feature, •) W ≈ 54, p < 0.01∗, δ = 0.30 W ≈ 51, p < 0.01∗, δ = 0.26

(W = test value W, p = p-value, ∗ for p < 0.05, δ = Cliff’s δ effect size)

accept Hypothesis RH1. We give some more insights on the empirical data in the
following.

For further illustration, we present the data of Hypothesis RH1 per subject
project in Figure 6. As shown there, the fraccr values differ per subject project:
The values for the artifact file, fraccr(file,m), range from 0.25 (LLVM) to 0.82
(PostgreSQL), while the values for the artifact function, fraccr(function,m), range
from 0.18 (BusyBox) to 0.80 (PostgreSQL). The value range for the artifact fea-

ture goes from 0.19 (BusyBox) to 0.85 (Git). For most subject projects, the feature
level appears to have the lowest fulfillment rate of all artifact levels, although there
are differences from subject project to subject project (see Sections 5.5 and 5.5.7
for more details).

Furthermore, we performed a sensitivity analysis following Kossinets [54] to
investigate the stability of our results. In detail, we used the simulation algo-

●

●

●●

●
● ●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●
●

●

File Function Feature

S
quare

Triangle

Empirical
Data

Null
Model

Empirical
Data

Null
Model

Empirical
Data

Null
Model

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

F
ra

ct
io

n
of

 F
ul

lfi
lle

d
C

oo
rd

in
at

io
n

R
eq

ui
re

m
en

ts

Subject Projects
●

●

Apache HTTP
BusyBox

FFmpeg
Git

LLVM
OpenSSL

PostgreSQL
QEMU

U−Boot
Wine

Fig. 5 Fraction of fulfilled coordination requirements fraccr(a,m) per motif m and artifact a
as violin plot

On the Fulfillment of Coordination Requirements in OSS Projects 23

.49
.57

.49 .47.46.45 .41.45.43

.64

.35.35
.29

.48

.35 .33
.39.36

.76.76.76

.39

.67.63

.33

.57
.52

.37

.53
.44

.61
.70

.43

.19.18

.38
.47

.38
.47

.85

.31.32 .36

.57

.38
.45.49

.43

.67

.80.82

.38

.69.72

.35

.62.60

.40

.57.56

Triangle
S

quare

Apa
ch

e
HTTP

Bus
yB

ox

FFm
pe

g Git

LL
VM

Ope
nS

SL

Pos
tg

re
SQL

QEM
U

U−B
oo

t
W

ine

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Subject Projects

F
ra

ct
io

n
of

 F
ul

lfi
lle

d
C

oo
rd

in
at

io
n

R
eq

ui
re

m
en

ts

Artifact
File
Function
Feature

Fig. 6 Fraction of fulfilled coordination requirements fraccr(a,m) per subject project and
artifact a as bar plot

rithm “BSPC” (boundary specification problem for contexts) to simulate the ab-
sence of coordination effort from the mailing lists (which may occur on different
platforms such as face-to-face meetings or chats instead) and, thus, incomplete
information sources (i.e., mailing-list data) – similar to the null-model networks
(see Section 3.2.4). The algorithm removes a defined number of random e-mail
threads before constructing coordination-requirement networks and calculates the
metric fraccr as previously defined. In the end, for BusyBox, Git, LLVM, and
OpenSSL,10 we performed 25 iterations for better randomization, calculated mean
values over all randomized iterations, and analyzed the final results. In short, we
found for the selected projects that the removal of 10 % of all e-mail threads pro-
duces a relative error of about 15 % for fraccr across all revision ranges and for
all motifs and source-code artifacts, indicating strongly connected development
communities. With 20 % of all e-mail threads being randomly removed, the metric
exhibits a relative error of about 25 %, on average. These results indicate that the
coordination process of the subject systems is driven by coordination requirements,
while a larger error would have indicated potentially more random communication
on the mailing list (e.g., in terms of rather larger threads with many participating
developers). Furthermore, assuming that developers may use further communica-
tion channels to coordinate, in addition to the mailing list (see Section 7.1), our
sensitivity analysis suggests that the empirical results of our study are an un-
derestimation of the state of coordination-requirement fulfillment in our subject
projects. We present more details and plots on our supplementary website and
discuss potential reasons and implications in Section 6.1.1.

10 We did not analyze further projects as the obtained results do not fully compensate for
the large amount of computing time for the additional data. Nevertheless, we argue that the
selected subset of projects is sufficient to identify indicators.

24 Claus Hunsen et al.

Hypothesis RH1: Accepted. The comparison of the empirical data on the
fulfillment of coordination requirements (for both types of motifs and across
all artifacts) to the the respective values of the null model shows that the
identified coordination requirements are indeed not fulfilled by chance. This result
is supported by the performed sensitivity analysis.

5.3 Hypothesis RH2: Triangle Motif mM vs. Square Motif m�

Hypothesis RH2. The fraction of fulfilled coordination requirements is lower for

the square motif than for the triangle motif, independent of the observed artifact

abstraction a.

fraccr(a,m�) < fraccr(a,mM)

To test RH2, we perform a paired Wilcoxon signed-rank test on the empirical
values of the metric fraccr, with the data paired on the subject project and the
artifact a (H0: fraccr(a,mM) ≤ f(a,m�)). We illustrate the data related to this
hypothesis in Figure 7.

As the results of the statistical test in Table 4 show, the fulfillment of identified
coordination requirements is not higher for the triangle motif mM compared to the
square motif m�. With a p-value of about 0.97 (W = 325), we cannot reject
the null hypothesis H0. We can confirm on the violin plot presented in Figure 7
that the mean value of the metric fraccr(a,mM) is lower than the mean value
of the metric fraccr(a,m�). In more detail, the mean value for fraccr(a,mM) is
approximately 0.48± 0.14 while the mean value for fraccr(a,m�) is slightly higher
with 0.50± 0.18. Furthermore, the values for the square motif are more scattered,
as the higher standard deviation indicates. This impression is even more supported
when we split the data by the artifact abstractions, as presented in Figure 8: For
all abstraction levels independently, the average fraction of fulfilled coordination
requirements is higher for the square motif than for the triangle motif. In summary,
we cannot find evidence that supports Hypothesis RH2.

Table 4 Results regarding Hypothesis RH2: Paired Wilcoxon signed-rank test for fraccr(a,mM)
and fraccr(a,m�), paired by subject project and artifact a.

Paired Wilcoxon signed-rank test

H0: fraccr(a,mM) ≤ f(a,m�)

fraccr(a,mM)

fraccr(a,m�) N = 30,W = 325, p ≈ 0.97

(N = number of pairs, W = test value W, p = p-value)

Hypothesis RH2: Rejected. The comparison of empirical data on the ful-
fillment of coordination requirements for the triangle motif mM and the cor-
responding data for the square motif m� shows that the fulfillment of the
identified coordination requirements is not higher for the triangle motif.

On the Fulfillment of Coordination Requirements in OSS Projects 25

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

Triangle Square

F
ra

ct
io

n
of

 F
ul

lfi
lle

d
C

oo
rd

in
at

io
n

R
eq

ui
re

m
en

ts

Artifacts
● File

Function
Feature

Fig. 7 Fraction of fulfilled coordination requirements fraccr(a,m) per motif (each scatter-plot
dot represents a combination of a subject project and an artifact)

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
● ●●

●

File Function Feature

Triangle Square Triangle Square Triangle Square

0.00

0.25

0.50

0.75

1.00

F
ra

ct
io

n
of

 F
ul

lfi
lle

d
C

oo
rd

in
at

io
n

R
eq

ui
re

m
en

ts

Fig. 8 Fraction of fulfilled coordination requirements fraccr(a,m) per motif and artifact

5.4 Hypothesis RH3: Does The Level of Abstraction Matter?

Hypothesis RH3. The fraction of fulfilled coordination requirements differs for

the different levels of abstraction, and is highest for the abstraction level of features.

fraccr(feature,m) > fraccr(file,m) and fraccr(feature,m) > fraccr(function,m),

where m ∈ {mM,m�}

Regarding RH3, we perform paired Wilcoxon signed-rank tests on the empirical
data, which we paired on the subject project and the motif m, to find evidence for
this hypothesis (H0: fraccr(feature,m) ≤ fraccr(function,m) and fraccr(feature,m) ≤
fraccr(file,m)). We illustrate the data regarding this hypothesis in Figure 9.

26 Claus Hunsen et al.

As presented in Table 5, the statistical tests suggest no significant differences
among the artifact abstractions (p > 0.12 for all comparisons), so that we can-
not reject the null hypothesis H0. As evident also from the violin plots in Fig-
ure 9, the function-related statistics are, on average, highest (fraccr(function,m) ≈
0.53± 0.16). The mean values for the artifacts file and feature are approximately
0.50± 0.14 and 0.46± 0.17, respectively. In more detail, the function-related val-
ues are more evenly distributed, resulting in a lower density estimation shown in
the violin plots, while the data for other artifact abstractions show evident normal
distributions around the median value. In summary, we cannot find evidence in
support of Hypothesis RH3.

Table 5 Results regarding Hypothesis RH3: Paired Wilcoxon signed-rank test for the met-
rics fraccr(file,m), fraccr(function,m), and fraccr(feature,m), paired by subject project and
motif m.

Paired Wilcoxon signed-rank tests

H0: fraccr(file,m) ≥ fraccr(•,m) fraccr(function,m) ≥ fraccr(•,m)

fraccr(function, •) N = 10,W = 152, p ≈ 0.12

fraccr(feature, •) N = 10,W = 64, p ≈ 0.98 N = 10,W = 52, p ≈ 0.98

(N = number of pairs, W = test value W, p = p-value)

●

●

●
● ● ●
●

●
●

● ●

●

●

●

●

●
●

●

● ● ●

●
●

●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

File Function Feature

F
ra

ct
io

n
of

 F
ul

lfi
lle

d
C

oo
rd

in
at

io
n

R
eq

ui
re

m
en

ts

Motifs
● Triangle

Square

Fig. 9 Fraction of fulfilled coordination requirements cr full(a,m) per artifact (each scatter-plot
dot represents the combination of a motif and a subject project)

To shed some further light on the importance of analyzing different abstrac-
tion levels, we computed the unique number of coordination requirements per

On the Fulfillment of Coordination Requirements in OSS Projects 27

Table 6 Number of unique coordination requirements per artifact abstraction level for Apache
HTTP and the triangle motif mM, identified only for the abstraction level of the column (sub-
columns cr found), but not for the abstraction level of the row. The columns cr full indicate how
many of these unique coordination requirements are fulfilled.

File Function Feature

not identified by . . . cr found cr full cr found cr full cr found cr full

File – 0 0 91 30

Function 1,074 438 – – 183 72

Feature 1,718 753 736 357 – –

Combined 982 396 0 0 91 30

abstraction level.11 We illustrate the data on Apache HTTP (triangle motif mM)
in Table 6. For Apache HTTP, a total of 91 coordination requirements were identi-
fied for the abstraction level feature that have not been identified for the other two
abstraction levels file and function. In relation to the total number of identified co-
ordination requirements for the feature level (654, see Table 2), these coordination
requirements make up nearly 14 % in total. Note that these may contain crucial
coordination requirements that are missed by the other abstraction levels. Analo-
gously, for the file level, 982 out of 5,710 coordination requirements were identified
that have not been found on the other levels (≈17 %). The set of identified coordi-
nation requirements for the function level appears as a subset of the file level—as
we expected due to the interdependency of both abstraction levels, i.e., that each
function is always contained in a file. In the end, we found similar data for the
other subject projects. Furthermore, a correlation analysis on the fraccr values of
the three considered artifact abstract levels reveals a connection among the lev-
els file and function, showing a strong correlation (Pearson correlation coefficient
r = 0.80). But, the feature level only shows low correlations with the other artifact
levels (file: r = 0.20, function: r = 0.22), supporting our hypothesis regarding the
importance of analyzing different abstraction levels and, in particular, the feature

level. We discuss the results and potential implications in Section 6.2.

Hypothesis RH3: Rejected. The hypothesis that coordination requirements
at the feature level are significantly more often fulfilled than for the other
artifact abstractions is not supported by our data.

5.5 Hypothesis RH4: Does Coordination Increase over Time?

Hypothesis RH4. In later stages of development, the fraction of fulfilled co-

ordination requirements fraccr(a,m) is higher than in earlier stages for all mo-

tifs m ∈ {mM,m�} and artifacts a ∈ {file, function, feature}.

11 To be able to compare coordination requirements among different abstraction levels—they
include information on two developers and, at least, one source-code artifact, as we define in
Section 2.3—, we stripped the artifact information from them.

28 Claus Hunsen et al.

To evaluate our empirical data regarding Hypothesis RH4, we perform a qual-
itative analysis to obtain detailed insights into the subject projects’ evolution. A
mere quantitative analysis is not sufficient to grasp all details for the diversity of
evolution scenarios that exist in our subject projects. In detail, we lack a clear sta-
tistical model to check against that is able to handle the amount of historical data
that we have extracted. To avoid overfitting or underfitting the actual empirical
data, we categorize the subject projects visually into overlapping and (probably)
non-exhaustive groups in a qualitative assessment, to describe the specific char-
acteristics in the software projects’ history. Nevertheless, we support this analysis
by additional lightweight quantitative statistics.

In our analysis of the subject projects’ evolution, we mostly ignore the data
points at the start and at the end of the considered historical data, as we assume
that there may be data inconsistencies such as delayed usage of the mailing list
for development reasons.

We present the evolutionary plots for all subject projects and the triangle
motifs in Figure 10.12 In general, for each plot, we visualize the individual values
of fraccr(m,a) (i.e., three lines per motif) in the history of each project over time to
illustrate values’ evolution. Additionally, we add a line for the project-level values
(i.e., across all artifact abstractions).

In the following, we present the lightweight evolution statistics (Section 5.5.1)
before we give details on the various patterns we observed in the evolution of our
subject projects (Sections 5.5.3–5.5.7).

5.5.1 Evolution Statistics

Testing Hypothesis RH4, we rely on two lightweight statistics that support us in
gaining insights into the evolution of the individual software projects: the fractal
dimension of the data and the artifact-independent aggregation of fraccr.

The fractal dimension (D) is a numerical measure denoting the self-similarity of
an object. It can be used to analyze the variability and complexity of time-series
data over time [38], that is, in our case, the irregularity of the statistic fraccr for
each subject project over time: The lower the fractal dimension, the more stable
the analyzed data. We use the box-count estimator, which is the method of choice
for most practical fractals [38, 86]. While the estimator gives a set of estimator
values for the fractal dimension, the actual fractional dimension D for a time series
is then computed from the slope of the power-law estimation on those estimator
values [38, 86]. For convenience, we use the R package fractaldim and its function
fractaldim::fd.estimate [89]. In the end, in our setting, we yield a value between 1
and 2 for further analysis, which we report for both the triangle motif mM and
the square motif m�. Overall, in combination with the evolutionary plots, the
fractional dimension helps with the identification of software projects that are
unstable in terms of their fulfillment of coordination requirements. The idea is
that projects that exhibit extensively alternating values fraccr over time may suffer
from organizational flaws. Furthermore, we are able to identify interesting points
in time for the individual subject projects that represent potentially crucial points

12 We omit the plots for the square motif due to space restrictions. We refer to the supple-
mentary website for all data and plots. See also Section 5.5.2.

On the Fulfillment of Coordination Requirements in OSS Projects 29

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

Triangle

2003 2005 2007 2009 2011 2013 2015 2017

0.00

0.25

0.50

0.75

1.00

F
ra

ct
io

n
of

 F
ul

fil
le

d
C

oo
rd

in
at

io
n

R
eq

ui
re

m
en

ts

●File Function Feature Smoothed Value Across Artifacts

(a) Apache HTTP

● ●
● ● ●

●

●

●
●

●

●

●

●
● ● ●

●
●

●

●

● ● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ● ●
●

●

● ●

●

●

Triangle

2004 2006 2008 2010 2012 2014 2016

0.00

0.25

0.50

0.75

1.00

F
ra

ct
io

n
of

 F
ul

fil
le

d
C

oo
rd

in
at

io
n

R
eq

ui
re

m
en

ts

●File Function Feature Smoothed Value Across Artifacts

(b) BusyBox

●●●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●●

●

●●

●

●

●

●●
●

●
●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

Triangle

2003 2005 2007 2009 2011 2013 2015 2017

0.00

0.25

0.50

0.75

1.00

F
ra

ct
io

n
of

 F
ul

fil
le

d
C

oo
rd

in
at

io
n

R
eq

ui
re

m
en

ts

●File Function Feature Smoothed Value Across Artifacts

(c) FFmpeg

●

●

●

●

● ● ●

●
●

●

●

● ●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
● ●

● ●
●

●

●

●
●

●

●

Triangle

2006 2008 2010 2012 2014 2016

0.00

0.25

0.50

0.75

1.00

F
ra

ct
io

n
of

 F
ul

fil
le

d
C

oo
rd

in
at

io
n

R
eq

ui
re

m
en

ts

●File Function Feature Smoothed Value Across Artifacts

(d) Git

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●
●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

Triangle
2003 2005 2007 2009 2011 2013 2015 2017

0.00

0.25

0.50

0.75

1.00

F
ra

ct
io

n
of

 F
ul

fil
le

d
C

oo
rd

in
at

io
n

R
eq

ui
re

m
en

ts

●File Function Feature Smoothed Value Across Artifacts

(e) LLVM

●●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●●

●

●●●

●

●

●

●

●

●●●●

●

●●

●

●

●

●

●●

●

●

●●
●

●

●

●●
●

●

●

●

●

●

Triangle

2002 2004 2006 2008 2010 2012 2014 2016

0.00

0.25

0.50

0.75

1.00

F
ra

ct
io

n
of

 F
ul

fil
le

d
C

oo
rd

in
at

io
n

R
eq

ui
re

m
en

ts

●File Function Feature Smoothed Value Across Artifacts

(f) OpenSSL

●●●●●●

●●

●

●

●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

Triangle

2001 2003 2005 2007 2009 2011 2013 2015 2017

0.00

0.25

0.50

0.75

1.00

F
ra

ct
io

n
of

 F
ul

fil
le

d
C

oo
rd

in
at

io
n

R
eq

ui
re

m
en

ts

●File Function Feature Smoothed Value Across Artifacts

(g) PostgreSQL

● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●
● ●

● ● ●

●

●

● Triangle

2004 2006 2008 2010 2012 2014 2016

0.00

0.25

0.50

0.75

1.00

F
ra

ct
io

n
of

 F
ul

fil
le

d
C

oo
rd

in
at

io
n

R
eq

ui
re

m
en

ts

●File Function Feature Smoothed Value Across Artifacts

(h) QEMU

●●●● ● ●
●

●●●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

Triangle

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

0.00

0.25

0.50

0.75

1.00

F
ra

ct
io

n
of

 F
ul

fil
le

d
C

oo
rd

in
at

io
n

R
eq

ui
re

m
en

ts

●File Function Feature Smoothed Value Across Artifacts

(i) U-Boot

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

Triangle

2003 2005 2007 2009 2011 2013 2015 2017

0.00

0.25

0.50

0.75

1.00

F
ra

ct
io

n
of

 F
ul

fil
le

d
C

oo
rd

in
at

io
n

R
eq

ui
re

m
en

ts

●File Function Feature Smoothed Value Across Artifacts

(j) Wine

Fig. 10 Fraction of fulfilled coordination requirements fraccr(a,mM) (triangle motif) for all
subject projects (only revision ranges with sent e-mails shown)

30 Claus Hunsen et al.

in the history. We present the full list of computed fractal-dimension values in
Table 7.

The artifact-independent aggregation of fraccr is basically the computation of
the statistic for all identified coordination requirements, independent from the
artifact-abstraction level from which they arise. As the unaggregated statistic (see
Section 3.2.2), the range for this aggregations is [0, 1]. To gain a better overview of
general trends, we smooth the data with the local-smoothing approach LOESS [20]
before plotting the data in Figure 10.

5.5.2 Overview

When looking at the historical data and plots (see Figure 10 and the supplementary
website), we cannot find any generalizable trends across all subject projects. The
projects rather exhibit individual patterns and trends that arise from their unique
history and evolution. While some projects show clear ascending trends in their
fulfillment of coordination requirements, others show chaotic patterns (e.g., see
Figures 10c, 10d, and 10f). The evolutionary patterns are exceptionally similar for
the triangle and square motifs.

5.5.3 Stable Projects

There are some projects that exhibit a quite stable evolution of fulfilled coordi-
nation requirements over time, with only few and small fluctuations—which is
supported by the artifact-independent aggregation and also the fractal-dimension
values. We discuss the individual projects in the following paragraphs and also
refer to the respective plots shown in Figure 10.

The most stable project is QEMU (speaking in terms of fractal dimension:
DmM = 1.39, Dm� = 1.43). After revision range 25 (starting in February 2009),
the fulfillment of coordination requirements rises from zero to a quite stable value
of 0.70, approximately. Only the feature value is lower with 0.45, approximately, but
it is also stable. We can find a similar view for the project U-Boot (DmM = 1.40,
Dm� = 1.46), with an approximate value of 0.55 for the fraccr-statistic across all
artifact abstractions.

Table 7 Fractal-dimension values D for all subject projects and motifs, sorted by DmM and
grouped by similar values. The groups of values are derived in combination with the plots in
Figure 10.

Project DmM Dm�

QEMU 1.39 1.43
U-Boot 1.40 1.46

FFmpeg 1.49 1.55
LLVM 1.51 1.54
PostgreSQL 1.51 1.54

Wine 1.57 1.64
BusyBox 1.59 1.60
Git 1.59 1.58

Apache HTTP 1.65 1.71
OpenSSL 1.67 1.69

On the Fulfillment of Coordination Requirements in OSS Projects 31

The stable project that exhibits the highest values for fraccr is PostgreSQL

(DmM = 1.51, Dm� = 1.54) for which the value for the fraction of fulfilled coor-
dination requirements ranges between 0.75 and 0.95 and only few outliers occur
over time. Interestingly, the project FFmpeg (DmM = 1.49, Dm� = 1.55) exhibits
a stable value before revision range 41 (starting in December 2010) where fraccr
considerably drops (see Section 5.5.6 for more details). Similarly, the fraccr values
for LLVM (DmM = 1.51, Dm� = 1.54) decrease steadily after some time (see below
for more details), but while decreasing, the fraccr values do not fluctuate heavily
and show a clear trend that is supported by the fractal-dimension values.

5.5.4 Unstable Projects

Unstable projects have relatively high fractal-dimension valuesD that reveal exten-
sive alternating fractions of fulfilled coordination requirements among consecutive
revision ranges.

The most unstable projects are OpenSSL (DmM = 1.67, Dm� = 1.69) and
Apache HTTP (DmM = 1.65, Dm� = 1.71). Especially, OpenSSL exhibits high
differences in its fraccr values for consecutive revision ranges, even changing di-
rectly from zero to one. We can also see that there is some kind of stabilization
after some point in time. For OpenSSL, this happens with the revision range 62
(starting end of March 2014) after which the metric value fraccr steadily increases
without high fluctuations (see Section 5.5.6 for more details).

5.5.5 Monotonic

On the one side, as evident in Figure 10d, Git is the only project that shows a
clear and steady increase of the fraccr over time, from about 0.25 to 0.50 (with
the exception for features, see below for details on this). Hence, Git appears to be
the only subject project to clearly support Hypothesis RH4. On the other side,
the values for LLVM clearly decrease after revision range 28 (starting in March
2008, see Figure 10e), after experiencing some disturbances in earlier stages of the
inspected project history (see below for details).

5.5.6 Turning Points and Far-Reaching Events

While analyzing the software projects regarding the fulfillment of coordination
requirements over time, we can see sudden changes in the values that may result
from events affecting the projects’ coordination positively or negatively.

For example, when inspecting the project FFmpeg closer, we observe a con-
siderable drop of the fraccr value after revision range 41 (i.e., after January 2011)
from about 0.60 to 0.30 (see Figure 10c). Events occurring in the project dur-
ing this time exactly explain both the considerable drop as well as the steady
increasing afterwards:13 Some maintainers attempted to take over the project due

13 The upcoming description of events is based on the following list of references (all accessed
2018-11-05):

– the announcement: https://ffmpeg.org/archive.html#return_to_freedom, and
– further detailed information from (former) FFmpeg contributors: https://lwn.net/

Articles/424396/, http://blog.pkh.me/p/13-the-ffmpeg-libav-situation.html,
and https://www.slideshare.net/SamsungOSG/ffmpeg-a-retrospective.

https://ffmpeg.org/archive.html#return_to_freedom
https://lwn.net/Articles/424396/
https://lwn.net/Articles/424396/
http://blog.pkh.me/p/13-the-ffmpeg-libav-situation.html
https://www.slideshare.net/SamsungOSG/ffmpeg-a-retrospective

32 Claus Hunsen et al.

to their discontent with the current leader, the development process, and, espe-
cially, the long list of open and unattended issues. One particular accusation in
direction of the current leader—that is highly relevant for our setting—was that
he bypassed the review process and pushed his changes directly to the reposi-
tory. The designated new team took over the website and initiated an alternative
source-code repository, while, in parallel, the version control system changed from
SVN to Git. Overall, the situation in January 2011 was unclear, resulting in al-
most halted development. As a result of the incident, the project Libav emerged
as a fork of FFmpeg, claiming vital parts of the former FFmpeg infrastructure.
With the help of VideoLAN, FFmpeg recovered well and the fraction of fulfilled
coordination requirements steadily increased again after some time to a value of
about 0.50. We discuss this matter and its importance for our analysis in more
detail in Section 6.3.

Similarly, the stabilization and increase in the OpenSSL data (see Figure 10f)
coincides with a critical event in the project’s history (revision range 62): the dis-
closure of the Heartbleed bug14 in April 2014. An improvement in the fulfillment
of coordination requirements is a consequence of the subsequent organizational
restructuring that has been carried out to prevent such critical security bugs in
the future. This result underlines the meaningfulness of our analysis and socio-
technical analyses in general, as we discuss in Section 6 in more depth.

When analyzing the project BusyBox, there is also a considerable drop in
the fulfillment of coordination requirements in the time from July 2006 to July
2007, which even contains several consecutive zero values (see Figure 10b). We
can match this time with several far-reaching events in the project:15 On the one
side, there are, at least, two announcements of new maintainers in the course of
2006 (for the time of the release 1.1.1 and again for the release 1.2.2), indicating
major changes in the organizational structure of the project. On the other side, and
connected with the maintainer switches, BusyBox was involved in one of the first
major lawsuits in relation with free software licenses, which has been filed by some
of the (previous) maintainers against a company, while, in parallel, conflicts with
the project initiator and former maintainer arose. In the end, the project changed
the license and also one of the maintainers started a related project, ToyBox.
All in all, the setting-in period of the new maintainers and the legal issues of the
project obviously affected the development, resulting with (almost) coordination
requirements unfulfilled. After all issues had been resolved in 2007, the fraction
of coordination requirements recovered and quickly stabilized with fraccr values of
about 0.80.

The initial rise of the fulfillment of coordination requirements for the project
QEMU (in November 2008, see Figure 10h) coincides with the release of ver-
sion 0.10.0 in early 2009. This release contained a multitude of new features and
functionality and happened over one year after the previous release.16 Further-

14 http://heartbleed.com/ (accessed 2018-11-05)
15 The upcoming description of events is based on the following list of references (all accessed

2019-03-14):
– https://www.busybox.net/oldnews.html and https://lwn.net/Articles/202106/,
– http://www.softwarefreedom.org/news/2007/sep/20/busybox/,
– https://lwn.net/Articles/202113/, and
– https://web.archive.org/web/20091220044135/perens.com/blog/2009/12/15/23/

16 https://wiki.qemu.org/OlderNews (accessed 2018-11-05)

http://heartbleed.com/
https://www.busybox.net/oldnews.html
https://lwn.net/Articles/202106/
http://www.softwarefreedom.org/news/2007/sep/20/busybox/
https://lwn.net/Articles/202113/
https://web.archive.org/web/20091220044135/perens.com/blog/2009/12/15/23/
https://wiki.qemu.org/OlderNews

On the Fulfillment of Coordination Requirements in OSS Projects 33

more, the project moved to Subversion as the main version-control system. We
did not find further information why the coordination requirements have not been
fulfilled prior to the mentioned release.

The continuing decrease in the fraccr values of LLVM (see Figure 10e) after
revision range 28 (starting in March 2008) coincides with the preparations of
release 2.3 , which had been stalled due to major regressions. Apart from this,
there are no external indicators that explain why the fulfillment of coordination
requirements drops gradually after this release.

5.5.7 Differing Data across Levels of Abstraction

The evolution of the fraccr values for most subject projects is quite consistent
across the different artifact abstractions, however, there are some exceptions. Es-
pecially for Git, the values for features differ extensively from the evolution of the
other two abstractions: The values alternate heavily and there are also some revi-
sion ranges without identified coordination requirements, resulting in missing data
values (see Figure 10d). Furthermore, for both QEMU and U-Boot, also the fea-

ture-related fraccr values are lower than the ones for the other artifact abstractions
(see Figures 10h and 10i).

Hypothesis RH4: Rejected. The hypothesis that the fraction of fulfilled
coordination requirements fraccr(a,m) improves over time cannot be shown
across the complete set of subject projects. Instead, we found several different
patterns in the organizational evolution indicating that there are very project-
specific reasons leading to fulfilled and unfulfilled coordination requirements,
such as a change of maintainers or even an attempted project-takeover.

6 Discussion

In this section, we discuss the empirical and statistical results for the hypotheses
(see Sections 3.3 and 5) and the related research questions (see Section 3.1).

6.1 RQ1, RH1, and RH2: Coordination Requirements not Fulfilled by Chance

Research Question RQ1. Does developer communication align with artifact-

based coordination requirements in real-world open-source software projects, such

that the coordination requirements are fulfilled?

From RQ1, we raised two hypotheses: (RH1) coordination requirements are not

fulfilled by chance and (RH2) coordination requirements at the abstraction level of
features (see Section 2.4) yield the best alignment with actual coordination effort.
While we found the expected result for RH1, we found no evidence to support
RH2. In the following, we discuss the findings for the two research hypotheses in
detail.

34 Claus Hunsen et al.

6.1.1 RH1: Empirical vs. Null-Model Data

We see the main reason for an intentional fulfillment of coordination requirements
in the coordination process of the subject projects itself and, more importantly, the
existing developer roles in the subject projects—as we hypothesized in Hypothe-
sis RH1. The selected subject projects have contribution guidelines including the
upfront sending of patches to the mailing list for reviewing purposes (see Sec-
tion 3.2.3). The fact that the statistical effect size is only moderate (with values
from 0.12 to 0.48, see Table 3) is not too surprising when acknowledging that most
subject projects have a small set of core developers who are responsible for most of
the implementation work, reviews, and, thus, arising coordination requirements:
The network structure may not change too much in the null models due to the
stabilization of the degree distribution (see Section 3.2.4).

Apart from the overall result, there are interesting project-specific results: For
example, for BusyBox in isolation, Hypothesis RH1 does not hold for the square
motif m�, i.e., fraccr ≯ fracnullcr , which is also the case for OpenSSL and the triangle
motif mM. We see potential reasons for this in the respective project histories: Both
projects struggled from organizational issues at some time in their history and,
thus, a coordination breakdown causing a substantial drop in the fulfillment of
coordination requirements (cf. Section 5.5.6).

Independent of the previous discussion, we note that fraccr values between 0.19
and 0.80 do not illustrate consistent and reliable review processes in all the subject
projects—independent of the motif. In some subject projects (e.g., PostgreSQL

and QEMU), the fulfillment of coordination requirements seems to be of higher
importance than in others (e.g., LLVM and Git). We see a reason for this discrep-
ancy in the different project cultures: Each project likely handles the fulfillment
of coordination requirements in its own way, somewhere in the spectrum from
rigorously to even neglectfully—unless a coordination breakdown occurs and the
coordination process is adjusted in consequence (cf. OpenSSL).

Furthermore, as described in Sections 3.2.4 and 5.2, we performed a sensitivity
analysis following Kossinets [54] as an investigation on the stability of our results
by simulating incomplete information sources and lacking coordination effort by
developers. For BusyBox, Git, LLVM, and OpenSSL, we found that a removal
of 10 % of all e-mail threads (i.e., coordination effort) produces a relative error
of about 15 % for our metric fraccr. This result has several implications: (i) Any
coordination effort is important to fulfill coordination requirements and to support
the evolution of the projects’ individual evolution (see also Section 5.5). If only a
few developers do not coordinate properly, this may already have an immediate
effect on the quality and speed of development. Depending on the individual de-
veloper, the effect may be even higher (cf. the “truck factor”). (ii) For our subject
projects, the coordination structure is guided by the coordination requirements
and is not the result of a random process. (iii) Regarding the threat to validity
that developers may also rely on other coordination channels than the respective
mailing lists (see also Section 7.1), the empirical results of our study are likely an
underestimation of the state of coordination-requirement fulfillment in our subject
projects.

On the Fulfillment of Coordination Requirements in OSS Projects 35

6.1.2 RH2: Triangle Motif mM vs. Square Motif m�

The fact that we found no empirical and statistical evidence that more triangle
motifs mM are fulfilled than square motifs m� is surprising and stands in contrast
to our Hypothesis RH2. Since the source-code artifacts from which the coordina-
tion requirements arise are a single file, function, or feature, it is relatively simple
to identify potential interactions and conflicts based on the triangle motif (e.g.,
based on both the documentation and the source code, but also through failing
builds and tests) and also to resolve independently by a single developer. Thus,
although depending on the system modularization, developers may not need to
see the necessity to discuss the changes with other developers to fulfill all arising
coordination requirements, but are more eager to fulfill the more complex ones
that occur in practice. Nevertheless, this indicates that distinguishing coordina-
tion requirements by the triangle motif mM and the square motif m� contributes
to the understanding of developers’ coordination in detail.

In the same vein, we also need to discuss that there may be off-list communica-
tion directly among developers that are required to coordinate.17 Although such
an action is a (not necessarily serious) violation of the development guidelines,
direct communication and coordination may save time in the software-engineering
process and also mitigates disruptions of other developers. Analogously, develop-
ers may see the mailing list more as a measure to discuss potential conflicts that
affect more parts of the software system and, thus, have a higher impact.

Finally, other measures of the review systems may play a major role regarding
the fulfillment of coordination requirements and lead to an alignment of triangle
and square motifs: Gatekeepers are a measure in the review process describing
module/feature owners that are responsible for revising and integrating new code
for specific part of the software system. Gatekeepers or, rather, maintainers po-
tentially do not participate in the implementation work, but have enough domain
knowledge and knowledge on the source-code artifacts to perform proper reviews.
They may also link the work among developers in that they reach out to the po-
tentially affected developers who worked on other parts of the software system,
serving as information brokers in the end [28, 55]. Thus, they enable the fulfillment
of coordination requirements based on the square motif.

6.1.3 RQ1: Conclusion

Overall, we argue that our analysis shows that the fulfillment of coordination re-
quirements seems to be neglected in open-source projects, as fraccr values between
0.19 and 0.80 do not indicate consistent and reliable review processes in all the
subject projects. Examples are the projects BusyBox and FFmpeg where the re-
spective project leaders bypass(ed) the review process on the mailing list (e.g., see
Section 5.5.6). But, we note that our analysis supports the importance of analyzing
the fulfillment of coordination requirements in decentralized and globally scattered
open-source software projects. Furthermore, it also emphasizes that distinguishing
coordination requirements by the triangle motif mM and the square motif m� in
the first place does yield valuable insights, as developers seem to focus mainly on
square-based coordination requirements (regardless their inherent complexity, as

17 We also discuss this threat to construct validity in Section 7.

36 Claus Hunsen et al.

discussed above). We argue that this differentiation has potentially been brushed
aside too easily in previous research.

6.2 RQ2, RH3: The Abstraction Level Matters

Research Question RQ2. Does developer communication align better with fea-

ture-based coordination requirements than with function-based or file-based coordi-

nation requirements?

Our results show that developer communication does not align very well with
feature-based coordination requirements and clearly worse than with file-based and
function-based coordination requirements for most subject systems. This indicates
that developers do not coordinate primarily based on features, i.e., developer co-
ordination does not happen at this semantic level.Otherwise, a greater fraction
of arising coordination requirements would be fulfilled. The implications are as
for all unfulfilled coordination requirements: Errors in the source code can occur,
while the potential of conflicts in the development process rise. Depending on the
specific development process, the consequences can be either minimal or consid-
erable, such that a project may actually get abandoned. Either way, they result
in additional work, i.e., in finding a solution to balance or combine all conflicting
implementations, hindering the development process and costing time.

6.2.1 The Implementation of Features

There are two main interdependent observations regarding the implementation of
features that seem to play a role in our analysis: (i) the number of touched artifacts
per abstraction level (e.g., the number of files that are altered in a commit) and
the dependent number of identified coordination requirements as well as (ii) the
visibility of the artifacts of an abstraction level and their interconnectedness in
the underlying software architecture. When looking at the analyzed abstraction
levels of our study (i.e., files, functions, and features), the notion of features is
the most distinct type of artifact: Features can be annotated in an undisciplined
manner [62] and can be implemented in a cross-cutting manner, orthogonal to the
file structure and the inferred architecture [49, 61, 79], causing extensive feature
scattering [75, 76, 79] or even variability smells [2, 33, 34]. Overall, they may
be difficult to track across the code base [32]. As a consequence, coordination
requirements arising from concurrent change on features are also difficult to identify
and, thus, even to fulfill. In contrast, the feature abstraction can also, to a great
deal, coincide with the function abstraction or even the file abstraction. In our
experience, however, this is not valid for, at least, some of the features [75, 79].

6.2.2 The Prominence of Features

Moreover, another reason may be the awarded prominence for features in the
respective subject systems and their defined development processes in general. In
particular, we note that features are not as prominently placed in the development
process of most of our subject projects as assumed by the research community of

On the Fulfillment of Coordination Requirements in OSS Projects 37

feature-oriented software development and ourselves [3]. This does not indicate
that features do not play any role in the development process—which is definitely
not the case as shown on the case of uniquely identified coordination requirements
on the different abstraction levels in Section 5.4—but just not such a prominent
one as expected.

6.2.3 RQ2: Conclusion

Based on our results, we would like to raise awareness for features, to increase their
prominence and importance in (open-source) software projects and communities
in general as well as in the research community. First, real-world developers and
their communities need to discuss whether to include features more explicitly in
their daily work (implementation as well as communication level), rendering fea-
tures first-class citizens in specific situations [73] and explicitly facilitating a shared
mental model [16] to support the development process to a great extent [96]. Sec-
ond, researchers should acknowledge the importance of features in the development
process of their respective subject projects into their methodology more promi-
nently, to be able to discuss their findings elaborately and also more accurately.

6.3 RQ3, RH4: Evolution over Time may be Coordinated Chaos

Research Question RQ3. Does the degree of fulfillment of coordination require-

ments change for different levels of abstraction during project evolution?

Our results show that coordination requirements do not necessarily get more
consistently fulfilled when software projects and communities mature, as we hy-
pothesized in Hypothesis RH4. Rather, we found a variety of evolutionary patterns:
There are software projects that exhibit a quite stable fraction of fulfilled coor-
dination requirements (see Section 5.5.3), while there are others that appear to
be unstable to some extent (Section 5.5.4). The most interesting—and also most
appreciated—result is that we can, in retrospective, identify far-reaching events
and turning points in project history, which shows the potential of our analysis.
It is important to note that Research Question RQ3 is not a yes-no question,
but rather a complex socio-technical object of study, involving sophisticated and
complicated matters of software evolution and also community evolution.

In detail, we see several reasons for the project-specific results for RQ3 and the
depending Hypothesis RH4 that we elaborate on in the following paragraphs.

6.3.1 Project-Dependent Dynamics

Project-dependent dynamics play a crucial role in the fulfillment of coordination
requirements. Although the coordination and submission process is well-defined
in most projects, developer coordination is a complex social action that depends
on the persons involved, the project culture, the software system itself, its source
code, implementation paradigm and architecture, and many other factors. The fact
whether there is a powerful (set of) maintainer(s) or even a benevolent dictator for
life can also completely shape the development environment and community (see

38 Claus Hunsen et al.

the subject systems BusyBox and FFmpeg, but also Linux, for example). This
can be either beneficial or harmful for the projects’ evolution.

Furthermore, far-reaching events can have a large impact, as we presented in
Section 5.5.6. Attempted project hijacks (cf. FFmpeg) or publicly announced criti-
cal bugs (cf. Heartbleed in OpenSSL) encourage project communities to improve
communication and coordination intensively. In the absence of such social events
and public pressure, developers may see no significant benefit from increasing coor-
dination effort, as we discuss below in Section 6.3.3. Overall, although our findings
are project-specific, they show that socio-technical analyses are meaningful and
can provide crucial insights for a sustainable project evolution.

6.3.2 Domain and Publicity of the Subject Projects

The domain and the publicity of the subject projects have a huge impact on the
relevance of coordination-requirement fulfillment. In a very low-spread and non-
critical user-space project (such as a video player, for example), the adherence to
the submission process and development process is far less critical than for system-
relevant, wide-spread, and publicly known software systems. An example for the
latter systems is OpenSSL, which is a critical part of and the de-facto standard
for secure communication over computer networks nowadays. The criticality of the
Heartbleed bug14, for example, posed a major threat to a large number of in-
frastructurally critical servers. To this end, post-hoc investigations by researchers
indicate that the bug would have been found likely by a more thorough review pro-
cess.18 Although this is a basic review-centric problem and does not relate directly
and completely to the fulfillment of coordination requirements, the identification
of and notification on coordination requirements can be critical in the process of
code reviewing. To this end, to be able to identify coordination requirements on
several abstraction levels may lead to an advantage.

6.3.3 Latent Change in Coordination over Time

We see the reason for non-increasing fraction of fulfilled coordination requirements
(as falsely hypothesized in Hypothesis RH4) in the latent change in coordination
over time. As people—that includes developers!—change over time, it is plausible
that the coordination in software projects changes over time, too. With increasing
project maturity, developers tend to know each other and the software system
itself better, which, in turn, latently influences the communication and coordina-
tion effort that needs to be carried out to organize and solve development tasks. In
detail, developers form a shared mental model over time that resembles a common
perception of the software system on which the developers work [21, 30, 66, 82].
With such a shared mental model, developers gain a more structured understand-
ing of the software system and, additionally, a better awareness of other developers’
needs, which leads to a more accurate anticipation of requirements and resolution
of potential problems as early as possible. Consequently, less coordination effort
is needed [4, 31] and, thus, also less coordination requirements will be fulfilled.

18 See the following references: https://dwheeler.com/essays/heartbleed.html, https://
news.ycombinator.com/item?id=7556826, https://www.theregister.co.uk/Print/2014/04/
11/openssl_heartbleed_robin_seggelmann/ (all accessed 2019-03-15)

https://dwheeler.com/essays/heartbleed.html
https://news.ycombinator.com/item?id=7556826
https://news.ycombinator.com/item?id=7556826
https://www.theregister.co.uk/Print/2014/04/11/openssl_heartbleed_robin_seggelmann/
https://www.theregister.co.uk/Print/2014/04/11/openssl_heartbleed_robin_seggelmann/

On the Fulfillment of Coordination Requirements in OSS Projects 39

In other words, not every change may need to be coordinated in matured soft-
ware systems as potential conflicts and problems can be solved by one experienced
developer in isolation.

Researchers found that the lack of a shared mental model is not necessarily
harmful, but may lead to problems [31]. Essentially, developers have to trade-off
the coordination of crucial points against the reduction of a coordination overhead.
We argue that a community based on this principle is likely stable until problems
occur due to reduced coordination effort, triggering a potential community renewal
with regard to the fulfillment of requirements. As we showed in Section 5.5.6, we
found examples for this in our set of subject systems (see the related discussion in
Sections 6.3.3 and 6.3.2).

However, it may be also the case that the technical structure of the system
changes along with the social structure to keep or restore socio-technical congru-
ence in a rubber-band effect, as suggested by Betz et al. [8].

6.3.4 RQ3: Conclusion

In the end, we can conclude that, with the help of our qualitative analysis of ful-
filled coordination requirements and when looking at the results especially from
Section 5.5.6, we can support the need for additional and more detailed socio-
technical analyses. They can bring meaningful insights, help, and support in large-
scale, globally scattered open-source software projects by indicating potential so-
cial and socio-technical problems for the sake of a sustainable software evolution.

7 Threats to Validity

In this section, we discuss possible threats to the construct validity as well as the
internal and external validity of our empirical study.

7.1 Construct Validity

Construct validity refers to the idea that the construct under measurement was not
operationalized correctly. In our case, this affects mainly our notion of coordination
requirements and their extraction (see Table 1 for the set of our variables). There
are several points of discussion here:

First, while the developer–artifact and artifact–artifact relations can be opera-
tionalized in a straightforward way, we analyzed only mailing lists as proxy for de-
veloper coordination that fulfills coordination requirements (developer–developer
relation). Although, developers may use further channels of communication (e.g.,
personal e-mails or verbal communication) [95]. To understand how developers
use these further channels, we performed a sensitivity analysis and found indica-
tors that the absence of coordination effort in terms of mailing-list threads has
an immediate effect on the measured metrics (see Sections 5.2 and 6.1.1 for more
details). We mitigate this threat by selecting only software projects with a well-
established mailing list for development-related communication [10, 27, 81, 92].
This approach has proved to be useful in previous studies [42, 85, 94]. We have
considered social coding platforms that also use other means of communication

40 Claus Hunsen et al.

(e.g., issues at GitHub), but these platforms may be too young for history analy-
sis, whereas each mailing list of our subject projects dates back, at least, 10 years
(see Table 2).

Second, the value of our operationalization of fulfilled coordination require-
ments is threatened by the possibility that coordination requirements might be
fulfilled by coordination that occurs outside the configured three-month windows
(see Section 3.2 for more details on the time windows). We deliberately chose three-
month time windows, because they represent the sweet spot between sufficient
data and avoiding overfitting [51, 52, 53, 67]. Furthermore, not all coordination
requirements may be equally relevant to fulfill [13, 21, 57], while developers get
overloaded with the pressure to fulfill all coordination requirements [99]. To the
same end, our dependent variable, the congruence measure fraccr, does not incor-
porate any information on the developers’ distance. Unfortunately, the application,
extraction, and incorporation of additional information to assess the criticality of
coordination requirements is not feasible or even possible at the scale of our study,
especially when using historic project data. Therefore, we argue that consideration
of all identified coordination requirements may be an overapproximation, but our
results regarding the null models indicate that this decision is negligible.

Third, the notion of features that we analyzed in our study is limited to those
implemented using the C preprocessor. We use cppstats to extract information on
the usage of the C preprocessor in our subject systems. cppstats has been shown
to work properly with cross-cutting features [49, 61] and even features that are
implemented using undisciplined preprocessor annotations [62]. cppstats has been
used to identify variability smells [34]. Thus, we are confident that we extract the
correct information for our analysis.

7.2 Internal Validity

We see the main threat to the internal validity of our study in the potential se-
lection bias regarding our subject systems, including that we have no knowledge
about the project climates, the relationships among developers, the community
demographics, and whether they had any influence on the fulfillment of coordina-
tion requirements. To mitigate this threat, we selected a wide range of software
projects, conforming in important properties (see Section 3.2.3), but differing in
maturity, size (both source code and number of developers), commit policies, and
application domains. Selection criteria such as the evolution of the contributions
are also important for our analysis, but are unfortunately not feasible to assess
with reasonable effort. Nevertheless, our selection criteria allowed us to select a
representable and balanced set of software projects.

Furthermore, we limited the developer–artifact data to files that are imple-
mentation-related, so header files, documentation files, and build files are not
considered in our study. As a consequence, we potentially miss some important
coordination requirements during the extraction process that may influence our
analysis results. We deliberately chose to exclude such files, as the function-related
and feature-related analyses do not work on non-implementation files, since such
abstraction levels do not (usually) exist in such kinds of files. As most work in a
software project happens in implementation files, we see our analysis unaffected
by this choice.

On the Fulfillment of Coordination Requirements in OSS Projects 41

Finally, our definition and identification of features threatens internal validity.
We use C-preprocessor annotations (#ifdefs) as a central mechanism for imple-
menting configurable features, which likely does not capture all notions of a fea-
ture in our subject systems. Furthermore, other means of implementing features
and variability (such as run-time variability or a more sophisticated build system)
may affect our conclusions regarding the abstraction level of features. However,
within the implementation-related source-code files that we analyzed to extract
all three levels of abstraction, the C preprocessor is a major main source of vari-
ability [49, 61] as it is widely used in open-source software projects implemented
using the programming language C. Thus, we do not consider the other means of
variability being the focus for our analysis.

7.3 External Validity

As discussed with internal validity, the selection of subject systems may also
threaten external validity. Nevertheless, all projects are large, highly active, and
widely deployed, which gives us relevant insights into the fulfillment of coordina-
tion requirements in open-source communities. Thus, our results can be carefully
interpreted in the context of open-source software projects with similar properties.

The restriction to preprocessor annotations as means for locating feature-
specific code may threaten external validity. Preprocessor annotations are well-
established in open-source software and industrial systems to implement features
(e.g., [3, 29, 49, 61]), but the findings may vary in detail for other feature imple-
mentation techniques.

8 Related Work

There has been various research on the relationship between developer commu-
nication and development, especially with respect to geographically distributed
development teams. Herbsleb and Grinter [43, 44] conducted two studies on coor-
dination in geographically distributed software projects and found that developers
usually rely heavily on informal ad-hoc communication—if that is possible. They
shed light on the matter that communication and coordination in a distributed
environments therefore needs discipline and planning. Kwan and Damian [55] in-
vestigated the awareness of other developers’ work in a locally distributed team and
found that regular meetings and notifications heavily support coordination within
the project. In related studies [23, 26, 46, 55, 70, 102], researchers investigated the
influence of coordination in software projects on software quality, finding that the
consideration of social aspects, such as developer communication and coordination,
are crucial for understanding open-source software projects and for improving soft-
ware quality—which is in line with our own view. For a more semantic view on
developer activity, we go beyond previous studies by explicitly incorporating the
link between social and technical contributions (i.e., the collaboration patterns of
coordination requirements).

The idea of constructing networks to analyze software architecture and social
interaction is not new: Developer networks are analyzed to foster the understand-
ing of the software development process by incorporating views on the software

42 Claus Hunsen et al.

architecture and the source-code artifacts. For example, de Souza et al. [94] con-
structed socio-technical developer networks to uncover latent relationships among
individuals and conclude that the social view on software projects is essential to
their understanding. Moreover, there have been several studies to assess developer
roles in open-source software systems [53, 97] and to identify developer communi-
ties based on source-code collaboration or communication effort [10, 11, 51, 69]. In
the same vein, Xuan et al. [103] conducted a study on temporal motifs consisting
of two developers and a source-code artifact (i.e., the triangle motif) to identify la-
tent team structures and to assess their productivity. Finally, researchers have used
developer networks to identify disadvantageous evolutionary trends in software
projects, both in the social structure and in the source-code artifacts [6, 9, 52, 71].
However, as a difference to these studies, the focus of our investigation is on the
synchronicity between collaboration at the code level and communication via e-
mail. Further, we also incorporate the semantic level of features in contrast to
other abstraction levels of source-code artifacts, which has not been considered in
these studies.

Furthermore, based on work on the mirroring hypothesis and “Conway’s Law”
[21, 22, 64], researchers investigated directly on the fulfillment of coordination
requirements and the notion of socio-technical congruence. Most importantly,
Cataldo et al. [17, 18, 19] defined the notion of socio-technical congruence and
studied coordination requirements and their fulfillment by means of qualitative
studies. They used a matrix representation for modeling the socio-technical rela-
tions and triangle-based coordination requirements in their analysis, while we use
the more visual notion of developer networks and network motifs. While Cataldo
et al. studied in-house industrial systems and rather few observed instances in
time (increasing internal validity), we analyze a substantial set of longitudinal
data of different open-source software systems, summing up to over 180 years of
development in total (increasing external validity), to investigate on evolutionary
trends.

In 2018, Sierra et al. [91] conducted a systematic mapping study about socio-
technical congruence, reviewing the state of the art in this field of research and
identifying gaps and opportunities for future research. The authors categorized
previous work on socio-technical congruence regarding the conducted measures and
the application scenarios. Next, we discuss the most notable papers summarized
also by Sierra et al. [91].

Most importantly, the study of Valetto et al. [98] is closest to our study in terms
of the formal framework: The authors used socio-technical software networks to
search for coordination requirements and assess their fulfillment, using the same
three different relations as we did. They also apply the same measure for socio-
technical congruence, although they do not distinguish between the triangle and
square motif in their dependent variable (i.e., the congruence measure). Valetto
et al. also rely on an algorithmic approach for the identification of coordination
requirements rather than using network motifs which hide the inherent logic and,
thus, are more intuitive and illustrative. We extend their set of variables by incor-
porating more independent variables, such as the time window for the evolutionary
perspective and the network motifs as such. Furthermore, we especially focus on
different abstraction levels for source-code artifacts and introduce the feature level.

Wagstrom et al. [100] conducted a study to investigate on the influence of in-
dividuals on socio-technical congruence at project level and proposed an individ-

On the Fulfillment of Coordination Requirements in OSS Projects 43

ualized measure. They found support for Cataldo et al.’s results in a reproduction
study and that especially the specific communication based on coordination re-
quirements has an impact on project performance (and not an individually high
amount of communication in general). Although we do not assess socio-technical
congruence for each individual in our subject projects, we also found indicators
that the work of project leaders is likely based on arising coordination requirements
and not based on a high amount of communication in general (see Section 6.1).

In the same vein, Betz et al. [8] proposed a research design for taking an evolu-
tionary perspective on socio-technical congruence. The authors describe a rubber-
band effect describing the inevitable changes in social and technical structure to
restore socio-technical congruence when there is misalignment during evolution.
We take up on their proposed research questions, while we primarily focus on the
existence of socio-technical congruence and on what changes may (irreversibly)
destroy it (see Section 5.5, for example).

There have been several further studies analyzing different perspectives on
socio-technical congruence using more sophisticated congruence measures: Kwan
et al. [55, 56] proposed a weighted measure that is more suitable to detect individ-
ual coordination gaps rather than performing an analysis on project level. Li et al.
[60] distinguished knowledge-dependent and resource-dependent congruence that
is achieved by different means of information flow during coordination, whereas
Kwan et al. [58] and Colfer and Baldwin [21] suggested that more abstract aggre-
gation units for developers and source-code artifacts—such as teams, entire sub-
projects, and components, rather than single persons and single files—potentially
mitigate the mirroring effect predicted by Conway [22]. Portillo-Rodŕıguez et al.
[77] aimed at global software engineering and introduced weights into the measure-
ment of socio-technical congruence with respect to geographical distance among
developers. In contrast to these studies, we focus on a project-level analysis using a
rather simple congruence measure based on the collaboration and communication
of individual developers. The analysis of individual coordination gaps is not feasi-
ble at the scale of our study,19 which also holds for the incorporation of advanced
distance information into the congruence measure.

In further work, the identification of the “best” abstraction level of source-
code artifacts that give rise to coordination requirements is in the focus: López-
Fernández et al. [63] analyzed modules, Jermakovics et al. [50] files, and Joblin
et al. [51] functions as constructional arguments for coordination requirements.
We extend on these studies by adding the abstraction level of features and by
comparing it to previously considered levels.

Xuan and Filkov [101] as well as Gharehyazie and Filkov [36] analyzed a more
dynamic view on developer collaboration and coordination. In both studies, the
authors investigated either pairs or groups of developers working on the same
source-code artifacts temporally close-by—while not dividing the historical project
data into discrete revision ranges. In contrast to our work, they chose a more
coarse-grained level of abstraction (the package level) and did not relate developers
through conversation-indicating e-mail threads, but rather on a purely time-based
mechanism or content analysis. Furthermore, they linked their approach with a
code-growth analysis, which is not the focus of our study.

19 This information could be accessed through the motif identification, which we describe in
Section 2.3.

44 Claus Hunsen et al.

Finally, there have been studies on tools that aim at raising developers’ aware-
ness by visualizing concurrent work by other developers (tools such as Palant́ır

[83], SVNNAT [87] or Tesseract [85]). These studies complement our analysis in
that our analysis data can be easily plugged into such tools to incorporate further
kinds of source-code artifacts for visualization.

9 Conclusion and Future Work

Developer coordination is crucial in large-scale open-source software projects where
developers are scattered across the entire planet. It is crucial for efficient partic-
ipation and contribution of developers as well as for the sustainable evolution of
such software projects. A way to assess the proper alignment of communication
in software projects is to measure the fulfillment of coordination requirements by
communication activity. A coordination requirement arises among developers when
they work on the same source-code artifacts and, thus, are required to coordinate
their work, for example, to avoid duplication of work and other potential problems.
It has been argued in the literature that the gap between required coordination
and the actual coordination should be low, to achieve a state of socio-technical
congruence to increase the chances for project success or successful evolution.

By means of an empirical study on ten large-scale open-source software projects,
we shed further light on this issue. In detail, we measured the fraction of fulfilled
coordination requirements over the complete history of the subject projects, alto-
gether making up over 180 years of development history. We investigated whether
coordination requirements are fulfilled on purpose, and we could support this with
empirical data. Open-source developers seem to take care notably of not easily
visible coordination requirements that arise from logically coupled source-code
artifacts (i.e., the square motif m�), while they slightly neglect coordination re-
quirements that are relatively easy to resolve and that potentially have less impact
(i.e., the triangle motif mM). Furthermore, we observed that neither of the consid-
ered abstraction levels of source-code artifacts is more suitable as constructional
argument for coordination requirements with respect to their fulfillment: For all
abstraction levels, we found similar fractions of fulfilled coordination requirements,
also when incorporating the dimension of time. Nevertheless, the set of uniquely
identified coordination requirements does show that distinguishing abstraction lev-
els is important. In particular, we emphasize here our finding that features are not
as prominently placed in the development process of most of our subject projects
as we expected and is assumed by the research community of feature-oriented soft-
ware development and feature-driven development. Finally, our qualitative study
on the evolution of fulfilled coordination requirements showed that far-reaching
social events have a huge impact on the fulfillment of coordination requirements,
both negatively and positively. For example, we noticed improvements in the co-
ordination structure of the OpenSSL project after the discovery of the infamous
bug Heartbleed. In summary, what one can learn from this study is that there
is need to run socio-technical analyses to foster the understanding of open-source
development communities and to support their evolution to be sustainable.

In future work, we plan to combine our current analyses with more sophis-
ticated network-analytic measures. Furthermore, the analysis of further and also
historically newer communication channels, such as GitHub issues or Slack chats,

On the Fulfillment of Coordination Requirements in OSS Projects 45

may lead to more valuable insights on how developer communication and coordi-
nation changes over time and with the emergence of new tools and platforms.

Acknowledgements We thank Alexander Grebhahn, Angelika Schmid, Thomas Bock, and
Christian Kästner for their useful comments on previous versions of this paper and their encour-
agement. This work was supported by the DFG (German Research Foundation, AP 206/5-1&2,
AP 206/6-1&2, and AP 206/14-1). Siegmund’s work is funded by the Bavarian State Ministry
of Education, Science and the Arts in the framework of the Centre Digitisation.Bavaria (ZD.B)
and the DFG (SI 2045/2-2).

References

1. Aljemabi MA, Wang Z (2018) Empirical Study on the Evolution of Developer
Social Networks. IEEE Access 6:51049–51060

2. de Andrade HS, Almeida E, Crnkovic I (2014) Architectural Bad Smells in
Software Product Lines. In: Proc. Int. Conf. Dependable and Secure Cloud
Computing Architecture (DASCCA), ACM, pp 1–6

3. Apel S, Batory D, Kästner C, Saake G (2013) Feature-Oriented Software
Product Lines. Springer

4. Argote L (2012) Organizational Learning. Springer
5. Arisholm E, Briand LC, Foyen A (2004) Dynamic Coupling Measurement

for Object-Oriented Software. IEEE Transactions on Software Engineering
(TSE) 30(8):491–506

6. Bacchelli A, D’Ambros M, Lanza M (2010) Are Popular Classes More Defect
Prone? In: Proc. Int. Conf. Fundamental Approaches to Software Engineering
(FASE), Springer, pp 59–73

7. Berger T, Lettner D, Rubin J, Grünbacher P, Silva A, Becker M, Chechik M,
Czarnecki K (2015) What is a Feature? In: Proc. Int. Software Product Line
Conference (SPLC), ACM, pp 16–25

8. Betz S, Šmite D, Fricker S, Moss A, Afzal W, Svahnberg M, Wohlin
C, Börstler J, Gorschek T (2013) An Evolutionary Perspective on Socio-
Technical Congruence: The Rubber Band Effect. In: Proc. Int. Workshop on
Replication in Empirical Software Engineering Research (RESER), IEEE

9. Bhattacharya P, Iliofotou M, Neamtiu I, Faloutsos M (2012) Graph-Based
Analysis and Prediction for Software Evolution. In: Proc. Int. Conf. Software
Engineering (ICSE), IEEE, pp 419–429

10. Bird C, Gourley A, Devanbu P, Gertz M, Swaminathan A (2006) Mining
Email Social Networks. In: Proc. Int. Workshop Mining Software Repositories
(MSR), ACM, pp 137–143

11. Bird C, Pattison D, D’Souza R, Filkov V, Devanbu P (2008) Latent Social
Structure in Open Source Projects. In: Proc. Int. Symposium on Foundations
of Software Engineering (FSE), ACM, pp 24–35

12. Blincoe K, Valetto G, Goggins S (2012) Proximity: A Measure to Quantify the
Need for Developers’ Coordination. In: Proc. Int. Conf. Computer-Supported
Cooperative Work (CSCW), ACM, pp 1351–1360

13. Blincoe K, Valetto G, Damian D (2013) Do all Task Dependencies Require
Coordination? The Role of Task Properties in Identifying Critical Coordina-
tion Needs in Software Projects. In: Proc. Europ. Software Engineering Conf.

46 Claus Hunsen et al.

and the Int. Symposium Foundations of Software Engineering (ESEC/FSE),
ACM, pp 213–223

14. Brandes U, Gaertler M, Wagner D (2003) Experiments on Graph Cluster-
ing Algorithms. In: European Symposium on Algorithms (ESA), ESA 2003,
Springer, pp 568–579

15. Brooks FP (1995) The Mythical Man-Month, Anniversary Edition: Essays
On Software Engineering. Pearson Education

16. Cannon-Bowers JA, Salas E, Converse S (1993) Shared Mental Models in
Expert Team Decision Making. In: Individual and Group Decision Making:
Current Issues, Lawrence Erlbaum Associates, Inc., chap 12, pp 221–246

17. Cataldo M, Herbsleb JD (2013) Coordination Breakdowns and Their Impact
on Development Productivity and Software Failures. IEEE Transactions on
Software Engineering (TSE) 39(3):343–360

18. Cataldo M, Wagstrom PA, Herbsleb JD, Carley KM (2006) Identification
of Coordination Requirements: Implications for the Design of Collaboration
and Awareness Tools. In: Proc. Int. Conf. Computer-Supported Cooperative
Work (CSCW), ACM, pp 353–362

19. Cataldo M, Herbsleb JD, Carley KM (2008) Socio-Technical Congruence: A
Framework for Assessing the Impact of Technical and Work Dependencies
on Software Development Productivity. In: Proc. Int. Symposium Empirical
Software Engineering and Measurement, ACM, pp 2–11

20. Cleveland WS (1979) Robust Locally Weighted Regression and Smoothing
Scatterplots. Journal of the American Statistical Association 74(368):829–836

21. Colfer LJ, Baldwin CY (2016) The Mirroring Hypothesis: Theory, Evidence,
and Exceptions. Industrial and Corporate Change (ICC) 25(5):709–738

22. Conway ME (1968) How Do Committees Invent? Datamation 14(5):28–31
23. Crowston K, Howison J (2005) The Social Structure of Free and Open Source

Software Development. First Monday 10(2)
24. Csardi G, Nepusz T (2006) The igraph Software Package for Complex Net-

work Research. InterJournal Complex Systems:1695, URL http://igraph.

org

25. Curtis B, Krasner H, Iscoe N (1988) A Field Study of the Software Design
Process for Large Systems. Communications of the ACM 31(11):1268–1287

26. Dabbish L, Stuart C, Tsay J, Herbsleb J (2012) Social Coding in GitHub:
Transparency and Collaboration in an Open Software Repository. In: Proc.
Int. Conf. Computer-Supported Cooperative Work (CSCW), ACM, pp 1277–
1286

27. Draheim D, Pekacki L (2003) Process-Centric Analytical Processing of Ver-
sion Control Data. In: Proc. Int. Workshop Principles of Software Evolution
(IWPSE), IEEE, pp 131–136

28. Ehrlich K, Helander M, Valetto G, Davies S, Williams C (2008) An Analysis
of Congruence Gaps and Their Effect on Distributed Software Development.
In: Int. Workshop on Socio-Technical Congruence (STC), available online.

29. Ernst MD, Badros GJ, Notkin D (2002) An Empirical Analysis of C Prepro-
cessor Use. IEEE Transactions on Software Engineering (TSE) 28(12):1146–
1170

30. Espinosa JA (2002) Shared Mental Models and Coordination in Large-scale,
Distributed Software Development. PhD thesis, Graduate School of Industrial
Administration, Carnegie Mellon University

http://igraph.org
http://igraph.org
https://www.researchgate.net/profile/Giuseppe_Valetto/publication/242935775_An_Analysis_of_Congruence_Gaps_and_Their_Effect_on_Distributed_Software_Development/links/5804e4e708aef179365e551e/An-Analysis-of-Congruence-Gaps-and-Their-Effect-on-Distributed-Software-Development.pdf

On the Fulfillment of Coordination Requirements in OSS Projects 47

31. Espinosa JA, Lerch FJ, Kraut RE (2002) Explicit vs. Implicit Coordination
Mechanisms and Task Dependencies: One Size Does Not Fit All. In: Team
Cognition: Understanding the Factors that Drive Process and Performance,
American Psychological Association, pp 107–129

32. Feigenspan J, Kästner C, Apel S, Liebig J, Schulze M, Dachselt R, Papendieck
M, Leich T, Saake G (2012) Do Background Colors Improve Program Com-
prehension in the #ifdef Hell? Empirical Software Engineering 18(4):699–745

33. Fenske W, Schulze S (2015) Code Smells Revisited: A Variability Perspec-
tive. In: Proc. Int. Workshop on Variability Modeling of Software-Intensive
Systems (VaMoS), ACM, pp 3–10

34. Fenske W, Schulze S, Meyer D, Saake G (2015) When Code Smells Twice
as much: Metric-Based Detection of Variability-Aware Code Smells. In: Int.
Working Conf. Source Code Analysis and Manipulation (SCAM), IEEE, pp
171–180

35. Gall H, Hajek K, Jazayeri M (1998) Detection of Logical Coupling Based on
Product Release History. In: Proc. Int. Conf. Software Maintenance (ICSM),
IEEE, pp 190–198

36. Gharehyazie M, Filkov V (2017) Tracing Distributed Collaborative Develop-
ment in Apache Software Foundation Projects. Empirical Software Engineer-
ing 22(4):1795

37. Gkantsidis C, Mihail M, Zegura EW (2003) The Markov Chain Simulation
Method for Generating Connected Power Law Random Graphs. In: Proc.
Workshop Algorithm Engineering and Experiments (ALENEX), SIAM, pp
16–25

38. Gneiting T, Ševč́ıková H, Percival DB (2012) Estimators of Fractal Dimen-
sion: Assessing the Roughness of Time Series and Spatial Data. Statistical
Science 27(2):247–277

39. Gobbi A, Iorio F, Albanese D, Jurman G, Saez-Rodriguez J (2017) BiRewire:
High-Performing Routines for the Randomization of a Bipartite Graph (or
a Binary Event Matrix), Undirected and Directed Signed Graph Preserving
Degree Distribution (or Marginal Totals). URL https://www.bioconductor.

org/packages/release/bioc/html/BiRewire.html

40. Grinter RE (1998) Recomposition: Putting It All Back Together Again. In:
Proc. Int. Conf. Computer-Supported Cooperative Work (CSCW), ACM, pp
393–402

41. Grinter RE, Herbsleb JD, Perry DE (1999) The Geography of Coordination:
Dealing with Distance in R&D Work. In: Proc. Int. Conf. Supporting Group
Work (GROUP), ACM, pp 306–315

42. Gutwin C, Greenberg S (1999) The Effects of Workspace Awareness Support
on the Usability of Real-time Distributed Groupware. ACM Transactions on
Computer-Human Interaction 6(3):243–281

43. Herbsleb JD, Grinter RE (1999) Architectures, Coordination, and Distance:
Conway’s Law and Beyond. IEEE Software 16(5):63–70

44. Herbsleb JD, Grinter RE (1999) Splitting the Organization and Integrating
the Code: Conway’s Law Revisited. In: Proc. Int. Conf. Software Engineering
(ICSE), ACM, pp 85–95

45. Herbsleb JD, Mockus A (2003) An Empirical Study of Speed and Commu-
nication in Globally Distributed Software Development. IEEE Transactions
on Software Engineering (TSE) 29(6):481–494

https://www.bioconductor.org/packages/release/bioc/html/BiRewire.html
https://www.bioconductor.org/packages/release/bioc/html/BiRewire.html

48 Claus Hunsen et al.

46. Herbsleb JD, Mockus A (2003) Formulation and Preliminary Test of an Em-
pirical Theory of Coordination in Software Engineering. In: Proc. Europ.
Software Engineering Conf. and the Int. Symposium Foundations of Soft-
ware Engineering (ESEC/FSE), ACM, pp 138–147

47. Herbsleb JD, Roberts JA (2006) Collaboration In Software Engineering
Projects: A Theory Of Coordination. In: Proc. Int. Conf. Information Sys-
tems (ICIS), Association for Information Systems, pp 553–568

48. Hindle A, Germán DM, Holt RC (2008) What do Large Commits Tell Us?:
A Taxonomical Study of Large Commits. In: Proc. Working Conf. Mining
Software Repositories (MSR), pp 99–108

49. Hunsen C, Zhang B, Siegmund J, Kästner C, Leßenich O, Becker M,
Apel S (2016) Preprocessor-Based Variability in Open-Source and Indus-
trial Software Systems: An Empirical Study. Empirical Software Engineering
21(2):449–482

50. Jermakovics A, Sillitti A, Succi G (2011) Mining and Visualizing Developer
Networks from Version Control Systems. In: Proc. Int. Workshop Cooperative
and Human Aspects of Software Engineering (CHASE), ACM, pp 24–31

51. Joblin M, Mauerer W, Apel S, Siegmund J, Riehle D (2015) From Developer
Networks to Verified Communities: A Fine-Grained Approach. In: Proc. Int.
Conf. Software Engineering (ICSE), ACM, pp 563–573

52. Joblin M, Apel S, Mauerer W (2016) Evolutionary Trends of Developer Coor-
dination: A Network Approach. Empirical Software Engineering 22(4):2050–
2094

53. Joblin M, Apel S, Hunsen C, Mauerer W (2017) Classifying Developers into
Core and Peripheral: An Empirical Study on Count and Network Metrics.
In: Proc. Int. Conf. Software Engineering (ICSE), IEEE, pp 164–174

54. Kossinets G (2006) Effects of Missing Data in Social Networks. Social Net-
works 28(3):247–268

55. Kwan I, Damian D (2011) Extending Socio-Technical Congruence with
Awareness Relationships. In: Proc. Int. Workshop on Social Software En-
gineering (SSE), ACM

56. Kwan I, Schröter A, Damian D (2009) A Weighted Congruence Measure. In:
Int. Workshop on Socio-Technical Congruence (STC), available online.

57. Kwan I, Schröter A, Damian D (2011) Does Socio-Technical Congruence Have
an Effect on Software Build Success? A Study of Coordination in a Software
Project. IEEE Transactions on Software Engineering (TSE) 37(3):307–324

58. Kwan I, Cataldo M, Damian D (2012) Conway’s Law Revisited: The Evidence
for a Task-Based Perspective. IEEE Software 29(1):90–93

59. Levesque LL, Wilson JM, Wholey DR (2001) Cognitive Divergence and
Shared Mental Models in Software Development Project Teams. Journal of
Organizational Behavior 22(2):135–144

60. Li J, Carley KM, Eberlein A (2012) Assessing Team Performance from a
Socio-Technical Congruence Perspective. In: Proc. Int. Conf. Software and
System Process (ICSSP), IEEE, pp 160–169

61. Liebig J, Apel S, Lengauer C, Kästner C, Schulze M (2010) An Analysis of
the Variability in Forty Preprocessor-based Software Product Lines. In: Proc.
Int. Conf. Software Engineering (ICSE), ACM, pp 105–114

62. Liebig J, Kästner C, Apel S (2011) Analyzing the Discipline of Preprocessor
Annotations in 30 Million Lines of C Code. In: Proc. Int. Conf. Aspect-

https://www.researchgate.net/profile/Daniela_Damian/publication/228341914_A_weighted_congruence_measure/links/0fcfd509a9cf10d279000000.pdf

On the Fulfillment of Coordination Requirements in OSS Projects 49

Oriented Software Development (AOSD), ACM, pp 191–202
63. López-Fernández L, Robles G, González-Barahona JM (2004) Applying So-

cial Network Analysis to the Information in CVS Repositories. In: Proc. Int.
Workshop Mining Software Repositories (MSR), pp 101–105

64. MacCormack A, Baldwin C, Rusnak J (2012) Exploring the Duality Be-
tween Product and Organizational Architectures: A Test of the ”Mirroring”
Hypothesis. Research Policy 41(8):1309–1324

65. Malone TW, Crowston K (1990) What is Coordination Theory and How Can
It Help Design Cooperative Work Systems? In: Proc. Int. Conf. Computer-
Supported Cooperative Work (CSCW), ACM, pp 357–370

66. Mathieu JE, Heffner TS, Goodwin GF, Salas E, Cannon-Bowers JA (2000)
The Influence of Shared Mental Models on Team Process and Performance.
Journal of Applied Psychology 85(2):273–283

67. Meneely A, Williams L (2011) Socio-Technical Developer Networks: Should
We Trust our Measurements? In: Proc. Int. Conf. Software Engineering
(ICSE), ACM, pp 281–290

68. Milo R, Kashtan N, Itzkovitz S, Newman MEJ, Alon U (2004) On the Uni-
form Generation of Random Graphs with Prescribed Degree Sequences. arXiv
e-prints cond-mat/0312028v2

69. Mitchell BS, Mancoridis S (2006) On the Automatic Modularization of Soft-
ware Systems using the Bunch Tool. IEEE Transactions on Software Engi-
neering 32(3):193–208

70. Mockus A, Fielding RT, Herbsleb JD (2002) Two Case Studies of Open
Source Software Development: Apache and Mozilla. ACM Transactions on
Software Engineering and Methodology (TOSEM) 11(3):309–346

71. Nagappan N, Murphy B, Basili V (2008) The Influence of Organizational
Structure on Software Quality: An Empirical Case Study. In: Proc. Int. Conf.
Software Engineering (ICSE), ACM, pp 521–530

72. de Oliveira MC, Bonifácio R, Ramos GN, Ribeiro M (2016) Unveiling and
Reasoning about Co-Change Dependencies. In: Proc. Int. Conf. Modularity
(MODULARITY), ACM Press, pp 25–36

73. Palmer SR, Felsing JM (2002) A Practical Guide to Feature-Driven Devel-
opment. Prentice-Hall

74. Parnas DL (1972) On the Criteria to Be Used in Decomposing Systems into
Modules. Communications of the ACM 15(12):1053–1058

75. Passos L, Padilla J, Berger T, Apel S, Czarnecki K, Valente MT (2015)
Feature Scattering in the Large: A Longitudinal Study of Linux Kernel Device
Drivers. In: Proc. Int. Conf. Modularity (MODULARITY), ACM, pp 81–92

76. Passos L, Queiroz R, Mukelabai M, Berger T, Apel S, Czarnecki K, Padilla J
(2018) A Study of Feature Scattering in the Linux Kernel. IEEE Transactions
on Software Engineering (TSE) pp 1–16, online first

77. Portillo-Rodŕıguez J, Vizcáıno A, Piattini M, Beecham S (2014) Using Agents
to Manage Socio-Technical Congruence in a Global Software Engineering
Project. Information Sciences 264:230–259

78. Poshyvanyk D, Marcus A, Ferenc R, Gyimóthy T (2009) Using Information
Retrieval Based Coupling Measures for Impact Analysis. Empirical Software
Engineering 14(1):5–32

79. Queiroz R, Passos L, Valente MT, Hunsen C, Apel S, Czarnecki K (2015)
The Shape of Feature Code: An Analysis of Twenty C-Preprocessor-Based

50 Claus Hunsen et al.

Systems. Software and Systems Modeling (SoSyM) 16(1):77–96
80. R Core Team (2016) R: A Language and Environment for Statistical Com-

puting. R Foundation for Statistical Computing, Vienna, Austria, URL
https://www.r-project.org

81. Ramsauer R, Lohmann D, Mauerer W (2019) The List is the Process: Reliable
Pre-Integration Tracking of Commits on Mailing Lists. In: Proc. Int. Conf.
Software Engineering (ICSE), IEEE, pp 807–818

82. Rouse WB, Cannon-Bowers JA, Salas E (1992) The Role of Mental Models
in Team Performance in Complex Systems. IEEE Transactions on Systems,
Man, and Cybernetics 22(6):1296–1308

83. Sarma A, Noroozi Z, van der Hoek A (2003) Palantir: Raising Awareness
among Configuration Management Workspaces. In: Proc. Int. Conf. Software
Engineering (ICSE), IEEE, pp 444–454

84. Sarma A, Herbsleb J, van der Hoek A (2008) Challenges in Measuring, Under-
standing, and Achieving Social-Technical Congruence. Tech. rep., Institute
for Software Research, Carnegie Mellon University

85. Sarma A, Maccherone L, Wagstrom P, Herbsleb J (2009) Tesseract: Interac-
tive Visual Exploration of Socio-Technical Relationships in Software Devel-
opment. In: Proc. Int. Conf. Software Engineering (ICSE), IEEE, pp 23–33

86. Schroeder M (1992) Fractals, Chaos, Power Laws: Minutes from an Infinite
Paradise. W. H. Freeman, pp. 211–215

87. Schwind M, Wegmann C (2008) SVNNAT: Measuring Collaboration in Soft-
ware Development Networks. In: Proc. Int. Conf. E-Commerce Technol-
ogy and Int. Conf. Enterprise Computing, E-Commerce, and E-Services
(CEC/EEE), IEEE, pp 97–104

88. Scozzi B, Crowston K, Eseryel UY, Li Q (2008) Shared Mental Models among
Open Source Software Developers. In: Proc. Hawaii Int. Conf. System Sci-
ences (HICSS), IEEE, pp 1–10

89. Sevcikova H, Percival D, Gneiting T (2014) fractaldim: Estimation of Frac-
tal Dimensions. URL https://CRAN.R-project.org/package=fractaldim

90. Shen-Orr SS, Milo R, Mangan S, Alon U (2002) Network Motifs in the Tran-
scriptional Regulation Network of Escherichia coli. Nature Genetics 31(1):64–
68

91. Sierra JM, Vizcáıno A, Genero M, Piattini M (2018) A Systematic Mapping
Study about Socio-Technical Congruence. Information and Software Tech-
nology (IST) 94:111–129

92. Sommerville I (2010) Software Engineering, nineth edn. Addison-Wesley
93. Sosa ME, Eppinger SD, Pich M, McKendrick DG, Stout SK (2002) Fac-

tors that Influence Technical Communication in Distributed Product De-
velopment: An Empirical Study in the Telecommunications Industry. IEEE
Transactions on Engineering Management 49(1):45–58

94. de Souza C, Froehlich J, Dourish P (2005) Seeking the Source: Software
Source Code as a Social and Technical Artifact. In: Proc. Int. Conf. Support-
ing Group Work (GROUP), ACM, pp 197–206

95. Storey MA, Singer L, Figueira Filho F, Zagalsky A, German DM (2016) How
Social and Communication Channels Shape and Challenge a Participatory
Culture in Software Development. IEEE Transactions on Software Engineer-
ing (TSE) 41(7):1–20

https://www.r-project.org
https://CRAN.R-project.org/package=fractaldim

On the Fulfillment of Coordination Requirements in OSS Projects 51

96. Stout R, Salas E (1993) The Role of Planning in Coordinated Team Deci-
sion Making: Implications for Training. Proc Human Factors and Ergonomics
Society Annual Meeting 37(18):1238–1242

97. Toral SL, Mart́ınez-Torres MR, Barrero F (2010) Analysis of Virtual Commu-
nities Supporting OSS Projects using Social Network Analysis. Information
and Software Technology (IST) 52(3):296–303

98. Valetto G, Helander M, Ehrlich K, Chulani S, Wegman M, Williams C (2007)
Using Software Repositories to Investigate Socio-technical Congruence in De-
velopment Projects. In: Proc. Int. Workshop Mining Software Repositories
(MSR), IEEE, pp 25:1–25:4

99. Valetto G, Chulani S, Williams C (2008) Balancing the Value and Risk of
Socio-Technical Congruence. In: Int. Workshop on Socio-Technical Congru-
ence (STC), available online.

100. Wagstrom P, Herbsleb JD, Carley KM (2010) Communication, Team Per-
formance, and the Individual: Bridging Technical Dependencies. Academy of
Management Proceedings 2010(1):1–7

101. Xuan Q, Filkov V (2014) Building it Together: Synchronous Development in
OSS. In: Proc. Int. Conf. Software Engineering (ICSE), ACM, pp 222–233

102. Xuan Q, Gharehyazie M, Devanbu PT, Filkov V (2012) Measuring the Effect
of Social Communications on Individual Working Rhythms: A Case Study
of Open Source Software. In: Proc. Int. Conf. Social Informatics (SocInfo),
IEEE, pp 78–85

103. Xuan Q, Fang H, Fu C, Filkov V (2015) Temporal Motifs Reveal Col-
laboration Patterns in Online Task-Oriented Networks. Physical Review E
91:052813

104. Zimmermann T, Weibgerber P, Diehl S, Zeller A (2004) Mining Version His-
tories to Guide Software Changes. In: Proc. Int. Conf. Software Engineering
(ICSE), IEEE, pp 563–572

https://www.researchgate.net/profile/Giuseppe_Valetto/publication/228670896_Balancing_the_value_and_risk_of_socio-technical_congruence/links/0deec5182c75085462000000.pdf

	Introduction
	A Network Approach
	Study Design
	Data Extraction and Study Execution
	Results
	Discussion
	Threats to Validity
	Related Work
	Conclusion and Future Work

