
A Model of Refactoring Physically
and Virtually Separated Features

Christian Kästner
School of Computer Science

University of Magdeburg, Germany
kaestner@iti.cs.uni-magdeburg.de

Sven Apel
Department of Informatics and Math.

University of Passau, Germany
apel@uni-passau.de

Martin Kuhlemann
School of Computer Science

University of Magdeburg, Germany
kuhlemann@iti.cs.uni-magdeburg.de

Abstract
Physical separation with class refinements and method refinements
à la AHEAD and virtual separation using annotations à la #ifdef
or CIDE are two competing implementation approaches for soft-
ware product lines with complementary advantages. Although both
approaches have been mainly discussed in isolation, we strive for
an integration to leverage the respective advantages. In this paper,
we lay the foundation for such an integration by providing a model
that supports both physical and virtual separation and by describing
refactorings in both directions. We prove the refactorings complete,
so every virtually separated product line can be automatically trans-
formed into a physically separated one (replacing annotations by
refinements) and vice versa. To demonstrate the feasibility of our
approach, we have implemented the refactorings in our tool CIDE
and conducted four case studies.

Categories and Subject Descriptors D.2.3 [SOFTWARE ENGI-
NEERING]: Coding Tools and Techniques; D.2.13 [SOFTWARE
ENGINEERING]: Reusable Software; D.3.4 [PROGRAMMING
LANGUAGES]: Processors

General Terms Design, Languages, Theory

Keywords Software product lines, refactoring, separation of con-
cerns, preprocessor, refinements, AHEAD, CIDE, FeatureHouse

1. Introduction
A Software Product Line (SPL) is a family of related program vari-
ants that are generated from a common code base [9, 38, 18]. The
generation process facilitates reuse of common software artifacts
in different variants and at the same time allows users to tailor each
variant to a specific use case. Different variants are distinguished
in terms of features; a feature represents a user-visible requirement.

There are many different implementation approaches for SPLs.
We distinguish [26] between implementation approaches that phys-
ically separate features (a.k.a. physical separation of concerns)
by implementing them in different modules – e.g., plug-ins and
components [9, 38] or various flavors of aspects and feature mod-
ules [40, 11, 29, 18, 8, 6] – and approaches that virtually sepa-
rate features (a.k.a. virtual separation of concerns) by annotat-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
GPCE’09, October 4–5, 2009, Denver, Colorado, USA.
Copyright c© 2009 ACM 978-1-60558-494-2/09/10. . . $10.00

ing code fragments in a common code base – e.g., preproces-
sors [38, 37, 44], XVCL [23], CIDE [26], and commercial SPL
tools such as pure::variants [14] or Gears [31]. Virtual separation
approaches are often sneered at by academics, because they pro-
duce scattered and tangled code instead of pursuing modularity –
especially preprocessors are frequently criticized for their undis-
ciplined usage [44, 38, 37, 21]. Nevertheless, virtual separation
approaches are common in industry because they are simpler and
promise quicker results at lower initial costs [17, 31].

In prior work, we investigated both sides, physical and virtual se-
paration. We addressed typing issues [25, 5], granularity issues [26],
or language-independence [6, 28] for both of them. We found that,
despite many conceptual differences, both approaches are often
similar: for a virtually separated implementation we could often
find an equivalent physically separated one and vice versa. In some
cases this was straightforward, in others it required more demanding
code changes. Still, both approaches have unique advantages, so we
cannot simply chose one over the other. For example, a physical se-
paration enables true modularity, but at the price of a more complex
implementation and reduced expressiveness compared to a virtual
separation (see [24, 26] for a comprehensive discussion). Eventually
an integration of both may combine these advantages [24].

In this paper, we lay ground for an integration and a sound
comparison of physical and virtual separation by proving that both
representations are equivalent to a large degree. We present a formal
model that supports both virtual and physical separation at the same
time and describe automated refactorings between them. Our goal
is to transform a physically separated SPL (with feature modules)
into a virtually separated SPL (with annotations) and vice versa
without changing the behavior of any program variant. Additionally,
the model also supports partial refactorings and mixtures of both
representations, so that also SPLs with both annotations and feature
modules are possible. This way, developers can use the approach
best suited to the task at hand and gradually refactor later [24]. We
have exemplarily implemented refactorings between SPL implemen-
tations with AHEAD/FeatureHouse-based feature modules [11, 6]
and SPL implemented with our preprocessor-based tool CIDE [26]
and refactored four case studies. All in all, model and refactorings
promise the following benefits:
• We lay ground for an integration of virtual and physical sepa-

ration by providing a model that supports both. This opens new
opportunities for theories, models, and tools that use both ap-
proaches uniformly, in contrast to the current practice of search-
ing for solutions for each representation separately.
• Based on this model, we analyze equivalence between SPLs

implemented in either representation and even provide support
to automatically refactor one representation into the other.
• Given automatic refactorings, systems decomposed in one

paradigm can be used in the other. This lays the ground for

reusing tools developed for only one representation and for
future empirical evaluations of both representations regarding
understandability, maintainability, development effort or similar
aspects on equivalent programs.
• The vision behind integration and refactorings is that developers

can leverage respective strengths of both representations, e.g.,
start SPL development by annotating code fragments and then
gradually refactor them into physically separated modules [24].

2. Background
Before we begin with a description of our formal model and possible
refactorings, we provide some necessary background on SPLs and
different implementation mechanisms, and we introduce notations
for the remainder of this paper.

2.1 Software Product Line Engineering
The aim of SPL engineering is to facilitate reuse in the development
of a set of related program variants of a domain [9, 38, 18].
Developers start by analyzing the domain and identify features, i.e.,
requirements that distinguish different variants in the domain [3].
For example, in the domain of embedded database systems, there
can be different program variants for different scenarios, but not all
variants require features such as transactions, recovery, or ad-hoc
query processing. A variant is identified by a selection of features,
e.g., the “database system with transactions, but without recovery
and query processing”. How a variant for a given feature selection
is actually generated depends on the implementation technique as
discussed below.

Not all feature combinations in an SPL are meaningful. For ex-
ample, features can be mutually exclusive; e.g., users must decide be-
tween an in-memory or a persistent database. Typically, features and
their valid combinations are described in a feature model [18, 10].

For this paper, it is not relevant how features and their valid
combinations are specified, we assume the following notation and
predicates which can be mapped to individual approaches: A feature
‘Base’ is part of every SPL and required in every variant. A feature
expression (denoted with meta-variables F to L) is a propositional
formula over features of the product line, e.g., ‘Txn ∧ Log’ or
‘Inmemory ∨ ¬Query’, that evaluates to true or false for a given
feature selection. Based on the constraints of the feature model,
predicate mexcl(F, G) determines whether two feature expressions
are mutually exclusive; predicate impl(F, G) determines whether G
is selected in every variant in which F is selected; finally, predicate
equiv(F, G) determines whether F and G are always selected
together in variants (both or neither).

2.2 Virtual Separation of Features
Approaches that virtually separate features in an SPL use a common
code base in which code fragments are annotated with feature
expressions. To generate a variant for a feature selection, some
annotated code fragments are removed and the remaining code is
compiled. A typical example for virtual separation is the use of the
C preprocessor with #ifdef directives as in the small example of a
Stack with features Top and Undo in Figure 1 (a).1

This example illustrates how virtual separation approaches do
not separate code from different variants into different files or mod-
ules but scatter them across the entire code base. There are many
other tools that pursue similar annotations with different languages
or tools like XVCL [23], CIDE [26], or commercial SPL tools like
pure::variants [14] and Gears [31]. Virtual separation is common

1 Due to space restrictions, we use a slightly relaxed notation of #ifdef
statements throughout the paper. We allow annotations inside a line and
propositional formulas like ‘#ifdef F ∨ G’ as syntactic sugar for ‘#if
defined(F) || defined(G)’.

class Stack {
#ifdef Undo
int backup;
void undo() {/*...*/}
#endif
#ifdef Top
int top() {/*...*/}
#endif
void push(int v) {
#ifdef Undo
backup=top();
#endif
/*...*/

}
int pop() {/*...*/}

}

Feature Base

class Stack { ...
void push(int v) {/*...*/}
int pop() {/*...*/}

}

Feature Top

refines class Stack {
int top() {/*...*/}

}

Feature Undo

refines class Stack { ...
int backup;
void undo() {/*...*/}
void push(int v) {
backup=top();
original(v);

}
}

(a) virtual separation (b) physical separation

Figure 1. Minimal Stack with features Top and Backup

in practice, because it is easy to use, does not require any runtime
overhead, and is already natively supported by several program-
ming languages [17]. Nevertheless, especially preprocessor-based
implementations are often criticized for their potential complexity,
lack of modularity, and reduced readability [44, 38, 37, 21]. Still,
some disadvantages like scattered code or potential errors in some
variants can be addressed with relatively simple tool support such
as discipline constraints [28], views [26], or type checkers [25].

2.3 Physical Separation of Features
The key idea of physical separation is to locate code belonging to a
feature or feature expression in a dedicated file, container, or module.
A classic example is a framework that can be extended with plug-ins,
ideally one plug-in per feature; different variants can be generated
by combining different plug-ins [9, 38]. Beyond plug-ins, there is a
large body of research on advanced language abstractions to encap-
sulate features (including crosscutting implementations). Examples
are aspects [29], class refinements [11, 6], classboxes [13], and many
more. With all these language mechanisms, features can be imple-
mented in separate units (files, containers, modules, ...) and variants
are generated from a selection of these units in a composition step.

In this paper, we use a simple language with class refinement-
based capabilities close to AHEAD [11] and FeatureHouse [6], but
a mapping to other languages is possible: A class is split into class
fragments, and class fragments are located inside feature modules.
Each feature module is associated with (and identified by) a feature
expression. We distinguish between class introductions and class
refinements, the former introduce new classes, while the latter
(‘refines class ...’) can add members to existing classes or extend
existing methods. Methods are extended using a method refinement
mechanism, which can add additional behavior before/after the
execution of the original method (denoted by keyword original).

In Figure 1 (b), we show three feature modules implementing
the stack example. Class Stack is introduced in the first feature
module and subsequently refined by two features (Top and Undo) to
introduce new members. In feature Undo, method push is refined to
execute an additional statement before the original implementation.

To generate a variant from a feature selection, the feature
modules corresponding to the selection are determined and class
fragments of these feature modules are merged in a composition
step [11, 6]. Note, the order in which feature modules are composed
matters, because the order in which method refinements are applied

matters. We assume a fixed global order over all feature modules
in an SPL (top-down in our listings) and use the predicate� to de-
scribe the composition order between two feature expressions: F �
G means that F is composed before G. Furthermore, we assume that
feature module Base is always composed first. Finally, in line with
prior work on composition models [33, 30], we assume that a feature
expression F ∧ G is always composed after F and G (i.e., F �
(F ∧G) and G� (F ∧G)) because it may refine both F and G.

3. Informal Overview
Before we describe our formal model in Section 4, we illustrate the
challenges and give an intuition of the desired refactorings between
physical and virtual separation by means of examples.

3.1 Physical to Virtual
Both implementations of the Stack SPL in Figure 1 are equivalent,
i.e., they obey the same behavior in all variants, as one can easily
confirm manually. Our first goal is to refactor one representation
into the other. To refactor the physically separated representation
(Fig. 1, right) into the virtually separated representation (left), we
copy each class introduction with all its refinements flat into a
single class. In this process, members are annotated with the feature
expression of the feature module they come from; annotations of
the Base feature can be dropped because the code is included in all
variants anyway (see Sec. 2.1). Method refinements (such as push
in our example) are inlined such that original is replaced with the
refined method body (fresh names if necessary) and the statements
of the method refinement are annotated. Multiple refinements of
the same method are inlined in feature composition order.

There are more challenging cases when it comes to mutually
exclusive features. For example, there might be two implementations
of the stack with the same class name as in Figure 2, one on the basis
of an array and one on the basis of a linked list, of which exactly
one implementation must be selected in every variant.

Feature Array

class Stack { ...
int[] data;
void push(int v) {/*...*/}

}

Feature List

class Stack { ...
Item firstItem;
void push(int v) {/*---*/}

}

Feature Undo

refines class Stack { ...
void push(int v) {
backup=top();
original(v);

}
}

#ifdef Array ∨ List
class Stack { ...
#ifdef Array
int[] data;
#endif
#ifdef List
Item firstItem;
#endif
void push(int v) {
#ifdef Undo
backup=top();
#endif
#ifdef Array
/*...*/
#endif
#ifdef List
/*---*/
#endif

}
}

(a) physical separation (b) virtual separation

Figure 2. Refactoring mutually exclusive features

So, how are two class introductions with the same name merged
to get an SPL implementation which includes both features with
different annotations? There are different solutions, for example, we
could have two class declarations with the same name but different
annotations in the virtually separated code. Instead, we prefer to
merge class introductions if possible and annotate the resulting
class and all shared members with a disjunction of the previous
feature expressions (e.g., Array ∨ List). Members located only in

one feature module (e.g., data and firstItem) are annotated only
with the original feature expression. Members that are introduced
multiple times (e.g., push) can be merged similarly. In our approach,
we merge classes and members because it avoids code replication
when applying further class refinements. In our example, the method
refinement in feature module Undo is applied only once to the
merged method push, instead of applying it separately to both
mutually exclusive introductions.

With these simple mechanisms (copy flat, inline, merge), we
can refactor class introductions, class refinements, and method
refinements all into annotated classes.

3.2 Virtual to Physical
The reverse refactoring from virtual to physical separation is more
difficult, since annotations are more expressive, as we will illustrate.
The initial steps are simple though: An annotated class is moved
to the feature module corresponding to its annotation and merged
classes are separated. Classes that are not annotated are moved into
feature module Base. Each annotated member is moved into a class
refinement (created if it does not already exist) in the corresponding
feature module. Annotated statements at the beginning or the end of
a method are extracted into a method refinement. These steps are
the exact reverse of the refactorings above and easy to automate.

However, annotations on statements that do not directly corre-
spond to method refinements are a first challenge. For that reason,
reverse operations are not sufficient to refactor all annotated pro-
grams. For example, it is possible to annotate statements in the
middle of a method, such as sort in the example in Figure 3 (a),
which should be executed after inserting data but before the commit
call. To separate such code physically, we need to introduce addi-
tional explicit extension points (a common strategy in physically
separated code [36]) like method hook in Figure 3 (b).

class Stack { ...
void push(int v) {
a[++size]=v;
#ifdef Sort
sort();
#endif
commit();

}
}

Feature Base

class Stack {
void push(int v) {
a[++size]=v;
hook();
commit();

}
void hook() {}

}

Feature Sort

refines class Stack {
void hook() { sort(); }

}

(a) virtual separation (b) physical separation

Figure 3. Refactoring annotated statements inside a method

At this point, we have a choice of what kind of annotations we
want to support. Without defining limits, there is no end of possible
annotations that must be supported, because every character or
token can be annotated. For the small example in Figure 4, even
manually, a refactoring into physically separated feature modules is
not intuitive to find.

class C extends #ifdef A X #else B #endif {
#ifdef B static #endif int foo(#ifdef C int a #endif) {

return #ifdef D (#endif 2 + 2 #ifdef D) #endif * 2;
}

}

Figure 4. Fine-grained annotations

This shows that there is a trade-off between supported annota-
tions and effort for developing refactorings. We concentrate on those

annotations which we found to be common in our projects [26]: an-
notations on (a) class declarations, (b) members, and (c) statements.
We do not consider annotations on the level of expressions, mod-
ifiers, or even individual tokens or characters.2 Although this is a
limitation, it allows us to define a concise model which represents
the practice and to prove that refactorings are always possible within
this model.

A second challenge comes from the fact that the order matters
in a physical separation. Composing two feature modules that add
method refinements around the same method in different orders
can result in different program behaviors. In contrast, in a virtual
separation, there is no notion of a composition order; the order is
fixed in the common code base. Annotations are evaluated from
outer annotations to inner/nested ones. Therefore, it is important to
ensure that refactorings into method refinements are performed in a
specific order, reverse to the composition order. We can refactor
virtually separated code into feature modules in every desired
target order, but resulting in different (but behavioral equivalent)
implementations [4]. We will come back to this issue later.

4. Formal Model
After having introduced the basic idea behind refactorings between
virtual and physical separation, we pursue a formalization. Although
the basic mechanisms are simple, the devil is in the details. A
one-step refactoring between virtual and physical separation is a
complex task, and it is difficult to get all the details and special cases
right. Therefore, we use two techniques to make refactorings more
manageable:
• We break down refactorings into small steps, small enough to

reason about and to give confidence in their correctness. At
the same time, we support SPL implementations that use a
combination of virtual and physical separation. In each small
refactoring, we transform only a part of the SPL and thus shift
the implementation in the spectrum between virtual and physical
separation in one or the other direction. In a final step, we
combine the small refactorings (see composite refactorings [42])
and show that they are complete, in the sense that we can
refactor every program into a pure virtually and a pure physically
separated representation.
• We avoid the full complexity of Java (the Java Language Spec-

ification is a book with 688 pages of textual specifications),
AHEAD and the C preprocessor. Instead, we use a subset of Java
based on Lightweight Java [45], enriched with basic mechanisms
for refinements and annotations. This allows us to focus on the
key mechanisms without getting lost in details. In Section 5, we
briefly discuss some other Java constructs, not covered in the
subset.
Using the above simplifications, we proceed in three steps. First,

we introduce a Java subset and extend it with mechanisms for re-
finements and annotations. Second, we describe small refactorings
in both directions step by step and discuss limitations and optimiza-
tions. Finally, we show that the refactorings are complete.

4.1 Lightweight Java with Annotations and Refinements
To discuss completeness of our refactorings, we need to define
a model of language constructs that we want to support. We use

2 We believe that it is actually possible to refactor every annotated program
into a virtually separated one with the same behavior, but depending on the
annotation this might require lots of boilerplate code and replication. As last
resort, we can always generate a feature module per variant, which contains
the entire code of this variant, but eliminates reuse entirely. What kind of
annotations, beyond those discussed in this paper, can be refactored into
more reasonable physically separated representations and whether this has
any importance in practice is an open issue.

cd ::=class C/C { fd md }aF class declaration
ci ::=class C/C in F { fd md }aF class introduction
cr ::=refines class C in F { fd md mr }aF class refinement
x,y ::=v | this; term variable
fd ::=C f;aF field declaration
vd ::=C v; variable declaration
md::=C m(vd) { s return y; }aF method declaration
mr ::=refines C m(vd) { method refinement

s v = original(y); t return y; }aF
s,t ::= statement:

{s}aF block
v = x;aF variable assignment
v = x.f;aF field read
x.f = y;aF field write
if (x==y)aF s else s’ conditional branch
v = x.m(y);aF method call
v = new C();aF object creation

Figure 5. Syntax of LJAR

Lightweight Java, a subset of Java with classes, fields, methods,
and statements, intended “to be as simple as possible while still
retaining the feel of Java” [45]. In contrast to smaller calculi such
as Featherweight Java – which we used in prior work on type-
checking both virtually and physically separated SPLs [25, 5]
– Lightweight Java contains a larger set of language constructs
(specifically statements, including assignments) which makes our
refactorings more interesting and a transfer to full Java more realistic.
In this paper, we do not repeat Lightweight Java because the internal
details of evaluation and typing are not needed (see related work in
Sec.7), but its mechanisms become clear from our description.

To support annotations and refinements, we make several exten-
sions to Lightweight Java and call the resulting language Lightweight
Java with Annotations and Refinements (LJAR). First, we introduce
the possibility to annotate classes, members, and statements. Anno-
tations are always defined with respect to their enclosing elements
(i.e., a statement is included only if its own annotation and the anno-
tations on parent method and parent class all evaluate to true). An
annotation F on an element x is written as xaF, in which F can be a
feature expression or empty. An element that is explicitly not anno-
tated, is written as xaØ. In some refactorings, we omit annotations
that are not relevant and propagated unmodified. Second, we intro-
duce constructs for physical separation guided by AHEAD and its
formalization in [20]. A class introduction C in a feature module for
feature expression F is written as ‘class C extends D in F {. . . }’, a
class refinement as ‘refines class C in F {. . . }’ (in a surface syntax,
the feature expression is typically specified externally, e.g., repre-
sented by a containment hierarchy [11, 6]). A method refinement is
similar to a method declaration but has a modifier refines and must
contain a single original call. To integrate both physical and virtual
separation, also class introductions and class refinements including
their members and statements can be annotated. Hence, an SPL can
contain both refinements and annotations.

The full syntax of our language is shown in Figure 5. We
abbreviate ‘extends’ as ‘/’ and use overbars to denote lists,
e.g., s is a list of statements, xi

i∈1..n stands for x1x2...xn (we
omit i ∈ 1..n when the length is not important). We use the
meta-variables C, D, and E for class names, the meta-variables
F, G, H, I, J, K, and L for feature expressions and corresponding
feature modules, v for variables, s, t, and u for statements, f for
field names, and m and n for method names.

Type safety for product line extensions of calculi like
Lightweight Java and Featherweight Java has already been
shown [25, 5, 20] and is outside the scope of this paper. In this
work, three simple sanity rules S.1–S.3 suffice to reasonably
discuss correctness. First, we require that two or more classes (class

declarations and/or class introductions) must not have the same
name, unless they are defined in mutually exclusive feature modules
or have mutually exclusive annotations (S.1). Second, inside a
class and its refinements, two or more fields or methods with the
same name are not allowed, unless they are defined in mutually
exclusive feature modules or have mutually exclusive annotations
(S.2). Finally, class refinements must be composed after a class
introduction with the same name (S.3), see Section 2.3.

4.2 Physical to Virtual
We start with refactorings from physically separated programs or
programs that use any combination of physical and virtual separation
toward a pure virtual separation. In the resulting program, language
constructs from a physical separation (class introductions, class
refinements, method refinements) are no longer present.

We start by flattening feature modules into normal class dec-
larations. Because the composition order is relevant in a physical
separation, we proceed with one feature module at a time in the com-
position order. That is, we first refactor all class introductions and
refinements of the first feature module into annotated class declara-
tions, then we refactor those from the second feature module, and so
on. Step by step, we eliminate class introductions and refinements
and create corresponding annotated class declarations.

First, refactoring R.1 takes a class introduction inside a feature
module and creates an ordinary class declaration. In this refactoring,
annotations have to be changed such that the resulting class and
members are included in the same variants as before. In the original
code, the class introduction is included in those variants in which
feature expression F evaluates to true. Additionally, in case the class
declaration has some annotation G, that annotation must evaluate
to true as well; in a pure physical separation, there is no such
annotation and thus G = Ø. Thus, the resulting class declaration is
annotated with F∧G (or just F if G = Ø). Annotations on members
or even statements do not need to be changed, because annotations
are defined with respect to their enclosing element, thus changing
the annotation on the class implicitly affects all inner annotations.

In case two (or more) mutually exclusive feature modules in-
troduce the same class, with refactoring R.2, we merge all their
members into a single class declaration as discussed in Section 3.1.
This is the mechanism behind the example in Figure 2. The class
declaration is included if either one of the original feature declara-
tions is selected (F ∨H). In contrast to R.1, we also need to modify
annotations on members, because we include the containing class
in more variants than before. Therefore, we propagate the classes’
annotations to their members.3

Similar to merging classes from mutually exclusive features, with
refactoring R.3, we also merge members with the same name inside
a class. If a field is introduced in two different feature modules F
and G, both instances can be merged and annotated with F ∨G. To
merge two methods with the same signature, we simply concatenate
their statements and propagate annotations as above. Furthermore,
since Lightweight Java allows only a single return statement, we
need one additional assignment to get the return value right in either
case (x and y are return values passed as parameter or assigned in s
respectively t). Instead of concatenation, we could even implement
further optimizations to detect and merge cloned statements.

Next, we transform class refinements with refactoring R.4.
Field declarations and method declarations in class refinements
are merged like in R.2. We can assume that a class introduction has
already been transformed into a class declaration by R.3, otherwise
there would be an error in the implementation (violation of sanity

3 Note, introducing the same class in two feature modules that may be
selected at the same time is an error according to sanity condition S.1; it can
be detected prior to our refactoring by existing safe composition tools [46].

class C/D in F{ fd md }aG ⇒† class C/D{ fd md }a(G∧F)

† provided: class C/D {...} does not already exist
Refactoring R.1: Move class introduction to class decl.

class C/D in F {

fdiaIi
i
mdjaJj

j

}aG
class C/D {

fd’kaKk
k

md’laLl
l

}aH

⇒†

class C/D {

fd’ka(Kk∧H)
k

fdia(Ii∧F∧G)
i

md’la(Ll∧H)
l

mdja(Jj∧F∧G)
j

}a((F∧G)∨H)

† provided: mexcl(F ∧G, H)
Refactoring R.2: Merge class introduction with class decl.

class C/D {
... fdaF ... fdaG ...

}
⇒†

class C/D {
... fda(F∨G) ...

}

class C/D { ...
E m(C x) {

siaHi
i return x;

}aF ...
E m(C x) {

tjaIj
j return y;

}aG ...
}

⇒†

class C/D { ...
E m(C x) {

sia(Hi∧F)
i

tja(Ij∧G)
j
x=y;aG

return x;
}a(F∨G)
...

}

† provided: mexcl(F, G) ∧ x 6= this
Refactoring R.3: Merge mutually exclusive members

refines class C in F {

fdiaIi
i
mdjaJj

j
mrkaKk

k

}aG
class C/D {

fd′ md′

}aH

⇒

class C/D {

fd′ fdia(Ii∧F∧G)
i

apply(md′,

mrka(Kk∧F∧G)
k
)

mdja(Jj∧F∧G)
j

}aH

Refactoring R.4: Resolve class refinement

apply(
C m(C x) {
saH return x;

}aF,
wrap C m(C x) {

tiaIi
i

v=original(x);
ujaJj

j return y;
}aG

)

⇒

C m(C x) {

tia(Ii∧G)
i

saH v=x;

uja(Jj∧G)
j
v=yaG

return v;
}aF

Refactoring R.5: Apply method refinement

rule S.3 ‘introduction before refinement’, detectable by existing safe
composition tools [46]). Nevertheless, special attention is required
for method refinements, which change the implementation of exist-
ing methods. However, since this mechanism is not trivial, we defer
it to an auxiliary function apply, which we explain below. After refac-
toring class refinements, members can be merged again with R.3.

The function apply is used to apply a list of method refinements
to a list of method declarations and returns a list of (possibly modi-
fied) method declarations. Internally, apply iterates over all method
declarations and checks whether one of the method refinements has
a matching signature. If a method refinement matches, it replaces
the refined method and the statements of the refined method are
inlined at the ‘original’ call (note, in Java this might require to use
fresh variable names); if no method refinement matches, the method
is returned unchanged. Due to space restrictions, we show only the
core mechanism of applying a method refinement in R.5; the full
mechanism of apply and how it iterates over multiple method dec-

class C/D {...}a(F∨G) ⇒† class C/D { ... }aF
class C/D { ... }aG

class C/D {
... mda(F∨G) ... } ⇒† class C/D {

... mdaF mdaG ... }

† provided: mexcl(F, G)

Refactoring R.6: Split merged classes and members

class C/D {fd md}a Ø ⇒ class C/D in Base {fd md}a Ø

class C/D {fd md}aF ⇒ class C/D in F {fd md}a Ø

class C in F {fd md}aG ⇒ class C in (F∧G) {fd md}a Ø

Refactoring R.7: Move class declaration to feature module

class C/D in F
{ ... mdaG ... }a Ø ⇒† class C/D in F

{ ... }a Ø

† provided: mexcl(F, G)
Refactoring R.8: Remove dead member

class C/D in F
{ ... mdaG ... }a Ø ⇒† class C/D in F

{ ... mda Ø ... }a Ø

† provided: impl(F, G)

Refactoring R.9: Remove redundant annotations

class C/D in F
{ ... mdaG ... }a Ø ⇒

class C/D in F { ... }a Ø
refines class C in (F∧G)
{ mda Ø }a Ø

Refactoring R.10: Move member to refinement

larations and method refinements is specified in an accompanying
technical report [27].

To summarize, with refactorings R.1–R.5, all class introductions
and class and method refinements can be transformed into annotated
class declarations. Additionally, we merge mutually exclusive
classes and members, which is not necessary (and not always
possible; e.g., two classes with the same name but different super
types or two methods with the same name but different signatures
cannot be merged and are kept as two distinct class declarations
with different annotations) but useful to avoid replication as
discussed in Section 3.1.

4.3 Virtual to Physical
Next, we discuss refactorings in the other direction, in which we
replace all annotations (from a pure virtual separation or from a
program that uses both annotations and feature modules) with
class introductions and class refinements. Unfortunately, this is not
‘just’ the reverse operation, because many annotations are possible
(even in our limited model) that have no immediate representation
using feature modules [26]. We start by separating members into
different class introductions and refinements, and afterward discuss
how to handle annotated statements inside a method. Except for
refactoring R.11, the order in which these refactorings are applied
does not matter, as we will discuss.

As a first step, refactoring R.6 splits classes and members anno-
tated with a disjunction of mutually exclusive feature expressions.
This is inverse to R.2 and R.3, except that we defer splitting state-
ments inside methods to refactorings R.11 and R.12 below.

Second, refactoring R.7 transforms each class declaration di-
rectly into a class introduction. After this refactoring, every class
is still included in the same variants, but annotations are no longer

class C/D in F {
...
D m(D x) {

siaG
i

t

ujaG
j

return y;
}a Ø
...

}a Ø

⇒†

class C/D in F { ...
D m(D x) {
t return y;

}a Ø
...

}a Ø
refines class C

in (F∧G) {
wrap D m(D x) {

siaØ
i

y=original(x);
ujaØ

j

return y; }
}a Ø

† provided: (F ∧G)� H with H=feature of last refinement of C.m
Refactoring R.11: Extract method refinement

C m(C x) {
s v=x;aF u
return y;

}aG
⇒

C m(C x) {
s v=h(v,x); u
return y;

}aG
C h(D v, E x) {
v=x;aF return v;

}aG

C m(C x) {
s v=x.n(y);aF u
return y;

}aG
⇒

C m(C x) {
s v=h(v,x,y); u
return y;

}aG
D h(D v, E x, D y) {
v=x.n(y);aF return v;

}aG

Refactoring R.12: Extract statement

required. If a class declaration does not have any annotation, it is
moved into the Base module and thus included in all variants.

Refactorings R.8–R.10 eliminate annotations on methods (anno-
tations on fields are removed exactly the same way and omitted here
for brevity). There are three possible cases:
1. A method is dead. A dead method is annotated in such a way

that it is never included in any variant that includes the class
(potentially caused by merging or by user-defined annotations).
Dead members are removed with R.8.

2. A method is always included in the same variants as the enclos-
ing class. In this case, the annotation is redundant and can be
removed with R.9 (necessary to revert R.2).

3. A method is included in some variants. These methods are moved
into class refinements with R.10 (reverse of R.4, except we do
not split methods yet). Class refinements are created in this
refactoring as needed; if a suitable class refinement already
exists, the member is moved there. Note, the composition order
of the resulting feature models automatically fulfills sanity rule
S.3 (‘refinement after introduction’), because F � (F ∧ G)
(see Sec. 2.1).
So far, refactorings R.6–R.10 split classes and members and

move them all into their respective feature modules. They can be
executed until all annotations on classes and members are elimi-
nated. The part that is technically the most difficult is eliminating
annotations on statements by extracting one or more method refine-
ments (dead statements and redundant annotations can be resolved
as above for methods). The reverse operation of applying a method
refinement (R.5) is simple, but only works if the first and/or last
statements belong to a feature like in Figure 1. This would allow us
to refactor all programs that originate from a physically separated
program, but unfortunately (or fortunately, depending on the point
of view) virtual separation is more flexible and expressive because
there is no feature order and because, like in Figure 3, statements
in the middle of a method can be annotated [26, 24]. That is, in

class Foo {
C m(...) {
...
#ifdef A
y=z;
x=z;
#endif
...
return x;

}
}

class Pxy { C x; C y; }
class Foo {
C m(...) { ...
p=h(p, x, y, z);
x=p.x; y=p.y;
... return x;

}
Pxy h(Pxy p, C x, C y, C z) {
#ifdef A y=z; x=z; #endif
p=new Pxy(); p.x=x; p.y=y;
return p;

}
}

Figure 6. Extracting sequences of statements

many cases, we cannot directly extract method refinements, but
we need a step to prepare the source code. In the following, we
describe general steps for refactoring annotated statements. We keep
the steps described here intentionally simple and aim primarily at
completeness. There are many possible optimizations to create a
less verbose output, some of which we discuss below.

First, we extract method refinements as long as possible with
refactoring R.11 (works in class introductions and class refine-
ments [27]). Technically, there are three conditions to extracting
method refinements: (1) the first and/or last statements must be an-
notated, (2) annotated statements at the end of the method must not
access variables modified by the inner statements (except the return
value), and (3) if we already extracted a method refinement from
this method, the target feature module must be composed before
the feature module that contains the previously extracted method
refinement. The second condition is required because assignments
to variables in inner statements are not visible to a method refine-
ment. The third condition is important to retain the order in which
statements are executed. The outermost method refinement must be
extracted first and applied last; if this order cannot be guaranteed,
we need a different solution.

A solution for all cases in which it is not possible to apply
R.11, is to extract annotated statements into a separate method h
(any fresh name) each. This is essentially an instance of the well-
known extract method refactoring [22]. In the extracted method,
the statement is the only statement and can be extracted as method
refinement with R.11 (i.e., all three conditions are fulfilled). We
formalize this mechanism in R.12 for assignments and method calls
and skip similar refactorings for the other statements due to space
restrictions (see accompanying technical report [27] for a full list).

Instead of extracting every statement in isolation, it is also
possible to extract sequences of statements (also necessary for
blocks and conditionals). The challenging part for sequences is
to get the parameters and return values right, which requires static
source code analysis (e.g., define-use chains). As parameters, we
need every variable that is ever accessed (read or write) inside the
block/conditional. Furthermore, we need to return every variable
that is written and accessed later. Because Java can have only a
single return value, we need to construct (generate) complex return
objects that are assigned to individual variables later. For an example
that can be extrapolated into a general pattern, see Figure 6.

To summarize, we use refactorings R.6–R.10 to eliminate anno-
tations on classes and members and refactoring R.11 to eliminate
annotations on statements. If R.11 cannot be applied directly, we
can extract the annotated statement into a dedicated method first.

Optimizations: Finally, some optimizations are possible, to make
the refactored code less verbose. First, if a sequence of statements is
annotated with the same feature expression, it is possible to extract
the whole sequence instead of every item in isolation to reduce the
number of generated methods. Second, it is a good idea to mark

the generated boilerplate code (either with a naming convention or
another mechanism like Java’s annotations) and to remove or inline
this code when refactoring the generated code back into a virtually
separated representation. Finally, methods and method refinements
are moved into feature module F ∧ G with R.10 and R.11. In
physically separated programs, complex feature annotations are less
common. Nevertheless, the conjunction F ∧G is necessary to ensure
that refinements are composed in the correct order (F � F ∧ G,
see Sec. 2.1). If G is composed after F (F � G) and G is always
selected when F is selected (implies(G, F)), we can move the
method/method refinement into feature module G instead of F ∧G.

4.4 Completeness
After formalizing the individual refactorings, the question arises
whether, in combination, the refactorings are complete. That is, we
want to show that every possible program (given the syntax and
sanity rules of LJAR) that uses any combination of feature modules
and/or annotations can be refactored into a pure virtual separation
(with annotations, without feature modules) and also into a pure
physical separation (with feature modules, without annotations).

For our refactorings, completeness is actually straightforward to
show. Let us start again with refactorings toward a pure virtual sepa-
ration. With R.1 and R.2, we can eliminate all class introductions,
leaving only class refinements and annotated class declarations. The
only possibility this could fail is if two classes with the same name
were not mutually exclusive, which would be a violation of sanity
rule S.1 in the first place. Refactoring R.3 reduces replication, but is
not necessary to show completeness. Finally, refactoring R.4 finishes
the case, because it eliminates all class refinements and applies all
method refinements. We can ensure that R.4 eliminates all refine-
ments, because sanity rule S.3 specifies that the class refinement
must follow a class introduction with the same name (which would
be refactored by R.1 or R.2 into a class declaration first).

To show completeness for refactorings toward a pure physical se-
paration, we begin with statements. By applying R.12, we can extract
every annotated statement into a separate method. Refactoring R.12
works without additional conditions for all possible statements in
LJAR. After they have been extracted into separate methods, the
original method does not contain any annotated statements, and
the new methods contain only a single annotated statement each,
which can be subsequently extracted into a method refinement by
refactoring R.11. This way, R.11 and R.12 eliminate all annotations
on statements, leaving us with annotated classes and members that –
without further conditions – can be refactored into class introduc-
tions and class refinements with R.7 and R.10, thus removing the
remaining annotations and finishing the case. �

5. Implementation & Case Studies
We have implemented the refactorings between virtual and physi-
cal separation as exports and imports in our tool CIDE [26]. CIDE
is a preprocessor-like environment for SPLs based on Eclipse, in
which code fragments can be annotated and different variants can be
generated from this annotated code. In contrast to a traditional pre-
processor as in C, CIDE enforces ‘disciplined’ annotations, i.e., only
entire classes, methods, or statements can be annotated (similar to
annotations in LJAR, see Fig. 5). Annotations are stored by a tool in-
frastructure and are visualized with background colors in the editor.

The refactoring from virtual to a physical separation is imple-
mented as export in CIDE. Currently, CIDE supports to export
annotated Java code into AHEAD [11], FeatureHouse [6], and As-
pectJ [29] feature modules. Internally, this export is performed by
AST transformations based on the annotations as described in our
model above. The mechanism is similar for all target languages,
differences lie mostly in the surface syntax of the result, i.e., how
class and method refinements are specified.

The refactoring from physical to virtual separation is im-
plemented as import in CIDE. CIDE can import AHEAD and
FeatureHouse modules and refactor them into annotations. Since
these languages use refinement mechanisms very close to LJAR, we
took the existing implementation of the FeatureHouse composition
engine and extended it to support the composition of mutually
exclusive feature modules and to propagate associated feature
expressions during the composition.

In addition to the refactorings in this paper, we implemented
several additional refactorings for language features that are fre-
quently needed and annotated in our SPLs, but that are not part of
Lightweight Java (and LJAR). Specifically, we added support for lo-
cal variables (that are tricky to refactor, but possible with some static
source code analysis and boilerplate code) and for no or multiple
return and original statements that must not necessarily be top-level
statements as in LJAR. A thorough discussion of these additional
refactorings is outside the scope of this paper.

Since its development, we have used our refactorings for a cou-
ple of practical applications. For instance, for some recent work on
a language extension of AHEAD [32], we wanted to decompose a
number of legacy applications from different domains into SPLs. We
used CIDE to annotate and subsequently export AHEAD code, be-
cause we felt that this would be much faster than extracting class re-
finements manually. Also the Berkeley DB case study in [6] was cre-
ated this way. We also imported existing projects, to use CIDE’s type-
checking mechanism [25] on existing, physically separated SPLs.

In the following, we report some statistics of four projects
we refactored. To avoid biased decompositions, we describe
only refactorings of SPLs that have been developed prior to our
implementation (and, except Berkeley DB, by other authors). Due
to space restrictions, we limit our discussions on brief statistics
shown in Table 1:
• First, we imported (physical to virtual) the common SPL ex-

ample ‘graph product line’, proposed in [34] as a benchmark
for SPL technology. We imported an implementation with 2000
lines of AHEAD code and 20 features in 29 physically sepa-
rated feature modules (4 pairs of mutually exclusive features, 6
optional features) and exported it back again.
• Second, we imported the Bali product line which is a set of

AHEAD tools to manipulate, transform and compose grammars.
Bali was implemented with 18 physically separated feature
modules, with about 7000 lines of AHEAD code [11] (see [46]
for feature model). In Bali there are three mutually exclusive
and several optional features to generate different tools.
• Third, we exported Berkeley DB, an embedded database engine

with 80 000 lines of Java code, which we virtually separated
with CIDE into 38 features in earlier work [26]. This way, we
refactored the annotated code into feature modules and back
again. Due to many annotations in the form A ∧B this resulted
in 99 exported feature modules.
• Finally, we exported an annotated version of Prevayler (an object

persistence library) with 5 features and 8000 lines of Java code
and imported it back again. Prevayler was annotated by V. B. de
Oliveira independently of our work.

In Berkeley DB and Prevayler, there were a few annotations
not supported by our refactorings (especially some annotated
parameters), so we prepared the code slightly (using overloaded
methods instead of annotated parameters).

We refactored all SPLs in both directions. Exporting an SPL and
importing it back again does not necessarily yield exactly the same
program. Aside from whitespace differences, some refactorings
create boilerplate code (e.g., additional assignments in R.3 and R.4,
additional methods or classes when extracting statements). Some
of this boilerplate code is removed in the reverse refactoring, but
some remains because it is not always straightforward to decide

Virtual Sep. Physical Sep.

SPL FE CD/MD AN D FM CR/MR GH

GraphPL 20 16/163 167 ← 29 41/29 -
Bali 18 40/503 122 ← 18 26/9 -
Berkeley 38 283/6515 2297 → 99 338/954 858
Prevayler 5 140/994 175 → 8 13/19 28
FE: number of features; CD/MD: class/member declarations; AN: annotated code
fragments; D: direction of initial refactoring; FM: feature modules; CR/MR: class
refinements/method refinements; GM: generated ‘hook’ methods

Table 1. Statistics before and after refactoring

whether code is user-written or generated. Nevertheless, in all
SPLs, we sampled a number of variants from the original and
the refactored SPL implementations. Although the variants are
not necessarily syntactically equivalent, we used runtime tests to
confirm that they behave equivalently. CIDE is available online:
http://fosd.de/cide.

6. Discussion & Perspective
An insight, confirmed by this formalization, is that annotations are
more expressive than a physical separation: Annotations are able
to implement more fine grained extensions, e.g., statements in the
middle of a method, parameters, or even arbitrary tokens [26]. In
contrast, most approaches for a physical separation provide coarse-
grained mechanisms like method refinements. A refactoring that
can transform any possible annotation, such that any sequence of
characters can be annotated, appears not worth pursuing. Even if
we found such a refactoring, the effort for its implementation and
the complexity of the generated code (that has to be implemented
with coarse grained mechanisms like method refinements by using
workarounds like preliminary refactorings) would render such
approach infeasible. However, as we have shown, we can define
refactorings and prove them complete if we limit the expressiveness
of annotations to ‘disciplined’ annotations.

Formally, ‘disciplined’ annotations reduce the expressiveness of
a virtual separation. Nevertheless, this approach has often even been
discussed as beneficial regarding readability. According to studies by
Ernst et al. [21], Baxter and Mehlich [12], and Vittek [47] in practice
most annotations are already in a disciplined form (66–85 %), and
developers typically strive for disciplined annotations (“The reaction
of most staff to this kind of trick is first, horror, and then second, to
insist on removing the trick from the source.” [12]). Unless there is
a policy that forbids to change legacy code, disciplined annotations
are not significantly limiting: According to Baxter and Mehlich
refactoring annotated legacy annotations into disciplined annotations
for 50K LOC of C code can be done within few hours [12].

Nevertheless, the question remains: Which kind of annotations
and which kind of language constructs from physical separation
should be supported? For example, should we allow annotating pa-
rameters? Or should we consider quantification mechanisms from
contemporary aspect-oriented languages [35]? As usual there is
a balance between complexity, readability, and effort for imple-
menting refactorings. Especially evaluation regarding source code
complexity and readability requires empirical studies, which are
still missing [7]. In our work, we decided to support a sound set of
language constructs, guided by (a) capabilities of AHEAD, Feature-
House, and similar tools and (b) by our experience with frequently
used constructs from earlier projects [26, 2].

With LJAR, we have demonstrated that (within the limitations of
‘disciplined’ annotations) both virtual and physical separation can
express the same programs. This allows us to leverage previous com-
parisons that pointed out respective advantages of both approaches

and use a combination of both. For example, regarding SPL adoption,
annotations are considered to be quicker and less risky, but physical
separation is considered to be better suited for long term develop-
ment and maintenance [17, 24]. By supporting both representations
and being able to refactor between them, we can start with a virtual
separation and gradually refactor toward an physical separation, thus
combining both advantages and lowering the adoption barrier.

Another point worth mentioning is that some refactorings require
workarounds or boilerplate code (e.g., complex feature expressions
or generated statements, methods, classes), which may have a nega-
tive impact on readability. There will always be implementations that
are more readable in the one or the other representation. Again, the
benefit of automated refactorings is that we can have both represen-
tations and the developer can decide which one to use for each task.

Finally, there are numerous tools and theories that have been
developed for one or the other representation, e.g., navigation tools
and views on annotated source code [43, 26] or approaches to
analyze feature interactions in feature modules [33, 46]. With an
integration and automated refactorings, we can reuse them for either
representation.

7. Related Work
There are five fields of related work: (1) extracting features from
from legacy code, (2) refactoring preprocessor code into physically
separated code, (3) refactoring from physical to virtual separation,
(4) composition order, and (5) type-checking SPLs.

First, there is a group of approaches that begin with legacy code
and turn it into an SPL by identifying and extracting features. The
key difficulty lies in locating the code that belongs to a feature,
a process known as feature location or aspect mining [39, 15],
and not in the actual refactoring. Once, feature code has been
identified, there are additional questions regarding interacting or
overlapping features, i.e., code fragments belonging to multiple
features. For such situations, models for multidimensional feature
structures have been developed, most prominently lifters [40] and
derivatives [33, 30], which all create additional feature modules that
belong to complex feature expressions (e.g., F∧G). Our work builds
on these results and underlying composition models (many of our
refactorings create code fragments annotated with a conjunction of
features), but focuses on automated refactoring of already separated
code, not on locating and extracting new features.

Second, there are several related approaches to (partially) refac-
tor virtually separated legacy code automatically into a physical
separation. Especially in the field of aspect-oriented software devel-
opment, there has been effort in transforming #ifdef statements in
legacy C programs into aspects [1, 16, 41]. The key concern is to
understand existing preprocessor usage, e.g., classify what typical
patterns exist and how they can be extracted [1, 16, 41]. Many ap-
proaches eventually enforce disciplined annotations [12, 41] or parse
code only partially, while ignoring undisciplined annotations [1].
Furthermore, these approaches usually do not consider alternative
features. In contrast, our work does not aim at understanding all
legacy code, but we consider only SPLs with disciplined annota-
tions. Nevertheless, this enables us to guarantee that every possible
disciplined annotation can be refactored.

Third, refactorings from physical to virtual separation are rare,
because most researchers regard a physical separation as the more
desirable form. The only exception we are aware of is the work
of Kim et al. [30], who discuss differences regarding ordering and
type-checking for virtual and physical separation. In their work, they
mention that they have mechanically transformed AHEAD projects
into an annotated code base to create their case studies, but this
transformation is not formalized and alternatives were not discussed.

Fourth, there have been discussions about the importance of the
composition order in physically separated programs and whether

the same program can be rewritten to use a different composition or-
der [4, 30]. With the notion of pseudo-commutativity there are trans-
formations to switch the order of two features by changing their im-
plementation but not their behavior (e.g., by introducing hook meth-
ods as in R.12). Interestingly, our refactorings corroborate this theory
and can actually be used to perform pseudo-commutative transforma-
tions: We can refactor a physically separated program in one order
into a virtually separated one (which does not have a notion of order)
and back to a physically separated program in any desired order.

Finally, there are several approaches to type check SPLs, i.e., find
typing errors as dangling method invocations in all variants without
actually generating them all. There are calculi for both virtual [19,
25, 30] and physical separation [46, 5, 20]. A challenge for future
work is to model a calculus that supports both representations and
formally prove that our refactorings preserves semantics and typing.
In this work, we limited our discussion to few essential sanity
conditions (S.1–3) from these calculi and gain confidence in the
correctness of our refactorings from splitting them into small steps,
as it is common for refactorings [22, 42].

8. Conclusion
We have presented a formal model for a programming language
LJAR, which supports both virtual separation of features, using
annotations (à la #ifdef or CIDE) and physical separation of features,
using feature modules with refinements and method refinements
(à la AHEAD or FeatureHouse). Based on this model, we have
described refactorings to transform any given SPL that uses either
representation or even a mixture of both toward a pure virtual or a
pure physical separation. We have implemented these refactorings
in CIDE and demonstrated practicality on four case studies.

In the context of our model, we have shown the equivalence
between both representations and proved the refactorings complete.
This lays ground for an integration of different SPL development
methods and tools allowing developers to select the representation
suited best for the problem at hand, while still allowing to change
the representation later. In future work, we intend to build a tool in-
frastructure that, like LJAR, supports virtual and physical separation
and small step refactorings between them. Additionally, we plan to
empirically evaluate the benefits of either representation on program
comprehension; our refactorings provide a foundation for this.

Acknowledgments. We thank Don Batory for discussions about
different refactorings and implementation patterns, including many
tricky details regarding alternative features, which eventually moti-
vated us to pursue a formalization. Furthermore, we thank Virgilio
Borges de Oliveira for providing an annotated version of Prevayler
and the anonymous GPCE reviewers for providing valuable feed-
back. Apel’s work is supported in part by DFG project #AP 206/2-1.

References
[1] B. Adams, W. De Meuter, H. Tromp, and A. E. Hassan. Can We

Refactor Conditional Compilation into Aspects? In Proc. Int’l Conf.
Aspect-Oriented Software Development (AOSD), pages 243–254. 2009.

[2] S. Apel. How AspectJ is Used: An Analysis of Eleven AspectJ
Programs. Journal of Object Technology (JOT), 9(1), 2010.

[3] S. Apel and C. Kästner. An Overview of Feature-Oriented Software
Development. Journal of Object Technology (JOT), 8(5):49–84, 2009.

[4] S. Apel, C. Kästner, and D. Batory. Program Refactoring using
Functional Aspects. In Proc. Int’l Conf. Generative Programming and
Component Engineering (GPCE), pages 161–170. 2008.

[5] S. Apel, C. Kästner, and C. Lengauer. Feature Featherweight
Java: A Calculus for Feature-Oriented Programming and Stepwise
Refinement. In Proc. Int’l Conf. Generative Programming and
Component Engineering (GPCE), pages 101–112. 2008.

[6] S. Apel, C. Kästner, and C. Lengauer. FeatureHouse: Language-
Independent, Automated Software Composition. In Proc. Int’l Conf.
Software Engineering (ICSE), pages 221–231. 2009.

[7] S. Apel, C. Kästner, and S. Trujillo. On the Necessity of Empirical
Studies in the Assessment of Modularization Mechanisms for
Crosscutting Concerns. In Proc. ICSE Workshop on Assessment
of Contemporary Modularization Techniques (ACoM), 2007.

[8] S. Apel, T. Leich, and G. Saake. Aspectual Feature Modules. IEEE
Trans. Softw. Eng. (TSE), 34(2):162–180, 2008.

[9] L. Bass, P. Clements, and R. Kazman. Software Architecture in
Practice. Addison-Wesley, 1998.

[10] D. Batory. Feature Models, Grammars, and Propositional Formulas.
In Proc. Int’l Software Product Line Conference (SPLC), pages 7–20.
2005.

[11] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling Step-Wise
Refinement. IEEE Trans. Softw. Eng. (TSE), 30(6):355–371, 2004.

[12] I. Baxter and M. Mehlich. Preprocessor Conditional Removal by
Simple Partial Evaluation. In Proc. Working Conf. Reverse Engineering
(WCRE), pages 281–290. 2001.

[13] A. Bergel, S. Ducasse, and O. Nierstrasz. Classbox/J: Controlling
the Scope of Change in Java. In Proc. Int’l Conf. Object-Oriented
Programming, Systems, Languages and Applications (OOPSLA),
pages 177–189. 2005.

[14] D. Beuche, H. Papajewski, and W. Schröder-Preikschat. Variability
Management with Feature Models. Sci. Comput. Program., 53(3):333–
352, 2004.

[15] S. Breu. Aspect Mining Using Event Traces. In Proc. Int’l Conf.
Automated Software Engineering (ASE), pages 310–315. 2004.

[16] M. Bruntink, A. van Deursen, M. D’Hondt, and T. Tourwé. Simple
Crosscutting Concerns Are Not So Simple: Analysing Variability
in Large-Scale Idioms-Based Implementations. In Proc. Int’l Conf.
Aspect-Oriented Software Development (AOSD), pages 199–211. 2007.

[17] P. Clements and C. Krueger. Point/Counterpoint: Being Proactive Pays
Off/Eliminating the Adoption Barrier. IEEE Software, 19(4):28–31,
2002.

[18] K. Czarnecki and U. Eisenecker. Generative Programming: Methods,
Tools, and Applications. ACM Press/Addison-Wesley, 2000.

[19] K. Czarnecki and K. Pietroszek. Verifying Feature-Based Model
Templates Against Well-Formedness OCL Constraints. In Proc. Int’l
Conf. Generative Programming and Component Engineering (GPCE),
pages 211–220. 2006.

[20] B. Delaware, W. Cook, and D. Batory. Fitting the Pieces Together:
A Machine-Checked Model of Safe Composition. In Proc. Europ.
Software Engineering Conf./Foundations of Software Engineering
(ESEC/FSE), 2009.

[21] M. Ernst, G. Badros, and D. Notkin. An Empirical Analysis of C
Preprocessor Use. IEEE Trans. Softw. Eng. (TSE), 28(12):1146–1170,
2002.

[22] M. Fowler. Refactoring. Improving the Design of Existing Code.
Addison-Wesley, 1999.

[23] S. Jarzabek, P. Bassett, H. Zhang, and W. Zhang. XVCL: XML-
based Variant Configuration Language. In Proc. Int’l Conf. Software
Engineering (ICSE), pages 810–811. 2003.

[24] C. Kästner and S. Apel. Integrating Compositional and Annotative
Approaches for Product Line Engineering. In Proc. GPCE Workshop
on Modularization, Composition and Generative Techniques for
Product Line Engineering, pages 35–40, 2008.

[25] C. Kästner and S. Apel. Type-checking Software Product Lines
– A Formal Approach. In Proc. Int’l Conf. Automated Software
Engineering (ASE), pages 258–267. 2008.

[26] C. Kästner, S. Apel, and M. Kuhlemann. Granularity in Software
Product Lines. In Proc. Int’l Conf. Software Engineering (ICSE),
pages 311–320. 2008.

[27] C. Kästner, S. Apel, and M. Kuhlemann. LJAR: A Model of Refactoring
Physically and Virtually Separated Features. Technical Report 8/09,
School of Comp. Science, University of Magdeburg, Germany, 2009.

[28] C. Kästner, S. Apel, S. Trujillo, M. Kuhlemann, and D. Batory.
Guaranteeing Syntactic Correctness for all Product Line Variants: A
Language-Independent Approach. In Proc. Int’l Conf. Objects, Models,
Components, Patterns (TOOLS EUROPE), pages 175–194. 2009.

[29] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.-M.
Loingtier, and J. Irwin. Aspect-Oriented Programming. In Proc. Europ.
Conf. Object-Oriented Programming (ECOOP), pages 220–242. 1997.

[30] C. H. P. Kim, C. Kästner, and D. Batory. On the Modularity of
Feature Interactions. In Proc. Int’l Conf. Generative Programming
and Component Engineering (GPCE), pages 23–34. 2008.

[31] C. Krueger. Easing the Transition to Software Mass Customization.
In Proc. Int’l Workshop on Software Product-Family Eng., pages
282–293. 2002.

[32] M. Kuhlemann, D. Batory, and S. Apel. Refactoring Feature Modules.
In Proc. Int’l Conference on Software Reuse. 2009.

[33] J. Liu, D. Batory, and C. Lengauer. Feature Oriented Refactoring
of Legacy Applications. In Proc. Int’l Conf. Software Engineering
(ICSE), pages 112–121. 2006.

[34] R. Lopez-Herrejon and D. Batory. A Standard Problem for Evaluating
Product-Line Methodologies. In Proc. Int’l Conf. Generative and
Component-Based Software Engineering, pages 10–24. 2001.

[35] H. Masuhara and G. Kiczales. Modeling Crosscutting in Aspect-
Oriented Mechanisms. In Proc. Europ. Conf. Object-Oriented
Programming (ECOOP), pages 2–28. 2003.

[36] G. Murphy et al. Separating Features in Source Code: an Exploratory
Study. In Proc. Int’l Conf. Software Engineering (ICSE), pages
275–284. 2001.

[37] D. Muthig and T. Patzke. Generic Implementation of Product Line
Components. In Proc. Net.ObjectDays, pages 313–329. 2003.

[38] K. Pohl, G. Böckle, and F. J. van der Linden. Software Product
Line Engineering: Foundations, Principles and Techniques. Springer-
Verlag, 2005.

[39] D. Poshyvanyk et al. Feature Location Using Probabilistic Ranking
of Methods Based on Execution Scenarios and Information Retrieval.
IEEE Trans. Softw. Eng. (TSE), 33(6):420–432, 2007.

[40] C. Prehofer. Feature-Oriented Programming: A Fresh Look at Objects.
In Proc. Europ. Conf. Object-Oriented Programming (ECOOP), pages
419–443. 1997.

[41] A. Reynolds, M. E. Fiuczynski, and R. Grimm. On the Feasibility
of an AOSD Approach to Linux Kernel Extensions. In Proc. AOSD
Workshop on Aspects, Components, and Patterns for Infrastructure
Software (ACP4IS), pages 1–7. 2008.

[42] D. B. Roberts. Practical Analysis for Refactoring. PhD thesis,
University of Illinois at Urbana-Champaign, 1999.

[43] M. Robillard and G. Murphy. Concern Graphs: Finding and Describing
Concerns Using Structural Program Dependencies. In Proc. Int’l Conf.
Software Engineering (ICSE), pages 406–416. 2002.

[44] H. Spencer and G. Collyer. #ifdef Considered Harmful or Portability
Experience With C News. In Proc. USENIX Conf., pages 185–198,
1992.

[45] R. Strniša, P. Sewell, and M. Parkinson. The Java Module System: Core
Design and Semantic Definition. In Proc. Int’l Conf. Object-Oriented
Programming, Systems, Languages and Applications (OOPSLA),
pages 499–514. 2007.

[46] S. Thaker, D. Batory, D. Kitchin, and W. Cook. Safe Composition
of Product Lines. In Proc. Int’l Conf. Generative Programming and
Component Engineering (GPCE), pages 95–104. 2007.

[47] M. Vittek. Refactoring Browser with Preprocessor. In Proc. European
Conf. on Software Maintenance and Reengineering (CSMR), pages
101–110. 2003.

