
When to Use Features and Aspects? A Case Study

Sven Apel
Department of Computer Science

University of Magdeburg, Germany
apel@iti.cs.uni-magdeburg.de

Don Batory
Department of Computer Sciences

University of Texas at Austin
batory@cs.utexas.edu

Abstract
Aspect-Oriented Programming (AOP)and Feature-Oriented Pro-
gramming (FOP)are complementary technologies that can be com-
bined to overcome their individual limitations.Aspectual Mixin
Layers (AML)is a representative approach that unifies AOP and
FOP. We use AML in a non-trivial case study to create a product
line of overlay networks. We also present a set of guidelinesto as-
sist programmers in how and when to use AOP and FOP techniques
for implementing product lines in a stepwise and generativeman-
ner.

Categories and Subject DescriptorsD.2.2 [Software Engineer-
ing]: Design Tools and Techniques; D.3.3 [Programming Lan-
guages]: Language Constructs and Features

General Terms Design, Languages, Experimentation

Keywords Feature-oriented programming, aspect-oriented pro-
gramming, software product lines, collaboration-based design,
stepwise development, separation of concerns, crosscutting

1. Introduction
Two advanced programming paradigms are gaining attention in
the overlapping fields of program generation, product lines, and
stepwise development (SWD). Feature-Oriented Programming
(FOP) [9] aims at large-scale compositional programming and fea-
ture modularity in product lines.Aspect-Oriented Programming
(AOP) [23] focuses on crosscut modularity in complex software.
Several recent studies have observed that both paradigms have lim-
itations [33, 25, 30, 5], where the weakness of one maps roughly
to the strength of the other. Hence, the two paradigms are notcom-
petitive and can profit from each other [5]. Recent work also has
suggested that both paradigms be combined to exploit their syner-
gistic potential [33, 25, 20, 5].

In this paper, we useAspectual Mixin Layers (AML)as a repre-
sentative approach that integrates AOP and FOP [5]. AML supports
collaboration-based designs, mixin composition, aspect weaving,
and refinement of aspects to decompose and structure software
by features. Further, we present a non-trivial case study using
AML: a product line of peer-to-peer overlay networks (P2P-PL)
whose software products demand a high degree of customizability,
reusability, and evolvability.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

GPCE’06 October 22–26, 2006, Portland, Oregon, USA.
Copyright c© 2006 ACM 1-59593-237-2/06/0010. . . $5.00.

Although AOP and FOP are complementary, their technologies
overlap. FOP uses traditional object-oriented mechanisms(e.g.,
mixins) to implement features, whereas AOP (as exemplified by
AspectJ) uses introductions, pointcuts, and advice. An interest-
ing and fundamental question is: when should a programmer use
feature-oriented mechanisms (i.e., object-oriented concepts like
classes and mixins) and aspect-oriented mechanisms (i.e.,intro-
ductions, pointcuts, and advice) to implement features of aproduct
line? The results of our paper are a set of guidelines and supporting
statistics to answer this question. We begin with a summary of FOP,
AOP, and AML.

2. Background
2.1 Feature-Oriented Programming

FOP studies the modularity offeaturesin product lines, where a
feature is an increment in program functionality [9]. The idea of
FOP is to synthesize software (individual programs) by composing
features (a.k.a.feature modules). Typically, features refine the con-
tent of other features in an incremental fashion. Hence, thetermre-
finementrefers to the set of changes a feature applies to a code base.
Adding features incrementally, calledstepwise refinement, leads to
conceptually layered software designs. For simplicity, weuse the
terms feature and feature module synonymously.

Mixin layers is one approach to implement features [37, 9].
The basic idea is that features are seldomly implemented by single
classes (or aspects). Typically, a feature implements acollabora-
tion [41], which is a collection of roles represented by mixins that
cooperate to achieve an increment in program functionality. FOP
aims at abstracting and explicitly representing such collaborations.
Hence, it stands in the long line of prior work on object-oriented
design and role modeling [38].

A mixin layer is a module that encapsulates fragments of several
different classes (roles) so that all fragments are composed consis-
tently. Figure 1 depicts a stack of three mixin layers (L1 − L3)
in top down order. These mixin layers crosscut multiple classes
(CA − CC). White boxes represent classes or mixins; gray boxes
denote the enclosing feature modules; filled arrows refers to mixin-
based inheritance[13] for composing mixins.

1L

L

L

2

3

C C CA B C

Figure 1. Stack of three mixin layers.

2.2 Aspect-Oriented Programming

AOP aims at separating and modularizing crosscutting concerns [23].
Using object-oriented mechanisms, crosscutting concernsresult
in tangled and scattered code [23, 18]. The idea behind AOP
is to implement crosscutting concerns asaspectswhere the core
(non-crosscutting) features are implemented as components. Using
pointcutsandadvice, an aspect weaver glues aspects and compo-
nents atjoin points. Pointcuts specify sets of join points in aspects
and components, advice defines code that is applied to (or executed
at) these points, and introductions (a.k.a.inter-type declarations)
inject new members into classes. With aspects, a programmeris
able to refine a program coherently at multiple join points. Typi-
cally, aspects introduce new members to existing classes and extend
existing methods. Figure 2 shows two aspects (A1, A2) that extend
three classes at multiple join points (dashed arrows denoteaspect
weaving) in classes (CA − CC).

2

C

1

A

A B

A

C C C

Figure 2. Two aspects extend three classes.

2.3 Comparison

The essential differences between FOP and AOP technologiesare
their emphasis on different types of crosscuts [5].

2.3.1 Homogeneous and Heterogeneous Crosscuts

Two different kinds of crosscuts have been identified in the AOP
literature.Homogeneous crosscutsrefine multiple join points with
a single piece of advice.Heterogeneous crosscuts, in contrast, re-
fine multiple join points each with different pieces of advice [17].
Recall that a feature typically implements a collaborationinvolving
multiple classes. This requires a feature to introduce a setof new
classes, introduce a set of new members to existing classes,and
to refine existing methods. Method refinement in features is usu-
ally accomplished using heterogeneous crosscuts. In contrast, as-
pects perform well in refining a set of methods using one coherent
advice, thus, modularizing a homogeneous crosscut and avoiding
gross code replication.

Although both approaches are able to implement the crosscuts
of the other, they cannot do so elegantly [33, 5]. Consider a syn-
chronization feature, which is a homogeneous crosscut. To emulate
a homogeneous aspect, a mixin layer would have to explicitlyre-
fine each target method, and the code of each method refinement
would be identical (leading to code replication).

Conversely, an aspect may implement a collaboration of classes
by applying a set of introductions and advice. It has been argued
that not expressing the collaboration explicitly in terms of roles or
classes decreases program comprehensibility [39, 33, 12, 5]. This is
because the programmer cannot recognize the original classstruc-
ture of the base program. A further argument is that aspects lack
scalability with respect to large-scale features: supposea collab-
oration consists of many roles, e.g., a data management feature.
Merging all participating roles (storage structures, file access, in-
dexes, transactions, etc.) in one or more aspects1 flattens the in-
herent object-oriented structure of the collaboration, obscures the

1 In Section 5, we address the issue of implementing each individual role as
aspect.

intent of the programmer, and results in a program that is difficult
to understand [39, 33].

2.3.2 Static and Dynamic Crosscuts

Features and aspects may extend the structure of a base program
statically (static crosscuts), i.e., by injecting new members. More-
over, both are able to introduce new super-classes and interfaces to
existing classes. Additionally, features are able to encapsulate and
introduce new classes. Aspects are not able to introduce indepen-
dent classes – at least not as part of an encapsulated feature. The
reason for that is that aspects have no architectural model.2

A dynamic crosscutimplements a refinement in terms of the
dynamic program semantics [31]. By using feature modules one
has only the limited abilities of method overriding to intercept
method executions. Aspects provide a more sophisticated set to
refine a base program based upon its execution, e.g., mechanisms
for tracing the dynamic control flow.

2.4 Symbiosis of Aspects and Features

Aspects and features in their current incarnation are intended for
solving problems at different levels of abstraction [33, 25, 5].
Whereas aspects in AspectJ act on the level of classes and objects
in order to modularize crosscutting concerns, features acton an ar-
chitectural level. That is, a feature decomposes an object-oriented
architecture into a composition of collaborations.

A next logical step is to decompose and structureaspect-
oriented architectures(i.e., object-oriented architectures with as-
pects) into features. Figure 3 shows on the left an aspect-oriented
architecture and on the right features that decompose and structure
this architecture. With this decomposition, a feature encapsulates
fragments of classesandaspects that collaborate together to imple-
ment an increment in program functionality. Note that the original
aspect was split into two pieces (a base and a subsequent refine-
ment). In Section 2.6, we address this issue in more depth.

inheritance association

decomposition

class

weavingaspect refinement

Figure 3. Feature-driven decomposition of an aspect-oriented ar-
chitecture (features are depicted light-gray).

2.5 Aspectual Mixin Layers

Aspectual Mixin Layers integrate AOP and FOP. AML extends
the notion of mixin layers by encapsulating both mixins and as-
pects (see Fig. 4). That is, an AML encapsulates both collaborat-
ing classesand aspects that contribute to a feature. An AML may
refine a base program in two ways: (1) by using common mixin-
composition or (2) by using aspect-oriented mechanisms, inpartic-
ular pointcuts and advice. Probably the most important contribution
of AML is that programmers may choose the appropriate technique
– mixins or aspects – that fits a given problem best.

2 While it is correct that one can just add another class to an environment,
e.g., using AspectJ, this is at the tool level, and is not at a model level.
The programmer has to build his own mechanisms (outside of the tool) to
implement feature modularity [29].

inheritance

mixin−based inheritance

weaving

association aspect

class, mixin

Figure 4. Aspectual Mixin Layers.

2.6 Aspect Refinement

Aspect Refinement (AR)is the incarnation ofstepwise development
(SWD)in AOP [4, 3]. Although the notion of AR does not depend
on AML, it profits from the integration of aspects into features, and
therewith into layered architectures. Having this, it is natural to re-
fine aspects in subsequent features, too. This allows for reusing,
refining, and evolving aspect implementations – true to the motto
of SWD. Refining an aspect means adding new members and ex-
tending existing members. To support AR at the language level,
the notion ofmixin-based aspect inheritancehas been proposed. It
adds the notions ofpointcut refinement, named advice, andadvice
refinement– all based on mixin capabilities [3]. Figure 5 depicts an
aspect included in an AML that is subsequently refined in order to
advise an extended set of join points. Note that the refinement of
the aspect is part of an AML as well. AR allows every piece of an
aspect to be reused, refined, and evolved [5, 4, 3].

aspect, mixin

inheritance

mixin−based inheritance

association

weaving class, mixin

Figure 5. Aspect Refinement.

3. Case Study
3.1 A Product Line for Peer-to-Peer Overlay Networks

As a case study, we use a product line forpeer-to-peer overlay
networks (P2P-PL)[14, 2, 1]. Besides the basic functionality as
routing and data management, P2P-PL supports several advanced
features, e.g., query optimization based on flexible routing path
selection [2], meta-data propagation for the continuous exchange
of control information among peers [14], incentive mechanisms to
counter peers that misbehave (free riders) [11]. Numerous experi-
ments concerning those features demand plenty of differentconfig-
urations to make statements about their specific effects, their vari-
ants, and combinations.

P2P-PL has a fine-grained architecture. It follows the principle
of evolving a design by starting from a minimal base and apply-
ing incrementally minimal refinements to implement design deci-
sions [34]. In its current state, it consists of 113 end-uservisible
features, categorized into several sub-domains, such as hashing and
overlay topology.

We implemented the features of P2P-PL mainly using the
AHEAD tool suite (ATS)[9]. We used ATS for implementing and
composing traditional mixin layers, i.e., collaborationsof Java
classes and refinements. To implement AML, we integrated as-
pects into mixin layers. Aspects were implemented usingARJ3, an

3 http://wwwiti.cs.uni-magdeburg.de/itidb/arj/

extended AspectJ compiler that supports AR [3]. This combination
of ATS and ARJ enabled us to implement and compose AMLs.

3.2 Aspectual Mixin Layers in P2P-PL

An end-user visiblefeature is an increment in program function-
ality that users feel is important in describing and distinguishing
programs within a product line. 14 of the 113 end-user visible fea-
tures of P2P-PL (12%) used aspects (see Tab. 1); the remaining 99
features were implemented as traditional mixin layers. In the fol-
lowing, we explain two representative examples.

aspect description
responding sends replies automatically
forwarding forwards messages to adjacent peers
message handler base aspect for message handling
pooling stores and reuses open connections
serialization prepares objects for serialization
illegal parameters discovers illegal system states
toString introducestoStringmethods
log/debug mix of logging and debugging
dissemination piggyback meta-data propagation
feedback generates feedback by observing peers
query listener waits for query response messages
command line command line access
caching caches peer contact data
statistics calculates runtime statistics

Table 1. Aspectual Mixin Layers used in P2P-PL.

Feedback generator. The feedback generator feature is part of
an incentive mechanism for penalizing free riders – peers that
profit of the P2P network but do not contribute adequately [11].
A feedback generator feature, on top of a peer implementation,
identifies free riders by keeping track whether other peers respond
adequately to messages. If that is not the case, an observed peer
is considered a free rider. Specifically, the generator observes the
traffic of outgoing and incoming messages and keeps track of which
peers have responded in time to posted messages. The generator
creates positive feedback to reward cooperative peers and negative
feedback to penalize free riders. Feedback information is stored
in a feedback repository and is passed to other (trusted) peers to
inform them about free riding. Based on the collected information,
a peer judges the cooperativeness of other peers. Free riders are
subsequently ignored and only cooperative peers profit fromthe
overall P2P network [11].

The implementation of the feedback generator crosscuts the
message sending and receiving features. As Figure 6 shows, the
feedback generator AML contains an aspect (dark-gray) and intro-
duces four new classes for feedback management. Additionally, it
refines the peer abstraction (by mixin composition) so that each
peer owns a log for outgoing queries and a repository for feedback
information.

Generator

MessageSender

FeedbackFeedback Feedback
Repository

QueryLog
Feedback

QueryListener

Peer

Peer

Handler
Feedback

Generator

Figure 6. Feedback generator AML.

While the feedback generator feature is heterogeneous, it relies
on dynamic context information. Figure 7 lists an excerpt from
the above mentioned aspect. The first advice refines the message
sending mechanism by registering outgoing messages in a query
log (Lines 2-7). It is executed only if the methodsendwas called in
the dynamic control flow of the methodforward. This is expressed
using thecflow pointcut (Line 5) and avoids advising unintended
calls tosend, which are not triggered by the message forwarding
mechanism. The second advice intercepts the execution of a query
listener task for creating feedback (Lines 8-10).

1 a s p e c t FeedbackGenerator { ...
2 a f t e r (MessageSender sender, Message msg, PeerId id) :

3 t a r g e t (sender) && a r gs(msg , id) &&
4 c a l l (* MessageSender.send(Message , PeerId)) &&
5 c f l o w (e x e c u t i o n(* Forwarding.forward (..))) &&

6 i f (msg instanceof QueryRequestMessage)
7 { /∗ . . . ∗ / }

8 a f t e r (QueryListener listener) : t a r g e t (listener) &&
9 e x e c u t i o n(vo id QueryListener.run())

10 { /∗ . . . ∗ / }
11 }

Figure 7. Feedback generator aspect (excerpt).

Figure 8 lists the refinement to the peer class implemented as
mixin. It adds a feedback repository (Line 2) and a query log
(Line 3). Moreover, it refines the constructor by registering a feed-
back handler in the peer’s message handling mechanism (Lines 4-
7). For simplicity, we omit presenting the remaining code for feed-
back management.

1 r e f i n e s c l a s s Peer {
2 FeedbackRepository fr = new FeedbackRepository();

3 QueryLog ql = new QueryLog ();
4 r e f i n e s Peer() {

5 FeedbackHandler fh = new FeedbackHandler(t h i s);
6 t h i s .getMessageHandler().subscribe(fh);

7 }
8 }

Figure 8. Feedback management refinement of the classPeer.

In summary, the feedback generator AML encapsulates four
classes that implement the basic feedback management, an aspect
that intercepts the message transfer, and a mixin that refines the
peer abstraction. Omitting AOP mechanisms would result in code
tangling and scattering since the retrieval of dynamic context in-
formation crosscuts other features, e.g., clients of the message for-
warding mechanism. On the other hand, implementing this feature
as one standalone aspect would not reflect the structure of the P2P-
PL framework that includes feedback management. All would be
merged in one or more aspect(s) that would both decrease program
comprehension. Our AML encapsulates all contributing elements
coherently as a collaboration that reflects the intuitive structure of
the P2P-PL framework we had in mind during its design.

Connection pooling. The connection pooling feature is a mech-
anism to save time and resources for frequently establishing and
shutting down connections. To integrate connection pooling into
P2P-PL, we implemented a corresponding AML. Figure 9 shows
this AML consisting of an aspect and a pool class. The aspect in-
tercepts all calls that create and close connections.4 The pool stores
open connections.

Figure 10 lists the pooling aspect; it uses a pool for storingref-
erences to connections (Line 2). The pointcutsclose(Lines 3-4)

4 Note that this is not ideally visualized because the calls are intercepted
only on the client / caller side.

Connection
Pooling

Pooling Pool

Connection

Peer

Figure 9. Connection pooling AML.

andopen(Lines 5-6) match the join points that are associated to
shutting down and opening connections. Named advice5 putPool
(Lines 7-9) intercepts the shutdown process of connectionsand in-
stead stores them in the pool. Named advicegetPool(Lines 10-13)
recovers open connections (if available) and passes them toclients
that request a new connection. This crosscut is heterogeneous be-
cause it advises creating connections (Lines 7-9) differently than
closing connections and (Lines 10-13); but it is also homogeneous
because advice advises a set of join points that are related,e.g., all
client-side calls toclose(Lines 7-9).

1 a s p e c t Pooling {
2 s t a t i c Pool pool = new Pool();
3 p o i n t c u t close(Connection con) :

4 c a l l (vo id Connection.close ()) && t a r g e t (con);
5 p o i n t c u t open(SocketAddr sa) :

6 c a l l (Connection Peer.connect (..)) && a r gs(sa);
7 Object around putPool (Connection con) : close(con) {
8 pool.put(con); r e t u r n n u l l ;
9 }

10 Connection around getPool (SocketAddr sa) :open(sa) {

11 i f (pool.empty(sa)) r e t u r n p r oc e e d(sa);
12 r e t u r n (Connection)pool.get(sa);

13 }
14 }

Figure 10. Connection pooling aspect (excerpt).

Implementing this feature using only mixins would result in
redundant code. This is because for each method that is associated
with opening and closing connections we would have to implement
a distinct method extension. Furthermore, we implemented the pool
not as a nested class within the aspect to emphasize that it isregular
part of the P2P-PL. We consider it as part of the collaboration of
artifacts that implement the feature. Subsequent refinements may
extend and modify it.

3.3 Aspect Refinement in P2P-PL

Features can interact. Feature interaction in FOP can sometimes
take the following form: when two features F and G are present
in a system, a third feature or refinement FG – sometimes called a
derivative[35, 26] – is required to alter the behavior of F or G (or
both). Derivatives are features that are not end-user visible; they are
neededonly when a particular combination of interacting end-user
features are present in a target system, e.g., only ifboth F and G
are present in a target system will feature/derivative FG beneeded.
Derivatives arose in 7 of the 14 AMLs that used aspects. That is, we
decomposed each of the 7 AMLs with aspects into a base AML and
multiple derivatives, where each derivative is itself implemented by
an AML. We explain two representative examples below.

Serialization. The Serializationfeature consists only of one as-
pect. Figure 11 depicts this aspect for a fully-configured P2P sys-
tem. It enumerates a list ofdeclare parentstatements that add the

5 Named advice assigns a name to advice for enabling subsequent refine-
ment [3].

interfaceSerializableto a set of target classes.6 The key thing to
note here is that thelist of declared parents depends on the set
of features that are in a P2P system. This means that if the feed-
back generator feature is not present in a target P2P system,the
declare parents: Feedbackstatement in Figure 11 would need to be
removed from theSerializationaspect, otherwise a warning would
be reported (because there would be noFeedbackclass).7 The same
holds for thePeerId, Contact, Key, andDataItemfeatures. Thus,
the definition of theSerializationaspect depends on other features
that are present in a target system. We can model the synthesis of
a customizedSerializationaspect by refining a base aspect and en-
capsulating these refinements in derivatives. That is, we apply AR
to break apart theSerializationaspect into smaller pieces – a base
aspect + derivatives – to synthesize a system-specificSerialization
aspect.

1 a s p e c t Serialization {
2 d e c l a r e p a r e n t s : Message imp le me n ts Serializable;

3 d e c l a r e p a r e n t s : PeerId imp le me n ts Serializable;
4 d e c l a r e p a r e n t s : Contact imp le me n ts Serializable;

5 d e c l a r e p a r e n t s : Key imp le me n ts Serializable;
6 d e c l a r e p a r e n t s : DataItem imp le me n ts Serializable;

7 d e c l a r e p a r e n t s : Feedback imp le me n ts Serializable;
8 ...
9 }

Figure 11. Serialization aspect (excerpt).

Figure 12 lists the decomposedSerializationaspect, i.e., a basic
Serializationaspect and several refinements (merged in one list-
ing). Each refinement introduces theSerializableinterface to only
one target class. This enables programmers to choose only those
pieces (derivatives) that are required for a particular configuration
of P2P-PL. For example, the refinement that targets the classFeed-
back (Lines 10-12) is only included in a program if the feedback
generator feature is added as well. How fine-grained such decom-
position should be depends on the flexibility of composing end-user
visible features. In P2P-PL, we split the compoundSerialization
feature into 12 pieces (one base and 11 refinements).8

1 a s p e c t Serialization {

2 d e c l a r e p a r e n t s : Message imp le me n ts Serializable;
3 }
4 r e f i n e s a s p e c t Serialization {

5 d e c l a r e p a r e n t s : PeerId imp le me n ts Serializable;
6 }

7 r e f i n e s a s p e c t Serialization {
8 d e c l a r e p a r e n t s : Contact imp le me n ts Serializable;

9 }
10 r e f i n e s a s p e c t Serialization {
11 d e c l a r e p a r e n t s : Feedback imp le me n ts Serializable;

12 } ...

Figure 12. Refactored serialization aspect (excerpt).

6 This particular aspect could also be implemented by enumerating all target
classes in a logical expression, e.g.,declare parents : (Message|| PeerId||
...) implements Serializable.
7 Not all aspect compilers will issue warnings; some may issueerrors when
non-existent classes are referenced. Our use of derivatives avoids compiler
warnings/errors at the expense of imposing more structure on synthesized
P2P-PL programs.
8 We could have implemented the Serialization feature using mixins, as they
too provide the ability to add ’implements interface’ clauses to existing
classes. This design would have exactly the same AML structure with the
same set of derivatives.

Connection pooling. Figure 10 (shown earlier) depicted thePool-
ing aspect for a fully-configured P2P system. By removing features
from a fully-configured system, the definition of thePoolingaspect
changes. Using AR we decomposed thePoolingaspect into a base
and multiple derivatives.

1 r e f i n e s a s p e c t Pooling {
2 p o i n t c u t open(SocketAddr sock) : s upe r.open(sock) ||
3 e x e c u t i o n(* TCP.getConnection(..));

4 }
5 r e f i n e s a s p e c t Pooling {

6 boo le an putPool (Connection con) {
7 s y n c h r o n i z e d(pool) { r e t u r n s upe r .putPool (con); }

8 }
9 Connection getPool (SocketAddress adr) {

10 s y n c h r o n i z e d(pool) { r e t u r n s upe r .getPool (adr); }

11 }
12 }

13 r e f i n e s a s p e c t Pooling {
14 boo le an putPool (Connection con) {
15 boo le an res = t r u e ;

16 i f (TCP.calcAverageThroughput(con) > MIN_TP)
17 res = s upe r.putPool (con);
18 r e t u r n res;
19 }

20 }

Figure 13. Encapsulating design decisions using AR.

Figure 13 depicts the three refinements (merged in one listing).
The first (Lines 1-4) refines the pointcutopento match also connec-
tion requests not addressed toPeer, in our example addressed to a
different network componentTCP. The notion ofpointcut refine-
mentdecouples the aspect from a fixed parent aspect and therefore
increases the flexibility to combine this refinement with other re-
finements (see [3]).

The second refinement is more sophisticated (Lines 5-12). It
refines both advice (putPool, getPool) with synchronization code
to guarantee thread safety. Since the pooling activities are imple-
mented via named advice, this refinement adds synchronization
code. Refining named advice is similar to refining conventional
methods (see [3]).

The third refinement (Lines 13-20) selects only those connec-
tions for pooling that satisfy specific network properties,i.e., the
data throughput. It extends theputPooladvice by code for analyz-
ing the network traffic.

These three refinements are derivatives that are added depend-
ing on the presence of end-user visible features. The first refinement
is added if theTCPcomponent is present, the second refinement is
added if a multi-threaded peer feature is used, and the thirdis added
if a reliable communication feature is used.

3.4 Statistics on FOP and AOP Mechanism Usage

In this section, we present statistics on how and when FOP and
AOP mechanisms were used in implementing our P2P product line.
These statistics provide insight into design guidelines onmecha-
nism usage, which we discuss in detail in Section 4.

3.4.1 Statistics on Used AOP and FOP Mechanisms

We collected the following statistics: (1) the number of implemen-
tation mechanisms used, (2) thelines of code (LOC)associated with
these mechanisms, and (3) the LOC associated with introductions
(static crosscuts) and refining methods (dynamic crosscuts).

Number of classes, mixins, and aspects.The base P2P applica-
tion contains only 2 classes. A fully-configured P2P system con-
sists of 127 classes. Thus, refining the base application into a fully-
configured system required the incremental introduction of125
classes. In addition to class introductions, there were 120class

127; 47%

130; 48%

14; 5%

classes
mixins
aspects

Figure 14. Classes, mixins,
and aspects (number).

3056; 48%

2964; 46%

406; 6%

classes
mixins
aspects

Figure 15. Classes, mixins,
and aspects (LOC).

374; 6%

1114; 17%

4932; 77%

advice
method extensions

introductions

Figure 16. Static and dynamic
crosscutting (LOC).

6; 33%

7; 38%

3; 17%

2; 12%

homogeneous crosscuts
adv. dynamic crosscuts
purely heterogeneous

alter inheritance hierarchy

Figure 17. Applications of as-
pects (number).

refinements implemented as mixins, and 14 aspects were used to
modularize crosscuts. The main point is that we primarily used
classes and mixins for implementing features rather than aspects,
which were used only to a minor degree – about 5% of the overall
number of mechanisms for constructing features (Fig. 14).

LOC associated with classes, mixins, and aspects.The overall
code base of P2P-PL consists of 6426 LOC. Thereof, 3056 LOC are
associated with classes, 2964 LOC with mixins, and 406 LOC with
aspects and refinements to aspects. These statistics are in line with
the above given numbers on the ratio of implementation mechanism
usage. Aspect code sums up to only 6% and mixin code to 46% of
the overall code base (Fig. 15).

LOC associated with refinements and introductions.1488 LOC
of all mixins and aspects target the refinement of existing methods
(dynamic crosscuts). Thereof, 374 LOC are associated with As-
pectJ advice and 1114 with method refinements via mixins. There-
maining 4938 LOC are associated with introductions of new func-
tionality (static crosscuts). This suggests that the dominant activity
of features is to introduce new structures in P2P-PL (77%), rather
than refining existing methods (Fig. 16).

3.4.2 Statistics on AMLs with Aspects

Number and properties of aspects.Of the 14 aspects that were
used, 6 modularized homogeneous crosscuts (that refined a set of
targets coherently with a single piece of code), 7 aspects imple-
mented advanced dynamic crosscuts (that access dynamic context
information, e.g.,cflow), 2 aspects altered inheritance relationships
(that introduce interfaces), and 3 aspects implemented purely het-
erogeneous crosscuts (Fig. 17).9 11 of 14 aspects exploit the ad-
vanced capabilities of AOP (cf. Sec. 2). Using only mixins would
result in redundant, scattered, and tangled workarounds, as ex-
plained before. Only 3 aspects implement collaborations that could
also be implemented by a set of mixins. Section 4 explains whyin
these particular cases using aspects was appropriate.

Number of feature-related classes and mixins.To explore if
aspects are used stand-alone or with other classes and mixins in
concert, we observed that an AML with one aspect also has 1 to 2
additional classes and mixins – up to 6. This shows that our AMLs
encapsulate collaborations of aspects, classes, and mixins.

3.4.3 Statistics on Aspect Refinement

As explained in Section 3.3, AR is useful for decomposing andre-
fining aspects as derivatives. Table 2 summaries the considered as-
pects and the number of pieces (base + derivatives) into which they
were decomposed. On average, there were 7 derivatives per base
aspect and 1/2 of all aspects were candidates for decomposition via

9 Note that some aspects were counted for more than one category, e.g.,
homogeneousanddynamic.

AR. While this increased the total number of AMLs considerably,
it enabled us to synthesize the application-specific aspects needed
for a particular P2P system.

decomposed aspect number of derivatives
serialization 11
responding 4
toString 12
log/debug 13
pooling 3
dissemination 3
feedback 2

Table 2. The aspects that were decomposed by AR.

4. Lessons Learned: A Guideline for
Programmers

4.1 Mixins and Aspects – When to Use What?

A central question for programmers is when to use mixins and
when to use aspects? What we have learned from our case study
is that a wide range of problems can be solved by using object-
oriented mechanisms and mixins (FOP). Specifically, we usedmix-
ins for expressing and refining collaborations of classes. Collab-
orations typically are heterogeneous crosscuts with respect to a
base program. Each added feature reflects a subset of the struc-
ture of the base program and adds new and refines existing struc-
tural elements. A significant body of prior work advocates this
view [41, 33, 25, 9, 37, 38, 39, 12].

Using aspects standalone for implementing collaboration-based
designs, as proposed in [36, 19], would not reflect the object-
oriented structure of the program that the programmer had inmind
during the design. For example, the peer abstraction of P2P-PL
plays different roles in different collaborations, e.g., with the net-
work driver and with the data management. Encapsulating these
different roles and their collaborations in single aspectswould hin-
der a programmer’s ability to recognize and understand the inherent
object-oriented structure and the meaning of these features. In par-
ticular, if a collaboration embraces many roles and they aremerged
into one (or more) standalone aspect(s), the resulting codewould
be hard to read and to understand.

Nevertheless, aspects are a useful modularization mechanism.
In our study we learned that they help in those situations where
traditional object-oriented techniques and mixins fail. We found
that (1) aspects reduce replicated code when implementing homo-
geneous crosscuts, (2) they help to modularly express advanced
dynamic crosscuts (e.g.,cflow), and (3) they support the subse-
quent altering of inheritance relationships. Aspects perform bet-
ter in these respects than traditional object-oriented approaches be-

cause they provide sophisticated language-level constructs that cap-
ture the programmers intension more precisely and intuitively.

Our case study provides statistics on how often AOP and FOP
mechanisms are used. AOP mechanisms were used in 12% of all
end-user visible features, because they allowed us to avoidcode
replication, scattering, and tangling. However, aspects occupied
only 6% of the code base. This is because standard object-oriented
mechanisms are sufficient to implement most features (i.e.,94% of
the P2P-PL code base).

4.2 Borderline Cases

While we understand the above considerations as guideline for pro-
grammers that helps in most situations to decide between aspects
and mixins, we also discovered few situations where a decision is
not obvious.

We realized that some homogeneous crosscuts alternatively
could be modularized by introducing an abstract base class that
encapsulates this common behavior. While this works, for exam-
ple, for all messages or message handlers, it does not work for
classes that are completely unrelated, as in the case of a logging
feature. It is up to the programmer to decide if the target classes are
syntactically and semantically close enough to be grouped via an
abstract base class.

Although, our study has shown that a traditional collaboration-
based design ala FOP works well for the most features, we found
at least one heterogeneous feature where it is not clear if itwould
not be more intuitive to implement it via an aspect. This feature in-
troducestoStringmethods to a set of classes (cf. Tab. 1). Naturally,
each of these methods is differently implemented. Thus, thefea-
ture is a heterogeneous crosscut. However, in this particular case it
seems more intuitive to group alltoStringmethods in one aspect.
We believe this is caused by the partly homogeneous nature ofthis
crosscut, i.e., introducing a set of methods for the same purpose to
different classes.

5. Related Work
We limit the discussion of related work to the evaluation, combina-
tion, and comparison of AOP and FOP. Work related to AMLs and
AR is discussed elsewhere [5, 4, 3].

5.1 Evaluation of AOP

Recent studies have evaluated AOP by its application to realworld
software projects. We review a representative subset.

Colyer and Clement refactored an application server using as-
pects [16]. Specifically, they factored 3 homogeneous and 1 het-
erogeneous crosscuts. While the number of aspects is marginal, the
size of the case study is impressively high (millions of LOC). Al-
though they draw positive conclusions, they admit (but do not ex-
plore) a strong relationship to FOP. Our study has demonstrated the
useful integration of both worlds.

Zhang and Jacobsen refactored several CORBA ORBs [43]. Us-
ing code metrics, they demonstrated that program complexity could
be reduced. They proposed an incremental process of refactoring
which they callhorizontal decomposition. Liu et al. have pointed
to the close relationship to FOP layering [26]. Our study hascon-
firmed former arguments that for implementing features, as aspects
are too small units of modularization [33, 25, 5].

Coady and Kiczales undertook a retroactive study of aspect
evolution in the code of the FreeBSD operating system (200-400
KLOC) [15]. They factored 4 concerns and evolved them in three
steps; inherent properties of concerns were not explained in detail.
Our study has shown that AR can help to evolve aspects over
several development steps.

Lohmann et al. examined the applicability of AOP to embedded
infrastructure software [27]. They have shown that AOP mecha-

nisms, carefully used, do not impose a significant overhead.For
their study they factored 3 concerns of a commercial embedded
operating system; 2 concerns were homogeneous and 1 heteroge-
neous. Furthermore, they showed that aspects are useful forencap-
sulating design decisions, which is also confirmed by our study.

5.2 Evaluation of FOP

A significant body of research supports the success of FOP to im-
plement large-scale applications, e.g., for the domain of network
software [8], databases [10, 24, 8], avionics [6], and command-and-
control simulators [7], to mention a few. The AHEAD tool suite is
the largest example with about 80-200 KLOC [9, 40]. However,
none of these studies make quantitative statements about the prop-
erties of the implemented features, nor do they evaluate theused
implementation mechanisms with respect to the structures of the
concerns. The features they considered were traditional collabora-
tions with heterogeneous crosscuts, which is in line with our find-
ings in P2P-PL.

Lopez-Herrejon et al. explored the ability of AOP to implement
product lines in a FOP and SWD fashion [28]. They demonstrate
how collaborations are translated automatically to aspects. They
do not address in what situations which implementation technique
is most appropriate nor how the generated aspects affect program
comprehensibility.

Xin et al. evaluatedJiazziand AspectJ for feature-wise decom-
position [42]. They reimplemented a AspectJ-based CORBA event
service [21] by replacing aspects withJiazzi units, which are a form
of feature modules. They concluded that Jiazzi provides better sup-
port for structuring software and manipulating features, while As-
pectJ is more suitable for manipulating existing Java code in unan-
ticipated ways. However, they do not examine the structure of the
implemented features. Their success to implement all features of
their case study using Jiazzi feature modules hints that most of them
(if not all) come in form of object-oriented collaborations.

We are not aware of further published studies that take both,
AOP and FOP, into account.

5.3 Combining AOP and FOP

Several studies suggest the synergistic potential of aspects, roles,
and collaborations, e.g.,Caesar [32, 33], Aspectual Collabora-
tions [25], and Object Teams[20]. Since these approaches were
highly influenced by one another, we compare our approach to their
general concepts. We choose caesar as a representative because it
is the most mature.

Caesar supports componentization of aspects by encapsulating
virtual classes as well as pointcuts and advice in collaborations, so
called aspect components. Aspect components can be composed
via their collaboration interfaces and mixin composition in a step-
wise manner. Besides this, they can be refined using pointcuts in
order to implement crosscuts.

All of the mentioned approaches abstract collaborations of
classes explicitly at language level and enrich these abstrac-
tions by different AOP mechanisms. Since all principally support
collaboration-based designs, they all are capable of implementing
those features of P2P-PL that do not contain aspects (99 featu-
res that sum up to 94% of the code base). It is not clear how our
structuring and refinement of aspects can be mapped to these ap-
proaches; this is a subject of future work.

5.4 Collaborations and Super-Imposition

Steimann argues that expressing collaborations using object-orien-
ted techniques facilitates a better program understandingthan us-
ing aspects [39]. He builds his arguments on a long line of work
on object-oriented and conceptual modeling, as surveyed in[38].

However, he does not distinguish between homogeneous and het-
erogeneous crosscuts nor between static and dynamic crosscuts.

Bosh demonstrates how super-imposing collaborations outper-
forms other component integration techniques such as wrapping
and aggregation [12]. Although he does not explicitly take AOP
into account, he favors collaborations for implementing features.

Our study has shown that for most features in P2P-PL the argu-
ments of Steimann and Bosh are valid. Nevertheless, in certain sit-
uations traditional object-oriented techniques fail and AOP mecha-
nism perform better.

5.5 Roles and Aspects

Pulvermüller et al. propose to implement collaborations as single
aspects that inject the participating roles into the base program
by using introductions declarations and advice [36]. In ourstudy
we made the observation that explicitly representing collaborations
by traditional object-oriented techniques and mixins facilitates pro-
gram comprehensibility. Moreover, favoring their approach would
lead at the end to a base program with empty classes that are ex-
tended by several aspects that inject structure and behavior. This
would destroy the object-oriented structure of the programand
would hinder the programmer to understand the structure andbe-
havior of the overall program as well as its individual features.

Some authors suggest to use aspects for implementing indi-
vidual roles [19, 22]. In our context this would mean to replace
each mixin within a feature by one or more aspects. We and oth-
ers [39, 33] argue that replacing traditional object-oriented tech-
niques that suffice (e.g., inheritance) is questionable. Instead, we
favor to use aspects only when traditional techniques fail.

6. Conclusion
AOP and FOP are complementary technologies: we and others be-
fore us have noticed that the weakness of one maps to the strength
of the other. AML integrates both technologies. As a case study, we
used AML to implement a non-trivial product line of overlay net-
works. Our study showed that combining AOP and FOP improved
the modularity of features in our product line. That is, using only
aspects or only mixins would not have achieved an elegant design
or implementation; only their combination achieved these goals.
We observed that the dominant activity of features is introductions
– adding new classes and new members to existing classes. Refine-
ment of existing methods involved a small fraction of feature activi-
ties in our case study. Further, while aspects were infrequently used,
they enhanced the crosscut modularity of features and reduced re-
dundant code. Although we cannot generalize the results of asingle
case study to future studies, we believe our work supports the hy-
pothesis that object-oriented collaborations (expressedby classes
and mixins) define the predominant way in which concerns (featu-
res) are implemented, where aspects are useful in expressing ho-
mogeneous and advanced dynamic crosscuts.

Acknowledgments
We thank Roberto Lopez-Herrejon, Peri Tarr, Sahil Thaker, Sal-
vador Trujillo, and the anonymous reviewers for their helpful com-
ments on earlier drafts of this paper. Sven Apel is sponsoredin part
by the German Research Foundation (DFG), project number SA
465/31-1, as well as by the German Academic Exchange Service
(DAAD), PKZ D/05/44809. The presented study was conducted
when Sven Apel was visiting the group of Don Batory at the Uni-
versity of Texas at Austin. Don Batory’s research is sponsored by
NSF’s Science of Design Project #CCF-0438786.

References
[1] S. Apel and K. Böhm. Self-Organization in Overlay Networks. In

Proceedings of CAISE Workshop on Adaptive and Self-Managing
Enterprise Applications (ASMEA), 2005.

[2] S. Apel and E. Buchmann. Biology-Inspired Optimizations of Peer-
to-Peer Overlay Networks.Practice in Information Processing
and Communications (Praxis der Informationsverarbeitungund
Kommunikation), 28(4), 2005.

[3] S. Apel et al. Aspect Refinement. Technical Report 10, Department
of Computer Science, University of Magdeburg, Germany, 2006.

[4] S. Apel, T. Leich, and G. Saake. Aspect Refinement and Bounded
Quantification in Incremental Designs. InProceedings of Asia-Pacific
Software Engineering Conference (APSEC), 2005.

[5] S. Apel, T. Leich, and G. Saake. Aspectual Mixin Layers: Aspects
and Features in Concert. InProceedings of International Conference
on Software Engineering (ICSE), 2006.

[6] D. Batory et al. Creating Reference Architectures: An Example from
Avionics. In Proceedings of Symposium on Software Reusability
(SSR), 1995.

[7] D. Batory et al. Achieving Extensibility Through Product-Lines and
Domain-Specific Languages: A Case Study.ACM Transactions on
Software Engineering and Methodology (TOSEM), 11(2), 2002.

[8] D. Batory and S. O’Malley. The Design and Implementationof
Hierarchical Software Systems with Reusable Components.ACM
Transactions on Software Engineering and Methodology (TOSEM),
1(4), 1992.

[9] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling Step-Wise
Refinement. IEEE Transactions on Software Engineering (TSE),
30(6), 2004.

[10] D. Batory and J. Thomas. P2: A Lightweight DBMS Generator.
Journal of Intelligent Information Systems (JIIS), 9(2), 1997.

[11] K. Böhm and E. Buchmann. Free-Riding-Aware Forwarding in
Content-Addressable Networks.VLDB Journal, 2006.

[12] J. Bosch. Super-Imposition: A Component Adaptation Technique.
Information and Software Technology, 41(5), 1999.

[13] G. Bracha and W. Cook. Mixin-Based Inheritance. InProceedings of
International Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA) and European Conference
on Object-Oriented Programming (ECOOP), 1990.

[14] E. Buchmann, S. Apel, and G. Saake. Piggyback Meta-DataPropaga-
tion in Distributed Hash Tables. InProceedings of the International
Conference on Web Information Systems and Technologies (WEBIST),
2005.

[15] Y. Coady and G. Kiczales. Back to the Future: A Retroactive Study
of Aspect Evolution in Operating System Code. InProceedings of
International Conference on Aspect-Oriented Software Development
(AOSD), 2003.

[16] A. Colyer and A. Clement. Large-Scale AOSD for Middleware.
In Proceedings of International Conference on Aspect-Oriented
Software Development (AOSD), 2004.

[17] A. Colyer, A. Rashid, and G. Blair. On the Separation of Concerns in
Program Families. Technical Report COMP-001-2004, Computing
Department, Lancaster University, 2004.

[18] K. Czarnecki and U. Eisenecker.Generative Programming: Methods,
Tools, and Applications. Addison-Wesley, 2000.

[19] S. Hanenberg and R. Unland. Roles and Aspects: Similarities,
Differences, and Synergetic Potential. InProceedings of International
Conference on Object-Oriented Information Systems (OOIS), 2002.

[20] S. Herrmann. Object Teams: Improving Modularity for Crosscutting
Collaborations. InProceedings of International Conference on
Objects, Components, Architectures, Services, and Applications for a
Networked World (NetObjectDays), 2002.

[21] F. Hunleth and R. Cytron. Footprint and Feature Management
Using Aspect-Oriented Programming Techniques. InProceedings
of Joint Conference on Languages, Compilers, and Tools for
Embedded Systems & Software and Compilers for Embedded Systems
(LCTES’02-SCOPES’02), 2002.

[22] E. A. Kendall. Role Model Designs and Implementations with
Aspect-Oriented Programming. InProceedings of International
Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), 1999.

[23] G. Kiczales et al. Aspect-Oriented Programming. InProceedings of
European Conference on Object-Oriented Programming (ECOOP),
1997.

[24] T. Leich, S. Apel, and G. Saake. Using Step-Wise Refinement to Build
a Flexible Lightweight Storage Manager. InProceedings of East-
European Conference on Advances in Databases and Information
Systems (ADBIS), 2005.

[25] K. Lieberherr, D. H. Lorenz, and J. Ovlinger. AspectualCollabo-
rations: Combining Modules and Aspects.The Computer Journal,
46(5), 2003.

[26] J. Liu, D. Batory, and C. Lengauer. Feature-Oriented Refactoring of
Legacy Applications. InProceedings of International Conference on
Software Engineering (ICSE), 2006.

[27] D. Lohmann et al. A Quantitative Analysis of Aspects in the eCos
Kernel. InProceedings of ACM SIGOPS EuroSys Conference, 2006.

[28] R. Lopez-Herrejon and D. Batory. From Crosscutting Concerns to
Product Lines: A Function Composition Approach. TechnicalReport
TR-06-24, University of Texas at Austin, 2006.

[29] R. Lopez-Herrejon, D. Batory, and W. Cook. Evaluating Support
for Features in Advanced Modularization Technologies. InProc-
cedings of European Conference on Object-Oriented Programming
(ECOOP), 2005.

[30] R. Lopez-Herrejon, D. Batory, and C. Lengauer. A Disciplined
Approach to Aspect Composition. InProceedings of International
Symposium on Partial Evaluation and Program Manipulation
(PEPM), 2006.

[31] H. Masuhara and G. Kiczales. Modeling Crosscutting in Aspect-
Oriented Mechanisms. InProceedings of European Conference on
Object-Oriented Programming (ECOOP), 2003.

[32] M. Mezini and K. Ostermann. Conquering Aspects with Caesar.
In Proceedings of International Conference on Aspect-Oriented
Software Development (AOSD), 2003.

[33] M. Mezini and K. Ostermann. Variability Management with Feature-
Oriented Programming and Aspects. InProceedings of ACM
SIGSOFT International Symposium on Foundations of Software
Engineering (FSE), 2004.

[34] D. L. Parnas. Designing Software for Ease of Extension and
Contraction. IEEE Transactions on Software Engineering (TSE),
SE-5(2), 1979.

[35] C. Prehofer. Feature-Oriented Programming: A Fresh Look at
Objects. InProceedings of European Conference on Object-Oriented
Programming (ECOOP), 1997.

[36] E. Pulvermüller, A. Speck, and A. Rashid. Implementing
Collaboration-Based Design Using Aspect-Oriented Programming.
In Proceedings of International Conference on Technology of Object-
Oriented Languages and Systems (TOOLS-USA), 2000.

[37] Y. Smaragdakis and D. Batory. Mixin Layers: An Object-Oriented
Implementation Technique for Refinements and Collaboration-
Based Designs.ACM Transactions on Software Engineering and
Methodology (TOSEM), 11(2), 2002.

[38] F. Steimann. On the Representation of Roles in Object-Oriented and
Conceptual Modeling.Data and Knowledge Engineering (DKE),
35(1), 2000.

[39] F. Steimann. Domain Models are Aspect Free. InProceedings of
International Conference on Model Driven Engineering Languages
and Systems (MoDELS/UML), 2005.

[40] S. Trujillo, D. Batory, and O. Diaz. Feature Refactoring a Multi-
Representation Program into a Product Line. InProceedings
of International Conference on Generative Programming and
Component Engineering (GPCE), 2006.

[41] M. VanHilst and D. Notkin. Using Role Components in Implement
Collaboration-based Designs. InProceedings of International
Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), 1996.

[42] B. Xin et al. A Comparison of Jiazzi and AspectJ for Feature-Wise
Decomposition. Technical Report UUCS-04-001, Universityof Utah,
2004.

[43] C. Zhang and H.-A. Jacobsen. Resolving Feature Convolution in
Middleware Systems. InProceedings of International Conference
on Object-Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA), 2004.

