When to Use Features and Aspects? A Case Study

Sven Apel

Department of Computer Science
University of Magdeburg, Germany

apel@iti.cs.uni-magdeburg.de

Abstract

Aspect-Oriented Programming (AORhd Feature-Oriented Pro-
gramming (FOPare complementary technologies that can be com-
bined to overcome their individual limitation&spectual Mixin
Layers (AML)is a representative approach that unifies AOP and
FOP. We use AML in a non-trivial case study to create a product
line of overlay networks. We also present a set of guideliness-

sist programmers in how and when to use AOP and FOP technique
for implementing product lines in a stepwise and generaties-

ner.

Categories and Subject DescriptorsD.2.2 [Software Engineer-
ing]: Design Tools and Techniques; D.3.Brpgramming Lan-
guage§ Language Constructs and Features

General Terms Design, Languages, Experimentation

Keywords Feature-oriented programming, aspect-oriented pro-
gramming, software product lines, collaboration-basedigie
stepwise development, separation of concerns, crogsgutti

1. Introduction

Two advanced programming paradigms are gaining attention i
the overlapping fields of program generation, product lirsesl
stepwise development (SWDeature-Oriented Programming
(FOP)[9] aims at large-scale compositional programming and fea-
ture modularity in product linesAspect-Oriented Programming
(AOP) [23] focuses on crosscut modularity in complex software.
Several recent studies have observed that both paradigradiim
itations [33, 25, 30, 5], where the weakness of one maps fpugh
to the strength of the other. Hence, the two paradigms areamt
petitive and can profit from each other [5]. Recent work alas h
suggested that both paradigms be combined to exploit thears
gistic potential [33, 25, 20, 5].

In this paper, we usAspectual Mixin Layers (AML3s a repre-
sentative approach that integrates AOP and FOP [5]. AML supp
collaboration-based designs, mixin compaosition, aspezwng,

and refinement of aspects to decompose and structure seftwar

by features. Further, we present a non-trivial case studiygus
AML: a product line of peer-to-peer overlay network32p-PL)
whose software products demand a high degree of custoriitigabi
reusability, and evolvability.

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

GPCE'06 October 22-26, 2006, Portland, Oregon, USA.
Copyright(© 2006 ACM 1-59593-237-2/06/0010. . . $5.00.

S,

Don Batory

Department of Computer Sciences
University of Texas at Austin

batory@cs.utexas.edu

Although AOP and FOP are complementary, their technologies
overlap. FOP uses traditional object-oriented mechani@s,
mixins) to implement features, whereas AOP (as exemplified b
AspectJ) uses introductions, pointcuts, and advice. Aarést-
ing and fundamental question is: when should a programmer us
feature-oriented mechanisms (i.e., object-oriented eptsclike
classes and mixins) and aspect-oriented mechanismsifies;
ductions, pointcuts, and advice) to implement featuresprbduct
line? The results of our paper are a set of guidelines andostipg
statistics to answer this question. We begin with a summigifpe,
AOP, and AML.

2. Background
2.1 Feature-Oriented Programming

FOP studies the modularity déaturesin product lines, where a
feature is an increment in program functionality [9]. Theadof

FOP is to synthesize software (individual programs) by cosimg
features (a.k.deature modulés Typically, features refine the con-
tent of other features in an incremental fashion. Hencetettmere-
finementefers to the set of changes a feature applies to a code base.
Adding features incrementally, callstepwise refinemerieads to
conceptually layered software designs. For simplicity,use the
terms feature and feature module synonymously.

Mixin layersis one approach to implement features [37, 9].
The basic idea is that features are seldomly implementedhigles
classes (or aspects). Typically, a feature implementsliabora-
tion [41], which is a collection of roles represented by mixinatth
cooperate to achieve an increment in program functiondi@P
aims at abstracting and explicitly representing such bolations.
Hence, it stands in the long line of prior work on object-otes
design and role modeling [38].

A mixin layer is a module that encapsulates fragments ofragve
different classes (roles) so that all fragments are contposasis-
tently. Figure 1 depicts a stack of three mixin layefs (Ls)
in top down order. These mixin layers crosscut multiple s#as
(Ca — C¢). White boxes represent classes or mixins; gray boxes
denote the enclosing feature modules; filled arrows retamsixin-
based inheritanc§l3] for composing mixins.

Ca

G G

L

L,

Ls

Figure 1. Stack of three mixin layers.

2.2 Aspect-Oriented Programming

AOP aims at separating and modularizing crosscutting cosd23].
Using object-oriented mechanisms, crosscutting conceszaslt

in tangled and scattered code [23, 18]. The idea behind AOP
is to implement crosscutting concerns aspectswhere the core
(non-crosscutting) features are implemented as compsnégaing
pointcutsand advice an aspect weaver glues aspects and compo-
nents ajoin points Pointcuts specify sets of join points in aspects
and components, advice defines code that is applied to (outsa

at) these points, and introductions (a.kr@er-type declarations
inject new members into classes. With aspects, a progrargner
able to refine a program coherently at multiple join pointgiT
cally, aspects introduce new members to existing classksxand
existing methods. Figure 2 shows two aspedts, (A2) that extend
three classes at multiple join points (dashed arrows dessgect
weaving) in classes{4 — C¢).

G G G

Sy

Figure 2. Two aspects extend three classes.

2.3 Comparison

The essential differences between FOP and AOP technolagées
their emphasis on different types of crosscuts [5].

2.3.1 Homogeneous and Heterogeneous Crosscuts

Two different kinds of crosscuts have been identified in ti@PA
literature.Homogeneous crosscutsfine multiple join points with
a single piece of advicédeterogeneous crosscyis contrast, re-
fine multiple join points each with different pieces of advid 7].
Recall that a feature typically implements a collaboratiaolving
multiple classes. This requires a feature to introduce afseew
classes, introduce a set of new members to existing claasds,
to refine existing methods. Method refinement in featuressis u
ally accomplished using heterogeneous crosscuts. Inasints-
pects perform well in refining a set of methods using one aafter
advice, thus, modularizing a homogeneous crosscut andiagoi
gross code replication.

Although both approaches are able to implement the crasscut
of the other, they cannot do so elegantly [33, 5]. Considgrma s
chronization feature, which is a homogeneous crosscutmidate
a homogeneous aspect, a mixin layer would have to expligtly

fine each target method, and the code of each method refinemen

would be identical (leading to code replication).

Conversely, an aspect may implement a collaboration ofekas
by applying a set of introductions and advice. It has beenextg
that not expressing the collaboration explicitly in ternisaes or
classes decreases program comprehensibility [39, 33].IEhi5 is
because the programmer cannot recognize the original sfass
ture of the base program. A further argument is that aspacts |
scalability with respect to large-scale features: supposellab-
oration consists of many roles, e.g., a data managementréeat
Merging all participating roles (storage structures, fibeess, in-
dexes, transactions, etc.) in one or more aspdtittens the in-
herent object-oriented structure of the collaboratiorscoipes the

11n Section 5, we address the issue of implementing eachichditrole as
aspect.

intent of the programmer, and results in a program that f&cdlf
to understand [39, 33].

2.3.2 Static and Dynamic Crosscuts

Features and aspects may extend the structure of a baserprogr
statically 6tatic crosscutfs i.e., by injecting new members. More-
over, both are able to introduce new super-classes andaogsrto
existing classes. Additionally, features are able to esaiape and
introduce new classes. Aspects are not able to introduepéerd
dent classes — at least not as part of an encapsulated feahare
reason for that is that aspects have no architectural nfodel.

A dynamic crosscuimplements a refinement in terms of the
dynamic program semantics [31]. By using feature modules on
has only the limited abilities of method overriding to intept
method executions. Aspects provide a more sophisticatetbse
refine a base program based upon its execution, e.g., msotsni
for tracing the dynamic control flow.

2.4 Symbiosis of Aspects and Features

Aspects and features in their current incarnation are dedrfor
solving problems at different levels of abstraction [33, Z5.
Whereas aspects in AspectJ act on the level of classes aactobj
in order to modularize crosscutting concerns, featuresraein ar-
chitectural level. That is, a feature decomposes an objeetted
architecture into a composition of collaborations.

A next logical step is to decompose and structaspect-
oriented architecturegi.e., object-oriented architectures with as-
pects) into features. Figure 3 shows on the left an aspéstted
architecture and on the right features that decompose anttiste
this architecture. With this decomposition, a feature peukates
fragments of classemndaspects that collaborate together to imple-
ment an increment in program functionality. Note that thigioal
aspect was split into two pieces (a base and a subsequerg-refin
ment). In Section 2.6, we address this issue in more depth.

a N

\E ¥E1 L]

decomposition ‘ ‘

<+—inheritance <— association

[Jclass
[aspect

<«—refinement <- - weaving

Figure 3. Feature-driven decomposition of an aspect-oriented ar-
chitecture (features are depicted light-gray).

bs Aspectual Mixin Layers

Aspectual Mixin Layers integrate AOP and FOP. AML extends
the notion of mixin layers by encapsulating both mixins asd a
pects (see Fig. 4). That is, an AML encapsulates both calébo
ing classesand aspects that contribute to a feature. An AML may
refine a base program in two ways: (1) by using common mixin-
composition or (2) by using aspect-oriented mechanisnyuiitic-
ular pointcuts and advice. Probably the most importantrdmurtion

of AML is that programmers may choose the appropriate tegli

— mixins or aspects — that fits a given problem best.

2While it is correct that one can just add another class to aim@ment,
e.g., using Aspect], this is at the tool level, and is not atodlehlevel.
The programmer has to build his own mechanisms (outsideeofabl) to
implement feature modularity [29].

NS

RN

[,
X

Figure 4. Aspectual Mixin Layers.

<- - weaving []class, mixin
<— association [l aspect
<+— inheritance

-4— mixin—based inheritance

2.6 Aspect Refinement

Aspect Refinement (AR)the incarnation o$tepwise development
(SWD)in AOP [4, 3]. Although the notion of AR does not depend
on AML, it profits from the integration of aspects into featsyand
therewith into layered architectures. Having this, it isunal to re-
fine aspects in subsequent features, too. This allows fairrgu
refining, and evolving aspect implementations — true to tiogton

of SWD. Refining an aspect means adding new members and ex-
tending existing members. To support AR at the languagd, leve
the notion ofmixin-based aspect inheritanbas been proposed. It
adds the notions gfointcut refinemennamed adviceandadvice
refinement- all based on mixin capabilities [3]. Figure 5 depicts an
aspect included in an AML that is subsequently refined in iorole
advise an extended set of join points. Note that the refineien
the aspect is part of an AML as well. AR allows every piece of an
aspect to be reused, refined, and evolved [5, 4, 3].

LN

Lt

<- -weaving []class, mixin
<— association [Jl] aspect, mixin
<+— inheritance

-4— mixin—based inheritance

~
N
\
~
N
~
~ <
S ~

Figure 5. Aspect Refinement.

3. Case Study
3.1 A Product Line for Peer-to-Peer Overlay Networks

As a case study, we use a product line parer-to-peer overlay
networks (P2P-PLJ14, 2, 1]. Besides the basic functionality as
routing and data management, P2P-PL supports several @atl/an
features, e.g., query optimization based on flexible rgupath
selection [2], meta-data propagation for the continuowsharge
of control information among peers [14], incentive meckars to
counter peers that misbehaveeé rider9 [11]. Numerous experi-
ments concerning those features demand plenty of diffemrftg-
urations to make statements about their specific effectd, vhri-
ants, and combinations.

P2P-PL has a fine-grained architecture. It follows the ipiec
of evolving a design by starting from a minimal base and apply
ing incrementally minimal refinements to implement desigeid
sions [34]. In its current state, it consists of 113 end-wssible
features, categorized into several sub-domains, suchshgigeand
overlay topology.

We implemented the features of P2P-PL mainly using the
AHEAD tool suite (ATS[R]. We used ATS for implementing and
composing traditional mixin layers, i.e., collaboratioof Java
classes and refinements. To implement AML, we integrated as-
pects into mixin layers. Aspects were implemented ugiRgF, an

3 http://wwwiti.cs.uni-magdeburg.de/itib/arj/

extended AspectJ compiler that supports AR [3]. This comuixim
of ATS and ARJ enabled us to implement and compose AMLs.

3.2 Aspectual Mixin Layers in P2P-PL

An end-user visibldeature is an increment in program function-
ality that users feel is important in describing and distisbing
programs within a product line. 14 of the 113 end-user visfbh-
tures of P2P-PL (12%) used aspects (see Tab. 1); the rem&ain
features were implemented as traditional mixin layershin fol-
lowing, we explain two representative examples.

| aspect | description |
responding sends replies automatically
forwarding forwards messages to adjacent peers
message handler| base aspect for message handling
pooling stores and reuses open connections
serialization prepares objects for serialization
illegal parameterq discovers illegal system states
toString introducedoStringmethods
log/debug mix of logging and debugging
dissemination piggyback meta-data propagation
feedback generates feedback by observing pegrs
query listener waits for query response messages
command line command line access
caching caches peer contact data
statistics calculates runtime statistics

Table 1. Aspectual Mixin Layers used in P2P-PL.

Feedback generator. The feedback generator feature is part of
an incentive mechanism for penalizing free riders — peeas$ th
profit of the P2P network but do not contribute adequately.[11
A feedback generator feature, on top of a peer implememntatio
identifies free riders by keeping track whether other pesspand
adequately to messages. If that is not the case, an obseeezd p
is considered a free rider. Specifically, the generator rvesethe
traffic of outgoing and incoming messages and keeps trackiahw
peers have responded in time to posted messages. The generat
creates positive feedback to reward cooperative peers egatine
feedback to penalize free riders. Feedback informatiortased

in a feedback repository and is passed to other (trusted} pee
inform them about free riding. Based on the collected infation,

a peer judges the cooperativeness of other peers. Fres ader
subsequently ignored and only cooperative peers profit fitoen
overall P2P network [11].

The implementation of the feedback generator crosscuts the
message sending and receiving features. As Figure 6 shbers, t
feedback generator AML contains an aspect (dark-gray) @tno-i
duces four new classes for feedback management. Addityoital
refines the peer abstraction (by mixin composition) so tlahe
peer owns a log for outgoing queries and a repository fortfaekl
information.

Peer ‘
| |
7
‘ MessageSender e ‘
— _
Peer Feedback | [FELISEMS= QueryLog Feedback Feedback Feedback
Handler Generator Repository Generator

Figure 6. Feedback generator AML.

RPOOWOO~NOUTAWNE

e

O~NOOUTRAWNE

While the feedback generator feature is heterogeneousdigsr
on dynamic context information. Figure 7 lists an excerpinfr
the above mentioned aspect. The first advice refines the geessa
sending mechanism by registering outgoing messages inrg que
log (Lines 2-7). It is executed only if the methedndwas called in
the dynamic control flow of the methddrward. This is expressed
using thecflow pointcut (Line 5) and avoids advising unintended
calls tosend which are not triggered by the message forwarding
mechanism. The second advice intercepts the executionwéry q
listener task for creating feedback (Lines 8-10).

aspect FeedbackGenerator { ...

after (MessageSender sender, Message msg,
target(sender) && args(msg, id) &&
call (x MessageSender.send(Message, PeerId)) &&
cflow (execution(* Forwarding.forward(..))) &&
if (nsg instanceof QueryRequestMessage)
{ /% [}

after (QueryListener listener) target(listener) &&
execution(void QueryListener.run())
{ /% [}

PeerId id)

Figure 7. Feedback generator aspect (excerpt). 1
2
Figure 8 lists the refinement to the peer class implemented &s
mixin. It adds a feedback repository (Line 2) and a query lo
(Line 3). Moreover, it refines the constructor by registgrinfeed- ¢

back handler in the peer’'s message handling mechanisms(éine 7

7). For simplicity, we omit presenting the remaining codeféed- 8
back management. 1(9)
11

refines class Peer { 12
FeedbackRepository fr = new FeedbackRepository(); 12

QueryLog ql = new QueryLog ();

refines Peer () {
FeedbackHandler fh new FeedbackHandler(this);
this.getMessageHandler () .subscribe(fh);

}
}

Figure 8. Feedback management refinement of the dPass

In summary, the feedback generator AML encapsulates four
classes that implement the basic feedback managementpact as
that intercepts the message transfer, and a mixin that sefiree
peer abstraction. Omitting AOP mechanisms would resulbitec
tangling and scattering since the retrieval of dynamic exinin-
formation crosscuts other features, e.g., clients of thesamge for-
warding mechanism. On the other hand, implementing thisifea
as one standalone aspect would not reflect the structure ¢f2R-
PL framework that includes feedback management. All wodd b
merged in one or more aspect(s) that would both decreasegpnog
comprehension. Our AML encapsulates all contributing eleis
coherently as a collaboration that reflects the intuitivacttire of
the P2P-PL framework we had in mind during its design.

Connection pooling. The connection pooling feature is a mech-
anism to save time and resources for frequently estabtishird
shutting down connections. To integrate connection pgoiitio
P2P-PL, we implemented a corresponding AML. Figure 9 shows
this AML consisting of an aspect and a pool class. The aspect i
tercepts all calls that create and close connectiditse pool stores
open connections.

Figure 10 lists the pooling aspect; it uses a pool for storefg
erences to connections (Line 2). The pointctitsse (Lines 3-4)

4Note that this is not ideally visualized because the caksiatercepted
only on the client / caller side.

‘ IEEI ‘

T
Connection /
= /
X 7
P Connection
Poolin)
\ \ Pooling

Figure 9. Connection pooling AML.

andopen(Lines 5-6) match the join points that are associated to
shutting down and opening connections. Named advpeePool
(Lines 7-9) intercepts the shutdown process of connectonsin-
stead stores them in the pool. Named adgetPool(Lines 10-13)
recovers open connections (if available) and passes thelietds
that request a new connection. This crosscut is heterogerss
cause it advises creating connections (Lines 7-9) diftirehan
closing connections and (Lines 10-13); but it is also homeges
because advice advises a set of join points that are relagedall
client-side calls telose(Lines 7-9).

aspect Pooling {
static Pool pool new Pool();
pointcut close(Connection con) :
call (void Connection.close()) && target(con);
pointcut open(SocketAddr sa)
call (Connection Peer.connect (..)) && args(sa);
Object around putPool(Connection con) : close(con) {
pool.put(con); return null;

Connection around getPool (SocketAddr sa)
if (pool.empty(sa)) return proceed(sa);
return (Connection)pool.get(sa);

}

}

:open(sa) {

Figure 10. Connection pooling aspect (excerpt).

Implementing this feature using only mixins would result in
redundant code. This is because for each method that isiategbc
with opening and closing connections we would have to impiem
a distinct method extension. Furthermore, we implemertegool
not as a nested class within the aspect to emphasize thetgfiar
part of the P2P-PL. We consider it as part of the collabonatib
artifacts that implement the feature. Subsequent refinesmany
extend and modify it.

3.3 Aspect Refinementin P2P-PL

Features can interact. Feature interaction in FOP can soeet
take the following form: when two features F and G are present
in a system, a third feature or refinement FG — sometimesccalle
derivative[35, 26] — is required to alter the behavior of F or G (or
both). Derivatives are features that are not end-userlgiditey are
needednly when a particular combination of interacting end-user
features are present in a target system, e.g., orthptii F and G

are present in a target system will feature/derivative F@edezled.
Derivatives arose in 7 of the 14 AMLSs that used aspects. Bhate
decomposed each of the 7 AMLs with aspects into a base AML and
multiple derivatives, where each derivative is itself ieplented by

an AML. We explain two representative examples below.

Serialization. The Serializationfeature consists only of one as-
pect. Figure 11 depicts this aspect for a fully-configure&® Bgs-
tem. It enumerates a list afeclare parenstatements that add the

5Named advice assigns a name to advice for enabling subsediiere-
ment [3].

CoO~NOOUA~WNE

OCoO~NOOUTAWNPRE

interfaceSerializableto a set of target class@sThe key thing to
note here is that thést of declared parents depends on the set
of features that are in a P2P systeifhis means that if the feed-
back generator feature is not present in a target P2P system,
declare parents: Feedbadtatement in Figure 11 would need to be
removed from the&erializationaspect, otherwise a warning would
be reported (because there would béaedbaciclass)” The same 1
holds for thePeerld Contact Key, and Dataltemfeatures. Thus, -
the definition of theSerializationaspect depends on other features3
that are present in a target system. We can model the sysithiesi 4
a customizedserializationaspect by refining a base aspect and eng
capsulating these refinements in derivatives. That is, volyadR 7
to break apart th&erializationaspect into smaller pieces — a bases
aspect + derivatives — to synthesize a system-speddfitalization 9
aspect. 10

11

12

13

aspect Serialization { 14

declare parents : Message implements Serializable; 15

declare parents : PeerId implements Serializable; 16

declare parents : Contact implements Serializable; 17

declare parents : Key implements Serializable; 18

declare parents : Dataltem implements Serializable; 19

declare parents : Feedback implements Serializable; 20
}

Figure 11. Serialization aspect (excerpt).

Figure 12 lists the decomposé&erializationaspect, i.e., a basic
Serializationaspect and several refinements (merged in one list-
ing). Each refinement introduces tBerializableinterface to only
one target class. This enables programmers to choose adg th
pieces (derivatives) that are required for a particulafigonation
of P2P-PL. For example, the refinement that targets the Etzesd-
back (Lines 10-12) is only included in a program if the feedback
generator feature is added as well. How fine-grained sucbnaec
position should be depends on the flexibility of composingd-eser
visible features. In P2P-PL, we split the compouberialization
feature into 12 pieces (one base and 11 refineménts).

aspect Serialization {

declare parents : Message implements Serializable;
}
refines aspect Serialization {

declare parents : PeerId implements Serializable;
}
refines aspect Serialization {

declare parents : Contact implements Serializable;
}
refines aspect Serialization {

declare parents : Feedback implements Serializable;
oo

Figure 12. Refactored serialization aspect (excerpt).

6 This particular aspect could also be implemented by enuingrall target
classes in a logical expression, edgclare parents : (MessagéePeerld||
...) implements Serializable

7 Not all aspect compilers will issue warnings; some may issuars when
non-existent classes are referenced. Our use of derisadiveids compiler
warnings/errors at the expense of imposing more structarsyathesized
P2P-PL programs.

8We could have implemented the Serialization feature usixgs) as they
too provide the ability to add 'implements interface’ classto existing
classes. This design would have exactly the same AML streictith the
same set of derivatives.

Connection pooling. Figure 10 (shown earlier) depicted theol-
ing aspect for a fully-configured P2P system. By removing festur
from a fully-configured system, the definition of tReolingaspect
changes. Using AR we decomposed Baomling aspect into a base
and multiple derivatives.

refines aspect Pooling {
pointcut open(SocketAddr sock) super.open(sock)
execution(* TCP.getConnection(..));

Il
}

5 refines aspectPooling {

boolean putPool (Connection con) {
synchronized(pool) { return super.putPool(con); }
}
Connection getPool (SocketAddress adr) {
synchronized(pool) { return super.getPool (adr); }
}
}
refines aspect Pooling {
boolean putPool(Connection con) {
boolean res = true;
if (TCP.calcAverageThroughput(con) > MIN_TP)
res = super.putPool(con);
return res;
}
}

Figure 13. Encapsulating design decisions using AR.

Figure 13 depicts the three refinements (merged in onedjistin
The first (Lines 1-4) refines the pointaypento match also connec-
tion requests not addressedReer, in our example addressed to a
different network componenrECP. The notion ofpointcut refine-
mentdecouples the aspect from a fixed parent aspect and therefore
increases the flexibility to combine this refinement withesthe-
finements (see [3]).

The second refinement is more sophisticated (Lines 5-12). It
refines both advicep{itPool getPoo) with synchronization code
to guarantee thread safety. Since the pooling activitiesraple-
mented via named advice, this refinement adds synchromizati
code. Refining named advice is similar to refining converation
methods (see [3]).

The third refinement (Lines 13-20) selects only those connec
tions for pooling that satisfy specific network properties,, the
data throughput. It extends tipeitPooladvice by code for analyz-
ing the network traffic.

These three refinements are derivatives that are addeddiepen
ing on the presence of end-user visible features. The fiisement
is added if theTCP component is present, the second refinement is
added if a multi-threaded peer feature is used, and theithadided
if a reliable communication feature is used.

3.4 Statistics on FOP and AOP Mechanism Usage

In this section, we present statistics on how and when FOP and
AOP mechanisms were used in implementing our P2P prodwt lin
These statistics provide insight into design guidelinesmatha-
nism usage, which we discuss in detail in Section 4.

3.4.1 Statistics on Used AOP and FOP Mechanisms

We collected the following statistics: (1) the number of ierpen-
tation mechanisms used, (2) thees of code (LOCassociated with
these mechanisms, and (3) the LOC associated with intrimehsct
(static crosscuts) and refining methods (dynamic crosscuts

Number of classes, mixins, and aspectsThe base P2P applica-
tion contains only 2 classes. A fully-configured P2P system-c
sists of 127 classes. Thus, refining the base applicatioraifiilly-
configured system required the incremental introductiorl 26
classes. In addition to class introductions, there were das

127; 47% 3056; 48%

1114; 17% 6; 33%
374; 6%
14; 5% 406; 6% 7;38%
2;12%
4932; 77%
130; 48% 2964; 46% 3;17%
. o homogeneous crosscuts
ey oy = method oxiensions ' 8dV. dynamic crosscuts
o aspects o aspects o introductions o purely heterogeneous

m alter inheritance hierarchy

Figure 14. Classes,
and aspects (number).

mixins, Figure 15. Classes,
and aspects (LOC).

refinements implemented as mixins, and 14 aspects were ased t
modularize crosscuts. The main point is that we primarilgcus
classes and mixins for implementing features rather thaeds,
which were used only to a minor degree — about 5% of the overall
number of mechanisms for constructing features (Fig. 14).

LOC associated with classes, mixins, and aspectthe overall
code base of P2P-PL consists of 6426 LOC. Thereof, 3056 L@C ar
associated with classes, 2964 LOC with mixins, and 406 LO@& wi
aspects and refinements to aspects. These statistics are with

the above given numbers on the ratio of implementation nréstra
usage. Aspect code sums up to only 6% and mixin code to 46% of
the overall code base (Fig. 15).

LOC associated with refinements and introductions1488 LOC

of all mixins and aspects target the refinement of existinthous
(dynamic crosscuts). Thereof, 374 LOC are associated with A
pectJ advice and 1114 with method refinements via mixinsré&he
maining 4938 LOC are associated with introductions of nemcfu
tionality (static crosscuts). This suggests that the damtimctivity

of features is to introduce new structures in P2P-PL (77%her
than refining existing methods (Fig. 16).

3.4.2 Statistics on AMLs with Aspects

Number and properties of aspects.Of the 14 aspects that were
used, 6 modularized homogeneous crosscuts (that refingdoé se
targets coherently with a single piece of code), 7 aspecpdeim
mented advanced dynamic crosscuts (that access dynantexton
information, e.g.¢cflow), 2 aspects altered inheritance relationships
(that introduce interfaces), and 3 aspects implementeelypbet-
erogeneous crosscuts (Fig. £7)1 of 14 aspects exploit the ad-
vanced capabilities of AOP (cf. Sec. 2). Using only mixinsubab
result in redundant, scattered, and tangled workarourglgxa
plained before. Only 3 aspects implement collaboratioascbuld
also be implemented by a set of mixins. Section 4 explainsiwhy
these particular cases using aspects was appropriate.

Number of feature-related classes and mixinsTo explore if
aspects are used stand-alone or with other classes andsniixin
concert, we observed that an AML with one aspect also has 1 to 2
additional classes and mixins — up to 6. This shows that outL&M
encapsulate collaborations of aspects, classes, andamixin

3.4.3 Statistics on Aspect Refinement

As explained in Section 3.3, AR is useful for decomposing i@3d
fining aspects as derivatives. Table 2 summaries the copsides-
pects and the number of pieces (base + derivatives) intohithey
were decomposed. On average, there were 7 derivatives per ba
aspect and 1/2 of all aspects were candidates for decorngpogia

9Note that some aspects were counted for more than one categor,
homogeneouand dynamic.

mixins, Figure 16. Static and dynamicFigure 17. Applications of as-
crosscutting (LOC).

pects (number).

AR. While this increased the total number of AMLs considérab
it enabled us to synthesize the application-specific aspestded
for a particular P2P system.

| decomposed aspec{ number of derivatives |

serialization 11
responding 4
toString 12
log/debug 13
pooling 3
dissemination 3
feedback 2

Table 2. The aspects that were decomposed by AR.

4. Lessons Learned: A Guideline for

Programmers
4.1 Mixins and Aspects — When to Use What?

A central question for programmers is when to use mixins and
when to use aspects? What we have learned from our case study
is that a wide range of problems can be solved by using object-
oriented mechanisms and mixins (FOP). Specifically, we usigel

ins for expressing and refining collaborations of classeslaB-
orations typically are heterogeneous crosscuts with mesjpea

base program. Each added feature reflects a subset of tlwe stru
ture of the base program and adds new and refines existing stru
tural elements. A significant body of prior work advocatess th
view [41, 33, 25, 9, 37, 38, 39, 12].

Using aspects standalone for implementing collaboratiased
designs, as proposed in [36, 19], would not reflect the object
oriented structure of the program that the programmer hadairial
during the design. For example, the peer abstraction of F2P-
plays different roles in different collaborations, e.githathe net-
work driver and with the data management. Encapsulatingethe
different roles and their collaborations in single aspe&cislid hin-
der a programmer’s ability to recognize and understanchtierent
object-oriented structure and the meaning of these featlrgar-
ticular, if a collaboration embraces many roles and theyreesged
into one (or more) standalone aspect(s), the resulting eaigd
be hard to read and to understand.

Nevertheless, aspects are a useful modularization meshani
In our study we learned that they help in those situationsravhe
traditional object-oriented techniques and mixins faile Yéund
that (1) aspects reduce replicated code when implementingph
geneous crosscuts, (2) they help to modularly express addan
dynamic crosscuts (e.gcflow), and (3) they support the subse-
quent altering of inheritance relationships. Aspects qrenfbet-
ter in these respects than traditional object-orientedagghes be-

cause they provide sophisticated language-level corstiiuat cap- nisms, carefully used, do not impose a significant overh&ad.

ture the programmers intension more precisely and ingljtiv their study they factored 3 concerns of a commercial emikdde
Our case study provides statistics on how often AOP and FOP operating system; 2 concerns were homogeneous and 1 heterog

mechanisms are used. AOP mechanisms were used in 12% of allneous. Furthermore, they showed that aspects are usetridap-

end-user visible features, because they allowed us to aauid sulating design decisions, which is also confirmed by owhstu

replication, scattering, and tangling. However, aspectupied

only 6% of the code base. This is because standard objextted 5.2 Evaluation of FOP

mechanisms are sufficient to implement most features 66 of A significant body of research supports the success of FOR-to i

the P2P-PL code base). A h

plement large-scale applications, e.g., for the domainetifvark
4.2 Borderline Cases software [8], databases [10, 24, 8], avionics [6], and comavend-
control simulators [7], to mention a few. The AHEAD tool ®ulis
the largest example with about 80-200 KLOC [9, 40]. However,
none of these studies make quantitative statements almptap-
erties of the implemented features, nor do they evaluateised
implementation mechanisms with respect to the structufébeo
concerns. The features they considered were traditiotialbowa-
tions with heterogeneous crosscuts, which is in line withfod-
ings in P2P-PL.

Lopez-Herrejon et al. explored the ability of AOP to implerhe
product lines in a FOP and SWD fashion [28]. They demonstrate
how collaborations are translated automatically to aspelitey
do not address in what situations which implementationrtiegle
is most appropriate nor how the generated aspects affegtgmo
comprehensibility.

Xin et al. evaluatediazziand AspectJ for feature-wise decom-
position [42]. They reimplemented a AspectJ-based CORBhEeV
service [21] by replacing aspects wittazzi unitswhich are a form
of feature modules. They concluded that Jiazzi providetebstip-
port for structuring software and manipulating featurekilevAs-
pectJ is more suitable for manipulating existing Java codenan-
ticipated ways. However, they do not examine the structtithe
implemented features. Their success to implement all feataf
their case study using Jiazzi feature modules hints that ofitisem
(if not all) come in form of object-oriented collaborations
lated K We are not aware of further published studies that take both,
5. Related Wor AOP and FOP, into account.

We limit the discussion of related work to the evaluatiormbma-
tion, and comparison of AOP and FOP. Work related to AMLs and 5.3 Combining AOP and FOP
AR is discussed elsewhere [5, 4, 3].

While we understand the above considerations as guidelimzé-
grammers that helps in most situations to decide betweesctsp
and mixins, we also discovered few situations where a detisi
not obvious.

We realized that some homogeneous crosscuts alternatively
could be modularized by introducing an abstract base clzats t
encapsulates this common behavior. While this works, famex
ple, for all messages or message handlers, it does not work fo
classes that are completely unrelated, as in the case ofgmtpg
feature. Itis up to the programmer to decide if the targetsda are
syntactically and semantically close enough to be groupedanw
abstract base class.

Although, our study has shown that a traditional collakiorat
based design ala FOP works well for the most features, wedfoun
at least one heterogeneous feature where it is not cleawititd
not be more intuitive to implement it via an aspect. Thisdeain-
troducegoStringmethods to a set of classes (cf. Tab. 1). Naturally,
each of these methods is differently implemented. Thusfahe
ture is a heterogeneous crosscut. However, in this paaticalse it
seems more intuitive to group abStringmethods in one aspect.
We believe this is caused by the partly homogeneous natuhesof
crosscut, i.e., introducing a set of methods for the sampqgserto
different classes.

Several studies suggest the synergistic potential of &spedes,
5.1 Evaluation of AOP and collaborations, e.gCaesar[32, 33], Aspectual Collabora-
tions [25], and Object Teamg20]. Since these approaches were
highly influenced by one another, we compare our approadteto t
general concepts. We choose caesar as a representativesdéca
is the most mature.

Caesar supports componentization of aspects by encapgulat
virtual classes as well as pointcuts and advice in collatm s, so
called aspect component#\spect components can be composed
via their collaboration interfaces and mixin compositiorai step-
wise manner. Besides this, they can be refined using pofiout
order to implement crosscuts.

All of the mentioned approaches abstract collaborations of
classes explicitly at language level and enrich these abstr
tions by different AOP mechanisms. Since all principallysort
collaboration-based designs, they all are capable of imgiging
those features of P2P-PL that do not contain aspects (99-feat
res that sum up to 94% of the code base). It is not clear how our
structuring and refinement of aspects can be mapped to tpese a
proaches; this is a subject of future work.

Recent studies have evaluated AOP by its application tovedtl
software projects. We review a representative subset.

Colyer and Clement refactored an application server usig a
pects [16]. Specifically, they factored 3 homogeneous anétd h
erogeneous crosscuts. While the number of aspects is ragrjia
size of the case study is impressively high (millions of LOG)
though they draw positive conclusions, they admit (but doaxe
plore) a strong relationship to FOP. Our study has demdsstthe
useful integration of both worlds.

Zhang and Jacobsen refactored several CORBA ORBs [43]. Us-
ing code metrics, they demonstrated that program complesitld
be reduced. They proposed an incremental process of rafagto
which they callhorizontal decompositiorLiu et al. have pointed
to the close relationship to FOP layering [26]. Our study t@s-
firmed former arguments that for implementing features speets
are too small units of modularization [33, 25, 5].

Coady and Kiczales undertook a retroactive study of aspect
evolution in the code of the FreeBSD operating system (ZD-4
KLOC) [15]. They factored 4 concerns and evolved them inghre
steps; inherent properties of concerns were not explameetail.

Our study has shown that AR can help to evolve aspects over Steimann argues that expressing collaborations usingwsbjen-
several development steps. ted techniques facilitates a better program understartiizug us-

Lohmann et al. examined the applicability of AOP to embedded ing aspects [39]. He builds his arguments on a long line ofkwor
infrastructure software [27]. They have shown that AOP raech on object-oriented and conceptual modeling, as survey¢88j

5.4 Collaborations and Super-Imposition

However, he does not distinguish between homogeneous and he References

erogeneous crosscuts nor between static and dynamic gtessc

Bosh demonstrates how super-imposing collaborationseoutp
forms other component integration techniques such as \nwgpp
and aggregation [12]. Although he does not explicitly takePA
into account, he favors collaborations for implementiratdiees.

Our study has shown that for most features in P2P-PL the argu-
ments of Steimann and Bosh are valid. Nevertheless, ininesita
uations traditional object-oriented techniques fail at@PAmecha-
nism perform better.

5.5 Roles and Aspects

Pulvermiller et al. propose to implement collaboratioasiagle
aspects that inject the participating roles into the basgram
by using introductions declarations and advice [36]. In sudy
we made the observation that explicitly representing boltations
by traditional object-oriented techniques and mixinslfetes pro-
gram comprehensibility. Moreover, favoring their apptoaould
lead at the end to a base program with empty classes that are ex
tended by several aspects that inject structure and behavis
would destroy the object-oriented structure of the progamd
would hinder the programmer to understand the structureband
havior of the overall program as well as its individual feagi

Some authors suggest to use aspects for implementing indi-
vidual roles [19, 22]. In our context this would mean to repla
each mixin within a feature by one or more aspects. We and oth-
ers [39, 33] argue that replacing traditional object-aeentech-
niques that suffice (e.g., inheritance) is questionablstebd, we
favor to use aspects only when traditional techniques fail.

6. Conclusion

AOP and FOP are complementary technologies: we and others be
fore us have noticed that the weakness of one maps to thgttren
of the other. AML integrates both technologies. As a casgystue
used AML to implement a non-trivial product line of overlagtn
works. Our study showed that combining AOP and FOP improved
the modularity of features in our product line. That is, gsonly
aspects or only mixins would not have achieved an elegaigmles
or implementation; only their combination achieved thesalg

We observed that the dominant activity of features is iniotihns
—adding new classes and new members to existing classeseRefi
ment of existing methods involved a small fraction of featactivi-

ties in our case study. Further, while aspects were infretiyyased,
they enhanced the crosscut modularity of features and eelduge
dundant code. Although we cannot generalize the resultsioige
case study to future studies, we believe our work suppoethyh
pothesis that object-oriented collaborations (expressedlasses
and mixins) define the predominant way in which concerngiffea
res) are implemented, where aspects are useful in expgelein
mogeneous and advanced dynamic crosscuts.

Acknowledgments

We thank Roberto Lopez-Herrejon, Peri Tarr, Sahil Thaket; S
vador Trujillo, and the anonymous reviewers for their helgbm-
ments on earlier drafts of this paper. Sven Apel is sponsiorpdrt

by the German Research Foundation (DFG), project number SA
465/31-1, as well as by the German Academic Exchange Servic
(DAAD), PKZ D/05/44809. The presented study was conducted
when Sven Apel was visiting the group of Don Batory at the Uni-
versity of Texas at Austin. Don Batory's research is spoeddry
NSF’'s Science of Design Project #CCF-0438786.

[1] S. Apel and K. Bohm. Self-Organization in Overlay Netk®. In
Proceedings of CAISE Workshop on Adaptive and Self-Magagin
Enterprise Applications (ASMEA2005.

[2] S. Apel and E. Buchmann. Biology-Inspired Optimizatoof Peer-
to-Peer Overlay Networks.Practice in Information Processing
and Communications (Praxis der Informationsverarbeitwngd
Kommunikation)28(4), 2005.

[3] S. Apel et al. Aspect Refinement. Technical Report 10, dbepent
of Computer Science, University of Magdeburg, Germany6200

[4] S. Apel, T. Leich, and G. Saake. Aspect Refinement and Bedn
Quantification in Incremental Designs. Proceedings of Asia-Pacific
Software Engineering Conference (APSEZD)05.

[5] S. Apel, T. Leich, and G. Saake. Aspectual Mixin LayerspActs
and Features in Concert. Rroceedings of International Conference
on Software Engineering (ICSE)006.

[6] D. Batory et al. Creating Reference Architectures: Arafple from
Avionics. In Proceedings of Symposium on Software Reusability
(SSR)1995.

[7] D. Batory et al. Achieving Extensibility Through Prodtidnes and
Domain-Specific Languages: A Case StuddCM Transactions on
Software Engineering and Methodology (TOSEM)(2), 2002.

[8] D. Batory and S. O'Malley. The Design and Implementatiai
Hierarchical Software Systems with Reusable ComponeAGM
Transactions on Software Engineering and Methodology @@
1(4), 1992.

[9] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling-Stise
Refinement. IEEE Transactions on Software Engineering (TSE)
30(6), 2004.

[10] D. Batory and J. Thomas. P2: A Lightweight DBMS Generato
Journal of Intelligent Information Systems (JI19§2), 1997.

[11] K. Bohm and E. Buchmann. Free-Riding-Aware Forwagdin
Content-Addressable NetworkgL.DB Journa) 2006.

[12] J. Bosch. Super-Imposition: A Component AdaptatiochFeque.
Information and Software Technolgg¥l(5), 1999.

[13] G. Bracha and W. Cook. Mixin-Based Inheritance Proceedings of
International Conference on Object-Oriented ProgrammiBgstems,
Languages, and Applications (OOPSLA) and European Camfere
on Object-Oriented Programming (ECOQR)P90.

[14] E. Buchmann, S. Apel, and G. Saake. Piggyback Meta-Paipaga-
tion in Distributed Hash Tables. IAroceedings of the International
Conference on Web Information Systems and TechnologieBISVE
2005.

[15] Y. Coady and G. Kiczales. Back to the Future: A Retragcttudy
of Aspect Evolution in Operating System Code. Aroceedings of
International Conference on Aspect-Oriented Softwareel@ment
(AOSD) 2003.

[16] A. Colyer and A. Clement. Large-Scale AOSD for Middleaa
In Proceedings of International Conference on Aspect-Oeient
Software Development (AOS[2004.

[17] A. Colyer, A. Rashid, and G. Blair. On the Separation oh€erns in
Program Families. Technical Report COMP-001-2004, Comgut
Department, Lancaster University, 2004.

[18] K. Czarnecki and U. Eiseneckégenerative Programming: Methods,
Tools, and ApplicationsAddison-Wesley, 2000.

[19] S. Hanenberg and R. Unland. Roles and Aspects: Sitinggyi
Differences, and Synergetic Potential Hroceedings of International
Conference on Object-Oriented Information Systems (QQIE)2.

o [20] S. Herrmann. Object Teams: Improving Modularity folo€scutting

Collaborations. InProceedings of International Conference on
Objects, Components, Architectures, Services, and Agtjglits for a
Networked World (NetObjectDays)002.

[21] F. Hunleth and R. Cytron. Footprint and Feature Manag@m
Using Aspect-Oriented Programming Techniques.Ptaceedings
of Joint Conference on Languages, Compilers, and Tools for
Embedded Systems & Software and Compilers for Embeddeh&yst
(LCTES'02-SCOPES’'02p002.

[22] E. A. Kendall. Role Model Designs and Implementationghw
Aspect-Oriented Programming. Proceedings of International
Conference on Object-Oriented Programming, Systems, lages,
and Applications (OOPSLA)999.

[23] G. Kiczales et al. Aspect-Oriented ProgrammingPhoceedings of
European Conference on Object-Oriented Programming (E€DO
1997.

[24] T. Leich, S. Apel, and G. Saake. Using Step-Wise RefimarweBuild
a Flexible Lightweight Storage Manager. Broceedings of East-
European Conference on Advances in Databases and Infaymati
Systems (ADBIS2005.

[25] K. Lieberherr, D. H. Lorenz, and J. Ovlinger. Aspect@dllabo-
rations: Combining Modules and Aspect§he Computer Journal
46(5), 2003.

[26] J. Liu, D. Batory, and C. Lengauer. Feature-OrientetaBering of
Legacy Applications. IProceedings of International Conference on
Software Engineering (ICSE2006.

[27] D. Lohmann et al. A Quantitative Analysis of Aspects lire teCos
Kernel. InProceedings of ACM SIGOPS EuroSys Confere2686.

[28] R. Lopez-Herrejon and D. Batory. From Crosscutting €ons to
Product Lines: A Function Composition Approach. TechnReaport
TR-06-24, University of Texas at Austin, 2006.

[29] R. Lopez-Herrejon, D. Batory, and W. Cook. Evaluatingpgort
for Features in Advanced Modularization Technologies.Ptac-
cedings of European Conference on Object-Oriented Prograng
(ECOOP) 2005.

[30] R. Lopez-Herrejon, D. Batory, and C. Lengauer. A Diinigd
Approach to Aspect Composition. Proceedings of International
Symposium on Partial Evaluation and Program Manipulation
(PEPM), 2006.

[31] H. Masuhara and G. Kiczales. Modeling Crosscutting spéct-
Oriented Mechanisms. IRroceedings of European Conference on
Object-Oriented Programming (ECOOR003.

[32] M. Mezini and K. Ostermann. Conquering Aspects with &ae
In Proceedings of International Conference on Aspect-Oeiént
Software Development (AOS2003.

[33] M. Mezini and K. Ostermann. Variability Management lvkeature-
Oriented Programming and Aspects. Pmoceedings of ACM
SIGSOFT International Symposium on Foundations of Softwar
Engineering (FSE)2004.

[34] D. L. Parnas. Designing Software for Ease of Extensiod a
Contraction. IEEE Transactions on Software Engineering (TSE)
SE-5(2), 1979.

[35] C. Prehofer. Feature-Oriented Programming: A FresbklLat
Objects. InProceedings of European Conference on Object-Oriented
Programming (ECOOR)1997.

[36] E. Pulvermdiller, A. Speck, and A. Rashid. Implemegtin
Collaboration-Based Design Using Aspect-Oriented Prognang.
In Proceedings of International Conference on TechnologylgéeQ-
Oriented Languages and Systems (TOOLS-U3)0.

[37] Y. Smaragdakis and D. Batory. Mixin Layers: An Objeatiéhted
Implementation Technique for Refinements and Collabamatio
Based Designs ACM Transactions on Software Engineering and
Methodology (TOSEM1L1(2), 2002.

[38] F. Steimann. On the Representation of Roles in Obje#ied and
Conceptual Modeling.Data and Knowledge Engineering (DKE)
35(1), 2000.

[39] F. Steimann. Domain Models are Aspect Free.Pmceedings of
International Conference on Model Driven Engineering Laages
and Systems (MoDELS/UMLJ005.

[40] S. Trujillo, D. Batory, and O. Diaz. Feature Refactgria Multi-
Representation Program into a Product Line. Proceedings
of International Conference on Generative Programming and
Component Engineering (GPCE)006.

[41] M. VanHilst and D. Notkin. Using Role Components in Irapient
Collaboration-based Designs. Rroceedings of International
Conference on Object-Oriented Programming, Systems, lages,
and Applications (OOPSLA)996.

[42] B. Xin et al. A Comparison of Jiazzi and AspectJ for FeatWise
Decomposition. Technical Report UUCS-04-001, Universitytah,
2004.

[43] C. Zhang and H.-A. Jacobsen. Resolving Feature Cotigalin
Middleware Systems. IRroceedings of International Conference
on Object-Oriented Programming, Systems, Languages, pptica-
tions (OOPSLA)2004.

