
FeatureC++: On the Symbiosis of
Feature-Oriented and Aspect-Oriented

Programming

Sven Apel, Thomas Leich, Marko Rosenmüller, and Gunter Saake

Department of Computer Science
University of Magdeburg, Germany

email: {apel,leich,rosenmue,saake}@iti.cs.uni-magdeburg.de

Abstract. This paper presents FeatureC++, a novel language exten-
sion to C++ that supports Feature-Oriented Programming (FOP) and
Aspect-Oriented Programming (AOP). Besides well-known concepts of
FOP languages, FeatureC++ contributes several novel FOP language
features, in particular multiple inheritance and templates for generic pro-
gramming. Furthermore, FeatureC++ solves several problems regard-
ing incremental software development by adopting AOP concepts. Start-
ing our considerations on solving these problems, we give a summary of
drawbacks and weaknesses of current FOP languages in expressing incre-
mental refinements. Specifically, we outline five key problems and present
three approaches to solve them: Multi Mixins, Aspectual Mixin Layers,
and Aspectual Mixins that adopt AOP concepts in different ways. We
use FeatureC++ as a representative FOP language to explain these
three approaches. Finally, we present a case study to clarify the benefits
of FeatureC++ and its AOP extensions.

1 Introduction

Feature-Oriented Programming (FOP) [5] is an appropriate technique to imple-
ment program families and incremental designs [7, 3, 1, 6]. It aims to cope with
the increasing complexity, lacking reusability and customizability of nowadays
software systems. Aspect-Oriented Programming (AOP) [16] is a related pro-
gramming paradigm and has similar goals: It focuses mainly on separating and
encapsulating crosscutting concerns to increase maintainability, understandabil-
ity, and customizability [9, 17]. However, it does not focus explicitly on incre-
mental designs or program families.

One contribution of this article are our investigations in the symbiosis of
FOP and AOP. Our aim is to combine the strengths of both approaches with
regard to the implementation program families. Doing so, we firstly review well-
known problems of FOP, in particular shortcomings in crosscutting modularity.
We argue that certain features of AOP can help to solve these problems. Mainly,
the ability to handle dynamic crosscutting and homogeneous crosscuts, as well
as the growing acceptance, motivates us to choose AOP. We propose three ways

to do this symbiosis (as we will explain): Multi Mixins, Aspectual Mixin Layers,
and Aspectual Mixins. These three approaches cope with the present problems of
the FOP paradigm in different ways. They contribute several ideas in improving
crosscutting modularity in the face of incremental software development and
program families.

Current research in this direction focuses mainly on Java. AspectJ 1 and the
AHEAD Tool Suite (ATS)2 are prominent examples. Although used in a large
fraction of applications like operating systems, realtime embedded systems, or
databases C++ is rarely considered. Current solutions for C++ utilize tem-
plates [31], simple language extensions [29], or C preprocessor directives. These
approaches are complicated, hard to understand, and not applicable to larger
software systems. Thus motivated, this article presents FeatureC++3, a lan-
guage proposal for FOP in C++. Using FeatureC++, we explain the use and
the benefits of the three AOP extensions integrated into a FOP language.

Besides basic concepts known from other FOP languages FeatureC++
further exploits useful concepts of C++, e.g. multiple inheritance or generic
programming support. Moreover, it solves different problems of object-oriented
languages in implementing incremental designs, namely (1) the constructor prob-
lem [30, 13], which occurs when minimal extensions have to be unnecessarily ini-
tialized, (2) the extensibility problem [14], which is caused by the mixture of class
extensions and variations, and (3) hidden overloaded methods in C++, which
are hindering for step-wise refinements. Whereas these solutions are known from
previous work, the consistent embedding into a C++-based FOP/AOP language
is new. We perceive them as indispensable for successful FOP languages.

To underpin our language proposal we have implemented a first prototype,
available at our web site. Using a case study, we illustrate how to use Fea-
tureC++. The study reveals the advantages of FeatureC++ and its AOP
extensions compared to common FOP approaches.

The remaining article is structured as follows: Section 2 gives necessary back-
ground information. In Section 3, we introduce the basic language concepts and
features of FeatureC++. Section 4 reviews drawbacks and weaknesses of FOP
and suggests three approaches to overcome them. In Section 5, we present a case
study that explains the use of FeatureC++ and its advantages. Section 6
reviews related work. Finally, Section 7 concludes the paper.

2 Background

Pioneer work on software modularity was made by Dijkstra [12] and Parnas [27].
Both proposed the principle of separation of concerns that suggests to separate
each concern of a software system in a separate modular unit. Following this prin-
ciple leads to maintainable, comprehensible software that can be easily reused,
customized and extended.
1 http://eclipse.org/aspectj/
2 http://www.cs.utexas.edu/users/schwartz/Hello.html
3 http://wwwiti.cs.uni-magdeburg.de/iti db/fcc/

AOP was introduced by Kiczales et al. [16]. The aim of AOP is to separate
crosscutting concerns. Common object-oriented methods fail in this context [16,
11]. The idea behind AOP is to implement orthogonal features as aspects. This
prevents the known phenomena of code tangling and scattering. The core fea-
tures are implemented as components, as with common design and implemen-
tation methods. Using pointcuts and advices, an aspect weaver brings aspects
and components together. Pointcuts specify the join points of aspects and com-
ponents, whereas advices define which code is applied to these points. AspectJ
and AspectC++4 are prominent AOP extensions to Java and C++.

FOP studies feature modularity in program families [5]. The idea of FOP
is to build software (individual programs) by composing features. Features are
basic building blocks that satisfy intuitive user-formulated requirements on the
software system. Features refine other features incrementally. This step-wise re-
finement leads to a layered stack of features. Mixin Layers are one appropriate
technique to implement features [31]. The basic idea is that features are often
implemented by a collaboration of class fragments. A Mixin Layer is a static
component encapsulating fragments of several different classes (Mixins) so that
all fragments are composed consistently. Advantages are a high degree of mod-
ularity and an easy composition [31].

AHEAD is an architectural model for FOP and a basis for large-scale com-
positional programming [5]. AHEAD generalizes the concept of features and
feature refinements. Features consist not only of code but of several types of ar-
tifacts, e.g., makefiles, UML-diagrams, documentation. The AHEAD Tool Suite
(ATS) provides a tool chain for AHEAD and FOP based on Java. The included
Jak language supports Java-based Mixin Layers.

3 FeatureC++ Language Overview

FeatureC++ is a C++ language extension to support FOP. The following
paragraphs give an overview of the most important language concepts.

3.1 Introduction to Basic Concepts

class A class B class C

layer 1

layer 2

layer 3

Fig. 1. Stack of Mixin Layers.

To implement FeatureC++, we have
adopted the basic concepts of the ATS: Fea-
tures are implemented by Mixin Layers. A
Mixin Layer consists of a set of collaborating
Mixins (which implement class fragments).
Figure 1 depicts a stack of three Mixin Layers
(1− 3) in top down order. The Mixin Layers
crosscut multiple classes (A−C). The rounded boxes represent the Mixins. Mix-
ins that belong to and constitute together a complete class are called refinement
chain. Refinement chains are connected by vertical lines. Mixins that start a re-
finement chain are called constants, all others are called refinements. A Mixin A
4 http://www.aspectc.org/

that is refined by Mixin B is called parent Mixin or parent class of Mixin B. Con-
sequently, Mixin B is the child class or child Mixin of A. Similarly, we speak of
parent and child Mixin Layers. In FeatureC++ Mixin Layers are represented
by file system directories. Therefore, they have no programmatic representation.
Those Mixins found inside the directories are assigned to be members of the
enclosing Mixin Layers.

3.2 Basic Language Features

To reuse established language concepts and to increase the users acceptance,
FeatureC++ adopts the syntax from the Jak language. The following para-
graphs introduce the most important language concepts and features:

Constants and Refinements. Each constant and refinement is implemented
as a Mixin inside exactly one source file. The root of a refinement chain is formed
by these constants (see Fig. 2, Line 1). Refinements are applied to constants as

1 class Buffer {
2 char *buf;
3 void put(char *s) {/∗ . . . ∗/}
4 };
5 refines class Buffer {
6 int len;
7 int getLength () {/∗ . . . ∗/}
8 void put(char *s) {
9 i f (strlen(s) + len < MAX_LEN)

10 super::put(s); }
11 };

Fig. 2. Constants and refinements.

1 class Buffer {/∗ . . . ∗/};
2
3 // two buffer variations
4 class FileBuffer : Buffer {/∗ . . . ∗/};
5 class SockBuffer : Buffer {/∗ . . . ∗/};
6
7 // buffer extension : sync . support
8 refines class Buffer { Lock lock; };

Fig. 3. Deriving variations vs. exten-
sions.

well as to other refinements. They are declared by the refines keyword (Line 5).
Usually, they introduce new attributes (Line 6) and methods (Line 7) or extend5

methods of their parent classes (see Fig. 2, Line 8). To access the extended
method the super keyword is used (Line 10). Super refers to the type of the
parent Mixin. It has a similar syntax to the Java super keyword and a similar
meaning to the proceed keyword of AspectJ and AspectC++.

Solving the Extensibility Problem. FeatureC++ solves the extensibility
problem [14]: implementation added to a class by creating a new subclass leaves
the class’ existing subclasses outdated.6 It is caused by the divergence of variation
and extension. Imagine an abstract buffer class with several subclasses, e.g.,
FileBuffer, SockBuffer. These classes are buffer variations. With common object-
oriented languages the extensibility problem occurs: If one wants to extend the
5 We do not use the term ’override’ because we want to emphasize that usually method

refinements reuse the parent method. This is more an extension than an overriding.
6 The original definition regards the extension of designs by new operations and data

types. However, following Cardone et al. [7] we deal with this problem in the context
of class hierarchy extensions.

buffer class by subclassing, the existent buffer variations (the other subclasses)
are not affected.

FeatureC++ solves the extensibility problem as follows: extensions are ex-
pressed as refinements whereas variations are derived using common inheritance.
The variations FileBuffer and SockBuffer, depicted in Figure 3, inherit from the
most specialized form of Buffer (in our example the synchronized buffer) re-
gardless of their position and the position of the extension in the refinement
chain. This facilitates the easy localized extension of (abstract) classes and the
attended automatic extension of all variations.

Constructor Propagation. FeatureC++ solves the constructor problem [30,
13]: in common object-oriented languages, e.g., Java and C++, constructors are
not inherited automatically and have to be redefined for each subclass. The idea
of FOP is to refine existing classes by many minimal extensions. In many cases
these extensions do not need explicit new initializations. FeatureC++ solves
the constructor problem by propagating all constructors of parent classes ’down’
to their subclasses. That means, that all defined constructors of a refinement
chain are available in the resulting generated class.

Besides constructors, also hidden overloaded methods are propagated down
the refinement chain. Background is that C++ does not allow to access over-
loaded methods of a base class. These hidden methods are propagated too (see [2]
for more details).

3.3 C++-Specific Language Features

The section so far has introduced features that are mostly adopted from Jak. The
following language features are novel to FOP and exploit C++ capabilities. This
makes FeatureC++ more powerful than current approaches, e.g. in supporting
generic programming.

Multiple Inheritance. Multiple inheritance is a useful concept of object-
oriented languages to express refinements. Figure 4 depicts a buffer refinement
that adds synchronization and logging support using multiple inheritance. The
corresponding functionality is implemented by inheriting from Semaphore and
Logging and extending the buffer functionality.

1 refines Buffer : public
2 Semaphore ,
3 Logging {/∗ . . . ∗/};

Fig. 4. Refining a buffer using
multiple inheritance.

1 refines template <class T> class Buffer {
2 void push(T &) {/∗ . . . ∗/}
3 T& pop() {/∗ . . . ∗/}
4 };

Fig. 5. Declaring a refinement as template.

Generic Programming. To implement generic solutions, FeatureC++ sup-
ports generic programming, in particular class and method templates. Generic

programming is essential to program families. The ability to parameterize refine-
ments improves the variability in composing individually customized programs.

Figure 5 depicts a buffer refinement that uses a template parameter to de-
termine the storage data type at instantiation time. Method templates are used
analogously.

Further Language Features. C++ supports a lot of language features which
are not available in Java. Currently, we support refinements of destructors and
structs. Furthermore, we overload the keyword this to additionally providing
access to the type of the enclosing Mixin. this::Buffer refers to the type of the
current position in the refinement chain, instead of the type of the composed
class.

4 Aspect-Oriented Extensions

FOP has several well-known problems in modularizing crosscutting concerns [24].
These problems degrade the modularity of program family members and decrease
maintainability, evolvability, and customizability. We investigate solutions for the
following selected problems, which are relevant for program family development:
(1) weaknesses in expressing dynamic crosscutting, (2) inability to express ho-
mogeneous crosscutting concerns, (3) refinements have to be hierarchy-conform,
(4) problem of method interface extensions, and (5) excessive method extensions.

We briefly review these problems (see [2, 24] for a further discussion).
1. FOP has weaknesses in expressing dynamic crosscutting, which e.g. depends

on the runtime control flow. FOP copes mainly with static crosscutting. Dy-
namic crosscutting is only supported in terms of intercepting and extending
methods. AOP languages handle dynamic crosscutting in a more elegant
and robust way. Novel innovative pointcut approaches (e.g. [26]) show the
strength of AOP in this respect.

2. A second problem is that FOP languages deal only with heterogeneous cross-
cutting concerns, which apply different code at different positions. AOP, in-
stead, copes mainly with homogeneous concerns that extend the base code
at different join points with the same code fragments.

3. A third problem is that refinements to a given feature base must match the
structure of this base, in particular, the class structure. A reorganization of
the structure or the raising to a new abstraction level, as described in [24],
is not possible.

4. A further problem occurs if method refinements need to extend the signature
of the refined method, i.e. the argument list. This is only possible with an
inelegant workaround.

5. A final problem are excessive method extensions in case of refinements that
crosscut a large fraction of existing classes. For each method a crosscut de-
pends on, the programmer has to introduce an extended method. This prob-
lem is caused by the inability of FOP to modularize homogeneous crosscut-
ting concerns.

We perceive solutions to the listed problems as a benefit for implementing
incremental designs and as an improvement of FeatureC++ against common
FOP approaches. In the following, we present our investigations in solving these
problems using AOP language features as wildcards, pointcuts and advices. We
present only preliminary approaches. A detailed analysis of the impact of these
approaches on real-world applications, robustness, and code quality is part of
future work.

1 refines class Buffer% {};
2
3 refines class Buffer {
4 void put %(...) {} };

Fig. 6. Two Multi Mixins.

Multi Mixins. Our first attempt was to
tackle the problems of excessive method ex-
tensions and hierarchy-conformity. The idea
is to allow Mixins to refine a whole set of par-
ent Mixins instead of refining only one parent
Mixin. Because of this refinement multiplic-
ity we call these Mixins Multi Mixins.

The sets of parent Mixins are specified by wildcards. Figure 6 shows two
Multi Mixins that use wildcards to specify the Mixins and methods they refine.
The unspecified sub-strings are denoted by ’%’. The first Mixin refines all classes
that start with ”Buffer” (Line 1). The semantics of such Class Multi Mixins are
straightforward: The term Buffer% has the same effect as if one creates a set of
new refinements for each found Mixin that matches the pattern (Buffer%). The
second Multi Mixin, called Method Multi Mixin, refines all methods of Buffer
that start with ”put” (Line 3). Similar to AOP languages, a join point API
provides access to the arguments.

Both types of Multi Mixins ease the encapsulation of static homogeneous
crosscuts by using wildcards to specify the set of target join points. Furthermore,
Multi Mixins solve the problem of excessive method extensions by refining mul-
tiple methods using one extension. In this way also the hierarchical structure of
the parent Mixin Layer is changed.

Aspectual Mixin Layers. The key idea behind Aspectual Mixin Layers is
to embed aspects into Mixin Layers. Each Mixin Layer contains a set of Mix-
ins and a set of aspects. Doing so, Mixins implement static, heterogeneous, and
hierarchy-conform crosscutting, whereas aspects express dynamic, homogeneous,
and non-hierarchy-conform crosscutting. In other words, Mixins refine other Mix-
ins and depend, therefore, on the structure of the parent layer. These refinements
follow the static structure of the parent features. Aspects refine a set of parent
Mixins by intercepting method calls and executions as well as attribute accesses.
Therefore, aspects are able to implement advanced dynamic crosscutting and ho-
mogeneous, non-hierarchy-conform refinements.

Figure 7 shows a stack of Mixin Layers that implements some buffer function-
ality, in particular, a basic buffer with iterator, a separated allocator, synchro-
nization, and logging support. Whereas the first three features are implemented
as common Mixin Layers, the Logging feature is implemented as an Aspectual
Mixin Layer. The rationale behind this is that the logging aspect captures a
whole set of methods that will be refined (dashed arrows). This refinement is

Buffer Iterator Allocator Lock

Allocator

Buffer Iterator

LogConsole LogAspect

Buffer

Log

Sync

Base

Alloc

Fig. 7. Implementing a logging fea-
ture using Aspectual Mixin Layers.

Buffer Iterator Allocator Lock

Allocator

Buffer Iterator

LogConsole

LogConsole

LogAspect

LogAspect

Buffer

ExtLog

Log

Sync

Base

Alloc

Fig. 8. Refining an Aspectual Mixin
Layer.

1 refines aspect LogAspect {
2 void print () { changeFormat (); super:: print (); }
3 pointcut log() = call("% Buffer ::put (...)") || super::log();
4 };

Fig. 9. An aspect embedded into a Mixin Layer.

not hierarchy-conform and depends on the runtime control flow (dynamic cross-
cutting). Moreover, the use of wildcards prevents the programmer from excessive
method extensions.

A further highlight of Aspectual Mixin Layers is that aspects can refine other
aspects by using the refines keyword. To access the methods and attributes of
the parent aspect, the refining aspect uses the super keyword. Figure 8 shows
an Aspectual Mixin Layer that refines the logging aspect by additional join
points to extend the set of intercepted methods. Beside this, the logging console
(implemented as a Mixin) is refined by additional functionality, e.g. a modified
output format. Generally, aspects can refine the methods of parents aspect as well
as the parent pointcuts. Extending pointcuts increases the reuse of existing join
point specifications (as in the logging example). Note that refining/extending
aspects is conceptually different than applying aspects themselves. Whereas the
latter case applies the aspects first, the former case results in a transformation
of the aspect code before applying them to the target program.

To express aspects in Aspectual Mixin Layers we adopt the syntax of As-
pectC++. Figure 9 depicts an aspect refinement that extends a logging feature,
including a logging aspect. It extends a parent method in order to adjust the
output format (Line 2) and refines a parent pointcut to extend the set of target
join points (Line 3). Both is done using the super keyword.

Aspectual Mixins. The idea of Aspectual Mixins is to apply AOP language
concepts directly to Mixins. In this approach, Mixins refine other Mixins as with
common FeatureC++, but they also define pointcuts and advices (see Fig. 10).
In other words, Aspectual Mixins are similar to Aspectual Mixin Layers but
integrate pointcuts and advices directly into Mixins.

In this sense, Aspectual Mixins are related to Classpects [28] that unify AOP
and OOP language concepts. However, we see problems regarding this intermix-
ing of Mixins (attributes, methods, refinements) and aspect elements (pointcuts,
advices). Combining both may lead to a dependency of life time of the aspect
and the Mixin subset. Usually, aspects are not instantiated directly by the user

1 refines class Buffer {
2 int length () {/∗ . . . ∗/}
3 pointcut log() = call("% Buffer ::%(...)");
4 };

Fig. 10. Combining Mixins and AOP elements.

but triggered by the matching join points (as in AspectJ). Instead, Mixins are
instantiated by the user. Currently, we are not sure what the instantiation of an
Aspectual Mixin results in: (1) The aspect subset is instantiated as well (as in
Caesar [24]). (2) The aspect subset is instantiated only once (as in AspectJ). The
problem of the former case is that often only one instance is needed. The latter
case may lead to problems in accessing the internals of the Aspectual Mixin. For
instance advices must not access instance attributes of the enclosing Aspectual
Mixin. A deeper analysis of the consequences is important and part of future
work.

4.1 Summary

All three approaches provide solutions for certain problems of FOP. They deal
with the problems in different ways and contribute improved techniques for im-
plementing incremental designs. Whereas Multi Mixins only solve the problem
of hierarchy-conform refinements and method extensions, the Aspectual Mixins
and Aspectual Mixin Layers can solve all stated problems. However, the Aspec-
tual Mixin approach yields some problems regarding the instantiation and life
time. Moreover, it is currently not clear if the mixture of aspect and Mixin sub-
sets leads to deeper problems. Currently, Aspectual Mixin Layers are the only
implemented variant (see [2]).

A further highlight of all three AOP extensions is a specific bounding mech-
anism that supports a robust incremental design. Originally it was proposed by
Lopez-Herrejon and Batory [21]. They argue that with regard to program family
evolution features should only affect features of prior development stages. Cur-
rent AOP languages, e.g. AspectJ and AspectC++, do not follow this principle.
This decreases aspect reuse and complicates incremental design. Consequently,
our three extensions follow this principle. To achieve this bounding mechanism,
the user-declared join point specifications must be restructured: Type names in
wildcards are translated to match only the types of the current and the parent
layers. Each wildcard expression that contains a type name is translated into a
set of new expressions that refer to all type names of the parent classes. Fig-
ure 11 shows a synchronization aspect that is part of an Aspectual Mixin Layer.
It has two parent layers (Base, Log) and several child layers. FeatureC++
transforms the aspect and the pointcut as depicted in Figure 12. This transfor-
mation works similar for Aspectual Mixins. In case of Multi Mixins we have to
add a mechanism for combining wildcard expression logically. Unfortunately, we
have no formal evidence that this transformation does not capture inadvertently
classes of later development stages. This is part of future investigations.

Finally, we want to emphasize that all three approaches are not specific to
FeatureC++. All concepts can be applied to other FOP or AOP languages. We

1 aspect SyncAspect {
2 pointcut sync() :
3 call("% Buffer ::put (...)");
4 };

Fig. 11. A simple pointcut ex-
pression.

1 aspect SyncAspect_Sync {
2 pointcut sync() :
3 call("% Buffer_Sync ::put (...)")
4 || call("% Buffer_Log ::put (...)")
5 || call("% Buffer_Base ::put (...)");
6 };

Fig. 12. Transformed pointcut.

have implemented a first prototype of FeatureC++ including the support for
Aspectual Mixin Layers. The implementation is described in [2] and a prototype
is available at our web site.

5 A Case Study

This section introduces a case study that gives an overview of the functional-
ity of FeatureC++. We choose the stock information broker example, adopted
from [24], in order to point to the benefits of Aspectual Mixin Layers compared to
common FOP approaches. We show how FeatureC++ overcomes the problems
discussed in Section 4. The case study was implemented using our prototype.

StockInformationBroker
collectInfo(...)

DBBroker
getStock()

StockInfoRequest
getStocks()

StockInfo
getQuote()
addQuote()

Client
run(...)

<<uses>>

<<creates>>

<<creates>>

<<uses>>

Fig. 13. Stock Information Broker.

Stock Information Bro-
ker. A stock information
broker provides information
about the stock market.
The central abstraction is
the StockInformationBroker
(SIB) that allows to lookup
for information of a set of
stocks (see Fig. 13). A Client can pass a StockInfoRequest (SIR) to the SIB
by calling the method collectInfo. The SIR contains the names of all requested
stocks. Using the SIR, the SIB queries the DBBroker in order to retrieve the
requested information. Then, the SIB returns a StockInfo (SI) object which
contains the stock quotes to the client.

All classes are encapsulated in a Mixin Layer. In other words, this Mixin
Layer implements a basic stock information broker feature (BasicSIB). Figure 14
shows a relevant subset of this feature.

Pricing Feature as Mixin Layer. Now, we want to add a Pricing feature that
charges the clients account depending on the received stock quotes. Figure 15
depicts this feature implemented using common FOP concepts. Client is refined
by an account management (Lines 16-22), SIR is refined by a price calculation
(Lines 2-5), and SIB charges the account when passing information to the client
(Lines 10-12).

There are several problems to this approach: (1) The Pricing feature is ex-
pressed in terms of the structure of the BasicSIB feature. This problem is caused
by the inability of FOP to express non-hierarchy-conform refinements. It would

1 class StockInformationBroker {
2 DBBroker m_db;
3 public:
4 StockInfo &collectInfo(StockInfoRequest &req) {
5 string *stocks = req.getStocks ();
6 StockInfo *info = new StockInfo ();
7 for (unsigned int i = 0; i < req.num (); i++)
8 info ->addQuote(stocks[i], m_db.get(stocks[i]));
9 return *info; }

10 };
11
12 class Client {
13 StockInformationBroker &m_broker;
14 public:
15 void run(string *stocks , unsigned int num) {
16 StockInfo &info = m_broker.collectInfo(StockInfoRequest(stocks , num));...}
17 };

Fig. 14. The basic stock information broker (BasicSIB).

be better to describe the Pricing feature using abstractions as product and cus-
tomer. (2) The interface of collectInfo was extended. Therefore, the Client must
extend the method run in order to pass a reference of itself to the SIB. This
is an inelegant workaround and increases the complexity. (3) The charging of
clients cannot be dynamically altered, e.g. depending on the runtime control
flow. Moreover, it is assigned to the SIB which is clearly not responsible for this
function.

1 refines class StockInfoRequest {
2 float basicPrice ();
3 float calculateTax ();
4 public:
5 float price ();
6 };
7
8 refines class StockInformationBroker {
9 public:

10 StockInfo &collectInfo(Client &c, StockInfoRequest &req) {
11 c.charge(req);
12 return super:: collectInfo(req); }
13 };
14
15 refines class Client {
16 float m_balance;
17 public:
18 float balance ();
19 void charge(StockInfoRequest &req);
20 void run(string *stocks , unsigned int num) {
21 StockInfo &info = super:: m_broker.collectInfo (*this ,
22 StockInfoRequest(stocks , num)); ... }
23 };

Fig. 15. The pricing feature using FOP (Pricing).

Pricing Feature as Aspectual Mixin Layer. Figure 16 depicts the Pricing
feature implemented by an Aspectual Mixin Layer. The key difference is the
Charging aspect. It intercepts calls to the method collectInfo (Lines 2-4) and
charges the calling client depending on its request (Lines 5-6). This solves the
problem of the extended interface because the client is charged by the aspect

instead by the SIB. An alternative is to pass the clients reference to the extended
collectInfo method (not depicted). In both cases, the Client does not need to
extend the run method.

A further advantage is that the charging of client’s accounts can be made
dependent to the control flow (using the cflow or if pointcut). This makes it
possible to implement the charging function variable. Finally, our example shows
that by using Aspectual Mixin Layers we have to refine only these classes that
play the roles of product (SIR) and customer (Client).

1 aspect Charging {
2 pointcut collect(Client &c, StockInfoRequest &req) =
3 call("% StockInformationBroker :: collectInfo(StockInfoRequest &)")
4 && args(req) && that(c);
5 advice collect(c, req) : after(Client &c, StockInfoRequest &req) {
6 c.charge(req); }
7 };
8
9 refines class StockInfoRequest {

10 float basicPrice ();
11 float calculateTax ();
12 public:
13 float price ();
14 };
15
16 refines class Client {
17 float m_balance;
18 public:
19 float balance ();
20 void charge(StockInfoRequest &req);
21 };

Fig. 16. The pricing feature using Aspectual Mixin Layers (Pricing).

Summary. Although the stock information broker example is very simple, it re-
veals the benefits of FeatureC++ and Aspectual Mixin Layers. FeatureC++
has all advantages of common FOP approaches. Furthermore, it is able to el-
egantly handle dynamic crosscutting, interface extensions, and non-hierarchy-
conform refinements. Furthermore, Aspectual Mixin Layers can modularize ho-
mogeneous crosscuts and prevent excessive method extensions by using aspects
(not shown). Due to the lack of space a description of a logging feature (homoge-
neous concern) that extends the broker application at multiple join points (pre-
venting excessive method extensions) is omitted. The implementation is straight-
forward and was described many times. Table 1 summarizes the contribution of
Aspectual Mixin Layers.

We readily admit that this simple case study cannot prove our ideas, and we
do not intend to do so. This case study serves as proof of concept only and has
the aim to ease the understanding of our ideas. Mature case studies are supposed
to flesh out our theses in future work.

problem solution example

homogeneous
crosscuts

pointcuts and advices logging code is included in a set
of methods

interface
extensions

method interception, argument passing
by aspects

the pricing aspect passes the
clients reference to the SIB

hierarchy-
conformity

refine only structure relevant Mixins;
other are modified by aspects

refines Client as customer and
SIR as product

dynamic
crosscutting

use specific pointcuts (cflow, etc.) charge clients depending on
their runtime state

method
extensions

wildcards in pointcut expressions match all methods with price
transfer

Table 1. Advantages of FeatureC++ Aspectual Mixin Layers.

6 Related Work

Work in several fields is related: programming support for incremental designs,
AOP-related techniques, and the combination of AOP and FOP.

Programming support for incremental designs. One appropriate way to
implement features of program families in a modular way are Mixin Layers [31].
Mixin Layers can be implemented using C++ templates [31], P++ [29], Jak [5],
Java Layers [8], Jiazzi [23], and Delegation Layers [25]. All these approaches
leave aside the problem of lacking crosscutting modularity.

The constructor problem in incremental designs was introduced by Smarag-
dakis et al. [30]. Java Layers solve it by automatic constructor propagation
from parent to child classes [8]. Eisenecker et al. utilize static C++ meta-
programming [13]. Several approaches solve the extensibility problem, introduced
by Findler et al. [14]: Java Layers [8], Jak [5], Jiazzi [23]. Regarding the con-
structor problem and extensibility problem, FeatureC++ is inspired by these
approaches.

Aspects and separation of concerns. [24, 19–21] discuss the drawbacks of
current aspect-oriented languages, in particular no module boundaries, no fea-
ture cohesion, etc. FeatureC++ overcomes these problems by combining FOP
and AOP concepts. This increases the crosscutting modularity and feature cohe-
sion. Further, this preserves clear module boundaries and allows to scope aspect
bindings.

Hyper/J supports multi-dimensional separation of concerns for Java [32].
This approach to software development is more general than that of Fea-
tureC++ because it addresses the evolution of all software artifacts, e.g.,
documentation, makefiles, etc. However, Hyper/J has a lot of similarities to
AHEAD [4]. Since FeatureC++ can be embedded into AHEAD it is an ap-
propriate complement to Hyper/J.

The Law of Demeter for Concerns (LoDC) states that concerns should only
know other concerns that contribute to its own functionality [18]. Following this
principle (1) eases the incremental evolution of software by adding concern by

concern and (2) minimizes the number of feature interactions. FeatureC++
follows LoDC and enables a clear encapsulation of concerns. The supported
bounding mechanism scopes aspects in order to reduce unpredictable feature
interactions.

Classpects combine capabilities of aspects and classes to unify the design
of layered module systems [28]. They are related to Aspectual Mixins, whereas
classpects unify advices and method bodies (advices can be explicitly invoked),
but do not support mixin-based refinements.

AspectJ-like languages can express Mixins too. Using static introductions,
several classes (and methods) can be refined. In the face of heterogeneous cross-
cuts, for each target class a new aspect must be introduced. Otherwise, one
aspect declares all introductions. The problem of the first approach is that it
does not support feature cohesion. Moreover, the target classes are defined at
development time. Therefore, an easy exchange of the target layers is not possible
(because class names change which is not the case with Mixins). The second ap-
proach merges multiple refinement chains into one aspect. This may destroy the
logical structure. Furthermore, our Multi Mixins can be seamlessly integrated
into Mixin Layers and support the FOP paradigm. Moreover, they support in-
cremental development by a novel bounding mechanism (see Sec. 4.1).

Aspects, Features, and Collaborations Mezini et al. show that using AOP
as well as FOP standalone lacks crosscutting modularity [24]. They propose
CaesarJ for Java as a combined approach. Similar to FeatureC++, CaesarJ
supports dynamic crosscutting using pointcuts. In contrast to FeatureC++,
CaesarJ focuses on aspect reuse and on-demand remodularization. Lieberherr et
al. [19] introduce Aspectual Collaborations that encapsulate aspects into modules
with expected and provided interfaces. The main focus is similar to CaesarJ.

Kendall explores the connection between role modeling and AOP [15]. How-
ever, she does not consider the embedding of aspects into collaborations. Further-
more, her approach has several drawbacks regarding cohesive role refinements.

Colyer et al. propose the principle of dependency alignment : a set of guide-
lines for structuring features in modules and aspects with regard to program
families [10]. They distinguish between orthogonal and weak-orthogonal fea-
tures/concerns.

Loughran et al. support the evolution of program families with Framed As-
pects [22]. They combine the advantages of frames and AOP in order to serve
unanticipated requirements. Frames are related to Aspectual Mixins and Aspec-
tual Mixin Layers. Both allow to parameterize aspects at instantiation time.

7 Conclusion

This paper has presented FeatureC++, a novel FOP language extension to
C++ that additionally adopts AOP concepts. Besides common FOP concepts
it supports several useful C++-specific extensions, e.g. multiple inheritance,
generic programming. After an introduction to FeatureC++, this paper con-
tributes a summary of several weaknesses of FOP in modularizing crosscutting

concerns. We have explained how the weaknesses lead to problems in imple-
menting incremental designs. Consequently, we propose three approaches to solve
these problems, in particular, Multi Mixins, Aspectual Mixin Layers, and Aspec-
tual Mixins. All these approaches adopt language concepts of AOP. A further
highlight is a special bounding mechanism that supports a robust incremen-
tal development of program families. All three approaches are completely inde-
pendent of FeatureC++ and can be applied to other FOP/AOP languages.
Currently, we have implemented a prototype of FeatureC++ that supports
most of the discussed language features, including Aspectual Mixin Layers. One
can download a preliminary version of FeatureC++ at our web site7. Our
case study has shown that FeatureC++ with its AOP extensions is able to
elegantly express dynamic crosscutting, homogeneous crosscuts, non-hierarchy-
conform refinements, and to cope with excessive method extensions and interface
extensions.

In future work we want to investigate further in the relationship and sym-
biosis of FOP and AOP. In particular, we are interested in refining and evolving
pointcuts and advices, as well as in different bounding mechanisms. Further-
more, we plan to implement and evaluate Multi Mixin and Aspectual Mixins.
More complex case studies shall prove our results.

8 Acknowledgments

We would like to thank Don Batory and Erik Buchmann, as well as the program
committee for comments on drafts of this paper.

References

1. S. Apel and K. Böhm. Towards the Development of Ubiquitous Middleware Prod-
uct Lines. In ASE’04 SEM Workshop, volume 3437 of LNCS. Springer, 2005.

2. S. Apel et al. FeatureC++: Feature-Oriented and Aspect-Oriented Programming
in C++. Technical report, Department of Computer Science, Otto-von-Guericke
University, Magdeburg, Germany, 2005.

3. D. Batory et al. Creating Reference Architectures: An Example from Avionics. In
Symposium on Software Reusability, 1995.

4. D. Batory, J. Liu, and J.N. Sarvela. Refinements and Multi-Dimensional Separation
of Concerns. ACM SIGSOFT, 2003.

5. D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling Step-Wise Refinement.
IEEE TSE, 30(6), 2004.

6. D. Batory and J. Thomas. P2: A Lightweight DBMS Generator. Journal of
Intelligent Information Systems, 9(2), 1997.

7. R. Cardone et al. Using Mixins to Build Flexible Widgets. In AOSD, 2002.
8. R. Cardone and C. Lin. Comparing Frameworks and Layered Refinement. In ICSE,

2001.
9. A. Colyer and A. Clement. Large-Scale AOSD for Middleware. In AOSD, 2004.

7 http://wwwiti.cs.uni-magdeburg.de/iti db/fcc/

10. A. Colyer, A. Rashid, and G. Blair. On the Separation of Concerns in Program
Families. Technical report, Computing Department, Lancaster University, 2004.

11. K. Czarnecki and U. Eisenecker. Generative Programming: Methods, Tools, and
Applications. Addison-Wesley, 2000.

12. E. W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.
13. U. W. Eisenecker, F. Blinn, and K. Czarnecki. A Solution to the Constructor-

Problem of Mixin-Based Programming in C++. In Workshop on C++ Template
Programming, 2000.

14. R. Findler and M. Flatt. Modular Object-Oriented Programming with Units and
Mixins. In ICFP, 1998.

15. E. A. Kendall. Role Model Designs and Implementations with Aspect-Oriented
Programming. In OOPSLA, 1999.

16. G. Kiczales et al. Aspect-Oriented Programming. In ECOOP, 1997.
17. R. Laddad. AspectJ in Action – Practical Aspect-Oriented Programming. Manning

Publication Co., 2003.
18. K. Lieberherr. Controlling the Complexity of Software Designs. In ICSE, 2004.
19. K. Lieberherr, D. H. Lorenz, and J. Ovlinger. Aspectual Collaborations: Combining

Modules and Aspects. The Computer Journal (Special issue on AOP), 46(5), 2003.
20. R. Lopez-Herrejon, D. Batory, and W. Cook. Evaluating Support for Features in

Advanced Modularization Technologies. In ECOOP, 2005.
21. R. E. Lopez-Herrejon and D. Batory. Improving Incremental Development in As-

pectJ by Bounding Quantification. In Software Engineering Properties and Lan-
guages for Aspect Technologies, 2005.

22. N. Loughran et al. Supporting Product Line Evolution with Framed Aspects. In
AOSD ACP4IS Workshop, 2004.

23. S. McDirmid and W. Hsieh. Aspect-Oriented Programming in Jiazzi. In AOSD,
2003.

24. M. Mezini and K. Ostermann. Variability Management with Feature-Oriented
Programming and Aspects. ACM SIGSOFT, 2004.

25. K. Ostermann. Dynamically Composable Collaborations with Delegation Layers.
In ECOOP, 2002.

26. K. Ostermann, M. Mezini, and C. Bockisch. Expressive Pointcuts for Increased
Modularity. In ECOOP, 2005.

27. D. L. Parnas. Designing Software for Ease of Extension and Contraction. IEEE
TSE, SE-5(2), 1979.

28. H. Rajan and K. J. Sullivan. Classpects: Unifying Aspect- and Object-Oriented
Language Design. In ICSE, 2005.

29. V. Singhal and D. Batory. P++: A Language for Large-Scale Reusable Software
Components. In Workshop on Software Reuse, 1993.

30. Y. Smaragdakis and D. Batory. Mixin-Based Programming in C++. In GCSE,
2000.

31. Y. Smaragdakis and D. Batory. Mixin Layers: An Object-Oriented Implementation
Technique for Refinements and Collaboration-Based Designs. ACM TOSEM, 11(2),
2002.

32. P. Tarr et al. N Degrees of Separation: Multi-Dimensional Separation of Concerns.
In ICSE, 1999.

