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Abstract In scientific computing, researchers often use feature-rich software
frameworks to simulate physical, chemical, and biological processes. Com-
monly, researchers follow a clone-and-own approach: Copying the code of an
existing, similar simulation and adapting it to the new simulation scenario. In
this process, a user has to select suitable artifacts (e.g., classes) from the given
framework and replaces the existing artifacts from the cloned simulation. This
manual process incurs substantial effort and cost as scientific frameworks are
complex and provide large numbers of artifacts. To support researchers in this
area, we propose a lightweight API-based analysis approach, called VORM,
that recommends appropriate artifacts as possible alternatives for replacing
given artifacts. Such alternative artifacts can speed up performance of the
simulation or make it amenable to other use cases, without modifying the
overall structure of the simulation. We evaluate the practicality of VORM—
especially, as it is very lightweight but possibly imprecise—by means of a
case study on the DUNE numerics framework and two simulations from the
realm of physical simulations. Specifically, we compare the recommendations
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by VORM with recommendations by a domain expert (a developer of DUNE).
VORM recommended 34 out of the 37 artifacts proposed by the expert. In ad-
dition, it recommended 2 artifacts that are applicable but have been missed
by the expert and 32 artifacts not recommended by the expert, which however
are still applicable in the simulation scenario with slight modifications. Diving
deeper into the results, we identified an undiscovered bug and an inconsistency
in DUNE, which corroborates the usefulness of VORM.

Keywords software variability; configuration; variability extraction; vari-
ability analysis

1 Introduction

In scientific computing, natural and artificial processes are simulated in a
computer-aided way. Examples of these processes include physical, geological,
and biological processes, such as convection, blood flow, root–soil interaction,
and the large deformation contact problem. One efficient way to simulate these
processes is by modeling them as partial differential equations and by applying
grid-based methods to solve these equations. The idea is to discretize the typ-
ically continuous domain into a finite grid of elements, volumes, or differences.
For example, instead of computing or keeping track of the temperature in a
solid at any real point, one considers only a set of points arranged by a grid
structure. At this general stage, we refer the reader to standard text books
on numerical simulations, such as these by Braess (2007) or Knabner and
Angerman (2003).

Mathematical properties of the processes to simulate constrain the choices
of the discretization techniques and, in turn, the choice of the discretization
strategy constrains the choices of the grid-based method one can use for solv-
ing the equations (Grebhahn et al., 2017). To support researchers in selecting
optimal data structures and algorithms when writing their simulation code,
there are different frameworks and toolboxes available, such as DUNE (Bas-
tian et al., 2008b,a), UG4 (Vogel et al., 2013), HYPRE (Falgout and Yang,
2002), and FEniCS (Alnæs et al., 2015). The key benefit of these frameworks
is that they provide reusable implementation artifacts, which substantially re-
duce the implementation effort of new simulation code (Remmel, 2014). These
implementation artifacts can be classes, structs, or enum values. For example,
there might be different implementations of a grid, describing the geometric
properties of the data or different solvers that offer methods for solving the
system of equations represented by the elements of a grid.

For illustration, we show an excerpt of a simulation code for the convection–
diffusion problem in Listing 1, which can be used to simulate the transport in
a fluid or porous media, for instance. In Lines 3–6, a two-dimensional grid is
initialized, which is used later to discretize the partial differential equation and
its solution on entities of the grid. The LeafGridView object is necessary for
iterating over all entities to perform calculations on each of them. In Line 9,
LeafGridView is passed as a template parameter to ProblemA containing the
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1 ...
2 // basic declaration and configuration
3 const int dim = 2;
4 using Grid = Dune::YaspGrid<dim>;
5 using GV = Grid::LeafGridView;
6 const GV& gv = grid−>leafGridView();
7 ...
8 // construct model problem
9 using Problem = Dune::SPL::ProblemA<GV, double>;

10 ...

Listing 1 Excerpt from a simulation code solving the convection-diffusion problem.

convection–diffusion model problem. Different implementation choices repre-
sent options and alternatives to accomplish similar objectives in a simulation.
Depending on the mathematical properties and assumptions of the simulated
process, some of these choices are invalid and some are more suitable than
others. For example, Grebhahn et al. (2017) have shown that, depending on
the discretization and the characteristics of the problem to solve, only a subset
of existing strategies can be used to simulate the process efficiently.

The main obstacle of using scientific frameworks is their complexity and
high variability: They provide a large number of artifacts that are applicable
only for certain scenarios (e.g., DUNE provides 11 artifacts to describe the
geometry of the computational domain). Identifying suitable artifacts for a
specific scenario requires knowledge of (i) the mathematical properties of the
numerical methods, (ii) the physical properties of the process to be simulated,
and (iii) the set of available artifacts provided by the framework that can be
used for the specific purpose. For example, Grebhahn et al. (2017) discuss in
detail the variability and constraints when solving partial differential equations
arising in the domain of porous media flows. In the example of Listing 1, the
structured grid as implemented by YaspGrid<dim> is usually a good choice to
simulate flow and transport in porous media, while for industrial applications
with complicated geometries, an unstructured grid such as UGGrid<dim> is
more appropriate.

Typically, researchers who conduct simulations often have no professional
background in software engineering (Remmel, 2014). Hence, they fall back to
a clone-and-own approach, in which they copy code of existing simulations and
adapt it to the new simulation scenario. However, the artifacts that are used
in the copied code might not be the best choice for the newly considered simu-
lation. To support researchers in adopting real-world scientific simulations, we
propose a lightweight, semi-automatic, API-based analysis approach, VORM∗.
VORM analyzes the code and the documentation of the given framework to
identify artifacts of the framework that can be used in an application (a scien-
tific simulation, in our case) instead of a currently used artifact. In our example

∗VORM stands for extracting the Variability based on the dOcumentation to identify
Relations among Modules.
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of Listing 1, VORM might suggest other grids that might be more suitable
for the considered simulation (e.g., UGGrid<dim> instead of YaspGrid<dim>,
for complicated geometries). In general, the set of alternative artifacts can be
reviewed by a user to remove false positives or to reduce the number of con-
sidered artifacts. This procedure can be repeated if multiple artifacts need to
be replaced.

After selecting a set of suitable alternative artifacts, VORM can generate
one running configuration of the simulation for each alternative artifact or
combinations thereof. These configurations can then, later on, be used to assess
resource usage, find errors, or to identify the best combination of artifacts
with respect to execution time. For example, a researcher who is interested in
an alternative solver implementation for a given problem can generate a set
of configurations of the simulation, where each configuration uses a different
solver type (e.g., Jacobi and Richardson), and then benchmark the different
variants to identify the performance-optimal solver for the specific use case.

It is important to note that VORM is a lightweight approach that uses only
information provided by the API of the framework for identifying alternative
artifacts and thus does not consider information from program analysis or
runtime. Without this information at hand, the recommendations of VORM
are necessarily imprecise, which is a prerequisite for making VORM scale to
real-world code.

In a real-world case study, we apply VORM to DUNE, which is a scientific
computing framework offering a large number of strategies to solve partial
differential equations using grid-based methods.† Our overarching question is:

Is a lightweight, semi-automatic approach, as pursued in VORM, able to
identify meaningful alternative artifacts to a given artifact for specific ap-
plication scenarios that are written using a real-world scientific framework,
such as DUNE?

In more detail, we aim at answering the following research objectives:

RQ1: Can VORM identify the same alternative artifacts to a given
artifact that have been proposed by a domain expert?

RQ2: Can VORM discover relations among artifacts of the framework
or inconsistencies within the framework not previously known to the
domain expert?

To answer RQ1 and RQ2, we consider two simulations written using DUNE:
linearsolver and ellipticproblem. From each simulation, we select 8 ar-
tifacts used from DUNE for which alternatives shall be found. Then, a frame-
work developer (domain expert) of DUNE‡ proposes a set of alternative arti-
facts for each of the 8 artifacts. We compare these manually selected alternative
artifacts with the ones automatically identified by VORM.

†https://www.dune-project.org/
‡Who is our domain expert and also one of our co-authors.

https://www.dune-project.org/
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Our case study shows that VORM is able to automatically identify a large
number of suitable alternatives that have also been proposed by the domain
expert. Note that researchers using the framework might not be as knowl-
edgeable as a developer of DUNE, which provides us already with a tough
baseline. Overall, VORM identifies 94 artifacts to be alternatives for the 8
original artifacts used in the two subject simulations. Of these alternative ar-
tifacts, 34 were also proposed by the domain expert. From the remaining 60
alternative methods, 31 are alternatives that can be used in the simulation
with only slight modifications on the simulation (as confirmed by the domain
expert); 2 artifacts were missed by the domain expert but are still applica-
ble; 28 artifacts are false positives. After having a deeper look at the artifacts
not identified by VORM but proposed by the domain expert, we identified a
bug and an inconsistency in DUNE, which were not known beforehand. These
findings underline the usefulness of VORM in practice.

Based on these results, we conclude that VORM’s lightweight, API-based
approach (1) can identify meaningful alternatives to given artifacts, (2) can
identify artifacts that can be used in a slightly different scenario, and (3) can
unveil bugs or inconsistencies in the framework to a developer. While a more
sophisticated approach that also considers information from program analysis
or runtime might increase accuracy of the recommendations, it is certainly
much more heavy-weight.

2 Background

In this section, we explain the fundamental concepts underlying VORM. In
Section 2.1, we give an introduction into the DUNE framework, which we use
as case study for the evaluation of VORM. In Section 2.2, we introduce the
basic terminology that we use throughout the article.

2.1 DUNE

DUNE, which stands for “Distributed and Unified Numerics Environment”,
is a scientific framework, written in C++, which is being developed to solve par-
tial differential equations with grid-based methods. DUNE provides reusable
implementation artifacts for a large number of different mathematical con-
cepts. They can be combined in various ways to solve discretized partial dif-
ferential equations from different domains. For example, DUNE provides 11
grid implementations to describe the geometry of structured and unstructured
computational domains and 34 implementations to describe the finite element
space basis of a simulation.

The DUNE development process started in 2002. It has a modular struc-
ture (see Figure 1) with five core modules providing basic functionality. A
range of specialized features and higher-level functionality are available as ex-
tension modules, such as the flexible Finite Element Method abstraction of
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Fig. 1 Structure of the DUNE framework. Five core modules build the foundation, a range
of higher level modules provide a rich body of functionality.

dune-pdelab. The core modules have a combined size of approximately 160
thousand lines of C++ code; the discretization module dune-pdelab, includ-
ing all ten dependent modules, has a size of over 340 thousand lines. The
modules we consider offer 3 022 different artifacts that can be used in simula-
tions to solve or specify certain parts of the simulation.§

Overall, DUNE implements the following basic concepts (Bastian et al.,
2010): The (i) separation of data structures and algorithms, (ii) use of generic
programming techniques, and (iii) reuse of existing finite element software.

Similar to the Standard Template Library of C++, DUNE separates data
structures and algorithms, offering developers the possibility of using a suitable
combination for the considered simulation. A developer might simply change
the used algorithm without modifying the whole simulation. For each choice,
DUNE offers different implementation artifacts.

DUNE makes heavy use of polymorphism and template meta-programming
offering the possibility to specialize classes with template parameters without
sacrificing performance (Bastian et al., 2008a). The arguments passed to a
template class can again be artifacts provided by DUNE. Last, DUNE of-
fers lightweight interfaces to support the use of existing libraries. For further
information about the framework, we refer to Bastian et al. (2008a,b).

2.2 Terminology and Formalization

Artifacts. As stated previously, mathematical frameworks provide various arti-
facts for different mathematical concepts. This includes, for example, different
implementations of a grid, which is used to represent the data of a simulation,
or different solver implementations, which can be used to solve a system of
equations. We denote the artifacts that a framework offers with the set A.
Typically, a simulation s ∈ S uses only a subset As ⊂ A of artifacts provided
by the framework. The simulation code is entirely controlled by the framework
and has no further configuration options or runtime inputs. While technically

§We use version 2.6 of the DUNE framework.
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1 ...
2 // VarPoint(Finite element map; using FEM;
3 // Dune::PDELab::QkLocalFiniteElementMap<GV, GV::ctype, Real, degree>)
4 using FEM = Dune::PDELab::QkLocalFiniteElementMap<GV, GV::ctype, Real, degree>;
5 ...
6 // VarPoint(ISTLSolverBackend; using LS; Dune::PDELab::ISTLBackend SEQ CG ILU0)
7 using LS = DUNE::PDELab::ISTLBackend SEQ CG ILU0;
8 ...

Listing 2 Excerpt from a simulation with two variation points.

artifacts can include class definitions, struct definitions, structs, enumeration
values, etc., in practice (in DUNE) most are modelled as classes using either
static (parametric) or dynamic (subtype) polymorphism.

Variation points. The artifacts provided by a framework can be used, instanti-
ated, and combined to create a simulation. Typically, a developer is interested
in replacing only a subset of the artifacts (e.g., data structures or algorithms)
used in her simulation code, which we call variation points. A variation point
v ∈ V is a triple (id , decl , a0) consisting of (1) an identifier (id), (2) the decla-
ration used in the variation point (decl), and (3) the original artifact to which
the variation point refers (a0 ∈ As). For simplicity, we assume that the set of
artifacts of a simulation s that are variable equals As.

For illustration, we show a small excerpt of a simulation written based on
DUNE in Listing 2. The excerpt contains two variation points (Line 4 and
Line 7). The first variation point is

(
”Finite element map”, using FEM,Dune::PDELab::QkLocalFiniteElementMap

)
.

For brevity, we write Qk referring to its artifact. The artifact has four tem-
plate parameters: <GV, GV::ctype, Real, degree>, which we simplify for further
analysis (see Section 3, for details): <GV, D, R, k>.

Alternatives. Determining the alternatives of a given artifact relies on the
subtype relationship (<:) between artifacts as defined in the framework. Two
artifacts are in subtype relation if (1) there is a declared subclass relation in
the framework, (2) they are identical, or (3) they are transitively related:

a <: a
a <: a′ a′ <: a′′

a <: a′′
subclass(a, a′)

a <: a′

Based on the subtype relation, function alt determines the set of artifacts
that are alternative to a given artifact. An artifact a is an alternative to another
artifact a′ if the two artifacts have a common superclass or if a provides, at
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least, all public methods of a′.

alt(a0) =
{
a |

(
∃ as ∈ A. a0 <: as ∧ a <: as

)
∨
(

pub(a0) ⊆ pub(a)
)

∨
(
∃ ae ∈ A. a0 ∈ enumval(ae) ∧ a ∈ enumval(ae)

)}
where pub returns a set of all public methods of an artifact and enumval
returns the set of all enum values of an enum (empty set if the given artifact
is no enum). Note that the first condition of the set comprehension relies on
nominal subtyping as defined by the inheritance hierarchy of the framework.
The second condition implements structural subtyping by matching the public
interfaces of two artifacts.

For illustration, consider the results for the two variation points of Listing 2.
For the first variation point, we would obtain:

alt
(

Qk<GV,D,R, k>
)

=
{

Qk<GV,D,R, k>, Pk<GV,D,R, k>
}

The alternative PkLocalFiniteElementMap (not shown in the code), abbreviated
with Pk, is selected because it provides all public methods of Qk. Pk and Qk do
not have a common superclass, though. In this example, the original artifact
as well as its alternative provide a set of template parameters. The (names
of) template parameters of Pk were adjusted such that they match, which we
describe in Section 3.

For the second variation point, we would obtain:

alt
(

ISTLBackend SEQ CG ILU0
)

={
ISTLBackend SEQ CG ILU0, ISTLBackend SEQ LOOP Jac

}
In this example, ISTLBackend SEQ LOOP Jac is selected as alternative for
ISTLBackend SEQ CG ILU0 because both classes have a common superclass.

Configurations. Based on the identified alternatives, our approach generates
a set of configurations for a given simulation, for further analysis. A config-
uration is a fully functional variant of the original simulation using a unique
combination of alternative artifacts identified by function alt.

To obtain the set of all possible configurations of a simulation s, we compute
the cartesian product over all sets of alternative artifacts:

configs(s) =
{
{a1, . . . , ak} | a1 ∈ alt(a1), . . . , ak ∈ alt(ak) ∧ a1, . . . , ak ∈ As

}
Applying function configs to the example of Listing 2 yields a set of four

configurations:

configs(s) =
{{

Qk<GV,D,R, k>, ISTLBackend SEQ CG ILU0
}
,{

Qk<GV,D,R, k>, ISTLBackend SEQ LOOP Jac
}
,{

Pk<GV,D,R, k>, ISTLBackend SEQ CG ILU0
}
,{

Pk<GV,D,R, k>, ISTLBackend SEQ LOOP Jac
}}
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(I)
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Simulation

API
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Artifacts

Simulation
with VPs VORM

(III)
Alternative
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Alternatives

User
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Configuration
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Fig. 2 Workflow of VORM. In Step I, all relevant information from the framework is
extracted by parsing its API and the simulation is extended with one variation point for
each artifact the developer is interested in alternatives for. In Step II, the variation points
including their original artifacts are extracted from the simulation and alternative artifacts
are identified in the framework. In Step III, the developer of the simulation can select a
subset of the identified alternatives and extend the alternatives with additional information,
if necessary. In Step IV, which is optional, one configuration for each combination of the
alternative artifacts is generated.

Since both of the variation points, Finite Element Map and ISTLSolverBack-
end, have two alternative artifacts each, the cartesian product of these sets of
alternatives results in four configurations.

3 Approach

We present the workflow of VORM in Figure 2. Overall, VORM consists of
three main steps and optionally a fourth one: (I) extraction and preparation,
(II) identification of alternatives and mapping of parameters, (III) selection
of alternatives, and (IV) generation of configurations. Next, we describe these
four steps in detail.

In the extraction of the artifacts in Step I, we are interested in the following
information: (I) the methods provided by the artifacts, (II) the inheritance
hierarchy among the artifacts, and (III) template parameters of the artifacts.
To derive this information, we include the classes and the signatures (i.e.,
return value, name, parameter types) of their public methods by analyzing
the API of the framework (in our case study, we use Doxygen for this task;
cf. Section 6). The simulation that uses the framework has to be extended
manually by annotating the one variation points, for which alternatives are
desired. The annotations of variation points are given in the form of comments,
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Static Analysis

(e.g., Doxygen) API

VORM

Class Hierarchy

Extended Class
Hierarchy

Simulation
with VPs

Find Further
Alternatives

Alternatives
Identify

Alternatives

Fig. 3 A more detailed overview of Step I and Step II of the workflow. VORM receives
an XML file with a description of DUNE’s API and constructs the corresponding class
hierarchy. Therein, VORM searches for further classes that may be alternatives to each other
and extends the class hierarchy accordingly. Finally, VORM uses information on variability
points from the given simulation to find suitable alternatives in the extended class hierarchy.

as illustrated in Lines 2–3 and 6 of Listing 2. Overall, we aim at keeping
the extraction process as general as possible to be able to support different
frameworks and different programming languages.

In Step II, VORM identifies the set of suitable alternative artifacts for every
given original artifact declared as variation point. To this end, we extract the
original artifacts used in the simulation by matching the variation points, and
we use the extracted information to find suitable alternatives by considering
the rules describes in Section 2.2.

In Figure 3, we zoom into the workflow of Step I and II: VORM receives an
XML file with API information (which can be generated by Doxygen or any
other API generator, such as CastXML) and parses the class hierarchy from
the API description. Then, VORM searches for suitable artifacts in the class
hierarchy to identify possible alternatives for existing artifacts, as described in
Section 2.2. After identifying alternative artifacts, VORM uses the annotated
variation points from the simulation code to identify specific alternatives for
the requested artifacts in the extended class hierarchy.

It might be necessary to incorporate simulation-specific information from
the original artifacts in their alternatives. For example, DUNE makes exten-
sive use of template meta-programming by offering the user the possibility of
parameterizing artifacts (see Line 4 in Listing 2, where the used artifact, Fi-
nite element map, has 4 template parameters). To support template parameters
with VORM, we have to use heuristics to replace the template parameters of
the alternative artifacts with the template parameters of the original artifact.
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To this end, VORM establishes a mapping between parameters of the original
artifacts and parameters of the alternative artifacts. Pursuing a lightweight
approach, we consider information about the labels of the parameters. For ex-
ample, the labels in the API of DUNE for the template parameters of Qk are
<GV,D,R, k>. For one of the alternative artifacts, Pk, the labels are the same
<GV,D,R, k>. Since the template parameters of these two artifacts have the
same labels, VORM can use parameter values of Qk for Pk. For template pa-
rameters that do not have a counterpart in the original artifact (i.e., a template
parameter with the same label), we leave the label untouched.

In Step III, we present a list of all alternative artifacts in a compact and
human-readable representation to the user. This way, developers are able to
remove false positives based on domain knowledge or can replace template
parameters of the alternative artifacts with suitable ones, if necessary. This
is necessary when, for example, an alternative artifact has more template pa-
rameters than the original artifact.

Last, in the optional Step IV, one can generate configurations of the sim-
ulation code; each configuration applies a different set of alternative artifacts
revised in Step III. That is, in each configuration, the original artifacts of
the variation points have been replaced with alternative artifacts. Therefore,
we consider the list of all alternative artifacts and create all combinations of
artifacts proposed for different variation points (i.e., the Cartesian product
of all alternatives). Then, for each combination, we generate the according
source code by replacing the original artifact used in the variation points of
the simulation.

4 Methodology

In this section, we describe our experiment setup and methodology.

4.1 Research Method

Due to the exploratory nature of our study, we use the case study research
method as proposed by Shull et al. (2007), which is an initial investigation on
the considered phenomena. To obtain a realistic picture, we use existing sim-
ulations implemented by domain experts that represent real-world use cases,
instead of considering a large number of variation points without considering
their context. Since this is the first application of VORM, we study two sim-
ulation codes in depth to explore the correctness and meaningfulness of the
proposed alternative artifacts. That is, we discuss reasons why our approach
is not able to identify some of the artifacts specified by the domain expert
and why some artifacts proposed by our approach are not valid although they
follow from the inference rules presented in Section 2.2. This way, we increase
internal validity to identify confounding factors that may influence the results
of our approach.
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4.2 Measurement

To answer our research questions, we compare for each variation point the
set of alternative artifacts proposed by VORM with the set of alternatives
provided by the domain expert. We treat the artifacts provided by the domain
expert as ground truth and, hence, categorize the artifacts proposed by our
approach in: true positives (TP), true negatives (TN), false positives (FP),
and false negatives (FN).

After a discussion with the domain expert, we further categorize the false
positives in: (i) artifacts that are true false positives (TFP) and (ii) artifacts
that are generally applicable alternative artifacts (GAA) of the original artifact
but do not work for the specific problem of the considered simulation without
slight modifications. The artifacts of GAA are also suitable alternative artifacts
when considering other simulations.

4.3 Subject Simulations

In our experiments, we consider two simulations implemented on top of DUNE.
These simulations are based on system tests that are included in the modules
dune-istl and dune-pdelab deployed with DUNE. First, we extend the
two simulations with a set of variation points, where each point specifies one
artifact provided by DUNE. We selected the variation points based on domain
knowledge. To obtain a ground truth of alternative artifacts, a domain expert
of DUNE suggests feasible replacements based on his experience. In Table 1, we
show the variation points and the number of alternative artifacts suggested by
the domain expert for the variation points of the two considered simulations.
We provide the source code of the simulations on our supplementary Web site¶

along with a Docker container‖.

The first subject simulation, linearsolver, explores the variability of an
iterative linear solver in DUNE. The dune-istl module provides a range of
different iterative solvers and preconditioners. The preconditioners improve
performance of the solvers by reducing the condition number of the system.
The simulation attempts to solve a simple elliptic finite-difference matrix using
an iterative solver. Since the problem is symmetric, all iterative solvers can,
in principle, be applied, given suitable parameters. Also, most preconditioners
can be applied. It offers also parallel preconditioners, which work in an MPI
parallel setup and require additional information about parallel data decom-
position. As the original simulation runs sequentially, we are only interested in
sequential solvers and preconditioners and do not consider parallel precondi-
tioners. There are also a few further special-purpose implementations, which
are not usable without individual configuration, therefore we consider these
implementations as non-suitable.

¶https://github.com/se-passau/VariabilityExtraction-SupplementaryWebsite/
‖https://hub.docker.com/r/christiankaltenecker/vorm/

https://github.com/se-passau/VariabilityExtraction-SupplementaryWebsite/
https://hub.docker.com/r/christiankaltenecker/vorm/
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The second subject simulation, ellipticproblem, is built on DUNE’s
module dune-pdelab. The module offers various functionalities to define dif-
ferent models and assemble the associated system matrices, given a particular
grid implementation and a finite element space basis. We consider an elliptic
test problem and vary the used discretization and the solver. A discretization
is determined by a particular mesh, given a geometry type (e.g., simplex or
cube), a grid implementation, and by the finite element space basis, given as a
finite element map. Here, additional constraints on the computational domain
can be specified, if necessary. As the problem is linear, it is possible to employ
a linear or a non-linear solver and a particular iterative linear solver, given as
problem solver.

These two subject systems were recommended by the domain expert for
illustrating the capabilities of VORM. They cover typical use cases in the
context of numerical solutions of partial differential equations, and they touch
different parts of the DUNE framework following different paradigms. For
example, while, in the first simulation code, solvers and preconditioners use
inheritance, the second makes heavy use of duck typing, so relations among
artifacts are only implicit. Although while using VORM on another framework
would (slightly) increase external validity, we focus on one framework as a case
study. This way, we can have a more in-depth look into each of the variation
points and can match the results of VORM to the expectations of the domain
expert. This enables us to assess the quality of the proposed approach and
increase internal validity.

5 Results

Answering RQ1 and RQ2, we show the results of VORM for the two simulations
and compare the recommended alternatives with the artifacts proposed by the
domain expert in Table 2. The table shows the number of alternative artifacts
proposed by the domain expert (DE) and the number of artifacts identified
in our extraction (Positives), which we divided in the categories described in
Section 4.2.

5.1 Subject Simulation: linearsolver

The linearsolver simulation has two variation points. For the first varia-
tion point, one can choose different solver implementations. VORM is able to
identify all 7 alternatives proposed by the domain expert (TP). In addition,
it identifies two other artifacts that, however, are not suitable because they
represent only interfaces for the definition of iterative solvers (TFP).

For the second variation point (Preconditioner), VORM identified 8 alter-
natives that are applicable in the simulation (TP). 7 out of 8 alternatives are
alternatives proposed by the expert (DE) and 1 additional alternative pro-
posed by VORM was missed by the expert since it was recently added (MA).
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Table 1 Subject simulations of our case study including their variation points, the list of
proposed alternative artifacts in DUNE provided by our domain expert. Note that the first
alternative is always the original artifact.

Simulation Variation point Proposed alternatives

linearsolver
Solver LoopSolver, BiCGSTABSolver,

CGSolver, GeneralizedPCGSolver,
GradientSolver, MINResSolver,
RestartedGMResSolver

Preconditioner SeqJac, SeqGS, SeqILU,
SeqILU0, SeqILUn, SeqSOR,
SeqSSOR

ellipticproblem
Geometry type cube, simplex

Grid YaspGrid, OneDGrid, ALUGrid,
UGGrid

Finite element map QkLocalFiniteElementMap,
PkLocalFiniteElementMap,
QkDGLocalFiniteElementMap,
OPBLocalFiniteElementMap<Qk>,
OPBLocalFiniteElementMap<Pk>

Constraints NoConstraints,
ConformingDirichletConstraints

ISTLSolverBackend SEQ CG ILU0, SEQ SUPERLU,
SEQ LOOP Jac, SEQ CG Jac,
SEQ CG SSOR,
SEQ CG AMG SSOR,
SEQ BCSG Jac, SEQ BCSG SSOR,
SEQ MINRES SSOR

Solver type StationaryLinearProblemSolver,
Newton

In addition, it proposes 21 further alternatives. A closer look reveals that 11
of them are, in general valid (GAA), but need more parameters (e.g., AMG) or
would slow down converging to a solution (e.g., Richardson). The remaining 10
alternatives are not suitable because they are parallel preconditioners (or com-
ponents), and our main application considers only sequential execution. For
example, class NonoverlappingRichardson implements a parallel preconditioner
or ILUSubdomainSolver computes updates in a single subdomain (e.g., on a
single MPI rank) inside a parallel overlapping Schwarz preconditioner (TFP).
Parallel preconditioners only work with parallel scalar products, which does
not apply to our case. Since the parallel preconditioners fulfill the subtype
relation from Section 2.2, they are falsely identified as proper alternatives by
VORM.
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Table 2 Results of our case study for the two simulations linearsolver and ellipticprob-
lem when using the original artifacts as starting points for the alternatives search. Variation
Point: name of the variation point; DE: # of alternative artifacts suggested by the domain
expert; TP: # of alternative artifacts suggested by the domain expert that are also proposed
by VORM (true positives); FN: # of alternative artifacts suggested by the expert but not
proposed by VORM (false negatives); MA: # of alternative artifacts suggested by VORM
but missed by the expert; TN: # of artifacts provided by the framework, which are neither
proposed by VORM nor suggested by the domain experts as alternatives; FP: # of artifacts
identified as alternatives not provided by the domain expert but proposed by VORM (false
positives); TFP: # of artifacts that are true false positives; GAA: # of artifacts identified
as alternatives that are alternatives for the given artifact but do not work in the considered
simulation but possibly in others.

Variation Point DE TP FN MA TN FP

TFP GAA

linearsolver
Solver 7 7 0 0 3 014 2 0
Preconditioner 7 8 0 1 2 994 10 11

ellipticproblem
Geometry type 2 2 0 0 3 016 4 0
Grid 4 4 0 0 3 016 1 1
Finite element map 4 5 0 1 2 992 6 13
Constraints 2 1 1 0 3 021 0 0
ISTLSolverBackend 9 8 1 0 3 003 5 6
Solver type 2 1 1 0 3 021 0 0

5.2 Subject Simulation: ellipticproblem

In the second simulation, we consider six variatixon points. For the first varia-
tion point, Geometry type, VORM is able to identify all 2 alternatives proposed
by the domain expert (TP). In addition, VORM identified 4 alternatives, true
false positives (TFP). Having a closer look, we see that the original artifact
is a value of an enumeration, and all proposed alternatives are other values of
the same enumeration, from which some are valid and others are not. Differ-
entiating between these two groups of values is not possible without further
domain knowledge.

Second, we are interested in different Grid implementations, for which the
domain expert proposes 4. VORM is able to identify these 4 alternative arti-
facts (TP) and 2 additional artifacts (FP). From the 2 false positives one is
an abstract class used to define the interface of grid implementations, whereas
the other could be used as an alternative, but does not work in the considered
problem (GAA). This artifact is a meta-grid, which is used to host another
grid, enriching it with further functionality. This is not used in the considered
simulation.

For the variation point Finite element map, 4 alternative artifacts were
proposed by the domain expert, all of which have been found by VORM.
VORM identifies 20 more artifacts, from which 13 can be generally used
as an alternative for the original artifact, but not in the specific scenario
that we considered (GAA). For example, class RT0Cube2DLocalFEM provides
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lowest-order Raviar-Thomas shape functions, which are vector valued, while
the subject simulation is working with a scalar partial differential equation;
the same holds for BDM1Simplex2DLocalFiniteElementMap. Another 6 cases
are true false positives (TFP). All false positives are template specializations
of a mix-in class for particular finite element maps. They cannot be directly
instantiated and should be considered as implementation details. The last al-
ternative (RannacherTurekLocalFiniteElementMap) was missed by the expert
(MA), as it is reportedly a valid but unusual choice.

The fourth variation point, Constraints, requires 2 artifacts to define con-
straints on the solution, for example, the type of boundary conditions (DE).
For this variation point, VORM was not able to identify the alternative artifact
proposed by the domain expert. So, we have 1 false negative (FN). The rea-
son is that different methods are called, depending on the presence of boolean
flags. The original artifact defines all of them as empty methods for documen-
tation purposes, which is also explicitly stated in the documentation of the
code. However, the proposed alternative by the domain expert offers only re-
quired methods. In contrast, the alternative artifact, which has been proposed
by the domain expert, offers only required methods and not the additional
set of empty methods, which violates the subtype relation since the desired
artifact has less public methods than the original artifact. Such cases cannot
be detected by an automated approach.

The fifth variation point concerns ISTLSolverBackend. VORM identified 8
out of the 9 alternative artifacts proposed by the domain expert (TP). For the
one alternative not found by VORM, the artifact provides a different return
type for a method, which precludes matching (we refer to this alternative when
answering RQ2). VORM identifies 11 more alternatives, of which 6 are general
alternatives but cannot be used in the context of the simulation (GAA) and 5
are true false positives (TFP). Out of these 5 true false positives, 3 are abstract
classes defining interfaces of specific types of solver backends and 2 shall be
used for completely different parts in a simulation although they provide a
matching interface to the original artifact.

Last, for the sixth variation point (Linear problem solver), we were not able
to identify the alternative proposed by the domain expert (FN). This is be-
cause the alternative artifact focuses on solving linear or non-linear problems,
whereas the original artifact focuses on solving linear problems only. So, both
artifacts have different interfaces, which hinders VORM identifying the pro-
posed alternative.

RQ1: VORM is able to identify valid alternatives for a large number of the
considered variation points. Overall, it identified 34 out of the 37 alternative
artifacts proposed by the domain expert. However, for 2 of the 8 variation
points, VORM were not able to identify alternatives. The reason is that the
alternatives suggested by the domain expert exhibit a substantially differ-
ent interface. Generally, VORM provides meaningful alternative artifacts
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as long as the artifacts provide a common interface and the alternative
artifacts can be used for the same purpose.

As illustrated in the variation point Preconditioner in linearsolver, VORM
was able to identify two artifacts that were missed by the domain expert. One
artifact that was missed is the preconditioner SeqILDL, which was added in
a recent version of DUNE and, thus, was missed by the domain expert. The
other missed artifact is the finite element map RannacherTurekLocalFiniteEle-
mentMap, which is a rather unusual choice for a finite element map. This
finite element map is a non-conform approach and works for 2-dimensional
simulations, which is why this approach is used only in few cases.

The process of identifying alternatives is influenced by the presence of bugs
and inconsistencies in a framework. As explained before, we were not able to
identify a certain alternative artifact in ISTLSolverBackend proposed by the
domain expert. This was due to a previously unknown bug in the interface of
the alternative method, which was confirmed by the domain expert. Due to
this bug, the alternative artifacts do not fulfill the subtype rule in Section 2.2.

Moreover, VORM identified an inconsistency in the template parameters of
one artifact of the framework. There, the assumption was made that the input
matrix and the solution vector have to be of the same precision and thus have
to be from the same type, which is defined by the template parameter. Even
with this assumption, we were able to identify the alternative artifact, but we
were not able to replace all template parameters with appropriate artifacts.

RQ2: With VORM, we were able to unveil new knowledge about 2 artifacts
of DUNE to the domain expert. Moreover, VORM proposed 31 artifacts
not recommended by the expert that are still applicable in the simulation
scenario with slight modifications on the source code. Thus, VORM can be
used to filter the artifacts provided by the framework to ease the burden of
understanding the whole framework in detail. Notably, we were also able
to identify a bug and an inconsistency in DUNE, which were unknown
beforehand.

6 Discussion

In this section, we discuss the lessons learned from applying VORM to the
two subject simulations and put them in context with the limitations of our
approach.

6.1 Applicability

To identify alternative artifacts, we use a lightweight approach that only uses
information from the API of the framework. Although, it would be possible to
use domain knowledge to define a set of alternative artifacts for each artifact
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provided by the framework, gathering and maintaining these sets of alterna-
tives might become time consuming, especially in the context of the evolution
of the framework. These sets also highly depend on the knowledge of domain
experts and on the use case they are familiar with. However, even without
domain knowledge, VORM was able to identify meaningful sets of alternative
artifacts for a large number of the variation points of the two simulations.

Moreover, we were able to find a bug and an inconsistency while comparing
the identified artifacts with the artifacts proposed by the domain expert. This
illustrates the potential of VORM as a lightweight means to find implementa-
tion errors and inconsistencies in scientific frameworks.

Not to restrict VORM to C++ frameworks, we generate and later parse
the API using Doxygen, which supports a large number of programming
languages, such as C, C#, Java, Fortran, or Python.∗∗ In principle, VORM
can be applied to frameworks written in programming languages that provide
inheritance as well as subtype and parametric polymorphism, such as C++,
C#, or Java. However, for different programming languages, different infer-
ence rules have to be defined, depending on the semantics of the programming
language. If a desired programming language is not supported by Doxygen,
a different extraction mechanism has to be defined, which, however, does not
hinder the general applicability of VORM, because VORM uses an internal
language-agnostic representation to identify the artifacts. It is possible to ex-
tend VORM with additional frontends to parse APIs of other representations,
such as CastXML. Furthermore, VORM does not require templates for find-
ing alternatives. The information provided by templates is used only to further
aid the user by inserting the right template parameter. The same generality
holds for the simulation. The simulation can be a file written in any pro-
gramming language so far as the variability points are provided as depicted in
Listing 1.

6.2 Limitations

As VORM is a very lightweight approach, it relies only on the original artifact
applied in the variation points. As a consequence, the original artifact has a
strong influence on the computed set of alternative artifacts. To illustrate this,
we show the number of alternative artifacts proposed by our approach for the
artifact Finite element map of ellipticproblem in Table 3. When using Qk
as original artifact, our approach proposes 23 alternative artifacts, whereas
when using Pk as original artifact, our approach finds only 2 alternatives. The
reason is that Pk provides one more method compared to the other artifacts, so
VORM cannot propose the other artifacts to be suitable alternative artifacts.
Again, VORM does not know whether a method of the artifacts is used in the
simulation. Such methods could be identified when considering the call graph
of the simulation., but, creating and analyzing an exact call graph can become

∗∗http://www.doxygen.nl/

http://www.doxygen.nl/
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Table 3 Alternative artifact identified in our extraction process for different finite element
map classes (Dune version 2.6). A checkmark (3) states that the output artifact was iden-
tified to be an alternative to the input artifact. A dash (–) states that the output artifact
was not identified to be an alternative to the input artifact.

Original/Alternative Pos
it
iv
es

Q
k

Pk Q
kD

G

O
PB

Qk 23 3 3 3 3

Pk 2 – 3 – –

QkDG 19 3 – 3 3

OPB 19 3 3 3 3

very complex and would result in a heavyweight approach. Besides, function
alt, as presented in Section 2.2, is not symmetric because of the subset relation.
This means that an artifact might be an alternative to another artifact but
not the other way around.

Another limitation arises from the mapping process, where we use informa-
tion on the template parameters of the original artifact to replace the template
parameters of the alternative artifacts with suitable labels. Using the heuris-
tics mentioned in Section 3, we are able to map only parameters that have
the same label in the original artifact and the alternative artifact. Although
we are aware that these heuristics make strong assumptions on the naming
of template parameters and that heuristics considering the usage of the pa-
rameters are more accurate, we refrain from using more complex heuristics,
because they would make the whole approach more heavyweight. Both limita-
tions could be addressed with interfaces in Java or concepts in C++ 20. Similar
issues arise in Python2.4, because the programming language makes extensive
use of duck typing.

A further limitation of VORM becomes apparent when an alternative arti-
fact needs more or different template parameters than the original artifact. For
example, the original artifact of ISTLSolverBackend provides zero template pa-
rameters, whereas three identified alternatives offer one template parameter.
Despite these limitations, VORM was able to replace the template parameters
for a large portion of the alternatives (for 60 out of the 78 alternatives that
provide template parameters) identified for the two simulations. For the re-
maining 18 alternatives, VORM was not able to replace, at least, one template
parameter and thus the user has to specify a suitable value for, at least, one
template parameter. Here, a more complex heuristic might lead to more accu-
rate results at the cost of increasing complexity and analysis cost. Furthermore,
the set of identified alternative artifacts is not affected by template parameters
of the original artifact, so identifying alternative artifacts and replacing the
template parameters with suitable values are independent.

In Step IV, the combinatorial explosion of the number of configurations to
explore is a another limitation. This is because we generate one configuration
for each combination of the identified alternative artifacts. As a consequence,
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the number of configurations grows with the number of identified alternatives
and the number of variation points of the simulation. To mitigate this lim-
itation, VORM can be applied multiple times on a simulation for different
sets of variation points or by removing proposed alternatives using domain
knowledge.

6.3 Threats to Validity

Internal. By construction, we can not make sure that VORM identifies all the-
oretically valid alternatives to a artifact that is used in a variation point. This
is in line with the observation that VORM is able to identify alternatives that
were not proposed by the domain expert (see Section 5). However, this is an
open problem that can not be solved in general. Clearly, such a lightweight ap-
proach focuses not on completeness, but on practicality. We were able to show
that VORM finds a large portion of alternatives that also have been suggested
by the domain expert. Besides, the statement about whether an artifact can
be applied to a specific scenario also slightly depends on the domain expert
and the knowledge about how the artifacts can be tailored to specific purposes
by enriching them with further information. We mitigated this threat by using
suggestions from a developer of the framework, who has in-depth knowledge
about its functions and artifacts. During the implementation of VORM, we
performed several tests using different artifacts provided by Dune as input and
compared the artifacts identified by VORM with our expectations.

External. Although we demonstrated that our approach can identify a large
number of alternative artifacts of DUNE, we cannot state that the approach
also proposes meaningful alternatives on other case studies even if DUNE is
used. This can also be seen for the two variation points Constraints and Solver
type, for which VORM was not able to identify the alternative proposed by the
domain expert. As we discussed in Section 5, the alternative artifacts proposed
for the Solver type variation point work for different kinds of problems (e.g.,
linear vs. non-linear problems).

To be able to apply VORM also on applications or simulations that are not
written in C++, we refrained from analyzing the source code of the framework
but consider the API. The API provides all user-relevant information about
the structure and the public interface of the classes of the framework. For the
extraction and modification of the simulation, we also refrain from parsing
the simulation using a C++ parser but pursue a line-based approach, which
requires us to insert the variation point definition before the use of the original
method (as seen in Lines 2–3 of Listing 2). As a consequence, VORM is not
limited to C++, but also for other frameworks being written in other program-
ming languages, such as Java or C#. However, when considering framework
written in other programming languages, different inference rules might be
necessary for the identification process of alternative artifacts.
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7 Related Work

In this work, we focus on extracting the variability in a framework by con-
sidering the API of the framework. Thus, work on extracting variability and
work that performs API recommendations is related.

Variability Extraction. To extract the hidden variability in software systems,
there are different approaches considering different information sources.

Extracting the variability of an application or system is done using dif-
ferent information sources. For example, Zhang and Becker (2012) extract a
variability model from the source code of an application by considering rela-
tions among preprocessor directives; Dietrich et al. (2012) extract the variabil-
ity of the Linux system by considering the build system of Linux. There are
approaches that extract variability information from natural language docu-
ments such as functional requirements, see for example, Mefteh et al. (2016)
or Li et al. (2020). For a representative overview of approaches using natural
language techniques, we refer to Li et al. (2017).

API Recommendation. Prior research that analyzes the API of a library to
improve the code of an application is done at different levels of granularity.

At the most coarse-grained level, there are approaches that recommend
using a library instead of another library offering similar functionality. For
example, Thung et al. (2013) use association rule mining on a training set
that contains information of the usage of third-party libraries to recommend
libraries that are already used in software systems together with other libraries.

At a more fine-grained level that considers the methods provided by an
API, Nguyen et al. (2016) developed a tool that recommends methods of an
API to developers based on a statistical learning approach. For this purpose,
they consider a large corpus of fine-grained code changes. Overall, their ap-
proach relies on the regularity and repetitiveness of code changes during soft-
ware evolution, and thus also consider the context of the changes to propose
methods to a developer that are already used in a similar context (Negara
et al., 2014). For our use case, however, DUNE does not provide a large cor-
pus of regular and repetitive code changes of applications.

Kawrykow and Robillard (2009) aim at identifying patterns in an appli-
cation where an API is not used efficiently to replace code with API calls
offering the same functionality. They focus on parts of the code of an appli-
cation where the API is used to mimic the functionality of other methods
provided by the same API. To this end, they first create an abstraction of the
code of the library and consider the byte code of the application (they focus
on Java application in their work). Then, the application code is compared
against the library to identify patterns where the code of an API method is
imitated without calling the method from the API.

To recommend method parameters for API method calls, Zhang et al.
(2012) analyze parameter usage and their context in a code base. This is done
by generating API method parameter candidates using type information of
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the method parameters and a corpus of API calls. Although this is similar to
our template parameter replacement heuristic, their approach is not applicable
to our setting due to incomplete type information in DUNE artifact template
parameters.

Code Generation. Other approaches focus on domain-specific code generation
and optimization based on an abstract definition of the problem at hand.

For example, Püschel et al. (2004) developed Spiral to generate highly
performant signal-processing algorithms, such as fast Fourier transformations,
based on an abstract domain-specific specification. Using this specification
as starting point, they apply a set of rewriting rules considering domain-
specific knowledge about the considered problem. Different sequences and al-
ternatives of rewriting rules may be used leading to different implementations
for the same problem. Since some transformations produce more performant
code than others, they rely on a feedback-loop mechanism to generate high-
performance code.

Another example of domain-specific code generation is developed in the
ExaStencils project (Lengauer et al., 2020). ExaStencils focuses on generat-
ing multigrid solvers to efficiently solve partial differential equations. It com-
prises four domain-specific languages, at different levels of abstraction (from
mathematical equations to hardware-specific details), which can be used as a
starting point for code generation. Based on the specification of a problem,
the ExaStencils generator transforms the provided domain-specific code into
high performant C++ code.

In general, code-generation approaches usually focus on one specific do-
main and exploit domain knowledge during code generation. Although these
approaches demonstrate the benefits of generating high performant code with-
out requiring deeper knowledge on the required implementation (which needs
to be built into the code generator, though), they are applicable only for
specific domains. VORM is domain independent and does not rely on domain-
specific information. Instead, it uses only information provided by the API of
the considered framework.

8 Conclusion

To support application engineers in the development of scientific simulation
code, there are several frameworks available that provide reusable implemen-
tational artifacts. When using a given framework, the most suitable set of
artifacts provided by the framework has to be identified for a given simula-
tion, which is a non-trivial task, because global knowledge about all existing
artifacts provided by the framework is required. To support developers in this
task, we present and validate the usability of VORM, a lightweight, semi-
automatic API-based approach to identify artifacts that can be used instead
of an already applied artifact in a simulation.
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To demonstrate the usefulness of VORM and to validate whether its recom-
mendations are accurate, we compared the artifacts proposed by VORM with
artifacts recommended by a domain expert of the framework for two subject
simulations written using the scientific framework DUNE.

Our results show that VORM is able to identify 34 out of the 37 alterna-
tive artifacts proposed by a domain expert. VORM was even able to identify
two artifacts that were applicable but missed by the domain expert. Addition-
ally, VORM proposes 31 further artifacts that can also be used as alternative
artifacts to the used artifacts but not in the considered simulation scenario. No-
tably, when comparing the results of VORM with domain knowledge provided
by a developer of DUNE, we were able to identify a bug and an inconsistency
in DUNE that were unknown beforehand. Based on these results, we conclude
that VORM’s lightweight, semi-automatic approach can be used to identify
suitable alternatives to given artifacts.

There are some open issues that we leave to further research. Applying
VORM to multiple different frameworks is one topic for future research to
assess the general applicability of a lightweight approach. Another avenue of
further work is to analyze inaccuracies presented in RQ1. It is unclear whether
the inaccuracies are mainly due to an undisciplined use of interfaces or a lack
of expressiveness.

For future work, we see two further steps to assess the applicability and
usefulness of VORM. First, VORM shall be evaluated using a larger set of ap-
plications on top of DUNE. Second, the approach of VORM shall be applied to
other frameworks, possibly written in different programming languages. Addi-
tionally, different API documentations, such as cldoc†† should be considered
in the evaluation. However, for each considered framework, at least one do-
main expert of the respective framework is required for evaluation, which is
well outside the scope of this study.
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Vogel A, Reiter S, Rupp M, Nägel A, Wittum G (2013) UG 4: A Novel Flexible
Software System for Simulating PDE Based Models on High Performance
Computers. Computing and Visualization in Science 16(4):165–179

Zhang B, Becker M (2012) Code-based Variability Model Extraction for Soft-
ware Product Line Improvement. In: Proceedings of the International Soft-
ware Product Line Conference, ACM, SPLC, pp 91–98

Zhang C, Yang J, Zhang Y, Fan J, Zhang X, Zhao J, Ou P (2012) Automatic
Parameter Recommendation for Practical API Usage. In: Proceedings of the
International Conference on Software Engineering, IEEE, ICSE, pp 826–836


	Introduction
	Background
	Approach
	Methodology
	Results
	Discussion
	Related Work
	Conclusion

