
Thinking Aloud about Confusing Code
AQualitative Investigation of Program Comprehension and Atoms of Confusion

Dan Gopstein
New York University

New York, USA

Anne-Laure Fayard
New York University

New York, USA

Sven Apel
Saarland University, Saarland Informatics Campus

Germany

Justin Cappos
New York University

New York, USA

ABSTRACT

Atoms of confusion are small patterns of code that have been em-

pirically validated to be difficult to hand-evaluate by programmers.

Previous research focused on defining and quantifying this phe-

nomenon, but not on explaining or critiquing it. In this work, we

address core omissions to the body of work on atoms of confusion,

focusing on the ‘how’ and ‘why’ of programmer misunderstanding.

We performed a think-aloud study in which we observed pro-

grammers, both professionals and students, as they hand-evaluated

confusing code. We performed a qualitative analysis of the data and

found several surprising results, which explain previous results,

outline avenues of further research, and suggest improvements of

the research methodology.

A notable observation is that correct hand-evaluations do not im-

ply understanding, and incorrect evaluations not misunderstanding.

We believe this and other observations may be used to improve fu-

ture studies and models of program comprehension. We argue that

thinking of confusion as an atomic construct may pose challenges to

formulating new candidates for atoms of confusion. Ultimately, we

question whether hand-evaluation correctness is, itself, a sufficient

instrument to study program comprehension.

CCS CONCEPTS

· Software and its engineering→ Software usability.

KEYWORDS

Program Understanding; Think-Aloud Study; Atoms of Confusion

ACM Reference Format:

Dan Gopstein, Anne-Laure Fayard, Sven Apel, Justin Cappos. 2020. Think-

ing Aloud about Confusing Code: A Qualitative Investigation of Program

Comprehension and Atoms of Confusion. In Proceedings of the 28th ACM

Joint European Software Engineering Conference and Symposium on the Foun-

dations of Software Engineering (ESEC/FSE ’20), November 8ś13, 2020, Virtual

Event, USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/

3368089.3409714

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7043-1/20/11. . . $15.00
https://doi.org/10.1145/3368089.3409714

1 INTRODUCTION

Previous work on atoms of confusion [11] introduced a methodol-

ogy for discovering, measuring, and validating programmer misun-

derstanding in a precise way. An atom of confusion is the smallest

snippet of code that will often confuse a programmer as to what

the code’s output is. Previous work measured correctness rates of

programmers hand-evaluating confusing snippets and compared

the rates to those for functionally equivalent code hypothesized to

be less confusing. Between the minimality of the code snippet and

its comparison against a control, the research on atoms of confusion

was designed to be both precise and accurate. Gopstein et al. [11]

applied this protocol in an experiment with 73 participants and

analyzed the results with modern statistical techniques.

The study performed by Gopstein et al. was significant in that it

was empirical, objective, and quantitative. Code was found to be

confusing or readily understandable based on experimentation, not

theory; the observations were based on performance, not opinion,

and the extent of confusionwas able to be precisely quantified. Thus,

the experiment was designed to maximize internal validity [20]. By

using minimal code snippets, Gopstein et al. could be sure that they

were only measuring precise code constructs. By using functionally

equivalent code samples as controls, they were able to demonstrate

a direct relationship between the code and programmer confusion.

Despite Gopstein et al.’s precision and accuracy in design, it can

only tell us the outcome of programmers’ performance, but not

how or why they behaved that way. How can we know that the

causes of confusion are those put forth by the researchers? How can

we know that misunderstandings amongst multiple programmers

are homogeneous. How can we even know that hand-evaluation

captures all types of misunderstanding?

In short, Gopstein et al.’s strong focus on internal validity and

objectivist rigor does not tell the whole story. We study the same

fundamental code snippets and hand-evaluation protocols as Gop-

stein et al., but augment the setting by having programmers think-

aloud as they participate, followed by a semi-structured interview

and discussion. This unique perspective on an existing method-

ological framework allows us to understand and scrutinize existing

work. Our experience with conducting a qualitative study after a

quantitative experiment leads us to believe the original experiment

could likely have been improved if a lightweight qualitative study

had been performed as a pilot during the design of the original

quantitative experiment.

ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA Dan Gopstein, Anne-Laure Fayard, Sven Apel, Justin Cappos

Our study offers insights into previous results as well as sev-

eral surprising observations that contradict previous assumptions,

including:

• The origins of incorrect beliefs about semantics differ across

programmers.

• Errors evaluating atom-containing code are often caused by

other, unrelated aspects of the code snippet.

• Correct evaluation of a snippet does not mean a programmer

understood its semantics.

• Our study reveals new types of potential atoms.

In Section 4, we outline descriptions of how and why program-

mers made mistakes or avoided doing so in surprising ways. This

provides insight into how to more accurately interpret the results

of Gopstein et al. as well as other hand-evaluation program compre-

hension experiments. In Section 5, we turn an eye to future research

and propose potential improvements or new research questions.

A complete replication package for this study is provided at

https://atomsofconfusion.com/2020-think-aloud. The goal of the

replication package is to facilitate the understanding of our methods

and observations as well as to encouraging others to perform similar

studies of their own.While we provide the outcomes of our analysis,

we recommend that anyone using this package stays open to new

themes that might emerge. The package contains:

• Preparatory material, including all code snippets used and

the scripts enlisted to assign them to subjects.

• Interview instructions, including a pre-flight checklist, meta-

protocol and universal answer key used to increase the re-

producibility of the semi-structured interviews.

• Raw Data, including anonymized transcripts and scans of

the subjects’ written notes from each interview.

• Analysis, including the labels assigned to the transcripts

during open coding, and the codebook used in that process.

2 RELATED WORK

Atoms of Confusion. The core topic that inspired our study is the

concept of the atom of confusion, a small snippet of code, empiri-

cally validated against humans and proven to be more confusing

than other functionally equivalent code. Introduced by Gopstein et

al. [11], the concept of atom of confusions relies on the mismatch

between how programmers think the C programming language

works versus how the specification defines it. Gopstein et al. define

‘confusion’ as when a programmer is asked to hand-evaluate a de-

terministic and syntactically/semantically valid piece of code, but

reports standard output that is different from what is mandated by

the language specification. Gopstein et al. argued that the most pre-

cise way to measure this phenomenon is with the smallest possible

piece of code that can cause misunderstanding in a programmer

while a similarly sized, functionally equivalent simplified ‘pair’

version of the code is able to be evaluated without error.

In the original study of Gopstein et al., 126 code snippets (each

averaging 4 source lines of code), from 63 pairs, representing 19

proposed atoms were tested in a human subjects experiment with

73 participants. Each subject was shown 84 of the code snippets and

asked to record what they thought was the output of each snippet

program. Gopstein et al. were able to measure the correct/incorrect

response rates for each obfuscated/transformed snippet pair and

to determine which code patterns were truly more confusing than

their counterpart. Of the 19 proposed atoms, 15 met the statistical

significance required to be considered a confirmed atom.

Following the original studies, the notion of atoms of confusion

has been shown to be common in practice and correlated with

negative code quality indicators such as bug density and security

vulnerabilities [12]. The concept has also been investigated with

the open-source community through opinion surveys and pull-

requests [17]. This line of investigation confirms that atoms of

confusion are indeed confusing and prevalent across several di-

mensions. However, there has yet to be an investigation into the

mechanismwith which that misunderstanding occurs. Our research

sets out to explain the phenomena observed in previous studies.

In an effort to expand the concept of atoms of confusion beyond

just the C language, Castor adapted it to the Swift Programming lan-

guage [4]. Castor used new methods of finding confusing patterns,

such as measuring the infrequency of occurrence in large code

bases and expert opinion. We propose that observing programmers

in a think-aloud study is an acutely effective means of identifying

specific sources of misunderstandings.

Qualitative Research in Software Engineering. With goals of under-

standing how confusion arises in programmers and improving

methodologies for future research, we chose a qualitative method

to explain previous results and explore potential new research de-

signs. Despite the positives of Grounded Theory, we decided it was

not a good fit for our study, as we were already familiar with pre-

existing literature in the field, and the semi-structured nature of our

inquiry was slightly too rigid to fully benefit from Grounded The-

ory. Still, we took many lessons both from primary sources of the

technique [6, 9], as well as descriptions designed specifically for the

software engineering field [22]. We used techniques recommended

from these texts, such as continuous data analysis, (open) coding,

and memoing. Perhaps the best high-level description of our style

of study is described by Creswell as ‘explanatory sequential mixed

methods’, where a researcher takes an existing quantitative study,

łanalyzes the results and then builds on the results to explain them

in more detail with qualitative researchž [7].

We modeled our research on qualitative studies in the software

engineering field, combining elements as necessary to fit our needs.

Röhm et al. used a hybrid design consisting equally of observations

and interviews, with the łobservation mainly targeting what devel-

opers do and the interview mainly targeting the motivation behind

developer’s actionsž [18]. This blend of techniques was a natural

fit for us, as we could reanalyze existing objective data, and then

explain them based on the subjects’ (subjective) reports. For the

observation component, we chose a think-aloud protocol due to its

ability to provide insights into active behaviors as they are being

performed [5, 21]. This method is well suited to analyzing program

comprehension tasks [3, 8]. However, public performance and an

artificial code-reading environment have been linked to adverse

affects on cognitive load [2], which may affect our results though

not invalidate them altogether.

One of the most popular methods of analyzing qualitative data

is first using open coding to develop descriptive labels for data,

then using a hierarchical coding scheme to develop categories

from these codes [6, 23]. This general technique has been used

Thinking Aloud about Confusing Code ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA

successfully many times in empirical software engineering and,

more specifically, for studying program comprehension. Seaman

gives a thorough overview of many of these methods [19]. In partic-

ular, Yamashita andMoonen used interviews to develop a taxonomy

of difficulties during code maintenance [25]. We have employed a

similar technique to develop our understanding of the ways pro-

grammers misinterpret atoms.

3 METHODS

We used a qualitative approach to help explain the results of Gop-

stein et al. Towards that goal, we borrow many elements of exper-

imental design from their work, but augment them to facilitate a

deeper, more flexible interpretation.

3.1 Source Code Selection

Gopstein et al.’s code snippets were divided by two dimensions:

whether the snippet contained a (potential) atom of confusion or

not, and which type of atom it contained or not. After their experi-

ments, they divided the atoms into the categories of being validated

as confusing or not. They tested 126 code snippets in total. For

our work, 126 were too many to test, given the enormous effort

involved in a think-aloud study. Instead, we selected 26 representa-

tive examples from the original set. We made sure in our corpus to

include one of each type of atom, several samples without atoms,

and complete obfuscated/transformed pairs of each of the proposed

atoms that failed to meet statistical significance.

We wanted to investigate snippets that had shown confusing

properties in previous experiments, as well as snippets that had

been hypothesized to be confusing, but did not empirically demon-

strate confusing properties in the original study. This meant that,

in addition to verified atoms of confusion, we wanted to study hy-

pothesized atoms of confusion that had previously failed to meet

statistical significance. Additionally, we wanted to observe subjects

hand-evaluating non-confusing snippets, as a baseline for com-

prehension of simple programs. Since many snippets with atoms

removed are similar to each other, being small and containing a lim-

ited set of language constructs, we did not make an effort to study

each atom snippet’s direct transformation. For snippets that were

hypothesized, but not confirmed as confusing, however, we did test

direct transformations, since an overly confusing transformation

has the power to confuse a subject and serve as a defective control.

Consequently, each subject was shown:

• 5 confirmed confusing snippets (C)

• 1 confirmed not-confusing atom transformation (NC)

• 1 hypothesized but not validated confusing snippet (HC)

• 1 transformation of the same HC snippet (HNC)

Snippets were assigned to specific participants in using these

constraints, but otherwise distributed randomly by a script. The

script that we used to determine snippet selection is included in

our replication package.

3.2 Data Acquisition

The principle mechanism of our study is a think-aloud protocol

with a combined semi-structured interview and discussion. We

showed each subject 8 small code snippets of various degrees of

confusingness from prior experiments. For each code snippet, we

asked the subjects to hand-evaluate the code and report the stan-

dard output (results of the printf statement). We then asked the

subjects to notate their confidence about their answer on a scale

from 1 (‘unsure’) to 6 (‘positive’). We also requested from each

subject łWhile evaluating each program please speak aloud your

reasoning, thoughts, and actionsž. The study leader remained in the

room with the subject and audio recorded the entirety of the study.

After each individual evaluation, the study leader first asked sub-

jects why they chose the level confidence they selected, and then

proceeded to ask clarifying questions about any ambiguous com-

ments made by the subject. The study leader used a meta-protocol

to guide their interactions. The meta-protocol recommended spe-

cific situations to look for, questions to ask in these scenarios, and

canned answers for common questions. At this point, the study

leader attempted not to provide any information to the subject.

After all 8 code snippets were finished being evaluated, the subjects

were given a questionnaire that asked about subject demograph-

ics, previous experience, programming language preference, and

perceived proficiency, among other things. After the subject com-

pleted the questionnaire, the study leader stepped the subject back

through each of the completed code snippets, this time asking more

probing questions designed to start a back-and-forth dialog. At

this point, discussions were collaborative and iterative; perhaps the

study leader would ask a clarifying question towards the subject,

or the subject would ask for an explanation from the study leader,

and the discussion would proceed from there to identify the root

causes and processes that led to uncertainty or misunderstanding.

Any error in evaluation or understanding that the study leader

identified was dissected both by the study leader and the subject

until the subject had a complete understanding of the mistake they

had made, and they had communicated their understanding of their

original thought process and their misconception.

3.3 Subjects

We selected subjects to represent programmers along a broad range

of experience, recruited from three general groups. Ultimately, we

interviewed 5 students, 4 professional C++ application developers,

and 5 professional authors of a popular C++ library. All subjects

identified as male, though this was not an intentional aspect of the

study design. A list of our subjects can be found in Table 1.

All student subjects were recruited from the computer science

masters program of NYU. All other subjects were recruited from

a single large North American Web technology company. Unsur-

prisingly, there is a much stronger preference for C++ among the

subjects who work professionally with the language. Profession-

als also tend to be older, have more experience, and have higher

self-perceived proficiency with programming.

3.4 Analysis

The analysis began as the interviews themselves, as the study leader

kept continuous notes while each subject spoke. After each inter-

view, the study leader would go back to summarize and reframe

each set of observations. This included writing memos on develop-

ing patterns and theories as evidence for them grew. All-the-while

these memos continued to be compared and juxtaposed against the

newer data that continued be collected.

ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA Dan Gopstein, Anne-Laure Fayard, Sven Apel, Justin Cappos

Table 1: Programmers recruited to participate in the study

Subj. Group Age Preferred C/C++ Years

Language Proficiency Progr.

4168 Student 22 C++ / Python 4 15

3316 Student 22 Go 3 4

4281 Student 24 C++ 4 7

9112 Student 21 JS / Kotlin 3 6

3787 Student 22 Python 4 7

6061 C++ User 32 C++ 5 27

8888 C++ User 35 C++ 5 29

4304 C++ User 53 C++ 5 39

1879 C++ User 48 C++ 5 34

1157 C++ Librarian 37 C# 6 20

7640 C++ Librarian 29 C++ 6 16

4642 C++ Librarian 53 C++ 6 33

8697 C++ Librarian 22 JS / C++ 4 5

1867 C++ Librarian 29 C++ 5 9

Subsequently, subjects’ handwritten notes were digitally copied

and saved for analysis. We generated transcripts from the audio

recordings of the interviews. We read these transcriptions, along-

side the subjects’ written notes, using open coding to label patterns

that appeared in subject responses. Open coding, as described by

Corbin and Strauss [6], is łBreaking data apart and delineating

concepts to stand for blocks of raw data. At the same time, one is

qualifying those concepts in terms of their properties and dimen-

sionsž. This involves identifying interesting/repeated/surprising

facets of a text and marking them for later analysis. From these

codes, we formed higher level groupings of similar concepts. From

these, patterns were induced that form the basis of our observations,

hypotheses, and suggestions that follow in this paper.

The analysis was performed in several batches, intertwined with

data collection as new subjects were recruited and interviewed. As

one of the goals of this study was to explain Gopstein et al’s re-

sults, we began by recruiting, interviewing, and analyzing student

subjects, to obtain a sample similar and comparable to the original

sample. We used a three-fold analysis strategy that allowed us to

remain sensitive to insights that emerged from data [9], while fo-

cusing on the questions that emerged from Gopstein et al’s original

study. Once the first set of interviews was completed, the study

leader read the transcripts to define emerging recurring themes

across subjects. After discussing with the other authors this first

list of common patterns, the study leader read the interviews a

second time to inductively generate codes through open coding of

our data. Whenever a new code was developed, it was added to a

running codebook, which lists every type of code used, along with a

brief description of when it is applicable. The full codebook as well

as each code’s application is included in our replication package

online.

Since codes were generated dynamically during open coding,

the coding process was performed iteratively. Any codes that were

generated after the coding of a transcript were then retroactively

applied to all transcripts that were previously coded without it.

This process was done in two phases. Whenever the last subject

of a group was coded, all the previous transcripts from that same

group would be re-evaluated to add the newly-created codes. For

0 10 20 30 40
Years Programming

3

4

5

6

7

8

C
or

re
ct

 A
ns

w
er

s

11571867 1879

3316

3787

4168

4281 4304

4642

606176408697 8888

9112

Subject Groups
Student
C++ App. Dev.
C++ Librarian

Figure 1: Subjects’ performance relative to C/C++ experience

example, when the last student transcript was coded, all previous

students’ transcripts were re-analyzed to see whether the new codes

were applicable. Finally, when all 14 transcripts across all subject

groups (student, C++ application developer, C++ librarian) were

analyzed, they were all read and recoded once more, this time with

the complete set of codes.

We then engaged in a third phase of analysis in which the study

leader compared and contrasted across codes, and collapsed and

combined them into higher-level categories. The study leader had

regular meetings with the other authors to discuss and agree on

the definition of these high-order concepts. In the rest of this paper,

these concepts are presented with specific quotes and interactions.

3.5 Descriptive Statistics

While not the focus of this work, we provide a quantitative overview

of the collected data because it gives important context for what

follows. In total, there were 8h18m of recorded audio, consisting

of about 82 000 spoken words broken into roughly 3040 blocks

of speech by either the subjects or the study leader. There were

144 types of labels applied to 1740 phrases from the interviews.

The most common themes in the text were ‘Unsure’, ‘Correct Se-

mantics’, ‘Simple’. Examples of less frequently occurring labels are:

‘Maintainability’, ‘Previously Used’, and ‘Unfamiliar Syntax’.

There were 17 code snippets evaluated incorrectly. 14 errors were

committed by 4 students, 2 by a single C++ application developer,

and 1 by a C++ librarian, indicating that the students made more

errors than professionals, but the different types of professionals

were not well distinguished. A full accounting of errors-per-subject

is depicted in Fig. 1. The types of snippets that generated errors

largely followed what was previously reported by Gopstein et al.,

albeit with less fidelity. There were no ‘transformed’ (non-atom)

snippets that were evaluated incorrectly, with all errors coming

from snippets that were designed as obfuscated.

4 MECHANISMS OF MISUNDERSTANDING

In this section, we analyze and discuss our observations pertaining

to the causes of programmer misunderstandings while evaluating

atoms of confusion. We explore high-level patterns induced from

individual examples discussed with our subjects, specifically:

Thinking Aloud about Confusing Code ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA

• A taxonomy of different types of errors

• Causes of errors beyond atom of confusions

• Cases when subjects evaluated code correctly despite being

mistaken about semantics

The discussions introduce a generalized pattern inferred from

the data, and also give specific examples in the form of quotes

taken from the subjects. Whenever quotes are given, they refer-

ence the subject and the associate code snippet in the form of

[subject-id:snippet-id]. For example, if subject 1234 were describing

snippet 56, we would write łquote about codež [1234:56].

4.1 Taxonomy of Confusion

Gopstein et al. were careful to delineate types of confusing code

that were and were not relevant to their investigation. Specifically,

they excluded code that contained non-determinism, non-standard

features, high computational load, or reliance on a complex API.

The rationale was that they were interested in studying situations

in which a programmer would make an error based only on a

flawed understanding of a language’s semantics. To test this rea-

soning, we categorized every incorrect hand-evaluation and at-

tributed a primary (and sometimes secondary) high-level cause.

These causes naturally fell into four general groups of errors: unfa-

miliarity, misunderstanding, language transfer, and attention. The

first three would likely be considered ‘in-scope’ for Gopstein et al.,

while attention-related errors would likely fall into the category of

excluded types of confusion. Table 2 lists each incorrectly evalu-

ated snippet, along with which high-level category of error it was

assigned to. Next, we describe the categories in detail.

Unfamiliarity. The subject appears to have never encountered this

phenomenon before, or at least does not recognize it in its current

form. Consider the following example:

int V1 = 013;

łI assume the int is going to be thirteen,

because it doesn’t have to represent that

zero in memoryž [3316:105]

In this case, the subject was not aware that a leading zero means

the literal represents an octal value, and is stored with a value

equivalent to the decimal number 11, in this case. There is no

evidence that the subject had ever seen this notation before and

was then left inferring the semantics of this notation based only on

his own reasoning. Originally, the subject considered that a leading

zero might cause an error, but ultimately he suggested that ignoring

the leading zero might make sense for purposes of being able to

parse fixed-width integers from data files.

All these behaviors are characteristic of unfamiliarity:

• No evidence of previous association of the construct

• Often questioning the code’s validity

• Using logic to construct potential semantics

Misunderstanding. The subject is aware of the construct, but uknowl-

ingly attributes incorrect semantics to it, as in this example:

if (++V1 || ++V2) ...

łThis is pre-increment and uh, what I re-

member from what I studied is that, you

know, before the statement is executed,

this will be incrementedž [4281:79]

In this example, the subject recognized the pre-increment operator

and noted that the underlying variable would be incremented. The

subject believed that first incrementation would happen, and then

the logical expression would be evaluated. Actually, it works the

other way, the disjunction operator (||) must first evaluate its left

operand, and only if that is true, it will evaluate the right operand,

incrementing its variable’s value. Under the subject’s conception,

V2 would always be incremented, which is not accurate.

Unlike unfamiliarity, when a subject misunderstands:

• They have seen the construct before

• They purport to have an understanding of it

• Their understanding is somehow flawed

Language Transfer. The subject has seen similar code before, but

only in another programming language. From the other language,

they guess what the semantics might be in C:

int V1 = 013;

łWe have like different number base, but

for int. I know Python has something like

it, but in C, I’m not sure. [In Python, the

0 in front] means nothing.ž [9112:105]

In this example, the subject recognized the form of the octal literal,

however, he was unsure whether or not it applies to C. He described

how similar code works in Python, and then ultimately decided the

0 was likely to be ignored since that is what he believed happens

in Python. (N.b. in Python 2, 013 is interpreted a decimal 11; in

Python 3, 013 is a parse error).

Language transfer is easily identified when the subject:

• Mentions their understanding is derived from their knowl-

edge of another programming language

Attention. The subject verbalizes correct semantics, but appears to

forget or ignore an important piece of the computation:

printf("%d %dn", V1, V2)

łV2 is going to equal 1 and V1 is going to

equal 2 after that expression. And so it’s

going to print out one, twož [4304:61]

In this example the subject accurately described the state of the

variables (V1 is 2, and V2 is 1), but then immediately went on to say

that the variables were printed with their values reversed. There

was no explanation for this what-so-ever, and the attribution of

‘attention’ is somewhat of a guess on the behalf of the study leader.

A misunderstanding is considered an attention problem when:

• The subject appears to understand the semantics of the in-

volved constructs

• There is no other obvious cause of the problem

ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA Dan Gopstein, Anne-Laure Fayard, Sven Apel, Justin Cappos

Table 2: Incorrectly evaluated snippets. Including error description, categorization, and unexpected additional atoms that also appear

Subject Snippet Atom Mistake Category Other Atoms

3316 45 Pointer Arithmetic Array as header pointer / pointer vs. value Unfamiliarity / Unfamiliarity

3316 19 Pre-Increment Failed to increment variable Misunderstanding / Attention

3316 11 Operator Precedence Boolean value of integer Language Transfer Implicit Predicate

3316 105 Literal Encoding Leading zero is ignored Unfamiliarity

4281 79 Logic as Control ++x operates before statement Misunderstanding Pre-Increment

4281 71 Preprocessor in Stmt if determines macro definition Unfamiliarity

9112 61 Comma Operator Mistook = for == / Comma operator Attention / Unfamiliarity Assignment as Value

9112 105 Literal Encoding Leading zero is ignored Language Transfer

9112 79 Logic as Control Forgot short-circuit / thought it didn’t apply Attention / Misunderstanding

3787 11 Operator Precedence Boolean value of integer Unfamiliarity Implicit Predicate

3787 71 Preprocessor in Stmt If selects preprocessor Unfamiliarity

3787 109 Omitted Curly Brace Boolean value of integer Unfamiliarity Implicit Predicate

3787 37 Macro Precedence Pre-evaluated macro contents Unfamiliarity

3787 85 Repurposed Variable Boolean value of variable (not integer) Unfamiliarity Implicit Predicate

4304 61 Comma Operator Switched argument order Attention

4304 79 Logic as Control False operand causes short-circuit Misunderstanding

4642 115 Type Conversion Float to integer is a rounding conversion Misunderstanding

Summary. We have defined four categories of error that describe

the mistakes that we saw in our study. We do not expect they are

exhaustive of all comprehension errors. However, they capture the

essence of the issues that we happened to witness.

4.2 Unexpected Cause of Error

The very premise of earlier work on atoms of confusion work relied

on the implicit assumption that different programmers misinterpret

various examples of confusing code in the same, predictable way.

For example, an atom of confusion might be called Operator Prece-

dence, and any time a subject makes an error evaluating this piece

of code, the specific cause of confusion is assumed to be directly due

to misinterpreting precedence of the infix operators in the snippet.

Despite the tight controls implemented by Gopstein et al., there was

no way to validate that assumption. In our work, we see evidence

both in favor and against this assumption. One example that shows

an incorrectly attributed source of confusion happens with a code

snippet of the Operator Precedence atom mentioned previously:

int V1 = 0;

if (0 && 1 || 2) {

V1 = 6;

} else {

V1 = 3;

}

printf("%d\n", V1);

The part that was assumed to be confusing was the precedence

of the logical operators in expression 0 && 1 || 2. Two (both stu-

dents) of our 14 subjects incorrectly evaluated the logical expression

above, however, the root cause of both errors were unrelated to

operator precedence. Subject 3316 said łyou cannot evaluate two

to truež [3316:11], implying he did not know that non-zero values

are evaluated as truthy by a logical operator in C. Subject 3787’s

confusion went slightly deeper: łso will the variable will be affected

by this or it will just completely skip thisž [3787:11], implying that

he believed all logical conditions must reference a variable. While

this code snippet was obviously confusing to these two subjects,

it happened not to be the reason that was identified by previous

research.

To determine which of the errors made in our study were due

to the reasons assumed and which were due to unrelated misun-

derstanding, we analyzed each incorrectly evaluated snippet and

attributed a simplified cause as to why each subject erred while

hand-evaluating a snippet in Table 2.

Of the 17 incorrectly evaluated snippets, 10 appeared to be caused

solely by the stated atom of confusion, as described in Gopstein

et al. In 7 cases, the cause of the confusion was either partially

or solely due to some other factor, potentially another atom or

atom candidate. Subject 4304’s error in snippet 61 appeared to be

caused only by a lapse of attention, and is likely not caused by

any atom of confusion at all. Several of the interactions observed

during the incorrect evaluation of other snippets provided evidence

for multiple new types of atoms not previously identified. This is

discussed in more detail in Section 5.1 (Potential New Atoms).

Summary. Despite causing confusion, atoms of confusion do not

necessarily cause confusion for the reason implied by the atom’s

title. This may be due to insufficient ‘minimality’, and perhaps the

snippets could be written more carefully to avoid this pitfall.

4.3 Correct for Wrong Reasons

There is a subtle problem with only collecting the output of the

subject’s hand-evaluation. It is only possible to measure whether or

not their evaluation resulted in the correct output, not whether they

evaluated the code following the correct semantics. In this work,

we observed several scenarios in which subjects reported correct

output, but did so in a circuitous way. In Table 3, we collected

every example of a construct that was evaluated correctly, but

for the wrong reasons. The table lists which piece of code was

evaluated with wrong semantics, what the supposed or explicit

misunderstanding was, and whether or not the subject proceeded

to ultimately evaluate the rest of the snippet correctly.

Thinking Aloud about Confusing Code ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA

In our example on Operator Precedence, there were no wrong an-

swers that exhibited the expected misunderstanding of precedence

rules. This could be because precedence rules for logical operators

are not confusing. However, there is also another explanation pro-

vided by our investigation. Several subjects did express a lack of

understanding of operator precedence, however, due to the order-

ing of the expressions involved, they would accidentally correctly

evaluate the snippet anyway. Take, for example, subject 8697 who

explained łIf I recall correctly, the operator precedence is such that

And and Or are the same. I don’t believe either one of them takes

precedence over the other, and so it’s just left to rightž [8697:11].

This understanding of the language semantics is generally incorrect,

however, the specific example enabled the subject to still evalu-

ate the example correctly. Had the snippet prompt instead asked

the subject to evaluate 2 || 1 && 0, it is likely that he would have

evaluated it incorrectly assuming the parenthesization would be

(2 || 1) && 0 instead of the actual parenthesization: 2 || (1 && 0).

Unlike a simple error that leads to an incorrect output, a correct

response that arose from an incorrect evaluation often necessitates

multiple misunderstandings: one to initially generate an incorrect

response, and another to steer the evaluation back to being cor-

rect. For example, in snippet 49, subject 4281 did not understand

the parsing rules of the statement int V2 = V1 == 3 ? 2 : 4;, how-

ever, since he believed that == was only valid to be used inside a

predicate clause (for example, the first operand of the conditional

operator), the two misunderstandings canceled out, and left the

subject evaluating the code correctly.

Summary. The implication for these types of errors on previous

work is significant. Misunderstandings like these may not result

in an incorrect response in a correct/incorrect output experiment

like the one of Gopstein et al.. So, if an experiment intends to be

measuring misunderstanding, it may well be underestimating the

amount.

5 IMPLICATIONS AND PERSPECTIVES

During the course of this study, it became clear that many assump-

tions that were taken for granted in previous work may not always

hold true. In this section, we discuss potential new areas to investi-

gate or improvements on old designs for new studies going forward.

We address four specific facets of the previous work from a new

perspective:

• New candidates for atoms discovered through observation

• Limitations of the model of atoms of confusion

• Potential pitfalls in hand-evaluation experiments

• The role of qualitative methods in quantitative work

5.1 Potential New Atoms

Gopstein et al. proposed 19 candidate code patterns as potentially

confusing relative to functionally equivalent code. Of these, 4 failed

to meet statistical significance; 15 patterns were validated as atoms

of confusion. Despite this existing corpus of known confusing code

patterns, it is likely that there still exist more minimal patterns

of code that are confusing to programmers. We list here several

constructs that appear to be confusing based on our observations;

they may prove to be atoms of confusion upon further validation.

Uninitialized Variable. Several of the programs included in our study

declare variables and do not initialize them immediately, only as-

signing values to them through the course of the program. Each

of these variables, being local in scope, begin life with an inde-

terminate value and only have a known value once it has been

assigned. In each snippet, the value of every variable is assigned

before it is read. Therefore, no code has unspecified or undefined

behavior. However, there were dozens of mentions of this concern

from subjects: łThe others are actually in an indeterminate state at

the moment because we have no guarantee of like in Java they’d be

zero initialized, but this is, C you go to hell and you diež [1157:85].

In most cases, subjects understood that there was no unspecified

behavior, but that it was still bad practice: łThe intention is to,

to not have the, the like declared, declaration of an int that’s not

defined because it’s just a, uh, it’s a vector for bugsž [1867:50].

We noticed, however, several misconceptions around the seman-

tics of uninitialized values that either caused mistakes or likely

would have in a different context. For example, subject 9112 incor-

rectly evaluated snippet 61 in part due to this misunderstanding.

He recalled his understanding łFrom my experiences [the default

value will be] either minus one or to the smallest number from the

systemž [9112:61] and then proceeded to use these values in the

snippet. Other subjects still managed to navigate the code correctly

despite equally unfounded beliefs: łIt depends on the flavor of C

that you’re actually working in. Um, actually I don’t know for even

today, I’m not sure if like the default, initialization... I think that

since C++11, they made sure that these are default initialized, so

they’d be zero. But that’s not guaranteed in the early versions of

Cž [4304:61]. In this case, C++11 does not allow for automatically

initialized integers in a non-static/non-global context [14], and that

has been the case in the standard, at least, since ANSI C [15].

Given these misunderstandings, it is likely that code containing

uninitialized variables is confusing to programmers. The original

work on atoms of confusion specifically avoids testing code with

unspecified/undefined behavior, however, making the testing of

this potential atom a little challenging. One interesting fact that can

be tested is that integers in a static or global context are (and have

been since the ANSI standard) initialized to 0. So, one potential

snippet of atom code could be:

Atom Candidate: Uninitialized Value

int x;

int main() {

printf("%d", x);

}

Obfuscated

int x = 0;

int main() {

printf("%d", x);

}

Simplified

In this example, the standard specifies that x is initialized to 0 and

therefore output is 0, however, several of our subjects would likely

believe the behavior is unspecified or undefined.

Modulo Operator. In snippet 1, an example of the Implicit Predicate

atom, the modulo operator (written as %, and often verbally abbre-

viated ‘mod’), was used as a generic non-logical expression in the

condition of an if statement like: if (10 % 3). While the name and

concept of the modulo operator was always known by our subjects,

the precise semantics and evaluation were often questioned. One

ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA Dan Gopstein, Anne-Laure Fayard, Sven Apel, Justin Cappos

Table 3: Every evaluation that was correct, but for the wrong reasons

Subj. Snippet Construct Misconception Ultimately

8697 1 Truthiness of 10 % 3 Knew 10 % 3 was non-zero, but did not know its value Correct

8697 11 Precedence of 1 && 2 || 0 && and || have the same precedence Correct

3316 11 Precedence of 1 && 2 || 0 All operators get evaluated from left to right Incorrect

4281 79 Incrementation and short-circuiting (a) Both operands get evaluated; (b) ++3 == 3 Incorrect

of ++V1 || ++V2

4281 49 Precedence of V2 = V1 == 3 ? 2 : 4 łdouble equal-to can only be there for the condition checkž Correct

9112 61 Expression value of (V2 = 1, 2) ł[assignment] just like return like nothing. So only the remaining value is 2ž Incorrect

subject, in particular, knew very well what the operator was at a

high level, but struggled to actually calculate its value. łI mean it’s

like, obviously it’s modulo operator, so it’s like kind of close to

the remainder... [subject elaborates more, but then pauses for 31

seconds trying to calculate the value of the operation] oh, okay.

Actually now that I think about it. I don’t really care what the

value is, I guess cause it’s like it’s just a conditional, so it’s like

you can convert it to Boolean. Um, so in this case, uh, it does not

evenly divide into three is not evenly divided into 10. Uh, so there

is a remainder and of non zero value. So it’s true" [8697:1]. After

being prompted by the study leader, the subject explained that,

despite knowing the high-level description of the modulo operator,

he struggled actually calculating its result. The study leader pushed

him to try to calculate the value again, to which the subject resorted

to counting on his fingers, and still feeling very unsure of his result:

łone, two, three. One, two, three, four, five, six, seven, eight, nine, 10.

So that would be... Oh interesting. Actually. Not sure what though,

so it’s starting at. Would that be one or zero? I mean it’s, it can’t be

zero because it’s doesn’t evenly dividež [8697:1]. Despite evaluating

every snippet correctly, had the study leader asked subject 8697 to

evaluate 10 % 3 and report its value, he would not have been able

to do so.

Even beyond the computational ability required of the modulo

operator, several subjects also agreed the semantics of the opera-

tor was unknown to them when the operands were non-positive.

łIt’s the mod operator. Could have gotten interesting if there were

negative or events that I had to think about it... Like specifically a

negative divisor would like I’d never think about that case... And I

guess they design it so that like if you flip the sign at both of them,

it should do the same thing I think was there, uh, I don’t remember.

There’s a couple of logical ways to do it.ž [8888:1]

Given these comments, it is likely that the modulo operator is

itself confusing. Both the example given, for computational reasons,

but also usages with other operands. Below are examples of the

modulo operator being used with operands of various signs, which

may be confusing as well.

Atom Candidates: Modulo Operator

Case Expression Value

Two Positive Operands 10 % 3 1

Negative Left Operand -10 % 3 -1

Negative Right Operand 10 % -3 1

Two Negative Operands -10 % -3 -1

Zero Left Operand 0 % 3 0

Zero Right Operand 10 % 0 undefined

Octal notation (two reasons). Snippet 105 tests whether program-

mers understand how to print an octal literal integer as a decimal

value. The relevant code is:

int V1 = 013;

printf("%d\n", V1);

There were two incorrect evaluations of this snippet, both by stu-

dents. One of the subjects, 3316, was not at all familiar with the

leading-zero syntax and assumed it would be ignored: łUm there’s a

leading zero there. So I assume the int is going to be 13, um, because

it doesn’t have to represent that zero in memory.ž [3316:105]. The

other subject, 9112, knew that some languages represented octals

in this way while others didn’t and made the guess that C did not.

Afterwards the study leader told 9112 that the leading zero did

mean octal, and asked the subject to proceed from that point with

the new knowledge. From there, the subject was still unable to get

the correct result: łIt’s a base 8. And I think per this means that the

output for the be a digit [sic], so it’s 1 plus 8. It’s 9.ž [9112:105].

Between these two subjects, we can see that there are two dif-

ferent types of misunderstandings, one regarding the meaning of

the leading-zero notation, and the other about how to translate be-

tween octal and decimal numbers. Perhaps this indicates that there

may be room to reduce the complexity of the code snippet further,

by factoring it into two seperate more ‘minimal’ atom candidates

instead.

Atom Candidates: Octal Notation and Conversion

Atom Candidate Code Value

Leading-Zero Notation printf("%o", 07+010) 17

Decimal-to-Octal Conversion printf("%o", 15) 17

String as Pointer. In C, a string is represented as a pointer to a series

of sequential characters in memory, where the last character is in-

dicated by a null byte. This is why strings are declared as char * or

łpointer to a characterž. It would appear, though, that the specialized

nickname ‘string’ or something about its conventional representa-

tion may obscure its underlying structure to some programmers.

Snippet 91 was designed to test whether programmers understood

that the arguments to the array-subscript operator (square brackets

[]) can be swapped without affecting the program behavior. One

of our subjects nearly evaluated the snippet incorrectly not due to

misunderstanding the subscript operator, but instead because he

did not realize strings were just pointers: łI have seen it on some

Thinking Aloud about Confusing Code ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA

of the class material once where, you know, that was, you know,

professor was just going through it and he said that this or that

wouldn’t matter. And I, I did try it with an int because I just wanted

to check to be sure, it did work, but you know, I kind of initialized

an array before and then I tried it like this with the index and the,

you know, base pointer, but I haven’t done that with strings... but

this is not a base pointer, but I do understand it’s a string and I’m

really shaky when it comes to strings in Cž [4281:91]. It might be

valuable to measure the confusingness of the pointer representation

of strings independently, to learn how well subjects understand

them:

Atom Candidate: String as Pointer

void main() {

char *x = "abc";

char y = *(x + 1);

printf("%c", x);

}

Obfuscated

void main() {

char[] x = {'a','b','c'};

char y = x[1];

printf("%c", x);

}

Simplified

Logical Operator Outside of Condition. The Implicit Predicate atom

implies a perceived connection between conditional statements and

logical operators. The atom shows that it is more confusing to use

an if statement (for example) without an equality operator than

with one. Conversely, if programmers have learned a conventional

association between conditions and logical operators, perhaps the

presence of logical operators in absence of an if statement or while

loop is itself confusing.

Snippet 49, designed to test the Conditional Operator atom, also

caused perceived ambiguity over the precedence of its operators in

this statement: int V2 = V1 == 3 ? 2 : 4; Subject 4281, unsure of

whether to parse the conditional expression as: V1 == (3 ? 2 : 4) or

(V1 == 3) ? 2 : 4 made a statement to this effect: ła double equal-

to can only be there for the conditionž [4281:49], and used this

reasoning to help infer rules about operator precedence. Despite

helping him correctly evaluate snippet 49, this understanding of the

usage of the == operator is incorrect. Actually, the equality operator

is used in an expression like any other, and can be used in any

context that can receive an int (specifically 1 or 0). To subject 4281,

however, the logical operator is inseparable from its conditional

context, and would not have a value if it were: łIt cannot be there

for any other reason but for a condition... Nothing comes out of

thisž [4281:49].

It would appear that the conventional relationship between con-

ditional statements and logical operands is so pervasive that some

programmers have induced that it is by specification. Perhaps never

having seen a logical operator outside of a select or looping state-

ment, the programmer believes that it is not allowed to happen.

Atom Candidate: Logical Operator Outside of Condition

void main() {

int x = 1 == 2;

printf("%d", x);

}

Obfuscated

void main() {

int x = 0

if (1 == 2) {

x = 1;

}

printf("%d", x);

}

Simplified

5.2 Challenges of the Model

Gopstein et al. introduced the notion of atoms of confusion as a way

to simplify the process of program comprehension to a point where

it can be precisely and reliably measured. The primary mechanism

for gaining that precision was the minimality and atomicity of code

snippets. Part of what our study is demonstrating is that talking

about code and human comprehension in such dichotomous terms

is not the most accurate model. We have seen several examples that

undermined the concept of homogeneity of confusion, minimality

of confusion, and evaluation as a precise proxy for comprehension.

Homogeneous misunderstanding. The way Gopstein et al. presented

their 15 examples of confusing code patterns implied that misun-

derstanding was a trait inherent to the code itself, independent of

the subjects on which they were validated. What we have seen in

our study is that there is considerable variance across our subjects’

types of misunderstandings during evaluation, even for the same

code snippet. Sometimes this is affected by obvious factors such

as experience, but sometimes it is subtle factors such as personal

experience with a given construct or even the specific mnemonics

a programmer has used to memorize a particular quirk of the lan-

guage. Regardless, the more evidence we see, the less likely it seems

that any particular code snippet is likely to be universally confusing

or simple across all programmers. In fact, it is unclear whether or

not specific constructs can be selected to be confusing for even a

specific demographic, as each programmer is an individual with

their own mastery and misconceptions unique to themselves.

One example is various programmers’ misunderstandings of the

Boolean value of integers when evaluated in a logical operation. In

C, values are generally considered ‘falsy’ if they evaluate to 0 and

‘truthy’ otherwise. For example, logical conjunction is specified

to behave as follows: łThe && operator shall yield 1 if both of its

operands compare unequal to 0; otherwise, it yields 0. The result

has type intž [13]. However, we observed several different beliefs

regarding the Boolean value of integers.

Consider these three different examples of incorrect semantics:

• The only valid integers in a logical context are 1 and 0

ś łyou cannot evaluate two to true, but you usually can

evaluate zero and one... to other boolean typesž [3316:11]

• Integers are not valid in a logical context, at all

ś łIt’s confusing because zero and one... what? What does,

what’s zero and one, what does? How would I... I don’t

know what it means.ž [3787:11]

• All integers are true because they exist

ś łI mean we’re using zero here for the if, and zero is an

integer. So it, it is true. I mean zero does exist.ł [3787:109]

Given that there is such a diverse set of misunderstandings around

a single construct, it may not be appropriate to claim that there is a

single source of confusion that causes all of them.

Mutually exclusive atoms of confusion, minimality, and atomicity.

Part of Gopstein et al.’s restriction to ‘minimal’ code snippets meant

that no example of an atom of confusion could contain any other

confusing code beyond what was being tested. Unfortunately, this

necessarily precludes the possibility that two potential atoms of

confusion might share common conceptual ground. One example

concerns expressions with side effects. Several responses in our

ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA Dan Gopstein, Anne-Laure Fayard, Sven Apel, Justin Cappos

study have indicated that code that mutates state as part of a larger

expression is inherently confusing. Examples of this type of confus-

ing code can be quite minimal, such as a = b++ or a = b() (assuming

b() produces side effects). The first example has been shown to be

confusing as a Post-increment atom, while the second has not. Evi-

dence from our study and other studies [1], however, suggests that

the latter is a good candidate to be an atom. If, however, side effects

are shown to be confusing and become a new atom in their own

right, this makes existing atoms such as a && b() (Logic as Control

Flow) or a = (b(), c) (Comma Operator) non-minimal, since they

must contain the Side-effecting Expression atom. Given the confusing

nature of short-circuiting, though, the Logic as Control Flow atom

is likely to be significantly more confusing than the side-effecting

expression it would contain. To put it differently, a && b() is con-

fusing, it cannot have any part of it removed while retaining its

level of confusion, and it cannot be written without a side-effecting

expression. If side-effecting expressions are ever validated as an

atom of confusion, this would suddenly cause a && b() to no longer

be minimal, and therefore not viable as an atomic unit of confusion.

This contradiction might force a difficult choice between several

valid atoms. Alternatively, it may point to a conceptual shortcom-

ing in the definition of atoms of confusion. Perhaps the notion of

atomicity is limited; the idea that there is a certain threshold level of

confusion below which certain code is simple and above which it is

confusing. If, instead, we accept that all code exists on a spectrum of

understandability, and some code is easier to understand and some

harder, there can no longer be a concept of a minimally confusing

piece of code, because all but the smallest expressions can always

be made smaller at the expense of some confusingness. Conversely,

this lets us talk about several related, cooperatively non-atomic

pieces of code that have varying levels of confusingness despite all

sharing related constructs. For example, a && b++, a = b++, and b++.

It is likely that each is confusing, but to differing degrees.

Evaluation vs. Comprehension. Perhaps the core assumption of re-

search on atoms of confusion is the use of the correctness of source

code evaluation as a proxy for program comprehension. In any

specific context, this correspondence may remain valid, however,

evidence from our study indicates that individual understanding is

not monotonic. Section 4.3 (Correct for Wrong Reason) demonstrates

that a programmer who can evaluate a small snippet of code may

be able to understand the same code in another context. Even in

circumstances where subjects correctly evaluated a snippet, occa-

sionally certain assumptions they made possibly would not have

been made in the context of a larger program, or would not have

lead them to a correct answer in that case. Consequently, the rela-

tionship between evaluation results and claims of comprehension

may not always be true for the types of code shown in these studies,

let alone generalize to more typical code seen in larger code bases.

5.3 Threats to Validity in Previous Studies

Outside of confusing programming constructs that have potential

to be atoms themselves, we discovered several unintentional fea-

tures of the code snippet evaluation protocol. These raise threats to

validity in code evaluation studies of the type used in Gopstein et al.

Each of the examples below represent exceptions to the intended re-

search questions of Gopstein et al. Some introduce confusion where

they should not, others add mechanisms of inferring correct an-

swers where they should not, and still others rely on non-standard

features of the C language.

5.3.1 printf is Confusing. The basis for hand-evaluation experi-

ments is for the subject to report the standard output of the program

in question. In C, the canonical method of generating standard out-

put is with the stdio function printf. It is famous for its esoteric

API that is rarely fully learned by users. Many subjects, especially

the professionals, called this out as a potential source of confusion:

łprintf and the percent things I pretty sure I remember most of them

and I’m pretty sure percent c prints the character, but I, I check the

man page every time I have to use one those.ž [1879:91], and łwe’ve

got a float and we’re printf’ing it with a percent d I never know

about printf syntax, I never use it [nervous laughter]. ž[1867:115]

According to the original description of atoms of confusion, cer-

tain types of confusion were excluded from the study, including API

related confusion, which appears to be exactly what printf induces.

Potential alternatives include providing documentation along with

the experiment, or using C++’s cout object, which does not require

a format specifier. Both of these solutions have downsides and

neither is ideal, but a better solution is worth considering.

5.3.2 Relying on the Correctness of the Example. The introductory

text to our study said łEach program compiles and runs without

errorž. A somewhat popular tool amongst subjects was to leverage

that fact to make assumptions about the code. łI just remembered

every program executes. So this, my thinking of this not working

is wrongž [3316:37]. In practice, programmers likely will not have

these types of assurances and cannot rely on the fact that arbitrary

code is guaranteed not to produce an error.

5.3.3 Variable Names. The snippets included in our study were

designed not to include semantic beacons [24], which might tele-

graph the meaning of the code to the programmer before they fully

comprehend how it works. Part of this process was the renaming of

all variables to V1, V2, V3, etc. However, there were examples where

perhaps the naming of the variables induced otherwise unlikely

errors. For example, in snippet 61, variables V1 and V2 contained

the values 2 and 1 respectively, effectively swapping the contents

of the names and values. Subject 4304 made it clear that he knew

which variable contained which value, however, when writing his

response he accidentally swapped them. One obvious way this may

have happened was by subconsciously writing the number con-

tained in the name of the variable, rather than the value it contained.

In future experiments, it may be beneficial to use a variable naming

scheme that will not overlap with the stored information.

5.3.4 Redefining Macros. The snippet included in our study to

represent the Preprocessor in Statement atom, contains a macro

redefinition. There are two #define’s of the same identifier in the

same file, without an #undef between them. The C specification

(Section 6.10.3.2) [13] specifically says this is invalid: łan object-

like macro shall not be redefined by another #define preprocessing

directivež. And this was brought up by one of the subjects: łright

here we have like, uh, a redefinition of both M1 and M2 to be

different things. Um, and I’m not positive. I, I think that’s not well

defined. Um, and I think that should be a compiler error, but it could

also be like overwrite to use the like the latter onež [7640:71]. There

Thinking Aloud about Confusing Code ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA

was some controversy here though as a second subject claimed it

was valid łLike if you’re defining a value in the preprocessor, and

it’s already set, but if you set it again, they will not warn you or

whatever. It just lets you override it.ž [8697:71]. Interestingly, this

behavior is documented as being allowed by GCC: łIf a macro is

redefined with a definition that is not effectively the same as the old

one, the preprocessor issues awarning and changes themacro to use

the new definitionž [10]. It is unclear whether adding #undef’s would

make the code less confusing, but the current version is not the

best example from which to base conclusions about comprehension.

Another factor worth considering is whether the C preprocessor,

arguably an independent language, ought to be studied at the same

time the C language proper, as the preprocessor is known to be

used in ways that conflict with the underlying language [16].

5.3.5 Void Main. Presumably for brevity, all code snippets are

written using void return types on the main function. C technically

does not allow this (despite several compilers being permissive

about it), and many professionals complained about it: łRight off

the bat it’s void main, uh, which is, I feel like I’m back in Java land.

So, uh, it should be intž [8697:71], łThe thing I was a little tweaked

out by, is that void mainž [8888:73], łOh, so they are all void main.

Oh, that’s lovely.ž [1879:85], łUh, main is void. That’s a little bit

strange to mež [7640:19]. Changing the type of the main function

to int would also necessitate adding another line to each program,

returning 0. This return value might in turn complicate the subjects’

understanding of what value to report as ‘output’. Still, it is clear

that void main is not an acceptable idiom in a study like this.

5.4 Improving Quantitative Experiments

through Qualitative Pilots

The previous sections outline many flaws in an otherwise thought-

fully designed quantitative experiment. We contend that issues

like these are not unique to this experiment, but likely manifest in

different forms in many program comprehension experiments. Our

experience illustrates how performing a qualitative study allowed

us to make visible many issues that we did not originally foresee.

In our case, the quantitative and qualitative portions of these

studies were conducted sequentially as two separate endeavors.

The findings of our study may help design future quantitative ex-

periments that explore some of the questions that emerged from

this study. However, if Gopstein et al. had done a think-aloud study

prior to designing their original experiment, they most probably

would have found limitations similar to the ones we found and could

have avoided them. Indeed, while Gopstein et al. report conducting

a pilot study for their experiment, it was solely done to estimate

statistical power to choose a sample size. Therefore, we recommend

to researchers developing new types of program comprehension ex-

periments to begin by validating their approach qualitatively prior

to conducting their full quantitative experiments. While the effort

involved in our study was significant, and probably prohibitive to

researchers for whom it would be only a pilot test, we believe that

it is possible to use similar approaches, yet in a less time consum-

ing fashion. While we made sure to reach theoretical saturation

when analyzing our data, as this was a stand-alone study, the main

themes emerged after we analyzed the first half of the participants

and could have informed the design of a quantitative study.

6 CONCLUSION

Atoms of confusion [11] are a model for conceptualizing, mea-

suring, and comparing small, hard-to-evaluate patterns in source

code. Previous research used experimental approaches to validate

and quantify the effects of these patterns. To further contextualize

the existing body of work, and to provide a richer description of

subject’s underlying reasoning, we performed a qualitative inves-

tigation of the same phenomenon. Specifically, we conducted a

think-aloud study of programmers hand-evaluating atoms of con-

fusion and their associated simplified code pairs. The observations

made in this paper offer insights for future research on atoms of

confusion as well as for more general hand evaluation studies on

program comprehension.

As the second (qualitative) study in an explanatory sequential

mixed-methods design [7], our study was designed to give context

to the results presented by Gopstein et al. [11]. We wanted to go

beyond the dichotomous data presented before, and describe more

than just whether or not a programmer correctly evaluated a code

snippet. We wanted to understand and describe how programmers

evaluated code, what steps they took, what pitfalls they hit, and

how they evaluated unknown constructs. We arrived at a com-

mon taxonomy that was able to naturally categorize many of the

incorrect evaluations in our study and that shows that not all mis-

understandings come from the same mechanism. We investigated

responses given by subjects whose hand-evaluations were correct

and learned that correct answers do not always imply correct rea-

soning on behalf of the subject. By using a qualitative research

approach, we were able to see that, even for the data points that,

in a quantitative study, would look absolutely correct, there was

still significant confusion that would otherwise go unnoticed. In-

sights like these allow us to look back on previous research and

understand it with new depth. We can see that hand-evaluation

studies may be under-reporting the amount of misunderstanding,

since correct responses are now shown not to necessarily imply

complete understanding. Furthermore, we can see that, just because

errors are being observed, they are not always due to the factors

the experiment was designed to test.

Beyond understanding previous work, we identified several key

factors that can help design similar experiments in a more rigorous

way as well as entirely new studies to explore further ideas. Simple

changes can help give more accurate results such as avoiding com-

plex APIs like printf. We can expand the current understanding

of what code is confusing by empirically validating more atoms of

confusion. Finally, we have seen ways in which the current model

of confusion is limiting. Defining confusion as a dichotomous event,

something that either occurs or not, simplifies a very complex phe-

nomenon. Instead, it may be valuable to consider a more flexible

and complex model of confusion, one that is based on objective em-

pirical evidence and quantitative measurement and thus accounts

for arbitrary forms of code and the variation between programmers.

ACKNOWLEDGMENTS

We want to thank the participants in our study for their time We

are also grateful to Gennadiy Civil for helping to organize and

encourage this research. This work was supported in part by NSF

grants 1444827 and 1513457 as well as DFG grant AP 206/14-1.

ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA Dan Gopstein, Anne-Laure Fayard, Sven Apel, Justin Cappos

REFERENCES
[1] Marwen Abbes, Foutse Khomh, Yann-Gael Gueheneuc, and Giuliano Antoniol.

2011. An empirical study of the impact of two antipatterns, Blob and Spaghetti
code, on program comprehension. In Proceedings of the European Conference on
Software Maintenance and Reengineering. IEEE, 181ś190.

[2] Mahnaz Behroozi, Alison Lui, Ian Moore, Denae Ford, and Chris Parnin. 2018.
Dazed: Measuring the cognitive load of solving technical interview problems
at the whiteboard. In Proceedings of the International Conference on Software
Engineering: New Ideas and Emerging Technologies Results (ICSE-NIER). IEEE,
93ś96.

[3] Teresa Busjahn, Carsten Schulte, and Andreas Busjahn. 2011. Analysis of code
reading to gain more insight in program comprehension. In Proceedings of the
11th Koli Calling International Conference on Computing Education Research. ACM,
1ś9.

[4] Fernando Castor. 2018. Identifying confusing code in Swift programs. In Pro-
ceedings of the VI CBSoft Workshop on Visualization, Evolution, and Maintenance.
ACM.

[5] Elizabeth Charters. 2003. The use of think-aloud methods in qualitative research
an introduction to think-aloudmethods. Brock Education: A Journal of Educational
Research and Practice 12, 2 (2003), 68ś82.

[6] Juliet Corbin and Anselm Strauss. 2014. Basics of Qualitative Research: Techniques
and Procedures for Developing Grounded Theory. Sage Publications.

[7] John W. Creswell and J. David Creswell. 2017. Research Design: Qualitative,
Quantitative, and Mixed Methods Approaches. Sage Publications.

[8] Beth Davey. 1983. Think aloud: Modeling the cognitive processes of reading
comprehension. Journal of Reading 27, 1 (1983), 44ś47.

[9] Barney G. Glaser and Anselm L. Strauss. 1967. The Discovery of Grounded Theory:
Strategies for Qualitative Research. Aldine de Gruyter.

[10] GCC GNU Compiler Collection. (accessed March 4, 2020). The C Preprocessor: Un-
defining and Redefining Macros. https://gcc.gnu.org/onlinedocs/cpp/Undefining-
and-Redefining-Macros.html

[11] Dan Gopstein, Jake Iannacone, Yu Yan, Lois Anne Delong, Yanyan Zhuang, Martin
K.-C. Yeh, and Justin Cappos. 2017. Understanding misunderstandings in source
code. In Proceedings of the Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering. ACM, 129ś139.

[12] Dan Gopstein, Hongwei Henry Zhou, Phyllis Frankl, and Justin Cappos. 2018.
Prevalence of confusing code in software projects: Atoms of Confusion in the

wild. In Proceedings of the International Conference on Mining Software Repositories.
ACM, 11 pages.

[13] ISO. 1999. ISO/IEC 9899:1999: Programming Languages Ð C. 538 pages.
[14] ISO. 2011. ISO/IEC 14882:2011 Information technology Ð Programming languages

Ð C++ (third ed.). http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_
detail.htm?csnumber=50372

[15] Brian W Kernighan and Dennis M Ritchie. 1998. The C Programming Language-
ANSI C Version.

[16] Jörg Liebig, Christian Kästner, and Sven Apel. 2011. Analyzing the discipline
of preprocessor annotations in 30 million lines of C code. In Proceedings of the
International Conference on Aspect-Oriented Software Development. ACM, 191ś
202.

[17] Flávio Medeiros, Gabriel Lima, Guilherme Amaral, Sven Apel, Christian Kästner,
Márcio Ribeiro, and Rohit Gheyi. 2019. An investigation of misunderstanding
code patterns in C open-source software projects. Empirical Software Engineering
24, 4 (2019), 1693ś1726.

[18] Tobias Röhm, Rebecca Tiarks, Rainer Koschke, and Walid Maalej. 2012. How do
professional developers comprehend software?. In Proceedings of the International
Conference on Software Engineering. IEEE, 255ś265.

[19] Carolyn B. Seaman. 1999. Qualitative methods in empirical studies of software
engineering. IEEE Transactions on Software Engineering 25, 4 (1999), 557ś572.

[20] Janet Siegmund, Norbert Siegmund, and Sven Apel. 2015. Views on internal
and external validity in empirical software engineering. In Proceedings of the
International Conference on Software Engineering, Vol. 1. IEEE, 9ś19.

[21] Maarten W. Van Someren, Yvonne F. Barnard, and Jacobijn A. C. Sandberg. 1994.
The Think Aloud Method: A Practical Approach to Modelling Cognitive Processes.
Academic Press Inc.

[22] Klaas-Jan Stol, Paul Ralph, and Brian Fitzgerald. 2016. Grounded theory in
software engineering research: A critical review and guidelines. In Proceedings of
the International Conference on Software Engineering. IEEE, 120ś131.

[23] Anselm L. Strauss. 1987. Qualitative Analysis for Social Scientists. Cambridge
University Press.

[24] Susan Wiedenbeck. 1986. Beacons in computer program comprehension. Inter-
national Journal of Man-Machine Studies 25, 6 (1986), 697ś709.

[25] Aiko Yamashita and Leon Moonen. 2013. Towards a taxonomy of programming-
related difficulties during maintenance. In Proceedings of the International Con-
ference on Software Maintenance. IEEE, 424ś427.

	Abstract
	1 Introduction
	2 Related Work
	3 Methods
	3.1 Source Code Selection
	3.2 Data Acquisition
	3.3 Subjects
	3.4 Analysis
	3.5 Descriptive Statistics

	4 Mechanisms of Misunderstanding
	4.1 Taxonomy of Confusion
	4.2 Unexpected Cause of Error
	4.3 Correct for Wrong Reasons

	5 Implications and Perspectives
	5.1 Potential New Atoms
	5.2 Challenges of the Model
	5.3 Threats to Validity in Previous Studies
	5.4 Improving Quantitative Experiments through Qualitative Pilots

	6 Conclusion
	References

