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SUMMARY

Many problems formulated in terms of partial differential equations lead to stencil-type structures after
applying an appropriate structured discretization. On the one hand, exploiting these stencil structures in
simulations can lead to massive performance improvements, compared to forming a sparse matrix. On the
other hand, the generality of the simulation is restricted, depending on the exact definition of the stencils. In
this article, we discuss the variability of stencils in the domain of porous-media applications and present a
family of models that grows in complexity. To demonstrate the relation between equation and discretization
on the resulting stencil used to simulate the equation, we consider four models from the porous media
domain. This way, we describe the influence of design decisions made during the discretization on the shape
of stencils, to give applications engineers information on the variability they have to consider. This leads us
to two variability models that shall help application engineers to understand the complexity and choices of
stencil computations in the porous media domain. Copyright c© 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Many real-world physical and chemical processes can be modeled using partial differential
equations (PDEs). These processes arise in different areas, such as shallow-water equations [1], fluid
dynamics [2], or porous-media applications [3]. To simulate these processes, grid-based methods
and stencil-based solvers are commonly used.† In this article, we focus on the domain of porous-
media applications, which offers a rich variety of models and of stencils to simulate the discretized
equations describing the given applications. The overall goal of the article is to classify the models
and stencils that are necessary to develop code generators and optimizers for real-world problems
in this area.

Depending on the application scenario, the models have different characteristics considered in
the simulation. For example, simple equations, such as the heat equation, assume a homogeneity
in the porous media, while more complex equations, such as Darcy’s law, consider heterogeneous
computation domains. In general, equations of the porous-media domain may have many different
properties, leading to models of different complexity, much like, the stencils that can be used to
solve the equations appropriately. For applications, a stencil might work on scalar data and might

∗Correspondence to: Alexander Grebhahn, Department of Informatics and Mathematics, University of Passau, Innstr. 33,
94032 Passau, Germany.
†There are other areas where problems on irregular domains are considered, such as certain fluid dynamics or structure
mechanics applications. To model these irregular domains appropriately, unstructured grids are used, to which stencil
techniques are not applicable.
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have constant entries, while, for complex applications, it might be necessary to solve a matrix
computation in each evaluation step.

In this article, we explore the variability of equations of the porous-media domain and the
variability of the resulting stencils. Specifically, we highlight and characterize the most important
differences among equations (e.g, whether a solution has to be transported through the domain or
not) and among the stencils that are used to simulate them. Then, we use a variability-modeling
technique to model the differences (and commonalities). To show that all of revealed differences
among equations and stencils are relevant for the domain of porous-media equations, we investigate
on four different equations: heat equation, Darcy’s law, Advection-diffusion equation, and Richard’s
equation. For this set of equations, we present the influence of discretization techniques on the
resulting stencils used to solve the respective equations. These examples expand to fairly complex
real-world stencil problems, and we hope that they prove useful as a set of test models for compiler
or domain specific language engineers. Additionally, we want aim at supporting application
engineers in understanding the complexity and choices of stencil computations in the domain of
porous media applications.

This article is structured as follows: First, we discuss the applicability of stencil-based methods
and its relation to time-stepping schemes and linear solvers. We illustrate this with the well-known
heat equation in Section 2. In Section 3, we discuss a range of different porous-media models and
different methods for discretization. In Section 4, we introduce a variability-modeling technique
and apply it to model the different choices of models and stencils in our domain of porous-media
applications. In Section 5, we present a selection of stencils for different model variants of varying
complexity. In Section 6, we discuss related work, and, with Section 7, we conclude this work.

2. THE HEAT EQUATION: STENCIL OPERATORS, MATRICES, AND LINEAR SOLVERS

Before discussing the domain of porous-media applications, let us briefly discuss the relation
between models, discretization, matrices, linear solvers, and stencils. As most of the problems we
discuss later are parabolic or elliptic equations, we start with the example of the heat equation.

The heat equation
∂tu(x, t)−∆u(x, t) = f(x, t) on Ω (1)

is the simplest parabolic equation and is closely related to the Poisson equation

−∆u(x) = f(x) on Ω. (2)

Both models are linear partial differential equations (PDEs) and share the same elliptic operator.
There are close relations regarding the applicability of stencil methods. The heat equation (1) can
be solved using either an explicit scheme or an implicit scheme. Both are based on the approximation
of the derivative in time ∂t by finite differences as

∂tu(x) ≈ u(t+ τ)− u(t)

τ
,

in the explicit case, the operator ∆ is applied to u at the previous time t, yielding

u(t+ τ) = u(t) + τ(∆u(x, t) + f(x, t)),

in the implicit case, it is applied at the current time t+ τ , that is,

u(t+ τ) = u(t) + τ(∆u(x, t+ τ) + f(x, t+ τ)).

One way to solve the Poisson equation is to consider it as a stationary solution of the heat equation
and to use an explicit Euler time-stepping scheme. This approach is slow but illustrates the close
relation between linear solvers and explicit-time discretizations, as are very often considered when
investigating stencil methods.

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe



VARIABILITY OF STENCIL COMPUTATIONS FOR POROUS MEDIA 3

On a given grid, the PDEs are discretized and can then (at least, formally) be written in terms of a
system matrix A and vectors. This leads either to a linear system (Ax = b) in the implicit case or to
an explicit relation (e.g., in the axpy operation: y = Ax+ y) between the matrix and the unknown
solution vector x. In the case of a linear system, the matrix A needs to be inverted, which is done
using a linear solver, such as the conjugate gradient (CG) method [4], ideally in combination with
an efficient preconditioner, for example, a multigrid method [5]. To apply the CG method, it is only
necessary to compute matrix-vector products; thus, the challenges of an efficient implementation is
very similar for implicit and explicit time-discretization methods.

If the problem and the discretization exhibit enough structure, stencil methods can be applied
to speed up the computation significantly, as compared to the classic approach, which actually
assembles the matrix. The main reason for that is the low arithmetic intensity, since the matrix
dominates the memory transfer costs, at least, when heterogeneous coefficients are involved. In the
simplest case, we consider a 2D domain with a rectangular grid of size Nx ×Ny, using a finite-
element discretization and ignore boundary conditions. In this case, when the unknowns are ordered
lexicographically, the matrixA has a block structure withNy ×Ny blocks, where each of the blocks
has a size of Nx ×Nx:

A =
1

3



T O

O T O

O
. . . . . .
. . . O

O T



where T =



8 −1

−1 8 −1

−1
. . . . . .
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−1 8


, O =



−1 −1
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.

With each vertex in the grid, we can associate one particular matrix row. Each row, corresponding
to an interior vertex, has the same structure describing the coupling to the neighbouring vertices:[
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This local coupling can be expressed as the well known 9-point stencil 1

3

 −1 −1 −1
−1 8 −1
−1 −1 −1

.

As said before, if the discretization of a PDE yields enough structure, stencil methods can be used.
While the stencil for the heat equation using the finite-elements discretization looks simple, the
stencil will change dramatically for more complex equations, such as Darcy’s law. In Section 5, we
will demonstrate how the stencils look like for different equations to solve them adequately and
efficiently.

3. A FAMILY OF MODELS

Very often problems in porous media are described on structured grids – most often on uniform
Cartesian grids, but, at least, on grids that are topologically structured. Such problems are very
well-suited for stencil methods. What a particular stencil looks like, or whether stencil methods are
applicable at all, depends on the considered physical phenomenon, the type of boundary conditions,
and the particular numerical method we use. Let us give an overview of the variety of options
available. We are aware that this list is not complete, but these are the options we consider the main
options of our application domain.
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3.1. Scope of the Application Domain

In real-world applications, often the phenomena that are of interest do not occur isolated, but as
a combination of effects. Perhaps the most challenging problems nowadays are multi-phase-multi–
component problems, where multiple fluid phases are modeled and, in these phases, multiple solutes
are transported, which again can react with each other. In CO2–water–oil systems, for example, the
water and the oil are immiscible. The same applies for the two fluids and the super-critical CO2.
But, at the interface between water and CO2, a small portion of the CO2 can dilute in the water and
be transported. Models considering thermal effects, such as changes in solutability or density due to
temperature changes or coupling with thermo-mechanical effects, are of similar complexity. These
types of problems and their models are subject to current research and beyond the scope here.

To solve these non-linear instationary problems it requires to further select a suitable time-
stepping method and a non-linear solver. From the computational science point of view, the most
critical component is the inner loop of the grid, this is where stencil approaches apply. All other
components of the non-linear solver or the time-stepping method use coarse-grained interfaces and
are thus not performance critical. We mention them here to emphasize that the application domain
we consider cannot cover the whole scope of porous-media applications. Nevertheless, we have
chosen a family of problems that we deem representative with respect to stencil computations.

3.2. Physical Phenomena

The models in porous-media applications range from simple elliptic equations to parabolic and
nearly hyperbolic equations. Most models we describe in the following can be found in the classic
textbooks of Jacob Bear [3, 6].

Depending on the complexity of the application, different strategies have to be used to solve it.
For example, flow fields are described by Darcy’s law and extensions of it (see (6)). Transport
phenomena are in the simplest case diffusion or advection-diffusion systems of solutes. Often,
multiple solutes are considered that eventually react with each other (e.g., nutrients, O2 and
bacteria). More complicated models consider multiple phases, such as water–gas or water–oil, and
show a non-linear behavior, where the flow field changes over time due to the transport of the
different phases.

Single-phase flow. Single-phase flows describe flow phenomena of a single fluid that fills the
whole porous medium. The term ‘single-phase flow’ refers to the advective flow of this fluid. As we
consider a conservative system (i.e., divergence-free velocity fields), this field can be represented as
the gradient of the potential, which leads to Darcy’s law

−∇ · [K(x)∇u(x)] = f(x) on Ω, (3)

which is basically the Poisson equation with heterogeneous coefficients. The particular challenge is
that the coefficients can vary drastically and that the difference between the lowest and the highest
coefficient can be up to 105 or 106. From the potential u, the flux can be computed as

σ(x) = K(x)∇u(x). (4)

This relation can be used to reformulate the problem in mixed form as the system

−∇ · σ(x) = f(x) on Ω,

K(x)∇u(x) = σ(x) on Ω.

Multi-phase flow. Multi-phase flows belong to the most important non-linear models in porous-
media applications. They describe the flow of n immiscible fluids through the porous medium. Such
fluids are typically oil and water, or oil, water, and gas. Each of the considered phases is governed by
a mass-balance equation similar to the transport equation, where the transport velocity is described
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by Darcy’s law. The PDE for a phase α ∈ [0, n) then reads:

∂tSα(x)−∇ · [K(Sα(x))∇pα(x)] = 0 on Ω, (5)

where the saturation Sα ∈ [0, 1] describes the relative pore space occupied by phase α. Now, the
permeability is no longer a constant, but depends on the phase saturation; also the permeability
K(Sα) changes. Different physical models describe this relation (e.g., the Mualem law [7]). At the
same time, constitutive laws describes the relation between phase pressures and phase saturations
(e.g., the van-Genuchten model [8] or the Brooks–Corey model [9]). This allows us to eliminate one
unknown from Equation (5).

For an individual phase, we can choose to solve either for its pressure or saturation. However, the
pressure of a phase is not defined if the phase is absent; this has to be considered when solving the
equation.

Note further that these constitutive relations are highly non-linear functions. Thus, the stencil now
is no longer a classic stencil with fixed scalar values. Instead, to evaluate the stencil at a specific
location, it is necessary to evaluate functions that define, for example, the saturation at the current
location of the domain onto which the stencil is applied.

Solutes. Solutes in the fluid diffuse and get transported with the flow field. This is covered by the
advection-diffusion equation

∂tc(x)−∇ · [D(x)∇c(x)] +∇ · [v(x)c(x)] = f(x) on Ω. (6)

There is a set of different approaches that can be used to solve this equation [10]. We discuss here
one common approach using operator splitting, where the diffusion operator is solved implicitly
and the advection operator explicitly: The advective term is hyperbolic. To be robust also in cases
where the advection is the dominant process, it is necessary to apply stabilisation techniques, such
as upwinding. These techniques take the local velocity field into account to guarantee a stable,
physically-correct solution. For stencil codes, the down-side is that values and shape of the stencil
change, depending on the velocity field.

If multiple solutes are considered, these can further interact with each other via chemical
reactions. This leads to a system of advection-diffusion-reaction equations

∂tc(x)−∇ · [D(x)∇c(x)] +∇ · [v(x)c(x)] +Ri(c0, · · · ) = f(x) on Ω. (7)

Again, these models can be solved using operator-splitting techniques. Depending on the reaction
rates, these can be computed explicitly or by solving a non-linear system of equations.

Richard’s equation. Richard’s equation describes a simplified model of the two-phase flow for
water and gas. When considering the flow of water in unsaturated soils, we can assume that the gas
phase is always connected to the atmosphere, which implies that the gas-phase pressure is always
atmospheric pressure. Consequently, we eliminate the pressure unknown of the gas phase and obtain
a reduced problem.

As before, we can either eliminate pressure or saturation (or water content) using their constitutive
relations. We present the formulation in terms of the water pressure pw

Cw(pw(x))∂tpw(x)−∇ · [Kw(pw(x))(∇pw(x)− ρgez)] = 0 on Ω, (8)

with appropriate boundary conditions and a forcing term ρgez , due to gravity. The function
Cw(pw) = ∂pwSw(pw) now describes the rate of change of saturation with respect to the pressure.
We can also describe the permeability in terms of the pressure K(pw) = K(Sw(pw)). It is only a
slight modification of the classical Darcy’s law, but we consider it an important model problem, as it
describes an instationary, non-linear system. Historically, Richard’s equation builds upon previous
work by Buckingham [11] on a non-linear dependence of the flux; together with mass conservation
and the constitutive relative of pw and Sw (e.g. the Brooks-Corey, or the Van Genuchten-Mualem
model) one obtains (8). This formulation is also known as the non-conservative form. While there
are other formulations of the same model, which are the preferable from the modelling point of
view, we believe this to be an illustrative example regarding the applicability of stencil codes.
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3.3. Boundary Conditions

So far, we have discussed different physical models. However, these models are only fully described
when complemented with boundary information, initial conditions (in the case of instationary
problems), and possible additional constraints.

Dirichlet Boundary Conditions. This type of boundary condition is essential for our type of
models. In general, boundary conditions have to be specified to close the system. In some cases,
additional constraints have be to added to the equation. Using Dirichlet boundary conditions, the
solution is prescribed on the boundary. This implies that the unknowns associated with Dirichlet
boundary conditions are fixed to a given value and, thus, are not unknown any more. As a result,
different strategies can be used to handle unknowns. Either we keep them as entries in the solution
vector, but make sure not to update them, or we remove them completely from the system, which
implies that we have to alter the corresponding stencil of the interior unknowns. Here, we focus only
on the second strategy.

If the boundary value is 0, homogeneous Dirichlet boundary conditions are derived. In this case,
halo cells with a value of 0 can be applied at the boundary of the domain. If the boundary value is
not equal to 0, inhomogeneous Dirichlet boundary conditions are considered.

Neumann Boundary Conditions. Neumann boundary conditions are often referred to as natural
boundary conditions. They prescribe the flux (or numerical flux) over a boundary. In this sense, they
are complementary to Dirichlet boundary conditions. For second-order PDEs, as we are considering
here, it is not possible to prescribe flux and value at a given point on the boundary. For stationary
problems, we observe a particular issue with Neumann boundary conditions.

As for Dirichlet conditions, we also know homogeneous Neumann boundary conditions. They
have a flux of 0. Again, this leads to a case that can easily be handled using halo cells and mirroring
the inside values. Again, if the flux is not 0, inhomogeneous Neumann boundary conditions are used.

In the case of pure Neumann boundary conditions, the solution of the PDE is not unique (i.e., it is
only defined up to a constant). Thus, we need an additional constraint to close the system. The usual
approach is to prescribe that the mean value of the solution has to be zero. Note that, for instationary
problems, this is not an issue. Likewise, if one is using iterative Krylov solvers to solve the arising
linear system [12], this is also not an issue, as the Krylov solver ensures that the mean value of the
solution is not altered.

Periodic Boundary Conditions. Periodic boundary conditions are very common in the stencil
community and easy to implement. These boundary conditions basically state that there is no
physical boundary, but it is actually linked to the opposite side of the domain. In practice, they
are not used too often. As with pure Neumann boundary conditions, we have the issue that the
solution of stationary problems is only defined up to a constant.

Robin Boundary Conditions. Robin boundary conditions are a weighted combination of
Dirichlet and Neumann boundary conditions. They describe a flux that depends on the current
solution. Recalling the initial head equation, one can illustrate the Robin boundary conditions as
a thin isolator. Outside of the domain, we assume a constant temperature, but the insulator reduces
the heat exchange, such that we do not have the outside temperature at the boundary; instead, we
have a heat flux proportional to the difference between interior and exterior temperature.

Outflow Boundary Conditions. The natural behavior at the outflow boundary for a transport
equation is described by outflow boundary conditions. The transport equation is a first-order
hyperbolic equation and, thus, the solution is only determined by the point that can be reached
when following the streamlines backwards in time. In particular, this means that the boundary does
not have any influence on the solution, if it is located downstream (i.e., the velocity is pointing out
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of the domain). Furthermore, there is no choice about where to impose this boundary condition, it
has to be imposed exactly where the flow is going out of the domain.

3.4. Numerical Methods

To actually solve one of the models of Section 3.2 numerically, it is necessary to discretize them.
The usual approach is to discretize independently in space and time. Different choices of the spatial
discretization lead to different stencils, with sometimes very different properties.

Most of the existing methods can be found in standard text books in numerical simulations, such
as by Alfio Quarteroni et al. [13] or Peter Knabner and Lutz Angerman [14]. In the case of more
advanced methods, we will point to additional references.

Finite-Difference Methods. Finite-Difference methods are perhaps the oldest approach for
discretizing PDEs. Given a Cartesian grid with a uniform spacing h in each direction, we seek for
a solution at the vertices of the grid. First, the differential operators are approximated by some
finite-difference representation or difference quotient (i.e., the right-sided approximation in 1D
∂u(xi)
∂x ≈ ui+1−ui

h , or ∂
2u(xi)
∂x2 ≈ ui+1−2ui+ui−1

h2 ). This formulation of the application of a differential
operator in terms a vertex value and its neighbours leads naturally to a stencil. It is possible to extend
the method to higher-order approximations and to non-uniform grids, but this will, in general, lead
to more complicated stencils. These methods are usually not used in porous-media applications, as
they usually exhibit a large approximation error in the presence of large material jumps [15].

Finite-Volume Methods. Finite-Volume methods are closely related to finite-difference methods,
but do not start from the PDE, but from the corresponding integral formulation. This formulation is
obtained by applying the Gauss theorem for a given control volume (e.g., the cell of the grid). Instead
of the relation between the solution in a point and the derivatives, one obtains a relation between the
integral of the solution over the control volume and fluxes through the boundary. In the case of the
heat equation, these fluxes take the form ∇u · n, with n denoting the outwards pointing unit vector.
To approximate ∇u, a finite-difference approximation is employed. Such flux-based formulations
are particularly useful for advection-dominated problems, where the diffusion has only minimal
impact and thus the PDE is nearly hyperbolic.

Finite-Element Methods. Finite-element methods are widely used in scientific and engineering
applications. A detailed introduction into finite-element methods, especially continuous finite-
element methods and mixed finite-element methods is available elsewhere [16]. Instead of the partial
differential equation itself, they start with its weak form, which allows for a rigorous analysis of the
equations and their solution. For instance, take Darcy’s law (3): Multiplying with a test function v
and integrating over the whole domain Ω yields

−
∫
Ω

∇ · [K(x)∇u(x)]v(x)dx =

∫
f(x)v(x)dx .

Applying the divergence theorem gives∫
Ω

[K(x)∇u(x)] · ∇v(x)dx

︸ ︷︷ ︸
=:a(u,v)

=

∫
f(x)v(x)dx︸ ︷︷ ︸

=:`(v)

, (9)

which defines the bilinear form a and a linear functional `.

Continuous Galerkin. For the numerical solution, Equation (9) is discretized by dividing Ω
into finite subdomains, the finite-elements. Often the domain is approximated by triangles or by
rectangles. In continuous Galerkin methods, the function is assumed to be continuous, imposing
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8 GREBHAHN, ENGWER, BOLTEN, APEL

conditions on the values at the element boundaries. The bilinear form a and the linear form ` are
then approximately evaluated on the elements by quadrature. Different types of elements are used
to approximate various derivatives or to use different orders of approximation accuracy.

Mixed Finite-Element Methods. Mixed-finite elements originate from the discretization of
sattlepoint problems, as they arise when PDEs with constraints are to be solved. They naturally
allow for the use of different types of elements for the different variable types that are part of the
system of PDEs to be solved. This corresponds to the different function spaces. In porous-media
applications, mixed-finite elements can be used to solve systems of PDEs. For example, Darcy’s
law (3) can be reformulated as

−∇σ(x) = f(x) on Ω,

K(x)∇u(x) = σ(x) on Ω.

The artificial variable σ, which was introduced to Equation (4) as a system in a mixed-finite element
setting, can be discretized using other finite-elements than those used for the discretization of u.

Discontinuous Galerkin Methods. A special kind of finite-element methods are discontinuous
Galerkin methods. They are as flexible as the finite-element method, but, similar to the finite-volume
methods, they strongly relate to the integral formulation of the PDE. Again, we seek for the solution
that approximates the exact solution in the best way, in the sense, that the error is orthogonal to
our discrete function space; we use a Galerkin formulation. The big difference to discontinuous
Galerkin methods is that we do not use continuous functions to approximate the solution, but
we take functions that are continuous on each element, but might be discontinuous between grid
elements. We derive a weak formulation by testing with arbitrary functions of the same type,
integration by parts on each element leads to a flux based formulation. As this formulation is in
many cases non-symmetric and not stable, additional terms are added, which vanish in the exact
solution, but lead to a stable method. A very common discontinuous Galerkin discretization is the
Symmetric Interior Penalty Galerkin (SIPG) method, which goes back to a paper by Wheeler [17].
A general overview over discontinuous Galerkin methods can be found elsewhere [18].

3.5. Summary

Overall, many different ways exist to model the problem in porous-media applications, depending on
the physical phenomena that shall be captured. Furthermore, there are many approaches to discretize
the underlying model to make it accessible numerically. This results in a large variety of different
stencil codes for these applications with different properties that have to be captured by a variability
model.

4. VARIABILITY MODELING OF POROUS-MEDIA APPLICATIONS AND
THEIR STENCILS

After presenting different models of the domain of porous-media applications together with their
properties, we now use a variability modeling technique to provide application engineers an
overview of decisions they have to make and properties they have to consider when selecting a
suitable stencil for a given mathematical problem.

For the purpose of variability modeling, we use feature models and, as their graphical
representation, feature diagrams [19, 20]. Each feature of a feature model describes a specific
domain abstraction‡, which can be a commonality or a difference between models of the domain,

‡Here, domain is referred to the application domain not the computation domain.
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VARIABILITY OF STENCIL COMPUTATIONS FOR POROUS MEDIA 9

for example, different boundary conditions are needed to model properties of the application. To
separate cause and effect when selecting a stencil for a given problem, we model the corresponding
variability in two separate models: one model describing the variability based on the differences
in the applications and one model describing the variability in the implementation of the stencils
to solve the application. In Figure 1, we present the feature diagram for the application properties
and, in Figure 2, for the variability of the stencils. However, we consider only common cases in the
feature diagrams to represent for a common set of application scenarios, and we ignore special cases
because they would make the variability model very complex without any benefits for application
engineers.

To define relationships between features, feature diagrams have a tree-like structure inducing
a parent-child relationship between features. In general, a feature is either mandatory or optional.
While mandatory features have to be selected, if their parent feature is selected, optional features can
either be selected or deselected, if their parent feature is selected. An example of an optional feature
is feature Solute Transport in Figure 1. Depending on the mathematical problem, it is necessary to
consider the transport of a solute or not. In contrast, it is always necessary to apply a discretization
on the PDE. Thus, discretization is a mandatory feature.

Features can be grouped, for instance, in alternatives to define that exactly one feature of the
alternative group has to be selected. The other kind of groups are or groups, in which, at least, one
feature of the group has to be selected, but multiple are possible. Examples for the different kinds
of groups can be seen in Figure 1: Depending on the problem to solve, it might be necessary to
select different boundary conditions at different parts of the boundary of the domain. As a result,
multiple boundary conditions can be selected at the same time, but, at least, one has to be selected.
In contrast, it is necessary to use exactly one discretization method. Thus, the boundary condition
is in an or group, while the discretization method is in an alternative group.

In addition to the feature diagram, one can define arbitrary propositional formulas over features
to constraint variability further. The two most prominent constraints are imply and exclude. If one
feature implies another, the second one has to be selected if the first one is selected. If one feature
excludes another, they cannot be selected at the same time. For example, if the Robin boundary
condition is used in an application, Special Stencils have to be used at the boundaries of the domain
(Figure 2). As in our scenario properties of the application have an influence on the selection of
a suitable stencil, we have to define constraints between the two models. For these inter-model
constraints, we use a prefix notation to disambiguate between two features with the same name. For
example, we write Dirichlet.Homogeneous to refer to a homogeneous Dirichlet boundary condition
and Neumann.Homogeneous to refer to a homogeneous Neumann boundary condition.

4.1. Variability of the Mathematical Model

To numerically solve a PDE, one suitable discretization technique has to be selected. Here, the
characteristics of the equation have to be considered, for example, whether it is a hyperbolic, elliptic,
or parabolic. In Figure 1, we give the feature model and in Table I, we provide more explanation.

The discretization technique has to be applied to the whole computation domain of the
application, leading to positive system matrices. To fulfill the properties at the boundary of the
domain, it is necessary to select specific boundary conditions. Here, it might be necessary to
select different conditions on disjoint parts of the boundary, which is known as mixed-boundary
conditions. Overall, each point of the entire boundary has to be covered by exactly one boundary
condition.

If multiple phases are considered, it is important to identify whether the phases interact with each
other or not. In real-world applications, it might happen that some of the phases interact with each
other, while the flow of other phases can be computed independently. However, to keep the model
simple, we do not include this property (see Section 3.2).

Furthermore, the application might define a solute transport, which has to be considered in the
discretization. There, it might be possible that not only one solute is transported through the domain
but multiple solutes have to be considered.
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10 GREBHAHN, ENGWER, BOLTEN, APEL

Model

Discretization

Dimensionality

Boundary Conditions

Solute Transport

Phase

Coefficients

Finite Elements

Finite Volume

Finite Differences

Continuous Galerkin

Mixed FEM

Discontinuous Galerkin

2D

3D Dirichlet

Periodic

Neumann

Robin

Outflow

Homogeneous

Inhomogeneous

Homogeneous

Inhomogeneous

Single

Multi

Homogeneous

Heterogeneous

Single Component

Multi Component

mandatory feature
optional feature
alternative group
or group

Figure 1. Feature diagram of the mathematical part of the porous media domain.

It is also necessary to consider whether the equation has homogeneous or heterogeneous
coefficients. In the first case, the stencil will stay constant throughout the domain; in the second case,
the implementation has to support heterogeneous coefficients. This heterogeneity can be supported
in two different ways. First, the coefficients can be stored as a separate field, which leads to a large
but constant stencil. Second, when considering the coefficients as an arbitrary scalar function, the
stencil cannot be written with constant values anymore, but each entry is itself a function, processing
the values of neighbouring cells and the coefficients’ functions.

To conclude, all of these features have a considerable influence on the structure of the stencils
that can be used to solve the equation.

4.2. Variability of Stencils

In stencil applications, such as multigrid methods, it is desired to have the code run as fast as
possible. To achieve this goal, it is possible to use optimization strategies to parallelize a stencil
computation using automatic code transformation [21, 22], or to use techniques to improve the
cache reuse of a stencil computation, such as temporal or spacial blocking [23, 24, 25]. However,
all of these techniques have to preserve dependencies between elements of the computation domain
not to affect the result of the computation. Thus, optimization techniques typically do not modify
the shape of a stencil or the amount of data the stencil is working on, which is defined by the

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe



VARIABILITY OF STENCIL COMPUTATIONS FOR POROUS MEDIA 11

Stencil

Value Type

Entry Type

Dimensionality

Boundary Handling

Shape

Data

Constant

Function

Scalar

Matrix

2D

3D

Halo

Special Stencil
5-Point

9-Point

7-Point

27-Point

Arbitrary

Scalar

Vector

mandatory feature

alternative group

¬ (2D ∧ 7-Point)
¬ (2D ∧ 27-Point)
¬ (3D ∧ 5-Point)
¬ (3D ∧ 9-Point)

Model.Dimension.2D ⇒ Stencil.Dimension.2D
Model.Dimension.3D ⇒ Stencil.Dimension.3D

Heterogeneous ⇒ Function
Neumann.Inhomogeneous ⇒ Special Stencil

Robin ⇒ Special Stencil
Outflow ⇒ Special Stencil

Figure 2. Feature diagram of stencils of the domain of porous-media applications.

application on the mathematical level. Here, we do not focus on optimization strategies, but on the
general structure of a stencil to solve a given application scenario.

In Figure 2, we give the feature model of the properties of a stencil and, in Table II, we provide
additional explanations. Depending on the characteristics of the application, the data on which the
stencil is working on might look completely differently. For example, for equations such as the
heat equation, the stencil has constant entries, while for more complex equation, it is necessary to
evaluate complex functions, to compute one entry of the stencil.

Based on the dimensionality of the problem, the dimensionality of the stencil is predefined. That
is, if the equation is defined for a three-dimensional space, the shape of the stencils have to be
defined for this dimensionality, as well. For the stencil shapes presented in Figure 2, this means that,
for example, a 7-point stencil as well as a 27-point stencil cannot be applied to a problem defined
for a two-dimensional domain. Beside the dimensionality, the shape of the stencil also depends on
the discretization technique used. For example, as we will explain in Section 5 in more detail, if
a finite-differences discretization is used on the heat equation in a two-dimensional domain, a 5-
point stencils has to be used, while a 9-point stencil is needed, if the finite-element discretization is
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12 GREBHAHN, ENGWER, BOLTEN, APEL

used instead. Additional, specific stencils are needed, if the boundary conditions are not handled by
prescribing the appropriate values in the solution vector.

Also, depending on the application, the values of a stencil will look completely differently. As
already stated in Section 4.1, if heterogeneous coefficients are considered and the coefficients are
not stored in a separate field, the stencil does not have constant entries. Instead, it is necessary to
evaluate a function at every step for each of the entries. We refer to this characteristic as Value Type
in Figure 2. If multiple solutes are considered in the application that do not interact with each other,
the stencil might consider both of them. Thus, the stencil has to work on vector data instead of scalar
data.

Finally, depending on the number of phases (single phase vs. multi phase) and on whether the
phases interact with each other, the stencil has to work on Scalar or on Matrix entries. The size of
the matrix is defined by the number of solutes that have to be considered at the same time. Scalar
entries can be used if the stencil only works for one phase, while matrix entries are needed if multiple
interacting phases are considered in one stencil.

5. STENCILS FOR POROUS-MEDIA APPLICATIONS

In this section, we present a set of PDEs of varying complexity for different porous-media
applications. For each of the applications, we discuss which of the features of Section 4 is relevant
to solve it. To this end, we discuss how the characteristics of the applications influences structure
of the stencils. Furthermore, we state constraints between features at the mathematical level (see
Section 4.1) and features of the stencil (see Section 4.2). Based on these constraints, we give a
presence condition for each of the feature models and for each of the equations: These presence
conditions describe–via logical formulas–which of features has to be selected to solve a equation
adequately.

For illustration, let us have a brief look at the heat equation: In this equation, only one phase is
considered and no solute transport has to be simulated. Furthermore, the computation domain only
has homogeneous coefficients. As result, the two features Homogeneous and Single are selected for
the equation, and the feature Solute Transport has to be deselected, which is marked with a logical
not (¬) in the presence condition. So, for these three features, the presence condition is: Single ∧
Homogeneous ∧ ¬ Solute Transport

In the following, we assume that we want to solve problems on a two-dimensional structured
grid with constant grid spacing h in each direction. The values of the concentration c are sought
for on the grid points of this grid. To compute the solution, the different operators originating from
discretizing the models of Section 3.2 by the techniques of Section 3.4 have to be applied to the field
where the approximate values of c are stored. This has to be done to obtain the value in the next
time step or to obtain a better approximation when a system has to be solved in an implicit scheme.

Heat equation. The simplest example for an equation with constant coefficients is the heat
equation, see Equation (1). Its implementation involves the discretization of the Laplace operator, to
evaluate it during the explicit time-stepping scheme or an iterative solver in the case that an implicit
scheme is chosen.

i) The simplest discretization is the finite-difference discretization, leading to the 5-point stencil

1

h2

 −1
−1 4 −1

−1

 . (10)

If the boundary conditions are not handled by prescribing the appropriate values in the solution
vector, special stencils have to be applied at the boundaries. For example, when Dirichlet boundary
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VARIABILITY OF STENCIL COMPUTATIONS FOR POROUS MEDIA 13

conditions are imposed, the stencil in the top left corner of the domain is given by

1

h2

[
4 −1
−1

]
; (11)

similarly, for Neumann boundary conditions, we obtain the following stencil at the right boundary
of the domain:

1

h2

 −1
−1 3

−1

 . (12)

Note that the location of the center element is now only unique when the location inside of the
domain is known and the convention is used that the stencil is shifted to the boundary. So, for the
finite-differences discretization on the heat equation, the following presence conditions for the two
feature models can be given:

Model: Finite-Differences ∧ 2D ∧ (Dirichlet ∨ Neumann) ∧ Single ∧ Homogeneous ∧ ¬ Solute
Transport

Stencil: Constant ∧ Entry-Type.Scalar ∧ 2D ∧ (Special-Stencil ∨ (Dirichlet ⇒ (Halo ∨ Special-
Stencil))) ∧ 5-Point ∧ Data.Scalar

ii) The more advanced finite-element discretization leads to the following 9-point stencil:

1

3

−1 −1 −1
−1 8 −1
−1 −1 −1

 . (13)

As in the finite-difference case, the stencil has to be altered to accommodate boundary conditions.
This leads to similar modifications as we have presented for the finite-difference discretization.

In all stencils, it is possible to work on scalar data because the heat equation considers only one
phase, and it is not necessary to consider functions as entries of the stencil. Additionally, no solute
transport has to be considered. As a result, if we use a finite-element discretization, the following
presence conditions describe the variability that have to be considered for the heat equation:

Model: Finite-Elements ∧ 2D ∧ (Dirichlet ∨ Neumann) ∧ Single ∧ Homogeneous ∧ ¬ Solute
Transport

Stencil: Constant ∧ Entry-Type.Scalar ∧ 2D ∧ (Special-Stencil ∨ (Dirichlet ⇒ (Halo ∨ Special-
Stencil))) ∧ 9-Point ∧ Data.Scalar

Darcy’s law. In contrast to the heat equation, heterogeneous coefficients have to be considered in
Darcy’s law, which are described using the value of K at positions shifted by half of the volume’s
side length relative to the location of the stencil.

i) One natural way to discretize the Laplace operator in Equation (3) is using finite volumes,
leading to the stencil  sn

sw sc se
ss

 ,
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14 GREBHAHN, ENGWER, BOLTEN, APEL

where

sn = −K(x, y + h/2),

sw = −K(x− h/2, y),

se = −K(x+ h/2, y),

ss = −K(x, y − h/2),

sc = −(sn + sw + se + ss).

Using the position of K, it is no longer possible to use scalar values in the stencil. Instead, the
parameters are given as function evaluations of K at the appropriate positions. The center of the
current cell is denoted by (x, y). The factor 1/h2, which is missing in comparison to Equation (10),
is moved to the right hand side, which is given as h2f . This is a result of the integration of the
right-hand side over a finite volume, which, in our case, is a square with side length h.

Model: Finite-Volumes ∧ 2D ∧ (Dirichlet ∨ Neumann) ∧ Single ∧ Heterogeneous ∧ ¬ Solute
Transport

Stencil: Function ∧ Entry-Type.Scalar ∧ 2D ∧ (Special-Stencil ∨ (Dirichlet ⇒ (Halo ∨ Special-
Stencil))) ∧ 5-Point ∧ Data.Scalar

ii) In other applications, K is not given as a function, but rather as a field of its values. In this case,
we obtain  −Ki,j+1

−Ki−1,j Ki,j+1 +Ki−1,j +Ki+1,j +Ki,j−1 −Ki+1,j

−Ki,j−1

 .
Here, we assume that the field of the values of K is staggered, that is, the nodes of the field
containing K are located at the cell centers of the field used to store u.

Again, on the boundary, modifications are necessary, depending on the type of boundary condition
and on whether the values are prescribed in the solution vector. In the latter case, this results in
missing stencil entries like the stencils for the corner (11) and the right boundary (12) in the heat
equation case, as considered before. This leads us to the following presence conditions:

Model: Finite-Volumes ∧ 2D ∧ (Dirichlet ∨ Neumann) ∧ Single ∧ Heterogeneous ∧ ¬ Solute
Transport

Stencil: Constant ∧ Entry-Type.Scalar ∧ 2D ∧ (Special-Stencil ∨ (Dirichlet ⇒ (Halo ∨ Special-
Stencil))) ∧ 5-Point ∧ Data.Scalar

iii) Another option of discretizing the Laplace operator with non-constant coefficients is the use
of finite-elements as before, yielding

1

h2

snw sn sne
sw sc se
ssw ss sse

 ,
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where

snw = −1

3
K(x− h/2, y + h/2)

sn = −1

6
(K(x− h/2, y + h/2) +K(x+ h/2, y + h/2))

sne = −1

3
K(x+ h/2, y + h/2)

sw = −1

6
(K(x− h/2, y + h/2) +K(x− h/2, y − h/2))

se = −1

6
(K(x+ h/2, y + h/2) +K(x+ h/2, y − h/2))

ssw = −1

3
K(x− h/2, y − h/2)

ss = −1

6
(K(x− h/2, y − h/2) +K(x+ h/2, y − h/2))

sse = −1

3
K(x+ h/2, y − h/2)

sc = −(snw + sn + sne + sw + se + ssw + ss + sse).

Due to heterogeneity in the coefficients, this stencil again depends on the value of function K at
positions close to the current vertex position (x, y). In general, an implementation with a field K is
possible like in the finite-volume case. Note that, in the case of constant coefficients, we obtain the
stencil given in Equation (13). This results in the following presence conditions:

Model: Finite-Elements ∧ 2D ∧ (Dirichlet ∨ Neumann) ∧ Single ∧ Heterogeneous ∧ ¬ Solute
Transport

Stencil: Function ∧ Entry-Type.Scalar ∧ 2D ∧ (Special-Stencil ∨ (Dirichlet ⇒ (Halo ∨ Special-
Stencil))) ∧ 9-Point ∧ Data.Scalar

iv) In many applications, K is varying strongly and with high contrast. This poses numerical
difficulties, for example, for vertex-centered finite volumes or finite elements. One option to
overcome this problem is the use of discontinuous Galerkin finite elements [26, 27]. In contrast
to the stencils considered so far, discontinuous Galerkin methods introduce several degrees of
freedom for the same entity, in this case, a grid cell. From the technical structure, the situation
is comparable to a reaction diffusion system with many components. The solution is described by
cell-local polynomials, and the unknowns are the coefficients of the polynomial basis. Continuity
of the solution is not enforced strongly, but only using penalty terms. Considering a structured grid,
it is still possible to handle such discretizations using stencils. Instead of scalar stencils, one now
obtains block stencils with small matrices in each entry.

The general structure is the same as for a finite-volume discretization: a 5-point stencil. The
individual entries are small dense matrices and their size depends on the polynomial order of the
approximation  −Sn

−Sw V + S −Se
−Ss

 . (14)

The stencil contains a set of terms S∗ evaluated on the set of faces, the skeleton, and one
term evaluated in the cell, considering the volume contributions V . The skeleton terms contain
contributions arising from the model and the penalty terms J , which is necessary to obtain a stable
method.

We consider a first-order weighted symmetric interior penalty Galerkin discretization as
introduced by Ern et al. [28]. Using bilinear shape functions, we have a choice regarding the actual
basis and the monomials {1, x, y, xy}, which yields 4× 4 matrices. For this choice, the volume
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contribution reads

V =
6

Kc

 0 0 0 0
0 6 0 3
0 0 6 3
0 3 3 4

 .

The skeleton contribution to the diagonal entry consists of the consistency and symmetry terms
C, the penalty term J , and the term

S = C + J,

with

C = Kc

6



0 6Kc

Kc+Kw
− 6Kc

Kc+Ke

6Kc

Kc+Ks
− 6Kc

Kc+Kn

3Kc

Kc+Ks
− 3Kc

Kc+Kn

+ 3Kc

Kc+Kw
− 3Kc

Kc+Ke

6Kc

Kc+Kw
− 6Kc

Kc+Ke
− 12Kc

Kc+Ke

3Kc

Kc+Ks
− 3Kc

Kc+Kn

+ 3Kc

Kc+Kw
− 3Kc

Kc+Ke

2Kc

Kc+Ks
− 2Kc

Kc+Kn
− 6Kc

Kc+Ke

6Kc

Kc+Ks
− 6Kc

Kc+Kn

3Kc

Kc+Ks
− 3Kc

Kc+Kn

+ 3Kc

Kc+Kw
− 3Kc

Kc+Ke

− 12Kc

Kc+Kn
− 6Kc

Kc+Kn
+ 2Kc

Kc+Kw
− 2Kc

Kc+Ke

3Kc

Kc+Ks
− 3Kc

Kc+Kn

+ 3Kc

Kc+Kw
− 3Kc

Kc+Ke

2Kc

Kc+Ks
− 2Kc

Kc+Kn
− 6Kc

Kc+Ke
− 6Kc

Kc+Kn
+ 2Kc

Kc+Kw
− 2Kc

Kc+Ke
− 4Kc

Kc+Kn
− 4Kc

Kc+Ke


,

and

J = ηKc

6



12Ks

Kc+Ks
+ 12Kn

Kc+Kn

+ 12Kw

Kc+Kw
+ 12Ke

Kc+Ke

6Ks

Kc+Ks
+ 6Kn

Kc+Kn
+ 12Ke

Kc+Ke

12Kn

Kc+Kn
+ 6Kw

Kc+Kw
+ 6Ke

Kc+Ke

6Kn

Kc+Kn
+ 6Ke

Kc+Ke

6Ks

Kc+Ks
+ 6Kn

Kc+Kn
+ 12Ke

Kc+Ke

4Ks

Kc+Ks
+ 4Kn

Kc+Kn
+ 12Ke

Kc+Ke

6Kn

Kc+Kn
+ 6Ke

Kc+Ke

4Kn

Kc+Kn
+ 6Ke

Kc+Ke

12Kn

Kc+Kn
+ 6Kw

Kc+Kw
+ 6Ke

Kc+Ke

6Kn

Kc+Kn
+ 6Ke

Kc+Ke

12Kn

Kc+Kn
+ 4Kw

Kc+Kw
+ 4Ke

Kc+Ke

6Kn

Kc+Kn
+ 4Ke

Kc+Ke

6Kn

Kc+Kn
+ 6Ke

Kc+Ke

4Kn

Kc+Kn
+ 6Ke

Kc+Ke

6Kn

Kc+Kn
+ 4Ke

Kc+Ke

4Kn

Kc+Kn
+ 4Ke

Kc+Ke


.

The off-diagonals again comprise consistency and penalty terms, but for simplicity, we just list the
sum for each neighbouring cell:

Ss =
Kc

6


12ηKs

Kc+Ks

6ηKs

Kc+Ks

12ηKs−6Kc

Kc+Ks

6ηKs−3Kc

Kc+Ks

6ηKs

Kc+Ks

4ηKs

Kc+Ks

6ηKs−3Kc

Kc+Ks

4ηKs−2Kc

Kc+Ks

6Kc

Kc+Ks

3Kc

Kc+Ks

6Kc

Kc+Ks

3Kc

Kc+Ks

3Kc

Kc+Ks

2Kc

Kc+Ks

3Kc

Kc+Ks

2Kc

Kc+Ks

, Sn =
Kc

6


12ηKn

Kc+Kn

6ηKn

Kc+Kn

6Kc

Kc+Kn

3Kc

Kc+Kn

6ηKn

Kc+Kn

4ηKn

Kc+Kn

3Kc

Kc+Kn

2Kc

Kc+Kn

12ηKn−6Kc

Kc+Kn

6ηKn−3Kc

Kc+Kn

6Kc

Kc+Kn

3Kc

Kc+Kn

6ηKn−3Kc

Kc+Kn

4ηKn−2Kc

Kc+Kn

3Kc

Kc+Kn

2Kc

Kc+Kn

,

Sw =
Kc

6


12ηKw

Kc+Kw

12ηKw−6Kc

Kc+Kw

6ηKw

Kc+Kw

6ηKw−3Kc

Kc+Kw

6Kc

Kc+Kw

6Kc

Kc+Kw

3Kc

Kc+Kw

3Kc

Kc+Kw

6ηKw

Kc+Kw

6ηKw−3Kc

Kc+Kw

4ηKw

Kc+Kw

4ηKw−2Kc

Kc+Kw

3Kc

Kc+Kw

3Kc

Kc+Kw

2Kc

Kc+Kw

2Kc

Kc+Kw

, Se =
Kc

6


12ηKe

Kc+Ke

6Kc

Kc+Ke

6ηKe

Kc+Ke

3Kc

Kc+Ke

12ηKe−6Kc

Kc+Ke

6Kc

Kc+Ke

6ηKe−3Kc

Kc+Ke

3Kc

Kc+Ke

6ηKe

Kc+Ke

3Kc

Kc+Ke

4ηKe

Kc+Ke

2Kc

Kc+Ke

6ηKe−3Kc

Kc+Ke

3Kc

Kc+Ke

4ηKe−2Kc

Kc+Ke

2Kc

Kc+Ke

.

For this equation, we give the following presence conditions:

Model: Discontinuous Galerkin ∧ 2D ∧ (Dirichlet ∨ Neumann) ∧ Single ∧Heterogeneous ∧ ¬ Solute
Transport

Stencil: Function ∧ Entry-Type.Matrix ∧ 2D ∧ Special-Stencil ∧ 5-Point ∧ Data.Scalar

Advection-diffusion with operator splitting. So far, we did not take into account the advective
term ∇ · [v(x)c(x)] of Equation (6). To do so, Equation (6) is split into a purely diffusive and a
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purely advective part, yielding

∂tc(x) = ∇ · [D(x)∇c(x)] + f(x)︸ ︷︷ ︸
=:Ldiffusion

−∇ · [v(x)c(x)]︸ ︷︷ ︸
=:Ladvection

= Ldiffusion + Ladvection.

This technique is called operator splitting. It has been introduced to be able to use different time
integration schemes that are suitable for the respective parts.

i) To discretize Ldiffusion, the techniques described for Darcy’s law can be used. When finite-
differences are used to discretize Ldiffusion, the operator Ladvection can be discretized using an upwind
scheme, where it is approximated by

Ladvection = −∇ · [v(x, y)c(x, y)]

≈ 1

h

(
vx(x, y)c(x, y)− (vx(x, y)+c(x− h, y) + vx(x, y)−c(x+ h, y))

)
+

1

h

(
vy(x, y)c(x, y)− (vy(x, y)+c(x, y − h) + vy(x, y)−c(x, y + h))

)
,

where v∗(x, y)+ = max(v∗(x, y), 0), v∗(x, y)− = min(v∗(x, y), 0).
This yields the stencil

1

h

 −vy(x, y)−

−vx(x, y)+ vx(x, y) + vy(x, y) −vx(x, y)−

−vy(x, y)+

 .
The time evolution is now computed by advancing the current concentration using either diffusion
or using the opposite advection only, obtaining an intermediate result, which is afterwards advanced
using advection or diffusion only. In both cases, the same time step is used, so the intermediate
result is not the result at a half time step.

For this equation, we give the following presence conditions:

Model: Finite-Differences ∧ 2D ∧ (Dirichlet ∨ Neumann) ∧ Single Component ∧ Single ∧
Heterogeneous

Stencil: Function ∧ Scalar ∧ 2D ∧ Special-Stencil ∧ 5-Point ∧ Data.Scalar

Richard’s equation. For Richard’s Equation (8), we assume the simplified setup of homogeneous
material parameters, where K depends on the value of pw at the current location, not only on the
location itself.

i) This results in a non-linearity that, when being discretized using finite volumes, yields the stencil sn
sw sc se

ss

 ,
where

si = −K(p↑wi) ∀i ∈ {n,w, e, s},
sc = −(sn + sw + se + ss).

with the upwind pressure

p↑wi :=

{
pwi if pwi > pwc
pwc else.
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A possible choice for the non-linear relation K is the van Genuchten-Mualem model. If the material
would be heterogeneous, K would be the harmonic mean K(p↑w) = (Kc(p

↑
w)−1 +Kn(p↑w)−1)−1.

This discretization results in a non-linear system of equations, which has to be solved using a
suitable non-linear solver. Typical choices are inexact Newton-Krylov methods, which internally
solve a linear system using a Krylov method (e.g. the CG method). In this linear solver, the operator
can be evaluated using the above stencil representation. Details regarding the parameterization of
the non-linear solver go beyond the scope of this paper.

Summary Based on the equations presented in this section, it can be seen that stencils to solve a
given application from the porous-media domain can differ considerably from the commonly known
5-point stencil. For simple equations, such as the heat equation, a simple 5-point stencil can be used
if a adequate discretization is selected. In contrast, the stencils for more complex equation, such
as Darcy’s law, are much more complex. These stencils work, for example, on matrix data, instead
of evaluating a scalar value for each entry. Thus, when developing a domain-specific language or
a stencil compiler, one has to keep in mind that stencils can look very differently and can become
very complex if the problem considered in the application is complex, too. These characteristics of
the stencil also have to be considered, when optimizing the performance of an application.

6. RELATED WORK

To the best of our knowledge, there is only little work on the relationship between the characteristics
of a partial differential equation and the stencil that can be used to solve the equation after a
discretization is performed. However, there is substantial work on optimizing the performance
of a specific stencil or multigrid code. For example, machine learning has been used to identify
either the optimal configuration or correlations between properties of the code and the performance.
For example, Ganapathi et al. uses a kernel canonical correlation analysis to identify the
optimal configuration [29]. Another machine-learning approach based on multivariate regression
in combination with forward feature selection has been proposed by Siegmund et al. [30].

There is also considerable work on optimization strategies to efficiently parallelize a given stencil
computation and to improve the ratio between executed floating-point operations and the bytes
fetched from memory. Common strategies are temporal or spatial blocking [31, 32]. Additionally,
specific frameworks and methods, such as polyhedral loop optimization, can be used to fully
parallelize a given stencil computation automatically [21, 22].

Yu and Smith propose an approach to improve reusability of finite-element analyses using product
line technology [33]. In contrast to our work, they focus on the variability of the finite-element
analysis to solve beam analysis problems. As a consequence, while we consider general variability
that have to be considered during the discretization process of a mathematical model leading to a
stencil code for the porous-media domain, they consider variability such as how to calculate the
stiffness matrix of the equation.

In a parallel line of research, Smith et al. propose a commonality analysis template for
scientific computing of physical models [34]. Using their results, it is possible to see, for example,
dependencies between assumptions and the theoretical models. However, in contrast to our work,
they focus on the commonalities and differences of mathematical models only, while we include also
the requirements on a stencil to solve a given mathematical problem. Furthermore, we emphasize
the connection between the stencils and the mathematical models.

7. CONCLUSION

In this article, we discuss the variability of applications in the domain of porous-media flows,
and we present a family of models that grows in complexity for this domain. Depending on the
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characteristics of the mathematical model at hand, different numerical methods have to be used to
discretize the underlying equation, and specific stencils are needed to compute the solution. We
present two variability models to give an overview of the commonalities and differences of the
mathematical models and the resulting stencils. These models can be extended to cover a broader
range of the application domain at hand and also to other application domains that result in different
partial differential equations. The stencils used to compute approximate solutions in this application
domain deviates quite a bit from the standard 5-point stencil used in many benchmarks for stencil
codes. To demonstrate the influence of a mathematical model on the resulting stencil, we discuss
a set of non-trivial mathematical models together with the stencils used to solve the equations
efficiently. The variability models and the relations between the model, the discretization, and
the stencils, presented in this article shall help to test advanced compiler technologies and code
generators with a wider variety of stencils that are suitable for more demanding and more practical
applications than solving the pure heat equation. Additionally, we want to support application
engineers in understanding the complexity of stencils and the connection between application,
discretization and the stencil.
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A. DESCRIPTION OF THE FEATURES

Table I. Description of the features of the mathematical part of the porous media domain (cf. Figure 1).

Feature Description

Continious Galerkin This finite-element discretization method uses functions that are
assumed to be continuous at the element boundaries.

Mixed FEM This finite-element discretization method introduces independent
variables during the discretization.

Discontinuous Galerkin This finite-element discretization method uses functions being only
piecewise continuous.

Finite Volume The finite-volume discretization starts form an integral formulation
of the application.

Finite Differences The finite-differences discretization seeks a solution at the vertices
of the grid using, for example, a differences quotient.

2D The application is defined over a two dimensional domain.
3D The application is defined over a three dimensional domain.
Dirichlet.Homogeneous This boundary condition states that the solution of the equation is

prescribed to 0 at the boundary of the domain.
Dirichlet.Inhomogeneous This boundary condition states that the solution of the equation is

prescribed to a value different from 0 at the boundary of the domain.
Periodic This boundary condition states that the boundary of the domain is

directly linked to the opposide side of the boundary.
Neumann.Homogeneous This boundary condition states that the flux of the equation is

prescribed to 0 at the boundary of the domain.
Neumann.Inhomogeneous This boundary condition states that the flux of the equation is

prescribed to a value different from 0 at the boundary of the domain.
Robin This boundary condition is a weighted combination of the Dirichlet

and Neumann boundary conditions.
Outflow This boundary condition describes the flow out of the domain.
Single Component The transport of one solute is considered in the equation.
Multi Component The transport of multiple solutes is considered in the equation.
Single One fluid that fills the porous medium is considered in the equation.
Multi Multiple, eventually interacting fluids are considered in the

equation.
Homogeneous States that all coefficients of the domain are homogeneous. As a

result, the coefficients do not change over time and space.
Heterogeneous States that the coefficients are non-constant in the computation.

This is because of heterogeneous in the porous media or because
of time dependencies. However, in this work, we do not consider
time-dependent problems.
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Table II. Description of the features of stencils of the domain of the porous media domain (cf. Figure 2).

Feature Description

Constant The values of a stencil are constant.
Function It is necessary to evaluate a function at each point of the computation

domain for each entry of the stencil.
Entry Type.Scalar Defines that one entry of the stencil is scalar, which can be a constant or a

function.
Matrix Defines that one entry of the stencil is a matrix that has to be evaluated in

each step.
2D The stencil is defined over a two dimensional domain.
3D The stencil is defined over a three dimensional domain.
Halo The boundaries of the domain are handled by creating a halo region around

the domain.
Special Stencil Special stencils have to be used at the boundaries of the computation

domain.
5-Point A stencil with 5 entries.
9-Point A stencil with 9 entries.
7-Point A stencil with 7 entries.
27-Point A stencil with 27 entries.
Arbitrary Stencils with a complex shape, that does not correspond to the 4 shapes

listed previous.
Data.Scalar The entries of the stencil only have one dimension.
Vector Each entry of the stencil is a vector, where each element of the vector can

be a constant, a function, or a matrix, depending on its entry type and value
type.
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