
Toward Measuring Program Comprehension with
Functional Magnetic Resonance Imaging

Janet Siegmundσ
∗

, André Brechmannθ, Sven Apelπ, Christian Kästnerω, Jörg Liebigπ,
Thomas Leichδ, and Gunter Saakeσ

σUniversity of Magdeburg, Germany θLeibniz Inst. for Neurobiology Magdeburg, Germany
πUniversity of Passau, Germany ωPhilipps University Marburg, Germany

δMetop Research Institute, Magdeburg, Germany

ABSTRACT
Program comprehension is an often evaluated, internal cog-
nitive process. In neuroscience, functional magnetic res-
onance imaging (fMRI) is used to visualize such internal
cognitive processes. We propose an experimental design to
measure program comprehension based on fMRI. In the long
run, we hope to answer questions like What distinguishes
good programmers from bad programmers? or What makes
a good programmer?

Categories and Subject Descriptors
H.1.2 [Information Systems]: User/Machine Systems

Keywords
Program Comprehension, fMRI, Controlled Experiments

1. INTRODUCTION
Program comprehension is an important process in soft-

ware development, because programmers spend most of their
time with understanding existing source code [12]. How-
ever, program comprehension is an internal cognitive pro-
cess, which we cannot observe directly [7]. Currently, re-
searchers mostly use indirect measures to assess program
comprehension [5]. For example, software measures based
on properties of code are used to predict how developers
understand source code; or the performance in maintenance
tasks is used to estimate how developers understand source
code. In some experiments, think-aloud protocols are used
to observe the strategies developers use to understand source
code. However, to the best of our knowledge, researchers
have not yet explored a direct way to observe what is hap-
pening inside the brain during program comprehension.

In neuroscience, researchers use functional magnetic res-
onance imaging (fMRI) to observe cognitive processes since

∗This author published previous work as Janet Feigenspan.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGSOFT’12/FSE-20, November 11–16, 2012, Cary, North Carolina, USA.
Copyright 2012 ACM 978-1-4503-1614-9/12/11 ...$15.00.

1991 [1]. FMRI is based on measuring differences in oxy-
gen levels of blood flow in the brain. If a region in a brain
becomes active, its oxygen need increases. To fulfill that
increased need, the amount of oxygenated blood increases,
and the amount of deoxygenated blood decreases. Both have
different magnetic properties, which are used by fMRI to
identify which regions in the brain are activated.

Today, numerous studies analyze the functional organi-
zation of brain areas by varying cognitive tasks and task
demands. The results can be used to interpret which brain
areas contribute to which cognitive processes. For example,
Cabeza and Nyberg describe that the prefrontal cortex is ac-
tivated in almost all tasks that require high-level cognitive
functions, such as memory retrieval [3]. Thus, for a number
of cognitive processes, we know which brain regions are re-
sponsible. This enables us to draw conclusions about how
many resources different cognitive processes require and how
different cognitive processes might be related.

With our work, we intend to identify brain areas that
are activated during the cognitive processes needed for pro-
gram comprehension. We do not expect to find one area
that is activated during program comprehension, but sev-
eral areas that reflect the different aspects of programming,
such as reading words and working with numbers. Thus,
we propose to use fMRI to measure program comprehen-
sion. This way, we hope to relate program comprehension
to other cognitive processes (e.g., reading comprehension)
and get a deeper understanding of how developers under-
stand source code. In the long run, we might be able to
answer questions like What distinguishes good programmers
from bad programmers? What distinguishes program com-
prehension from reading comprehension? Or What are the
effects of tools or programming languages on program com-
prehension?. Here, we present a concept of how such ques-
tions can be addressed with fMRI and propose a first exper-
imental setup that is able to identify brain areas that are
required during program comprehension.

As feedback, we like to know whether measuring program
comprehension with fMRI is interesting for the FSE commu-
nity. Hypotheses about cognitive processes that are specific
for program comprehension and how these could be experi-
mentally tested with fMRI would be valuable for us.

2. PRIOR AND RELATED WORK
In previous work, we showed in a controlled experiment

that certain software measures are not reliable indicators

1

for program comprehension and that there is no way around
controlled experiments [4].

The single most related paper to our work describes the
information programmers need to continue their tasks after
interruption [9]. To that end, Parnin and Rugaber describe
how different types of memory located in different brain ar-
eas affect different programming activities. It is similar to
our work, in that it maps brain regions to programming
tasks. However, the authors do not use fMRI, but base their
work on previous studies that map brain regions to different
types of memory. We are not aware of any results regarding
program comprehension based on fMRI.

Furthermore, there is work in the domain of neuroscience
to analyze cognitive processes. Most related to ours is work
based on reading comprehension (i.e., how participants un-
derstand written text). For example, Moss and others ana-
lyzed brain regions activated during strategic reading com-
prehension [8].

3. REQUIREMENTS FOR FMRI STUDIES
The most difficult issue in fMRI studies and most other

studies that evaluate cognitive processes is to select suitable
material and tasks (that is, source code in our case) and
devise control tasks that control for brain activation elicited
by processes that are needed for programming, but are not
specific for it, such as reading itself. It is imperative that
source code and tasks without a doubt lead participants to
use the cognitive process that is the target of the evaluation,
because otherwise, we cannot be sure what we measure (i.e.,
ensure construct validity). Furthermore, there are require-
ments specific to fMRI studies: Source code should be short
enough, have appropriate difficulty, there must be a control
task, and the complete experiment should not last too long.

First, source code needs to be short enough to fit on a
screen that is typically used within a magnetic resonance
scanner (from here on referred to as scanner). If source
code is too large, participants would have to scroll. How-
ever, scrolling would also activate brain regions responsible
for motor areas, so the activation caused by understanding
would be confounded with the activation caused by scrolling.

Second, source code should be neither too difficult nor
too easy to solve. If programs are too difficult, participants
might not be able to determine the output correctly. In this
case, we cannot be sure whether the understanding process
took place or whether participants did something else. Fur-
thermore, participants might require too much or too little
time to solve a task. Typically, cognitive fMRI experiments
require several repetitions of tasks to ensure sufficient statis-
tical power for data analysis. Between these blocks of pro-
gramming activity, which should be of comparable length of
up to 1–2 minutes, periods of rest or other control condi-
tions are required to allow the amount of oxygenated blood
elicited by the programming activity to come back to a rest-
ing baseline. If a program is too easy to understand (i.e.,
within few seconds), we might not be able to observe the
activation elicited by the comprehension process, because of
insufficient demand on the neural processes. In our stud-
ies, we have the opportunity to work with undergraduate
students; thus, we adapt the difficulty to their ability.

Third, we need control tasks. Imagine we have suitable
programs and tasks, what kind of brain activation would
we see? Of course, the activation that is necessary for un-
derstanding. However, there is additional activation. First,

1 public static void main(String[] args) {
2 String word = "Hello";
3 String result = new String();
4
5 for (int j = word.length() - 1; j >= 0; j--)
6 result = result + word.charAt(j);
7
8 System.out.println(result);
9 }

Figure 1: Source code for one task.

participants see the source code, so there is an activation in
the visual cortex (i.e., the part in the brain responsible for
perceiving visual information). Second, participants move
their eyes to see the source code, so we have to expect activa-
tion in the responsible motor cortex. To deal with these ad-
ditional activations, we need control tasks that ideally only
differ to the processes needed for program comprehension,
nothing else. This way, we can compute the difference of
activation between the control task and understanding task
and see activation caused only by understanding.

Fourth, one complete session in a scanner should not last
longer than one hour. Inside the scanner, participants have
to lie as motionless as possible to avoid motion artifacts.
However, after an hour, participants start getting restless
and lose attention. To avoid bias, the session duration should
not be too long.

4. PILOT STUDIES
In this section, we describe the setting of two pilot studies

that we conducted to select suitable source code, experimen-
tal tasks, and control tasks. In this stage, it is not necessary
to observe participants inside an fMRI scanner, because we
can use response time and correctness to evaluate the suit-
ability of source code and tasks. Thus, we conducted this
pilot study without fMRI. In Section 5, we describe the cur-
rent setting of our study with fMRI.

4.1 Finding Suitable Understanding Tasks
As tasks, participants should manually compute the out-

put of source-code snippets. If participants computed an
output correctly, they must have understood the snippet. As
source code, due to the constraints described in Section 3, we
selected 23 different snippets from typical algorithms taught
in first-year courses at universities. Algorithms of first-year
courses have a suitable difficulty, because we have the op-
portunity to work with second-year students and our par-
ticipant should be able to solve as many tasks as possible
correctly. To illustrate the nature of the programs, we show
an example in Figure 1, in which the correct output is olleH.

Note that, in all programs, we obfuscated identifier names
to avoid giving participants hints about a program’s pur-
pose. For example, the variable result, which contains the
result, is not named after what it contains (i.e., the reversed
string), but the purpose of the variable (i.e., to hold the re-
sult of the program). This way, we force participants to use
bottom-up comprehension, which means that participants
analyze source code statement by statement to determine
a program’s purpose [10]. In contrast, in top-down compre-
hension, participants state a general hypothesis about a pro-
gram’s purpose based on their knowledge of a program’s do-
main and based on beacons (i.e., information in the code that

2

give hints about a program’s purpose) [2, 11]. If participants
would use top-down comprehension, we would also observe
activation caused by memory retrieval, because information
in source code is compared with domain knowledge which is
stored in memory. Thus, we focus on bottom-up comprehen-
sion, because brain activation is not confounded with mem-
ory activation. In the long run, if fMRI proves useful to mea-
sure program comprehension, we shall also consider more
sophisticated settings measuring top-down comprehension.

In our first pilot study, we evaluated the suitability of
selected source-code snippets. To this end, we analyzed the
time participants needed to compute an output of a source-
code snippet and the correctness of the determined output.

Our participants were 41 second-year students from a soft-
ware-engineering course at the University of Passau. They
completed a basic programming course, so they were familiar
with this kind of programs. The experiment was conducted
on a computer in a lab at the University of Passau. To
present source code and tasks to participants, we used the
tool PROPHET [6]. It shows the source code, the elapsed
time, and lets participants enter the output of a method.
Furthermore, PROPHET logs data (e.g., time per task, an-
swers) of each participant to support analysis.

To evaluate the difficulty of programs, we looked at the re-
sponse time and correctness. First, the mean response times
for the tasks are between 15 and 316 seconds. Based on these
results, we excluded six tasks from further studies with re-
sponse times above 120 seconds, because participants would
require too much time to solve them while in the scanner.
Furthermore, we excluded one task with a mean response
time below 30 seconds to further reduce the variability of
fMRI activation due to differences in task duration. Con-
sequently, we have 16 tasks with mean response times be-
tween 37 and 104 seconds. When looking at correctness, the
16 tasks were solved correctly by 29 to 41 participants. On
average, the number of correct solutions for a task was 37
(90%) participants. We want as many participants as pos-
sible to find a correct solution, because then we can be sure
that a comprehension process took place. Since the percent-
age of correctness is high enough, we do not exclude any
task based on correctness.

4.2 Finding Suitable Control Tasks
Suitable control tasks should ideally only differ to the un-

derstanding task in whether comprehension takes place or
not. Everything else should be equal. Thus, we use the same
programs as for the understanding task. As tasks, we ask
participants to identify syntax errors that we introduced to
the source code. As an example, we show the source code
of Figure 2 with syntax errors that we used for our exper-
iment. The errors are in Line 1 (parameter name is miss-
ing), Line 2 (wrong character to terminate String Hello),
and Line 8 (curly bracket to pass result). For the remaining
15 tasks, we included similar errors (always 3).

To evaluate suitability of our control tasks, we conducted
a second pilot study. As participants, we recruited students
from the Philipps University Marburg (4), students from
the University of Magdeburg (4), as well as one professional
Java programmer. All participants were familiar with Java
at least at the level of second-year students. Again, we used
PROPHET to show source code to participants and collect
response times and answers of participants.

To select suitable control tasks, we looked at the response

1 public static void main(String[]) {
2 String word = "Hello’;
3 String result = new String();
4
5 for (int j = word.length() - 1; j >= 0; j--)
6 result = result + word.charAt(j);
7
8 System.out.println{result);
9 }

Figure 2: Syntax errors for one task.

times of participants, which is between 20 and 120 sec-
onds. Regarding correctness, we found that most partici-
pants found at least two syntax errors. Thus, we can be sure
that participants worked on the tasks and that the tasks are
neither too easy nor too difficult.

Based on the pilot studies, the understanding and control
tasks appear suitable. The next step is to set up the exper-
iment for the fMRI scanner, which we describe in the next
section.

5. PROGRAM COMPREHENSION BASED
ON FMRI

To better understand our setting, we introduce the typi-
cal setting of fMRI experiments. First, there is a measuring
stage of about 10 to 20 minutes, in which the brain of partici-
pants is measured regarding size and form. This is necessary
to map the measured change in blood flow to the brain re-
gion. Then, the actual experiment starts. One typical trial
is structured in experiment condition, rest condition, control
condition, and rest condition.

The experiment and control conditions are the ones we de-
scribed in the previous section (i.e., understanding, syntax
error). In the rest condition, participants relax or do noth-
ing. This is necessary, to let the level of oxygenated and
deoxygenated blood return to a baseline level, and because
working inside the scanner is exhausting.

Furthermore, we have to make sure that a session inside
the scanner does not last too long (cf. Section 3). However,
with our 16 tasks, the experiment would be too long. Hence,
we excluded another four tasks. We excluded one task with
the shortest and one with the longest response time in the
second pilot study. Furthermore, we excluded two tasks that
are similar to other tasks.

While lying in the scanner, participants are instructed to
determine the output of a method (experiment condition)
or find three syntax errors (control condition) and press a
button when they are finished. They do not say or enter
their solution to avoid motion artifacts, activation in the
brain region responsible for producing speech, and to mini-
mize the time inside the scanner, which is a typical setting
for fMRI studies. To evaluate whether participants solved
a task correctly, we ask them after the scanner session to
look again at the source code and state the answer. In the
rest condition, participants are instructed to relax. During
all conditions, participants are told to move as little as pos-
sible to avoid motion artifacts. Furthermore, we use an eye
tracker to track eye movement during tasks. To show what
it is like for participants to lie inside the scanner, we show a
photo of one of our participants in Figure 3 (left). To reduce
motion artifacts, the head of participants is fixated.

We arranged the order of code of the experiment and con-

3

Figure 3: Left: Photo of participants inside the scan-
ner. Right: Example for activation pattern.

trol condition such that most of the code in the experiment
condition is presented before code in the control condition.
This way, participants do not recognize source code from the
control condition, but understand a program bottom up.

Currently, we are running the experiment described in the
previous section inside the scanner. Conducting and running
such experiments is a long process (e.g., getting a time slot
to use the scanner, recruiting participants, analyzing the
data), so we have only preliminary results to report. So far,
we can confirm that the tasks are actually suitable for our
purpose, and that a session is not too long for participants.
Furthermore, the experiment is interesting for participants.

To give an impression of the results we might get from our
study, we show a typical image of brain activation in Figure 3
from a different study of ours. Highlighted regions indicate
an activation, in this case mostly the prefrontal and visual
cortex. When our studies are completed, we might obtain
an image similar to the one in Figure 3 (right).

6. CONCLUSION & VISION
When finished with the measurements, we hope to have

a first impression about which brain regions are activated
during program comprehension. Specifically, we expect to
see activation in the prefrontal cortex, which is active during
higher cognitive tasks (what we believe program comprehen-
sion is). Furthermore, we believe that programs that contain
loops require more cognitive resources than programs with-
out any loops. Thus, we may observe a stronger activation
during understanding programs with loops. We also believe
that we will observe more eye movements in source code con-
taining loops (which we observe with an eye tracker). Ad-
ditionally, we may see activation in regions related to read-
ing comprehension, because participants have to read words.
Moreover, we believe that verbal working memory capacity
is needed to comprehend source code, because words have
to be processed. Thus, we expect activation in the related
brain areas (left parietal lobe). To sum up, we believe to ob-
serve several activations in different brain regions that are
related to activities involved in program comprehension and
how that is different from reading comprehension.

In the long run, we might be able to find out what distin-
guishes good programmer from bad programmers; good pro-
grammers may have a certain activation pattern that com-
pletely differs from bad programmers. For example, fMRI
studies of expert and novice golfers showed completely differ-
ent activation patterns when thinking about hitting a golf
ball. Expert golfers showed activation in one small, dis-
tinguished brain region, whereas novices showed activation

in several different brain regions. The reason is that ex-
pert golfers have abstracted the knowledge of hitting a ball.
With program comprehension, it might be similar, such that
experts somewhat abstracted the comprehension process.

Having a deeper understanding of program comprehen-
sion, we might be able to better teach programming to stu-
dents and develop tools and languages that support how
humans comprehend source code.

To conclude, we are exploring whether we can use fMRI
to better understand program comprehension in an ongoing
endeavor. To the best of our knowledge, there is no prior em-
pirical work to measure program comprehension using fMRI.
So far, we designed and tested the material we are using.
Furthermore, we conducted first sessions inside a scanner
that show that our experimental setup is feasible.

As a next step, we will continue our measurements. We
hope to find a mapping of these brain regions to other, al-
ready evaluated cognitive processes, such as reading com-
prehension, which might enable us to develop a theory of
program comprehension processes based on neuroscience.

Acknowledgments. Thanks to Andreas Fügner for the photos.
Thanks to Chris Parnin for fruitful discussions. Feigenspan’s and
Saake’s work is funded by BMBF project 01IM10002B, Kästner’s
work partly by ERC grant #203099, and Apel’s work by the
German Research Foundation (DFG – AP 206/2, AP 206/4, and
LE 912/13).

7. REFERENCES
[1] J. Belliveau et al. Functional Mapping of the Human Visual

Cortex by Magnetic Resonance Imaging. Science,
254(5032):716–719, 1991.

[2] R. Brooks. Using a Behavioral Theory of Program
Comprehension in Software Engineering. In Proc. Int’l
Conf. Software Engineering (ICSE), pages 196–201. IEEE
CS, 1978.

[3] R. Cabeza and L. Nyberg. Imaging Cognition II: An
Empirical Review of 275 PET and fMRI Studies. Journal
of Cognitive Neuroscience, 12(1):1–47, 2000.

[4] J. Feigenspan, S. Apel, J. Liebig, and C. Kästner. Exploring
Software Measures to Assess Program Comprehension. In
Proc. Int’l Symposium Empirical Software Engineering and
Measurement (ESEM), pages 1–10, 2011.

[5] J. Feigenspan et al. On the Role of Program
Comprehension in Embedded Systems. In Proc. Workshop
Software-Reengineering (WSR), pages 34–35, 2011.

[6] J. Feigenspan and N. Siegmund. Supporting
Comprehension Experiments with Human Subjects. In
Proc. Int’l Conf. Program Comprehension (ICPC), pages
244–246. IEEE CS, 2012. Tool demo.

[7] J. Koenemann and S. Robertson. Expert Problem Solving
Strategies for Program Comprehension. In Proc. Conf.
Human Factors in Computing Systems (CHI), pages
125–130. ACM Press, 1991.

[8] J. Moss et al. The Neural Correlates of Strategic Reading
Comprehension: Cognitive Control and Discourse
Comprehension. NeuroImage, 58(2):675–686, 2011.

[9] C. Parnin and S. Rugaber. Programmer Information Needs
after Memory Failure. In Proc. Int’l Conf. Program
Comprehension (ICPC), pages 123–132. IEEE CS, 2012.

[10] N. Pennington. Stimulus Structures and Mental
Representations in Expert Comprehension of Computer
Programs. Cognitive Psychologys, 19(3):295–341, 1987.

[11] E. Soloway and K. Ehrlich. Empirical Studies of
Programming Knowledge. IEEE Trans. Softw. Eng.,
10(5):595–609, 1984.

[12] R. Tiarks. What Programmers Really Do: An
Observational Study. In Proc. Workshop
Software-Reengineering (WSR), pages 36–37, 2011.

4

