Automatic Detection of Feature Interactions using the Java
Modeling Language: An Experience Report

Wolfgang Scholz
University of Passau,
Germany

ABSTRACT

In the development of complex software systems, interac-
tions between different program features increase the design
complexity. Feature-oriented software development focuses
on the representation and compositions of features. The
implementation of features often cuts across object-oriented
module boundaries and hence comprises interactions. The
manual detection and treatment of feature interactions re-
quires a deep knowledge of the implementation details of the
features involved. Our goal is to detect interactions auto-
matically using specifications by means of design by contract
and automated theorem proving. We provide a software tool
that operates on programs in Java and the Java Modeling
Language (JML). We discuss which kinds of feature interac-
tions can be detected automatically with our tool and how
to detect other kinds of interactions.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verifi-
cation—class invariants, correctness proofs, formal methods,
programming by contract, reliability

General Terms

Design, Languages, Verification

Keywords

Feature Interaction, Software Product Lines, JML, FEA-
TUREHOUSE

1. INTRODUCTION

Feature-oriented software development (FOSD) is a pro-
gramming paradigm that has gained momentum in recent
years. In FOSD, a program is viewed as a composition
of features [1]. A feature is a unit of composition which
can cut across module boundaries and which is relevant for
some stakeholder. Different feature combinations result in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SPLC’11, August 21-26, 2011, Munich, Germany

Copyright 2011 ACM 978-1-4503-0789- 5/11/08 ...$10.00.

Thomas Thim
University of Magdeburg,
Germany

Sven Apel,
Christian Lengauer
University of Passau,
Germany

different programs. The set of programs that can be gener-
ated from a given set of features is called a software product
line [20].

A major challenge of FOSD is that of feature interac-
tions [8], which may arise when combining features to gen-
erate programs. We use the neutral term feature interaction
for a behavior of a feature which is only expressed in com-
bination with other features, and the biased term feature
conflict for an unwanted feature interaction. We focus on
the detection of semantic feature conflicts. A feature conflict
is semantic if it cannot be detected at compile time without
supplying an additional specification. Syntactic interactions
can be detected using type systems and are considered else-
where [14, 2]. The detection of feature conflicts can be a
daunting task because of the crosscutting nature of features
and the multiplicity of possible feature combinations. Our
aim is to base it on formal methods and provide tool sup-
port.

In previous work, we analyzed how to detect feature in-
teractions during the design phase [4]. Here, our aim is to
detect feature interactions during the implementation phase
that may not be detectable during the design phase or that
are specific to a certain implementation. We base our ap-
proach on formal specification using design by contract. De-
sign by contract is a common technique of specifying the
behavior of methods and classes formally by means of me-
thod contracts and class invariants to increase the reliability
of software [19]. Thus, design by contract can be used to
specify programs. We take advantage of a prominent device
for design by contract, namely the Java Modeling Language
(JML) [17], because of the available verification tools.

We specify features formally in JML and propose how to
generate the JML specification of a program along with its
implementation. Then, we use the extended static checker
ESC/Java2 [11] to generate proof obligations that we solve
with the automatic theorem prover Simplify [12]. The over-
all goal is to evaluate the practicability of JML and auto-
mated theorem proving for the detection of feature interac-
tions. We make the following contributions:

1. We explore how to combine design by contract with
feature-oriented software development for specification
at the granularity level of classes and methods inside
features.

2. We provide tool support for the composition of feature-
oriented specifications given in the JML and the ver-
ification of the accompanying Java code against the
union of the specifications of every individual product.

class C {
//@ invariant a >= 0;
int a;
/*@ requires (a > 0);
@ ensures (a > 1); */
void £f() {
a += a;
}
}

Figure 1: Sample Java code, annotated with con-
tracts written in JML

3. We use a small case study to shed light on which prob-
lem sizes can be proved automatically and discuss fu-
ture challenges.

2. INTERACTION DETECTION USING
FORMAL SPECIFICATIONS

Let us introduce the necessary background of our work.
We use formal specifications to be able to reason about
which feature interactions are considered flaws. We use de-
sign by contract as a means to provide the specifications
needed to detect feature conflicts. As the specifications are
given individually for each feature, the specification of a
product is composed of several specification fragments as-
sociated with the individual features. Important to us is to
find a balance between flexibility and restrictiveness in the
specification of software product lines.

2.1 Formal Product Line Verification

The validity of a product line P can be checked against
a given specification S. The notation for a product line
complying with a specification is:

PES
In the setting of this work, a feature F' comes with an im-
plementation Ir and a specification Sg.
F=(Ir,Sr)

Using the n-ary composition operator comp of the tool
suite FEATUREHOUSE [3], we can derive the implementation
Ir,,... F, of a product by superimposition of the implemen-
tation fragments of its features Fi,..., F,.

Ipy,...p, = comp(Ipy,...,IF,)
To obtain the specification with which an individual product
must comply, we can also use superimposition.

SFl ----- Fp :Comp(SF1>“'7SFn)

A product is valid if the composed implementation of its
features complies with its combined specification.

comp(Ip,,...,Ip,) E comp(SF,,...,Sr,)

The entire product line is valid if every derivable product is
valid, i.e., if the above formula is valid for every permitted
combination of features.

Here, we focus on product lines for which specifications
are given for individual features [4], in contrast to scenarios,
in which there is one specification for the entire product line.

2.2 Design by Contract

We explore design by contract [19] to specify each feature
separately. Certain implementation elements are supplied

Feature B+ A

Feature A

Feature B

\

I a ‘ : ‘ : :
] A \ H j :
//field | | //incs a : ‘linta; | |/ doublesal : t|# field l// doubles a ' :

inta; void f() { H B void f{) { H :|int a; Jlines a
a+=1}: at+=a;} | : . void f() {a +=a; a += 1;}\ :

Figure 2: Sample composition of the FSTs of two
features

with a specification: methods with pre- and postconditions,
classes with invariants.

Consider, for example, the Java program in Figure 1.
Class C has an integer field a and a method f. A class
invariant states that a > 0 at all times. £ has a precondition
a > 0 and a postcondition a > 1.

Design by contract is a software development process pro-
viding formal specifications at an early stage of the develop-
ment. One benefit of formal specification is that it can be
used by automated tools in later development stages.

2.3 Composition of Features

Features can be represented by feature structure trees
(FSTs). A feature structure tree is a partial parse tree
with names as the inner nodes and unparsed text as the
leaf nodes. Features can be composed by superimposition of
their FSTs. Superimposition is an algorithm to merge sev-
eral FSTs hierarchically into one, which includes the super-
set of all names as a result. This can be done automatically
by software tools like FEATUREHOUSE [3].

Identically named FST elements of different features are
merged to a single element in the composed program [3].
Thus, the composition of features relies on classes and mem-
bers with different concerns being named differently.

For example, in Figure 2, feature A has a method g in a
Java interface I. Feature B has a method h in an interface I.
After composition of A and B, there will be both methods in
interface I. However, both features introduce a method f in
class C. After composition there will be only one method £,
the code of which has to be obtained from both implementa-
tions. As there can be only one common implementation of
the resulting method, the assumption is that the problems
both originating instances of f are meant to solve conform
to each other.

In feature-oriented software development, accidental name
clashes pose a problem, since features are naturally subject
to refinement and features may be implemented in isolation.
For example, there can be unexpected method overrides.
Unlike in module systems, where there are ways to avoid
such name clashes [9], it is difficult to tackle this problem in
feature-oriented systems.

Defining contracts for classes and methods can be a step
into this direction, as it is likely that methods with differ-
ent concerns also have incompatible contracts. Compared
to Java comments as in Figure 2, contracts can be evaluated
automatically by tools. The compatibility can be assessed
by joining the contracts and checking their satisfiability, pos-
sibly by an automatic theorem prover.

Feature B Feature A
package ‘ package]
p I p

class interface class interface

C I ‘e C I
field method || method field method || method

a |LfO |hO |+ i a |[fO |90

int a; //@reqa >0

/l@ensa>1[:
void () { :
a+=1;}

: N\
+|// field
t|int a;

Figure 3: Example FSTs before parsing JML clauses

2.4 Selectable Restrictiveness of Specification

A formal specification describes a solution space, which
limits the set of correct implementations. Specifications can
be more or less restrictive. An unrestrictive specification
provides a wide solution space, leaving many possible solu-
tions and implementations flexibility. If the solution space
defined by the formal specification contains solutions that
are regarded as incorrect, it is said that the solution space
is underspecified. A restrictive specification narrows the so-
lution space, leaving only limited flexibility for the imple-
mentation. In practice, any piece of software needs to be
maintained and extended eventually. A restrictive specifica-
tion unaware of eventual software extension is likely to for-
bid it. A specification that narrows down the solution space
more than actually necessary is called overspecification. It
is possible to review a specification at a later time of devel-
opment, but with the validity of earlier defined properties at
stake. Thus, the specification is to be designed with flexibil-
ity in mind but, on the other hand, must be strong enough
to ensure that only correct implementations are valid.

The trade-off between flexibility and restrictiveness of spe-
cifications is especially important for product lines. If new
functionality is required for an existing software product
line, it is easier to introduce new features instead of refac-
toring old ones, as new optional features should not affect
existing products. To be able to add new functionality with-
out changing existing products, the existing specification
should not be too restrictive. Otherwise, it may rule out
potentially needful enhancements of the product line. On
the other hand, underspecification poses the risk of unrec-
ognized feature conflicts, as explained earlier.

3. TOOL PROTOTYPE

In this section, we present our prototype tool SpeK. First,
we discuss existing tools that we extended to support the
composition of specifications. Second, we give an overview
of the parsing process and discuss the composition.

3.1 Parsing JML

FEATUREHOUSE is a tool for feature composition which al-
ready supports a number of languages [3]. To use JML in a
feature-oriented fashion, we extended FEATUREHOUSE’s ex-
isting Java support. We decided to extend FEATUREHOUSE
as it is open-source and can be extended easily. JML ele-
ments inside comment blocks are parsed using an additional
layer of FST processing before and after superimposition.

Feature B Feature A
-pBCkage : pad(age
p P p
class | [interfacq class | [interfacq
C | ‘o C |
method] sas + & *%* [method

f() R

E|precond|[postconq code

E|precond|[postconq code

Figure 4: Processed FSTs after parsing JML clauses

In this layer, JML clauses are extracted and rendered as
child nodes of the method they specify. After superimposi-
tion, these child nodes are deconstructed and their content
is woven into the method’s FST node.

Consider again the example of Figure 2. Consider both
features A and B optional. FEATUREHOUSE generates, for
both features, FST's that have three levels: package, package
members, and class members (see Figure 3).

The JML parsing layer in FEATUREHOUSE inspects the
comment block assigned to each node at the level of class
members. Method nodes, which are given as leaf nodes, are
transformed to inner nodes and their content is divided into
the following subnodes (see Figure 4):

e One node contains the method’s code.

e For each different type of JML clause detected, one
child node is generated. Thus, the tool framework is
able to assign an individual composition rule for each
type.

e JavaDoc comments are distinguished from other com-
ment types and will be concatenated on composition.

e Other comments are rearranged to form a block after
composition.

In our example, method f has a JML precondition and a
JML postcondition both for feature A and B.

The resulting code can be checked against the specification
by run-time assertions or by theorem proving at compile-
time. We focus on compile time checking using the extended
static checker ESC/Java2 [11] and Simplify [12] as theorem
prover.

3.2 JML Composition Rules

With new terminal FST node types, new composition
rules are needed in FEATUREHOUSE. The standard way
FEATUREHOUSE handles two identically named FST method
nodes is to choose the one which is given by the composi-
tion precedence. Identical method names either result from
an accidental name clash or the two method implementa-
tions resemble the same problem. In the latter case, the
composition rule for FST method nodes should merge the
implementations into one. This should also be reflected by
the composition rule for method specifications.

/*@ requires a >= 0;

@ ensures a >= 0; */
void £() {

a += a;

}

/*@ requires a > 0;

@ ensures a > 1; */
void £() {

a +=1;

}

Feature A

Feature B

/*@ requires (a >= 0)
e Il (@a>0);
@ ensures (a >= 0)
Q && (a > 1); */

void £() {

a += a;

a +=1;

}

/*@ requires (a > 0)
e |l (a>=0);
@ ensures (a > 1)
Q & (a >= 0); */
void £() {
a += 1;
a += a;

}

Product Be A Product Ae B
Figure 5: Code of method f in different feature com-
positions. Here, the code was composed by concate-
nation of the originating methods’ bodies. The com-
position order does not matter for specifications, but
it does for code: product Ae B is valid, product Be A
is not.

For specification composition, we follow Liskov’s substi-
tution principle [18]:

Let ¢(z) be a property provable about objects x
of type T. Then ¢(y) should be true for objects
y of type S where S is a subtype of T'.

Following this principle, if two methods are composed with
a certain contract each, there may be method calls in the
resulting program that rely on one or both of the two con-
tracts. Thus, the contract of the composed method should
require at least one of the two preconditions and should en-
sure both postconditions. We compose preconditions dis-
junctively and postconditions conjunctively (see Figure 5
and Figure 6). The result is a method contract that can
be used seamlessly inside both features just as in the iso-
lated feature.

More formally, let A and B be two features to be com-
posed. Let £ be a method that both features introduce with
same name and type (for distinction, call them f4 and £5).
Let P4 be the precondition and Q4 the postcondition of f 4
and similarly Pg and @p the pre- and the postcondition of
fp. The contracts of £ for both features are:

{Pa} £4 {Qa}
{Ps} £5 {Q5B}

Let fBea be the composition of £ 4 and £p. Then, the con-
tract of fBea is:

{PaV P} fBea {Qa NQB}

THEOREM 1. fg,, is a subtype of both f, and fg in the
sense that any caller of f expecting the contract of f, (and
likewise fg) may also call fg,4-

For brevity, we give only an informal proof. It is easy to
conclude that any caller supplying P4 (and likewise Pg)
also supplies P4 V Pp and that Q4 A @ satisfies any caller
expecting Q4 (and likewise @ B).

This composition rule makes method contracts more re-
strictive, but does not invalidate any caller code. If the
composed contract is overspecified, we presume that it is
the result of an accidental name clash.

Feature B A

package|

p

class interfacq

C I

method || method || method

f() {90 || h(

{precond][postcond [code]

Ta>=0|la>=0 |Jvodf0{ }
Alla>o0l{&&a>1{[a+=a; [
: | a+=1 1

Figure 6: FST resulting from the composition Be A

There is no similarly seamless way of composing the me-
thod bodies. As is standard in FEATUREHOUSE, the order of
composition determines which feature’s method body takes
precedence. The other one will be overridden. There are
different ways of composition. For instance, in our running
example, both method bodies are concatenated (see Fig-
ure 5).

invariant clauses are treated separately, as they belong
to the FST level of class members. We decided to concate-
nate invariant clauses on composition. The resulting prod-
uct has the superset of invariants of all of its features. Thus,
the set of invariants becomes monotonically more restrictive
with additional features being composed.

assignable clauses may be used to restrict the variables
that the method can update and are simply appended when
composed. Thus, the set of assignable variables becomes
monotonically less restrictive with each feature added to a
feature selection.

The integration of composition rules for additional clauses
can be done in a matter of minutes. They will be added in
later case studies.

3.3 Transparency of the JML Parsing Process

After composition, the FST nodes generated by the JML
layer are folded back into terminal method nodes (see Fig-
ure 7). Thus, the process of parsing and composing JML
annotations is transparent to FEATUREHOUSE.

The combined implementation of a method may no longer
comply with the combined contract. As the result of the
combination is regular JML-annotated Java, a violation of
the contract can be detected automatically by ESC/Java2
or a similar prover framework which is able to handle JML.

4. CASE STUDY

We present a small case study as proof of concept. The
product line ListPL has five features: ListBase, Cons, Snoc,
Stack and Sorted. Feature ListBase is mandatory for all
products. All other features are optional (see Figure 8).
As these four features can be composed in any combination,
the product line contains sixteen different products. Feature
conflicts may occur in any combination.

Our tool SpeK and the case study are publicly available
on the Web.!

"http://www.fosd.de/spek

Feature B A

package!

p

class interfacq

C I

method || method | [method

fO |90 h()

//@req a>=0
e |la>0
//@ens a>=0
/@ &&a>1
void f() {
a+=a;
a+=1;}

Figure 7: JML handling is transparent to Feature-
House. JML is parsed after primary FST construc-
tion and adds additional granularity to the FST. Af-
ter superimposition, the additional granularity is de-
constructed.

4.1 Description of the Features

A short description of every feature is given below. FEA-
TUREHOUSE expects a total composition order of features.
The position in the list reflects this ordering.

ListBase. Class IntList consists of an array of integer val-
ues. Method push adds a new element to the end of
the array. The contract of push ensures that no ele-
ment is removed and that the new element is located
somewhere in the array.

Cons. A new clause is added to the specification of push,
stating that the newly added element must be at the
last array position.

Snoc. A method snoc, which inserts an element to the first
position of the array, is introduced to IntList.

Stack. Methods top, pop and isEmpty are added to IntList.
While top and isEmpty have only read access to the
array, pop removes the last array entry and reduces the
array’s size.

Sorted. An invariant, which states that the array is sorted,
is introduced to IntList. Method push is refined, call-
ing a newly introduced helper method sort before its
return. As Sorted is the last feature to be composed,
the sorting is always done as last statement in push,
regardless of any previous refinements.

Composing any feature with feature ListBase yields a
valid implementation, according to the composed specifica-
tion of that product, and the run-time behavior is as ex-
pected. Furthermore, all sixteen products can be composed
and compiled without type errors (i.e., there are no syntactic
feature conflicts). Yet, in some products containing three or
more features, run-time errors occur under special circum-
stances, as there are semantic feature conflicts. Due to the
limited scope of this case study, it is possible to anticipate
all existing feature conflicts and evaluate the performance of
the feature interaction detection manually:

Legend:
d Optional

ListBase

Cons | Snoc | | Stack | Sorted

Figure 8: Feature model of the product line ListPL

1. Both specifications of features Stack and Cons imply
that i == 1.push(i).top() for all i and 1, where i is
of type int and 1 of type IntList. If feature Sorted is
present, this property is violated, as the list is sorted
after inserting i. The interaction should be detected in
all products of Sorted and Cons. The following prod-
ucts contain this conflict:

Sorted @ Cons e ListBase,

Sorted o Stack e Cons e List Base,
Sorted e Snoc e Cons e ListBase, and
Sorted e Stack e Snoc e Cons e List Base.

2. Snoc introduces method snoc, which modifies the ar-
ray. As feature Sorted is unaware of method snoc in
feature Snoc, no sorting is done after the modification.
As a result the array is no longer sorted. This interac-
tion should be detected in all products of Sorted and
Snoc. The following products contain this conflict:

Sorted e Snoc e ListBase,

Sorted e Snoc e Cons e ListBase,

Sorted e Stack e Snoc e List Base, and
Sorted e Stack ¢ Snoc e Cons e List Base.

3. Method pop in feature Stack also modifies the array.
We expect interaction detection to recognize that the
deletion of the top stack element does not violate the
invariant of Sorted.

S. EXPERIMENTAL RESULTS

We used the prover framework ESC/Java2 in combination
with the prover Simplify to check every possible product
of the product line ListPL. ESC/Java2 generates verifica-
tion conditions for every method and calls Simplify to verify
them. ESC/Java2 is a neither sound nor complete frame-
work for extended static checking [11]. Hence, ESC/Java2
may both miss and falsely signal errors. Although there
are sound prover frameworks available, we believe that us-
ing ESC/Java2 is appropriate to gather experience in the
application of static prover frameworks for feature conflict
detection. The fact that ESC/Java2 is a bounded checker
makes it applicable to larger project sizes and avoids prob-
lems with non-termination. Furthermore, there is a proper
plug-in for the development environment Eclipse available.

5.1 Recognized Conflicts

We used ESC/Java2 with default program parameters.
The interaction between Sorted and Snoc was detected in
all products containing these two features. The prover gen-
erates a warning that method snoc violates the invariant of
feature Sorted stating that the array is sorted:

IntList.java 53 Warning: Possible violation of object invariant
Associated declaration is "~/workspace/JMLIntListProducts/
voidSortedSnocListBase/IntList.java", line 15, col 6:

@ invariant (\forall int k; O <= k && k < data.length-1; ...

5.2 Unrecognized Conflicts

Using ESC/Java?2 with default parameters, the conflict
between features Sorted and Cons is not detected. Cons
provides an additional postcondition for method push, which
makes the contract more restrictive. While the postcondi-
tion imposed by ListBase requires only that no old elements
are removed and the new element is present after the call,
Cons also requires that the new element is located at the last
position of the array. The invariant of Sorted states that all
array elements are sorted. Method push can only conform
to both contracts if its parameter is the smallest element in
the array, which is not guaranteed by its precondition. The
insertion of a non-smallest element causes the sorting in me-
thod push to violate the postcondition of Cons. Although
this is a violation of the contract for Cons, ESC/Java2 fails
to notice it.

The unrecognized conflict is due to the unsoundness of
ESC/Java2 when dealing with loops. Instead of guessing
loop invariants, ESC/Java2 only unrolls a loop a given num-
ber of times. Method sort is an implementation of the bub-
ble sort, which consists of a doubly nested loop. If called
with standard program parameters, ESC/Java2 unrolls each
loop only once, which seems to be not sufficient to recognize
that the inner loop permutes array elements. ESC/Java2
responses within two seconds that method push passed the
analysis:

SortedConsListBase.IntList: push(int) ...
[0.512 s 25567304 bytes] passed
SortedConsListBase.IntList: sort() ...
[0.0 s 25567304 bytes] passed immediately
[1.861 s 25567304 bytes totall

5.3 Adjustments to Detect All Interactions

In the command line version of the ESC/Java2 tool, a
program parameter can be specified to increase the number
of times a loop is unrolled. In our case study, unrolling one
additional loop step enables ESC/Java2 to reason about the
assignments inside the inner loop. The expenditure of time
for Simplify to run the proof increases only slightly.?

Applying the additional step of loop unrolling to the whole
program reveals that Simplify can no longer verify the post-
condition of method push even in the simplest product List-
Base, although the verification succeeded in the first place
and produces the following warning:

IntList.java:33: Warning: Postcondition possibly not established
}

Associated declaration is "IntList.java", line 15, col 2:
@ ensures(datal[data.length-1] == newTop) ...

This is a false positive. It seems that the specification
of method push in feature ListBase, stating that all array
elements must be retained in the array, is too complex to be
verified by Simplify. Using the JML statements assert and
assume, we were able to provide an intermediate goal with
which Simplify is able complete the proof:

//@ assert(\forall int k; O<=k && k<data.length; tmp[k]==datalk]
==> (\exists int z; 0<=z && z<tmp.length; tmp[z]l==datalk]));
//@ assume(\forall int k; 0<=k && k<data.length; tmp[k]==datalk]
==> (\exists int z; 0<=z && z<tmp.length; tmp[zl==datalk]));

2 Average duration of the automated verification of product
Sortede Stack e Snoce Conse List Base over five runs: stan-
dard parameters 2.3s, one additional loop step 3.1s.

Finally, the prover framework is able to detect all interac-
tions as expected (see Section 4.1). Our study demonstrated
that it is possible to detect feature interactions automati-
cally based on design-by-contract specifications. However,
we found also cases in which manual intervention is neces-
sary, which suggests to explore the trade-off between simplic-
ity (checking only a subset of the state space) and soundness
(checking the entire state space).

6. RELATED WORK

Type Checking. Type checking approaches can only handle
type errors caused by feature interactions, which we call syn-
tactic feature conflicts [13, 2, 5]. We aim at the detection of
semantic feature conflicts by reasoning with given additional
specification. None of the conflicts listed in Section 4.1 can
be detected by type checking.

Model Checking. Several approaches use model checking
for feature interaction detection [22, 6]. There is an overview
of earlier approaches [24]. In contrast to these approaches,
we also take code into consideration.

Recently, Classen et al. and Lauenroth et al. proposed to
use model checking for verification of whole product lines [10,
16]. The model checker is given the feature model and the
code of all features. The checker is able to check whether
a given condition holds for all products of the product line.
To our knowledge, there are no approaches that join model
checking and design by contract.

Model-Driven Development. Poppleton extended Event-
B with support for feature-orientation [21]. There is a subtle
difference, as we focus on the ability to detect feature con-
flicts. The Event-B community is interested in the decom-
position and composition of submodels for reasons of proof
performance.

Our earlier approach on FeatureAlloy already posed the
question of recognizability of semantic feature conflicts [4].
The current approach brings together specification and code
and aims to provide the means for a safer merging of method
code.

Proof Reuse. In the presented approach, every product to
be analyzed for feature conflicts needs to be built individu-
ally. The number of products is exponential in the number
of optional features. Although we do not yet see how to
reduce this number to a polynomial scale without increas-
ing unsoundness, Bruns et al. and Thiim et al. presented
recent approaches that reduce the amount of effort spent in
redundant proofs in software product lines (7, 23].

7. FUTURE WORK

The integration of design by contract into FOSD is still in
development. We identify the following avenues of further
work.

Full JIML support. To support the full JML standard [17],
the following topics need to be handled:

e additional method clauses

e model and ghost fields

e import definitions

e specification refinement chains
e heavyweight specification cases
e separate JML compilation units

We are aware that the subset of JML that we support
presently is incomplete but we believe it to be useful. We
plan to increase the support in future case studies.

Specification Composition Approaches. The JML key-
word also is used in the refinement of inherited method
specifications [17]. The similarity of the semantics of this
keyword and our specification composition mechanism is
subject of further research. In the work presented here, we
investigated whether it is possible to detect semantic feature
conflicts by annotating code with specifications. We exper-
imented with a single composition mechanism for specifica-
tions in JML. In ongoing work, we are inspecting and an-
alyzing several composition approaches, whereas some rely
on Liskov’s substitution principle and some do not.

Scalability. A comprehensive scalability analysis of the ap-
proach has not yet been conducted. We expect that the scal-
ability of JML parsing and composition should be roughly
the same as that of Java composition with FEATUREHOUSE.
The dominating amount of run time is spent on the prov-
ing process (ESC/Java2 and Simplify). We expect that
ESC/Java2’s behavior of concentrating on proving each me-
thod in isolation has a positive effect on scalability if the
individual methods’ verification conditions are kept small,
for which the programmer is accountable.

Usability. Design by contract has been employed in indus-
try where software reliability is of elevated concern. These
industrial fields also have an increasing demand for software
flexibility. We hope that with ongoing tool development
and research, the hurdles of employing FOSD are going to
be alleviated. Indeed, the problem of missing unsoundness
warnings is being targeted [15].

Satisfiability. In our case study, we checked whether com-
posed programs satisfy their composed specification. But,
before actually trying to write corresponding code, it should
be checked whether the specification is satisfiable at all, i.e.,
whether there exists at least one implementation fulfilling
the specification. Satisfiability is especially important when
specifications are composed from several features, where un-
satisfiable specifications may occur more frequently. Check-
ing satisfiability should be automated just like verification.

Comparison of Different Prover Frameworks. In our
case study, we used ESC/Java2 together with the prover
Simplify. As proof performance varies greatly with different
provers and prover frameworks, we expect a thorough anal-
ysis involving several tools to be a worthwhile refinement of
our preliminary study. Further potential candidates for com-
parison are frameworks for static checking of JML-annotated
Java, such as JACK?®, KeY*, and Krakatoa®.

Shttp://www-sop.inria.fr/everest/soft/Jack/
‘http://key-project.org/
Shttp://krakatoa.lri.fr/

Comparison with Other Approaches. As tool develop-
ment is ongoing, we hope that a meaningful comparison of
the suitability of model checking and theorem proving for
product line verification will be realizable soon.

8. CONCLUSION

To our knowledge this is the first approach of automatic
composition of feature-oriented specifications in JML. While
our software tool is still under development, we claim that
the supported subset of JML is meaningful enough to reason
that design by contract is suitable for the detection of con-
flicting feature interactions. In a small case study, we were
able to detect feature conflicts semi-automatically, using ex-
tended static checking, which are not detectable without the
specifications given in JML. Several interactions were found
automatically, but a higher rate of detection was achieved
with manual assistance. The detected conflicts resulted in
violations of a class invariant and a method postcondition.

Practical limits are imposed by the capacity of current
prover frameworks. As the prover framework ESC/Java?2 is
both unsound and incomplete in principle, the ability to find
feature conflicts depends heavily on the parameter settings
of the prover framework and on the way certain specifica-
tions are formulated. The proof framework did not always
report that certain code sections were not checked. Limits
of design by contract for feature interaction detection were
not discovered in this work.

In our case study, we were able to detect all feature con-
flicts of the types listed in Section 4.1 semi-automatically
using design by contract. Whether this can be done for all
possible feature conflicts is a question to be answered in the
future. Future work should also evaluate other automatic
and interactive theorem provers, especially those that are
sound and complete, while our approach and tool to com-
pose specifications in JML can be used.

9. ACKNOWLEDGMENTS

The work of Scholz, Apel, and Lengauer was funded by
the DFG research grants AP 206/2 and AP 206/4. We are
greateful to the anonymous reviewers for their helpful com-
ments.

10. REFERENCES

[1] S. Apel and C. Késtner. An overview of
feature-oriented software development. Journal of
Object Technology (JOT), 8(5):49-84, 2009.

[2] S. Apel, C. Kistner, A. GroBlinger, and C. Lengauer.
Type safety for feature-oriented product lines.
Automated Software Engineering (ASE),
17(3):251-300, 2010.

[3] S. Apel, C. Késtner, and C. Lengauer. FeatureHouse:
Language-independent, automated software
composition. In Proceedings of the International
Conference on Software Engineering (ICSE), pages
221-231. IEEE Computer Society, 2009.

[4] S. Apel, W. Scholz, C. Lengauer, and C. Késtner.
Detecting dependences and interactions in
feature-oriented design. In Proceedings of the
International Symposium on Software Reliability
Engineering (ISSRE), pages 161-170. IEEE Computer
Society, 2010.

[5]

[11]

[12]

[13]

[14]

S. Apel, W. Scholz, C. Lengauer, and C. Késtner.
Language-independent reference checking in software
product lines. In Proceedings of the International
Workshop on Feature-Oriented Software Development
(FOSD), pages 65-71. ACM Press, 2010.

L. Bousquet. Feature interaction detection using
testing and model-checking—Experience report. In
World Congress on Formal Methods, pages 622-641.
Springer, 1999.

D. Bruns, V. Klebanov, and I. Schaefer. Verification of
software product lines: Reducing the effort with
delta-oriented slicing and proof reuse. In Proc. Int’l
Conf. Formel Verification of Object-Oriented Software
(FoVeOOS), volume 6528 of Lecture Notes in
Computer Science, pages 61-75. Springer, 2010.

M. Calder, M. Kohlberg, E. H. Magill, and

A. Reiff-Marganiec. Feature interaction: A critical
review and considered forecast. Computer Networks:
The International Journal of Computer and
Telecommunications Networking, 41(1):115-141, 2003.
F. Calliss. A comparison of module constructs in
programming languages. SIGPLAN Not., 26:38—46,
1991.

A. Classen, P. Heymans, P. Schobbens, A. Legay, and
J. Raskin. Model checking lots of systems: efficient
verification of temporal properties in software product
lines. In J. Kramer, J. Bishop, P. Devanbu, and

S. Uchitel, editors, Proceedings of the International
Conference on Software Engineering (ICSE), pages
335-344. ACM Press, 2010.

D. Cok and J. Kiniry. ESC/Java2: Uniting ESC/Java
and JML. In Construction and Analysis of Safe,
Secure, and Interoperable Smart Devices, volume 3362
of Lecture Notes in Computer Science, pages 108—128.
Springer-Verlag, 2005.

D. Detlefs, G. Nelson, and J. Saxe. Simplify: A
theorem prover for program checking. Journal of the
ACM, 52:365-473, 2005.

C. Kistner and S. Apel. Type-checking software
product lines — A formal approach. In Proceedings of
the International Conference on Automated Software
Engineering (ASE), pages 258-267. IEEE Computer
Society, 2008.

C. Kistner, S. Apel, T. Thiim, and G. Saake. Type
checking annotation-based product lines. ACM
Transactions on Software Engineering and
Methodology (TOSEM), 2011. To appear.

(15]

(16]

(17]

(18]

(19]

(20]

(21]

22]

23]

[24]

J. Kiniry, A. Morkan, and B. Denby. Soundness and
completeness warnings in ESC/Java2. In Proceedings
of Conference on Specification and Cerification of
Component-based Systems (SAVCBS), pages 19-24.
ACM Press, 2006.

K. Lauenroth, K. Pohl, and S. Toehning. Model
checking of domain artifacts in product line
engineering. In Proceedings of the International
Conference on Automated Software Engineering
(ASE), pages 269-280. IEEE Computer Society, 2009.
G. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby,
D. Cok, and J. Kiniry. JML reference manual draft,
2008. Revision: 1.235.

B. Liskov and J. Wing. A behavioral notion of
subtyping. ACM Transactions on Programming
Languages and Systems (TOPLAS), 16:1811-1841,
1994.

B. Meyer. Applying ”design by contract”. IEEE
Computer, 25(10):40-51, 1992.

K. Pohl, G. Bockle, and F. J. van der Linden.
Software Product Line Engineering: Foundations,
Principles and Techniques. Springer, 2005.

M. Poppleton. Towards Feature-Oriented Specification
and Development with Event-B. In Proceedings of the
International Working Conference on Requirements
Engineering: Foundation for Software Quality
(REFSQ), pages 367-381. Springer-Verlag, 2007.

B. Stepien and L. Logrippo. Feature interaction
detection using backward reasoning with LOTOS. In
Protocol Specification, Testing and Verification XIV
(PSTV 94), pages 71-86. Chapman & Hall, 1995.

T. Thiim, I. Schaefer, M. Kuhlemann, and S. Apel.
Proof composition for deductive verification of
software product lines. In Proceedings of the
International Workshop on Variability-intensive
Systems Testing, Validation & Verification (VAST),
2011. To appear.

H. Velthuijsen. Issues of non-monotonicity in
feature-interaction detection. In Feature Interactions
in Telecommunications Systems, 3, pages 31-42. 10S
Press, 1995.

