
How to Compare Program Comprehension in FOSD
Empirically – An Experience Report

Janet Feigenspan
Metop Research Center
Magdeburg, Germany

janet.feigenspan@metop.de

Christian Kästner
University of Magdeburg
Magdeburg, Germany
ckaestne@ovgu.de

Sven Apel
University of Passau
Passau, Germany

apel@uni-passau.de
Thomas Leich

Metop Research Center
Magdeburg, Germany

thomas.leich@metop.de

ABSTRACT
There are many different implementation approaches to realize the
vision of feature-oriented software development, ranging from sim-
ple preprocessors, over feature-oriented programming, to sophisti-
cated aspect-oriented mechanisms. Their impact on readability and
maintainability (or program comprehension in general) has caused
a debate among researchers, but sound empirical results are miss-
ing. We report experience from our endeavor to conduct experi-
ments to measure the influence of different implementation mecha-
nisms on program comprehension. We describe how to design such
experiments and report from possibilities and pitfalls we encoun-
tered. Finally, we present some early results of our first experiment
on comparing the CPP tool with the CIDE tool.

Categories and Subject Descriptors: D.2.2 [Software]: Software
Engineering—Design Tools and Techniques; D.3.3 [Software]: Pro-
gramming Languages—Language Constructs and Features

General Terms: Experimentation, Human Factors, Languages

Keywords: Program Comprehension, Empirical Software Engi-
neering, FOSD, Preprocessors, CIDE

1. INTRODUCTION
In software development, a large amount of money is spent on

software maintenance [29]. One major part of maintaining soft-
ware is understanding code [42]. Therefore, one important goal in
software engineering is to develop concepts, languages, and tools
that aid understanding in order to reduce maintenance costs.

One paradigm that aims at increasing understandability is feature-
oriented software development (FOSD) [4]. The key abstraction of
FOSD is a feature, which represents a product characteristic or do-
main abstraction relevant to stakeholders. FOSD aims at separation
of concerns in terms of features, even for crosscutting and inter-
acting features, and provides corresponding abstraction and imple-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FOSD’09, October 6, 2009, Denver, Colorado, USA.
Copyright 2009 ACM 978-1-60558-567-3/09/10 ...$10.00.

mentation mechanisms [4, 8, 36]. Modularizing software in terms
of features promises improved understandability, because concerns
can be traced directly from the problem space (domain description)
to the solution space (implementation) [4, 30].

There are numerous implementation approaches for FOSD. Ex-
amples are preprocessor-based implementations with the C prepro-
cessor [20], XVCL [21], or CIDE [24]; aspect-oriented program-
ming (AOP) [26] with languages such as AspectJ [27]; and feature-
oriented programming (FOP) [36] with languages or tools such as
Jak/AHEAD [8] or FeatureC++ [3]. Although all approaches aim
at the common goal of separation of concerns, they use very dif-
ferent mechanisms, ranging from annotations with #ifdef direc-
tives, over superimposition, to sophisticated weaving mechanisms.
Which of the FOSD approaches has the best effect on understand-
ability? Due to the immense differences between all these ap-
proaches, this cannot be answered easily. If we asked developers,
we would get very different opinions [5]. Is there a way to evalu-
ate understandability of different FOSD approaches in a sound way
that is not just based on subjective opinions?

Recently, we naively set out to conduct an experiment to com-
pare FOSD approaches empirically. Initially, we wanted to measure
understandability, from here on referred to as program comprehen-
sion, for all common FOSD approaches and provide a ranking or re-
sults like “developers are able to understand an AspectJ-based im-
plementation by 35 % faster than an equivalent preprocessor-based
implementation” [5]. We soon realized that this would not be so
simple: (a) comparing complete FOSD approaches to derive a rank-
ing, e.g., AOP vs. FOP, is nearly impossible, because of the number
of parameters that would have to be considered, and thus (b) only
few aspects of program comprehension can be measured feasibly.

In this paper, we report from our experience of designing such
experiment and from possibilities and pitfalls we encountered. We
present some early results of our first experiment on comparing
CPP with CIDE. This way, we want to convey some intuition on the
boundaries of measuring program comprehension and show what
can be evaluated empirically and what requires an unrealistically
high amount of effort. We hope that other researchers pick up em-
pirical evaluations, so that we can eventually combine the results to
a larger picture on program comprehension in FOSD approaches.

2. BACKGROUND
In this section, we give a brief overview of different implemen-

tation mechanisms. We selected four mechanisms: (1) aspect-
oriented programming with AspectJ, (2) feature-oriented program-

1 p u b l i c c l a s s Stack {
2 LinkedList items = new LinkedList();
3 p u b l i c vo id push(Object i) { items.addFirst(i); }
4 p u b l i c Object pop () { re turn items.removeFirst(); }
5 }

Figure 1: Base implementation of a stack.

1 p u b l i c a s p e c t Safe {
2 p o i n t c u t safePop(Stack stack):
3 e x e c u t i o n(Object pop()) && t h i s(stack);
4 Object around(Stack stack): safePop(stack) {
5 i f (stack.items.size() > 0) re turn proceed();
6 re turn n u l l;
7 }
8 }

Figure 2: Aspect-oriented implementation of Safe.

ming with Jak, (3) annotating feature code with CPP’s #ifdef di-
rective, and (4) annotating features in CIDE. We selected AspectJ,
Jak, and CPP because their influence of program comprehension
is controversially discussed [5, 13, 30, 31, 41]. CIDE was selected
because it is part of our own research.

We use the running example of a class Stack in Figure 1, which
we subsequently extend with a feature Safe to ensure that no ele-
ments can be popped of an empty stack.1

Aspect-oriented programming with AspectJ.
AOP was developed to modularize otherwise scattered and tan-

gled code of crosscutting concerns in aspects [26]. An aspect can
alter the structure of the base program by means of inter-type dec-
larations and can alter the behavior of the base program by means
of advice, which is executed at certain join points selected by point-
cuts. AspectJ is a popular aspect-oriented language based on Java
that implements these concepts and provides a compiler to weave
aspects into Java code [27]. Several researchers have shown that
AOP is suitable to implement features, e.g., Figueiredo et al. [15].

To illustrate AOP, we show one possible AspectJ implementa-
tion of feature Safe in Figure 2. The extension to the base stack
is encapsulated in an aspect called Safe that defines the pointcut
safePop. The pointcut captures the execution of the method pop.
Advice, declared with around, ensures that the method pop is ex-
ecuted only if the stack is not empty; otherwise, it returns null.

Feature-oriented programming with Jak.
FOP has a similar goal to modularize crosscutting concerns, but

uses a different implementation strategy: Classes are split into class
fragments according to features and all class fragments of a feature
are encapsulated in a feature module [8, 36]. Each class fragment
contains only the part of the class that is necessary to implement the
corresponding feature. To generate a program, all class fragments
of a class are composed during compilation.

In Figure 3, we show the implementation of the feature Safe with
Jak, an FOP dialect of Java implemented as part of the AHEAD
tool suite [8]. The keyword refines is used to indicate that the
declaration specifies not a full class but only a fragment (called
class refinement) and the keyword Super is used to specify how
to methods can be merged. To compile a program that includes the
feature Safe, the class fragments of Figures 1 and 3 are composed.
During composition, members are merged into a single class and
methods with identical names are merged (the original method is
inlined at the Super call)).
1We omit the usual method top for brevity.

1 r e f i n e s c l a s s Stack {
2 Object pop () {
3 i f (items.getSize() > 0) re turn Super.pop();
4 re turn n u l l;
5 }
6 }

Figure 3: Feature-oriented implementation of Safe.

1 p u b l i c c l a s s Stack { //...
2 p u b l i c Object pop() {
3 # i f d e f SAFE
4 i f (items.size == 0) re turn n u l l;
5 # e n d i f
6 re turn items.removeFirst();
7 }
8 }

Figure 4: CPP implementation of the stack.

Annotations with the C preprocessor (CPP).
A different way to implement features comes from textual pre-

processors like CPP [20] or those used in various product line tools
like XVCL [21], pure::variants2, or Gears3. Instead of separating
features into distinct files (physical separation of concerns), they
are only annotated in a common tangled implementation. With
these annotations, we can trace each feature from the problem space
to its scattered implementation.

With CPP, developers use #ifdef and #endif directives to
annotate code. Since the CPP is a text-based processor, it can also
be applied to other programming languages than C. Furthermore,
everything can be annotated, even just an opening bracket, which is
very flexible but leaves creating reasonably annotated source code
to the discipline of the programmer. Academics often criticize pre-
processor annotations for negative effects on readability and main-
tainability [13, 41], but due to their simplicity they are common in
industry.

In Figure 4, we show the implementation of Safe using CPP.
Lines 7–9 assure that elements can only be popped from a non-
empty stack.

Annotations with CIDE.
CIDE was developed at the University of Magdeburg [24]. In-

stead of textual annotations like with CPP, in CIDE, features are
annotated in a tool infrastructure and are represented with back-
ground colors, one color per feature. Additionally, modularity is
emulated by providing views on the source code (e.g., show only
the code of feature X) [25]. A further difference to CPP is the kind
of allowed annotations: While CPP works on plain text, thus allow-
ing us to annotate everything, CIDE uses the underlying structure
of the according source code file to enforce disciplined annotations,
assuring that not arbitrary text, but only classes, methods, or state-
ments can be annotated [24].

In Figure 5, we show our stack example a last time, this time
with a gray background color to denote the feature Safe.

Which approach is the most understandable?.
So, which of the presented FOSD approaches provides most ben-

efit on program comprehension? As the examples demonstrate, the
approaches differ considerably, so this question cannot be answered
easily. For example, AOP uses a sophisticated join point model,
whereas FOP creates class fragments inside feature modules. CPP

2http://www.pure-systems.com
3http://www.biglever.com/

1 p u b l i c c l a s s Stack { //...
2 p u b l i c Object pop() {

3 if (elements.size == 0) return null;
4 re turn elements.removeFirst();
5 }
6 }

Figure 5: CIDE implementation of the stack.

and CIDE even use very simple mechanisms and do not separate
feature code at all. The syntax of AspectJ has a large number of
new concepts and keywords, whereas in Jak and CPP, two new key-
words suffice. On the other hand, compared to Jak, AspectJ is more
expressive to extend a base program, and CPP allows almost every
kind of changes. Do these constructs provide a benefit on program
comprehension or a drawback? Do circumstances exist in which
AspectJ is more comprehensible than Jak and vice versa? What
about CPP and CIDE? In the remainder of the paper, we show our
experience in determining this empirically and present first results.

3. DESIGNING EXPERIMENTS ON PRO-
GRAM COMPREHENSION

There is an overwhelming body of literature on how to conduct
experiments in such a way that they are sound. If we are not careful
how to conduct the experiments, we can easily get biased results.
For example, when asking subjects (the individuals that participate
in our experiment) how well they understand an implementation
in each of our four languages, we may get subjective results that
are heavily influenced by their background and personal opinion
(some may have learned to use AspectJ, others may be experienced
with C++ development and preprocessor usage). Therefore, we
must be very careful how to design and conduct experiments. We
started by briefly reviewing the literature on controlled experiments
in general and give a very short overview of the most important
concepts4. Readers already familiar with conducting experiments
may skip this section.

An experiment is a systematic research study in which the in-
vestigator directly and intentionally varies one or more factors (in-
dependent variables) while holding everything else constant and
observes the results (dependent variables) of the systematic varia-
tion [16]. From this definition, three criteria for experiments can be
deduced. Firstly, an experiment must be designed such that other
researchers can replicate it (replication). This is an important con-
trol technique in empirical research. Secondly, the variations of
the factors must be intended by the investigator (intention). Ran-
dom variations should be avoided because they prevent replication.
Thirdly, it is important that factors can be varied (variability). Oth-
erwise, an effect on the result cannot be observed depending on the
variations of the factors.

The process of experimental research can be divided into five
stages. In the first two stages, objective definition and design, the
experiment is prepared. During execution, we run the experiment
and collect data, which we analyze during analysis. Finally, we in-
terpret our results during interpretation. We introduce these stages
and relevant terms next [22].

3.1 Objective Definition
The first two steps when starting an experiment is to define the

variables of the experiment and to specify hypotheses that should
be tested. In our case, we have one independent variable: the FOSD

4A comprehensive discussion can be found in [14, 39].

approach. Since we want to assess the understandability of As-
pectJ, Jak, CPP, and CIDE, our independent variable has four lev-
els. Our dependent variable is program comprehension, because
we want to assess whether and how different FOSD approaches in-
fluence program comprehension.

A hypothesis is an educated guess about what should happen
under certain circumstances [16]. One important criterion is that
hypotheses are falsifiable, i.e., that we can reject them [34]. Hy-
potheses that are continually resistant to be falsified are assumed to
be true, yet it is not proven that they are. The only claim we can
make is that we found no evidence to reject our hypotheses.

Program comprehension is ’the process of understanding a pro-
gram code unfamiliar to the programmer’ [28]. Depending on the
amount of domain knowledge, there are different models for how
program code is understood. In bottom up models, a program is
analyzed by examining statements and grouping them to chunks,
which are iteratively abstracted to a high level understanding of
source code. A programmer uses a bottom up approach when he
has no knowledge of the program’s domain (e.g., [33]). Otherwise,
he can use his domain knowledge to create hypotheses about a pro-
gram’s purpose and verifies or rejects them by examining the code
(top down or integrated models) (e.g., [9]).

So, how can we measure program comprehension? Several tech-
niques and measures exist in the literature with differing reliability
and effort in applying them (see [11] for a comprehensive survey).
Typical techniques include maintenance tasks, mental simulation
(e.g., pen-and-paper execution of the source code) and think-aloud
protocols (i.e., subjects verbalize their thoughts during compre-
hending a program [1]). Usually, correctness, completeness, and
time to solve a task are used as measure for program comprehen-
sion. Which measure to chose depends on the experiment, we will
discuss our choice later.

So, how could our hypotheses look like? An example could be
‘The number of errors of a maintenance task is lower for Jak than
for AspectJ with bottom up program comprehension’, which ex-
actly defines the technique, measure, and program comprehension
model to which our hypothesis is applicable.

Finally, it is imperative that we define our hypotheses before de-
signing or actually executing the experiment, because decisions in
subsequent stages depend on the hypotheses (e.g., the subjects we
include or the analysis methods we apply) [16]. In addition, it pre-
vents us from the bad practice of ‘fishing for results’ in our data
and thus discovering random relationships between variables [12].

3.2 Design
The next step is to design our experiment so that we are able to

evaluate our hypotheses. During this stage, internal and external
validity as well as confounding variables have to be considered.

• A confounding variable is a parameter that influences the de-
pendent variable besides variations of an independent vari-
able [16]. In order to soundly measure the influence of FOSD
approaches on program comprehension, we need to iden-
tify and control the influence of confounding variables. For
example, programming experience could influence program
comprehension more than using different FOSD approaches.
If we accidentally distribute all the experienced programmers
in one group and all the novices in another, this could over-
shadow our measures and cause biased results.

• Internal validity describes the degree to which the value of
the dependent variable can be assigned to the manipulation
of the independent variable [39]. This means that we have
to control the influence of all confounding parameters (e.g.,
noise level or programming experience).

• External validity is the degree to which the results gained in
one experiment can be generalized to other subjects and set-
tings [39]. The more realistic an experimental setting is, the
higher is its external validity. Hence, we could conduct our
experiment in a company under real working conditions with
employees of the company. Now, however, our internal va-
lidity is threatened, because we cannot control the influence
of confounding variables like programming experience.

When designing experiments, we have to find a compromise be-
tween both kinds of validity. For example, if we do not know how
our variables interact or our resources are rather limited, we can
start with experiments that maximize internal validity (e.g., by us-
ing only unpaid students of the same programming course). This is
also the path we take in our experiments. Once we have established
a hypothesis, we can design experiments that are more realistic.

A first step in controlling confounding variables is to identify
them. Since the number of confounding parameters on program
comprehension is large, we discuss them separately in Section 4.
When identified, we need to control them. In literature there are a
number of approaches to control confounding variables: random-
ized sampling, keeping the parameter constant, including parame-
ter as independent variable, ex post analysis of the parameter, or
experimental designs [2, 16]. In our experiments, we use a sim-
ple experimental design and usually randomization, assuming that
statistical errors even out with a large enough sample.

3.3 Execution and Analysis
If we carefully design our experiment, running it usually the eas-

ier part. In this stage, we recruit subjects, let them complete our
tasks, and collect our data as planned.

Having collected the data, we need to describe and analyze them.
For describing our sample and data, we can compute some descrip-
tive statistics, e.g., frequencies, means, or standard deviation. This
information is necessary for replicating our experiment [2].

After describing the data, we can apply significance tests to eval-
uate our hypotheses [2]. Those tests are necessary in order to de-
termine whether a difference we encountered is significant or just
appeared randomly. Depending on the data, we can apply differ-
ent tests. For example, if we want to check whether frequencies
of correct answers differ between Jak and AspectJ, we use a χ2-
test [2]. If we want the check whether measured times to complete
a task differ between Jak and AspectJ, we can use a t-test or Mann-
Whitney-U-test, depending on how our data are distributed [2]. For
analyzing two independent variables, e.g., programming experi-
ence and FOSD approach, there are further tests like ANOVA [2].
An overview of significance test and their requirements and appli-
cation can be found in [2]. Statistical tools like SPSS or R help to
analyze the data.5

4. CONFOUNDING VARIABLES ON PRO-
GRAM COMPREHENSION

After our brief overview of controlled experiments in general,
we discuss confounding variables (also called confounding param-
eters) on program comprehension. Identifying and controlling con-
founding parameters is necessary to allow us to draw sound conclu-
sions from our result and avoid bias. During our design, we found
a high number of confounding parameters (by literature review and
consulting experts). Due to space limitations, we group the param-
eters into three categories and pick one parameter per category to
explain its influence and how it can be controlled. The remaining
parameters are discussed in detail in [14].

5see www.spss.com and www.r-project.org

Personal parameters.
Personal parameters are related to the subjects of an experiment.

As example parameter, we discuss programming experience.
Consider an expert and a novice programmer, who both solve

a task in an experiment. The chance that the expert programmer
has dealt with a program similar to the task at hand is considerably
higher than for a novice programmer. In the case an expert knows
the kind of problem, but a novice does not, the cognitive processes
for understanding the source code of the task are not the same.
Whereas the expert uses his knowledge to solve a task, the novice
acquires knowledge. Hence, to avoid biased results (we would not
solely measure whether one program is more understandable than
another, but additionally the effect of programming experience on
program comprehension), we control the influence of programming
experience in our experiment. Of the control strategies discussed
in Section 3.2, we use pseudo randomization, because of the high
influence of programming experience on program comprehension.

To control the influence of programming experience, we need to
measure it. In the literature, programming experience is diversely
understood. We found several aspects that were used, for example
years of practical programming or number of programming courses
at college. Since there is no common definition or questionnaire,
we need to consider relevant aspects of programming experience
depending on the hypotheses of an experiment. For our experiment,
we used Java code and asked in how many Java projects the subjects
have participated in a preliminary survey. Details of this survey can
be found in [14]. Based on the measured experience, we divided the
subjects into two even groups.

Besides programming experience, we identified domain knowl-
edge, intelligence, and education as confounding parameters. Ex-
cept for domain knowledge, measuring personal parameters is hard,
because either no common understanding exists (programming ex-
perience, intelligence) or the measurement is difficult (intelligence,
education). Depending on the hypotheses as well as human and
financial resources, according means to control the influence need
to be defined. We kept domain knowledge and education constant
and randomized intelligence in our experiment.

Environmental parameters.
The second group of confounding parameters is specific to ex-

perimental situations that assess program comprehension as well
as experiments in general. We discuss tool support in more detail.

Software development is supported by tools that foster program
comprehension. However, before functionalities of a tool can be
used, persons need to familiarize with it. Even after an equal
amount of time, persons can use different sets of features of the
same integrated development environment (IDE). Hence, letting
persons use the same IDE does not control the influence of tool sup-
port sufficiently: Some subjects need to familiarize with it, whereas
others may not know how to use a certain functionality. Letting
subjects use their preferred IDE prevents that they have to familiar-
ize with an unknown tool, but introduces variations in tool support.

Depending on our hypotheses, we need to control tool support:
If the comprehensibility of two languages should be compared, tool
support would confound the result, because not the comprehensi-
bility of the language alone, but also how the language is supported
by the tool is measured. On the other hand, if skills of subjects
should be measured, letting them use their preferred tool is more
advisable, because they do not have to familiarize with a new one.
In our experiment, we eliminated tool support.

Other environmental parameters beyond tool support include
training and motivation of subjects, noise level, position effects,
ordering effects, test effects, the Hawthorne effect [37], and the

Rosenthal effect [38]. All of them can be more or less easily con-
trolled. For example, we could pay our subjects for good perfor-
mance in our experiment, if we have according financial resources.
In our experiment, we used a warming up task to let subjects fa-
miliarize with the experimental setting and tried to keep all other
parameters constant.

Task-related parameters.
Task-related parameters are caused by the experimental tasks and

source code. As an example, we discuss comments.
As shown by Prechelt et al. [35], commented code is significantly

easier to understand than uncommented code. Hence, for control-
ling the influence of comments in our experiments, comments must
be comparable in different versions and must have the intended ef-
fect (e.g., support subjects in comprehension, not confusing them).
We can conduct pretests, consult experts, or assess the opinion of
subjects to control the influence of comments.

Further parameters include structure of source code, coding con-
ventions, difficulty of the task, syntax highlighting and documenta-
tion. We can control the influence of most of them like the influence
of comments (i.e., conduct pretests, consult experts, or assess the
opinion of subjects).

5. COMPARING FOSD APPROACHES
Now, we come back to our initial goal to compare FOSD ap-

proaches. We show that, due to the sheer number of confounding
parameters discussed in the previous section, the scope of experi-
ments that soundly and feasibly assess the influence of FOSD on
program comprehension is very small. We started by naively de-
signing an experiment to assess the understandability of AspectJ,
Jak, CPP, and CIDE in one experiment, but soon found out that we
could not realistically conduct it. Then, we tried a more narrow
approach by comparing AspectJ and Jak, which also turned our as
unrealistic. Finally, we found that we have to proceed in small
steps, as we will show.

5.1 Four Approaches
Initially, we naively wanted to compare AOP vs. FOP vs. prepro-

cessors in general [5]. However, we found that the programming
language is an important confounding parameter. Are the results
the same whether we use AspectJ [27] or CaesarJ [6]? Is there a
difference when we use Java, C, or some other language as host
language? To explore these effects, we need to consider program-
ming languages as independent variables as well, and there can eas-
ily be dozens of languages for AOP and FOP and even preproces-
sors. Optimistically assuming just five programming languages per
approach, we already have to create 5 · 3 = 15 versions of a pro-
gram, which all must be comparable regarding difficulty, comment-
ing style, structuring, etc. (i.e., confounding task-related parame-
ters). Besides creating 15 comparable programs, we must recruit
subjects for 15 groups. Alternatively, we could ’re-use’ our sub-
jects such that one subject works with all programming languages
of one FOSD approach, but this way each subject needs consider-
ably longer to complete our task (five programs instead of one) and
we need to control several test effects.

At this point, we have not even started with other confounding
parameters like programming experience (maybe Jak is easier for
novices and AspectJ is faster to understand for experts) or tool sup-
port (maybe without tool support Jak is better than AspectJ but with
tool support it is the other way around), and can already show that
the experiment will become extremely complex and require many
subjects. If we also include the effect of programming experience,
tool support or other parameters, we easily reach designs where we

need thousands of subjects or tasks that take several days. Hence,
we cannot feasibly compare FOSD approaches as general as AOP
vs. FOP in one experiment.

5.2 Two Approaches
If we restrict our comparison to AspectJ and Jak, we restrict our-

selves to just two approaches with one language each. We reduce
external validity, because we can only provide results about these
two languages but not about AOP or FOP in general.

Still, there are many confounding variables left. In order to be
able to generalize our result, we need to include several levels of
programming experience, tool support, comments, etc. as indepen-
dent variables. If we include only experts and novices, IDE and
text editor versions, as well as commented and uncommented ver-
sions, our required number of subjects would be too large again
(2 · 2 · 2 · 2 = 16 groups).

Even if we fix all this, we need two comparable programs, one
written in AspectJ and one in Jak. How can we make sure that
they are comparable regarding their structure, comments, difficulty,
etc., despite the significant differences between both languages?
AspectJ and Jak differ considerably, for example, regarding the
keywords, structure of source code, composition mechanism, etc.
There are numerous ways of implementing the same problem in
AspectJ (of course, the same is true for Jak). So, is the AspectJ
program just difficult to understand due to the given implemen-
tation, or due to AspectJ’s mechanisms in general? How can we
eliminate the effect of different implementations of the same prob-
lem? Furthermore, we only would compare the implementation of
one problem. Maybe for some other problems, the outcome would
be reversed?

Hence, even comparing two programming languages, is nearly
impossible. We can only derive results for specific implementations
of specific problems. So, what aspects of an FOSD approach and
its effect on program comprehension can we feasibly measure?

5.3 Realistic Comparison
In order to feasibly design experiments, we need to restrict our

external validity even more. This means that we cannot test ev-
erything with one experiment in which we analyze the effect of all
levels of our independent variable and all confounding parameters
on program comprehension. Instead, we have to choose the scope
of our experiment so small that we can reliably measure program
comprehension and do not exceed our available resources.

Hence, a first step is to keep most confounding parameters con-
stant. This way, our experiment has a low degree of external valid-
ity, but it can be feasibly conducted and we can draw sound con-
clusions. Second, we restrict our experimental design to the sim-
plest comparison: one independent variable with two levels. This
reduces the number of subjects we need. Furthermore, we can com-
pare two levels that are rather similar. This helps us to create com-
parable conditions in our experiment (e.g., two versions of source
code that differ only in few aspects).

Examples of feasible comparisons are the effect of a few key-
words on understandability (e.g., does it make a difference to have
or not have cflow in AspectJ, does it make a different whether Jak
uses the keyword refines or layer?) or comparing programs in the
same programming language, but with different annotations (CIDE
vs. CPP). Furthermore, we could only use male students as subjects
that have completed the same programming courses at the same
university, are familiar with the same programming languages and
domains and have an average IQ. In this case, we can only gener-
alize our results to individuals with the same characteristics. The
challenge is to find the right balance.

6. DEMONSTRATION EXPERIMENT
In this section, we describe an experiment comparing the effect

of CPP and CIDE on program comprehension. The purpose of this
description is not provide all necessary information to replicate our
experiment (which is described in [14]), but to illustrate the small
scope of feasible and sound experiments, which we derived in the
previous section.

Our goal is to measure whether using colors in CIDE instead of
textual annotations à la CPP has an effect on program comprehen-
sion. As shown in Section 2, both approaches are quite similar, and
we expected that, when ignoring all tool support like views, the
kind of annotation has no effect on program comprehension.

6.1 Objective Definition
Our independent variable has two levels: textual annotations à

la CPP and annotations using background colors à la CIDE. Our
dependent variable, program comprehension, was measured with
four maintenance tasks (given a bug description, subjects had to
find the cause in the source code and fix it). We assessed the time
to solve a task and whether a task was completed successfully.

Our hypotheses are:
• There are no differences in solving time between Java-CPP-

annotated and Java-CIDE-annotated source code with bot-
tom up program comprehension.

• There are no differences in the number of completed tasks
between Java-CPP-annotated and Java-CIDE-annotated
source code with bottom up program comprehension.

We expect no differences, because for all tasks, subjects need to an-
alyze source code on a textual basis. Hence, it should be irrelevant
how the according source code statements are annotated.

6.2 Controlling Confounding Variables
In order to control the influence of personal parameters, we mea-

sured programming experience in a pre-test and used matching to
create homogeneous groups according to programming experience
(and gender). Since our sample was large enough (about 50 sub-
jects), we assume that both groups are homogeneous according to
intelligence, too.

We chose the domain of software for mobile devices, which was
unfamiliar to all subjects (ensured in pre-test), thus enforcing bot-
tom up program comprehension. Regarding education, we selected
subjects that took an advanced programming course at the Univer-
sity of Passau, which required several basic programming courses.

In order to control environmental parameters, we conducted the
experiment in a browser, not in an IDE, thus excluded an influence
of tool support. We created a HTML file for every source code file.
A link to every file was displayed at the left side of the screen (sim-
ilar to the package explorer of Eclipse). Subjects were not allowed
to use the search function of the browser.

As training, we gave one neutral introduction in one room for all
subjects to CPP and CIDE with familiar source code examples. The
experiment was also conducted in one room (i.e., same noise level,
etc.). For controlling the influence of motivation, subjects were re-
quired to participate in our experiment to complete their course and
could enter a raffle for an Amazon gift card. All subjects knew that
they participated in an experiment. Due to our limited resources,
we did not conduct a repeated measure (hence: excluded test
effects) or switched the order of the task. To control position and
ordering effect, we used a warming up task, which took about ten
minutes and should subjects familiarize with the source code. Fur-
thermore, the tasks were arranged with increasing difficulty, so that,
with each task, subjects were more familiar with the source code.

In order to control task-related parameters, we used a code-

Figure 6: Response times with CPP and CIDE for all four tasks.

reviewed Java source code for an application for mobile devices,
developed by others [15]. The code has about 3800 lines of code,
37 classes, and 4 features were already annotated using textual
#ifdef statements. For creating the CIDE version, we deleted all
lines that contained preprocessor statements and colored the back-
ground of all feature source code with the same colors as CIDE
uses (see [14] for details). Since we used a code-reviewed version,
structure, coding conventions, comments, documentation was al-
ready approved by experts, and our changes for CIDE did not affect
them. For syntax highlighting, we used the same style as Eclipse,
because all of our subjects were familiar with it.

Since we had the same source code, we could use the same tasks
for both versions. All four maintenance tasks we created by in-
troducing bugs that occurred during runtime (forcing the subjects
to examine the control flow of the program) in the source code of
a specific feature. Du to space limitations we have to defer the
interested reader to [14] for details on these tasks. Before the ex-
periment, we confirmed that the bugs we produced can be found by
subjects in a reasonable amount of time (within two hours) with a
pre-test with some students from the University of Magdeburg.

6.3 Results
We report our results, before we interpret them. This separation

is standard practice [7] to ensure that readers can distinguish results
from interpretation, which helps to understand the consequences
we draw from our result.

For testing our first hypothesis (no difference in solving time),
we conducted a Mann-Whitney-U-test [2] to compare the mean
solving time of both versions. For the first three maintenance tasks,
we found no differences in solving time. For the last task, CPP sub-
jects were significantly faster, which means that we have to reject
our hypothesis. For visualization, we show box plots6 of the times
for all four maintenance tasks for each CPP and CIDE in Figure 6.

We tested our second hypothesis (no difference in number of
completed task) with a χ2 test, which checks whether observed fre-
quencies significantly differ from expected frequencies. We found
no significant differences in the number of completed task, which
confirms our hypothesis.

How can those results be interpreted? Since we found a differ-
ence in response times for one task, we must reject our according
hypothesis. Now, we have to interpret what this means. Why did a
difference for the last task occur? The bug in the last task was lo-
cated in a class that was entirely annotated with red as background
color. We suspect that this color was the main reason for the per-
formance difference in the task. To confirm this suspicion, we look
through the comments subjects were encouraged to give us after

6A box plot is a common form to depict groups of numerical data
and their dispersion. It plots the median as thick line and the quar-
tiles as thin line, so that 50 % of all measurements are inside the
box. Values that strongly deviate from the median are outliers and
drawn as separate dots.

the experiment. Some subjects indeed marked this as problem and
wished they could have adjusted the intensity of the background
color to their needs.

Note that although we did not observe significant differences in
our data (except for the last maintenance task), this does not mean
that there are none. Instead, what our results show is that we have
found no evidence of differences. It is possible that there are indeed
effects on response time or number of correctly solved tasks, yet
the effect could be too small for our sample to reveal or that other
confounding variables we did not think of eliminated the effect.
This is one reason why replication is crucial to empirical research:
Only if a hypothesis is continually resistant to be rejected, we can
assume that the relationship it describes indeed exists.

Next steps in assessing the understandability of CIDE and CPP
are to replicate our experiment and confirm our second hypothesis
(i.e., the kind of annotation has no effect on the number of com-
pleted tasks). Furthermore, we will explore whether the reason for
the performance difference in the last maintenance task was influ-
enced by the background color or something else.

To summarize, we learned from this experiment that, yes, it is
possible to measure program comprehension given a sufficiently
small scope. This encouraged us to keep on evaluating program
comprehension regarding further factors, e.g., tool support in IDEs
or disciplined annotations. In this experiment, we found that col-
oring code does not significantly increase program comprehension
(at least not when searching for a bug in a feature), but, on the con-
trary, can even hinder it. This gave us a new perspective on our tool
and encouraged us to search for other visualizations or make them
adjustable by the user.

7. FURTHER WORK
So, what are next steps in measuring program comprehension?

If we think of the demonstration experiment, we can extend our in-
dependent variable to other programming languages or create other
programs with other degrees of complexity. We can use program-
ming experts as subjects instead of novices. However, we cannot
vary all parameters at once, but have choose very few (otherwise,
we would exceed our resources).

For annotations with CPP and CIDE, it was relatively easy to
create comparable programs, because we ignored tool support and
the underlying programming languages are identical, so that the
kind of annotation is the only difference between the versions. In a
next step we will evaluate tool support.

But how can we start to compare AOP and FOP, which differ
so much? The answer is, that we have to start even smaller, for
example, compare two programs that only differ in their extension
(refines in Jak vs. an inter-type declaration in AspectJ). When
we have collected enough data to explain small differences between
Jak and AspectJ, we can incrementally increase complexity and dif-
ferences of programs and integrate the knowledge into a theory of
understandability of Jak and AspectJ. In order to assess the under-
standability of AOP vs. FOP, we have to generalize our knowledge
to other programming languages.

Since the steps in comparing AOP and FOP are rather small,
it may take a decade until we have a sound body of knowledge
concerning program comprehension of AOP and FOP, let alone all
FOSD approaches. Nobody knows whether there is still interest in
FOSD in ten years or whether other programming paradigms have
emerged by then. It is impossible for one research group to assess
the understandability of FOSD approach in a reasonable amount
of time with a reasonable amount of financial resources. Hence,
with this work, we want to encourage others to take up empirical
research and establish a community for measuring program com-

prehension of FOSD approaches. This way, we have more people
working on creating a body of knowledge, which speeds up the
process and reduces the errors we make along the process.

8. RELATED WORK
We are not aware of empirical research on program comprehen-

sion in the context of FOSD. However, empirical results can be
found in other domains, from which we can learn. For example,
with the development of the object-oriented paradigm, researchers
were curious about the benefit of object orientation compared to
procedural languages. Daly et al. [10] assessed the effect of inheri-
tance on understandability. They found performance differences in
favor of object-oriented source code (although the opinion of sub-
jects was that maintainability of procedural source code was better).
A similar result was found by Henry et al. [18], who compared C
and Objective C source code.

Also modeling and aspect-oriented languages have been ana-
lyzed in the past. Patig proposed a set of guidelines and a tool for
testing the understandability of modeling notations [32]. This work
has inspired our attempts to empirically measure program compre-
hension in the context of FOSD. Hanenberg et al. explored empiri-
cally whether aspect-oriented programming increases the develop-
ment speed for crosscutting code [17]. They compared different
kinds of tasks (different kinds of crosscutting concerns) and differ-
ent kinds of languages (object-oriented and aspect-oriented).

Recently, several systematic reviews of the status of empirical
software engineering were published [19,23,40]. Although they do
not focus on program comprehension, they provide useful advice
for empirical research in general (e.g., include experts in experi-
ments to ensure external validity or refer to disciplines like cog-
nitive psychology, because comparable problems occurred there
along with solutions due to the age of this discipline).

9. CONCLUSION
We reported how we set out to compare FOSD approaches like

AOP, FOP, or preprocessor-based implementations empirically
regarding program comprehension. We learned that, in order to
be able to draw sound conclusions from an experiment (internal
validity), it is important to control confounding parameters on
program comprehension. However, their sheer number makes
large-scoped experiments difficult. It is practically impossible
to compare all FOSD approaches at once. Instead, a hypothesis
should focus on few aspects of FOSD approaches, because this
allows us to feasibly test it. With a small experiment comparing
different forms of preprocessors, we demonstrated the feasibility
of small-scale experiments.

The next steps in assessing the understandability of FOSD ap-
proaches are to define small hypothesis and evaluate them empir-
ically. Once results for those small hypotheses are clear, we can
work on more complex hypotheses. In order to speed up this te-
dious process, it is necessary to establish a research community for
empirically assessing the understandability of FOSD approaches.
With our work, we hope to motivate some researches to join us.
Acknowledgments. We thank Jörg Liebig for his help on organiz-
ing the experiment in Passau. We thank METOP GmbH for the
Amazon gift card for our subjects. Feigenspan’s work is supported
in part by BMBF project 01IM08003C (ViERforES). Apel’s work
is supported in part by DFG project #AP 206/2-1.

10. REFERENCES
[1] J. R. Anderson. Cognitive Psychology and its Implications.

Worth Publishers, 2000.

[2] T. W. Anderson and J. D. Finn. The New Statistical Analysis
of Data. Springer, 1996.

[3] S. Apel et al. FeatureC++: On the Symbiosis of
Feature-Oriented and Aspect-Oriented Programming. In
Proc. Int’l Conf. Generative Programming and Component
Engineering, pages 125–140, 2005.

[4] S. Apel and C. Kästner. An Overview of Feature-Oriented
Software Development. Journal of Object Technology (JOT),
8(5):49–84, 2009.

[5] S. Apel, C. Kästner, and S. Trujillo. On the Necessity of
Empirical Studies in the Assessment of Modularization
Mechanisms for Crosscutting Concerns. In Proc. Int’l
Workshop on Assessment of Contemporary Modularization
Techniques, pages 1–7. 2007.

[6] I. Aracic, V. Gasiunas, M. Mezini, and K. Ostermann. An
Overview of CaesarJ. Transactions on Aspect-Oriented
Software Development I, pages 135–173, 2006.

[7] A. P. Association. Publication Manual of the American
Psychological Association. American Psychological
Association, 2001.

[8] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling
Step-Wise Refinement. IEEE Trans. Softw. Eng.,
30(6):355–371, 2004.

[9] R. E. Brooks. Using a Behavioral Theory of Program
Comprehension in Software Engineering. In Proc. Int’l Conf.
Software Engineering, pages 196–201. 1978.

[10] J. Daly et al. The Effect of Inheritance on the Maintainability
of Object-Oriented Software: An Empirical Study. In Proc.
Int’l Conf. Software Maintenance, pages 20–29. 1995.

[11] A. Dunsmore and M. Roper. A Comparative Evaluation of
Program Comprehension Measures. Technical Report
EFoCS-35-2000, University of Strathclyde, 2000.

[12] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian.
Guide to Advanced Empirical Software Engineering, pages
285–311. Springer, 2008.

[13] J. Favre. Understanding-In-The-Large. In Proc. Int’l
Workshop on Program Comprehension, page 29. 1997.

[14] J. Feigenspan. Empirical Comparison of FOSD Approaches
Regarding Program Comprehension – A Feasibility Study.
Master’s thesis, University of Magdeburg, 2009.

[15] E. Figueiredo et al. Evolving Software Product Lines with
Aspects: An Empirical Study on Design Stability. In Proc.
Int’l Conf. Software Engineering, pages 261–270. 2008.

[16] C. J. Goodwin. Research In Psychology: Methods and
Design. Wiley Publishing, Inc., 1998.

[17] S. Hanenberg, S. Kleinschmager, and M. Josupeit-Walter.
Does Aspect-Oriented Programming Increase The
Development Speed for Crosscutting Code? An Empirical
Study. In Proc. Int’l Symp. Empirical Software Engineering
and Measurement, 2009.

[18] S. Henry, M. Humphrey, and J. Lewis. Evaluation of the
Maintainability of Object-Oriented Software. In Proc.
TENCON, pages 404–409. 1990.

[19] A. Höfer and W. Tichy. Empirical Software Engineering
Issues. Critical Assessment and Future Directions, chapter
Status of Empirical Research in Software Engineering, pages
10–19. Springer, 2007.

[20] International Organization for Standardization.
ISO/IEC 9899-1999: Programming Languages—C, 1999.

[21] S. Jarzabek, P. Bassett, H. Zhang, and W. Zhang. XVCL:
XML-based Variant Configuration Language. In Proc. Int’l

Conf. Software Engineering, pages 810–811. 2003.
[22] N. Juristo and A. M. Moreno. Basics of Software

Engineering Experimentation. Kluwer, 2001.
[23] V. B. Kampenes et al. A Systematic Review of

Quasi-Experiments in Software Engineering. Information
and Software Technology, 51(1):71–82, 2009.

[24] C. Kästner, S. Apel, and M. Kuhlemann. Granularity in
Software Product Lines. In Proc. Int’l Conf. Software
Engineering, pages 311–320. 2008.

[25] C. Kästner, S. Trujillo, and S. Apel. Visualizing Software
Product Line Variabilities in Source Code. In Proc. Workshop
Visualization in Software Product Line Engineering, 2008.

[26] G. Kiczales et al. Aspect-Oriented Programming. In Proc.
Europ. Conf. Object-Oriented Programming, pages 220–242.
1997.

[27] G. Kiczales et al. An Overview of AspectJ. In Proc. Europ.
Conf. Object-Oriented Programming, pages 327–353. 2001.

[28] J. Koenemann and S. P. Robertson. Expert Problem Solving
Strategies for Program Comprehension. In Proc. Conf.
Human Factors in Computing Systems, pages 125–130. 1991.

[29] B. P. Lientz and E. B. Swanson. Software Maintenance
Management. Addison-Wesley, 1980.

[30] R. Lopez-Herrejon, D. Batory, and W. Cook. Evaluating
Support for Features in Advanced Modularization
Technologies. In Proc. Europ. Conf. Object-Oriented
Programming, pages 169–194. 2005.

[31] M. Mezini and K. Ostermann. Variability Management with
Feature-Oriented Programming and Aspects. In Proc. Int’l
Symp. Foundations of Software Engineering, pages 127–136.
2004.

[32] S. Patig. A Practical Guide to Testing the Understandability
of Notations. In Proc. Asia-Pacific Conf. Conceptual
Modelling, pages 49–58, 2008.

[33] N. Pennington. Stimulus Structures and Mental
Representations in Expert Comprehension of Computer
Programs. Cognitive Psychologys, 19(3):295–341, 1987.

[34] K. Popper. The Logic of Scientic Discovery. Routledge, 1959.
[35] L. Prechelt et al. Two Controlled Experiments Assessing the

Usefulness of Design Pattern Documentation in Program
Maintenance. IEEE Trans. Softw. Eng., 28(6):595–606, 2002.

[36] C. Prehofer. Feature-Oriented Programming: A Fresh Look
at Objects. In Proc. Europ. Conf. Object-Oriented
Programming, pages 419–443. 1997.

[37] F. J. Roethlisberger. Management and the Worker. Harvard
University Press, 1939.

[38] R. Rosenthal and L. Jacobson. Teachers’ Expectancies:
Determinants of Pupils’ IQ Gains. Psychological Reports,
19(1):115–118, 1966.

[39] W. R. Shadish, T. D. Cook, and D. T. Campbell.
Experimental and Quasi-Experimental Designs for
Generalized Causal Inference. Houghton Mifflin, 2002.

[40] D. I. K. Sjoberg et al. A Survey of Controlled Experiments in
Software Engineering. IEEE Trans. Softw. Eng.,
31(9):733–753, 2005.

[41] H. Spencer and G. Collyer. #ifdef Considered Harmful or
Portability Experience With C News. In Proc. USENIX
Conf., pages 185–198, 1992.

[42] A. von Mayrhauser and A. M. Vans. Program
Comprehension During Software Maintenance and
Evolution. Computer, 28(8):44–55, 1995.

