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ABSTRACT
The development of a highly configurable data management
system is a challenging task, especially if it is to be imple-
mented on an embedded system that provides limited re-
sources. We present a case study of such a data management
system, called RobbyDBMS, and give it a feature-oriented
design. In our case study, we evaluate the system’s efficiency
and variability. We pay particular attention to the interac-
tion between the features of the data management system
and the components of the underlying embedded platform.
We also propose an integrated development process covering
both hardware and software.

Categories and Subject Descriptors
D.2.10 [Software]: Design—Methodologies;
D.2.11 [Software]: Software Engineering—Domain-specific
architectures

General Terms
Design

Keywords
Hardware Product Lines, Software Product Lines, Domain
Engineering, Feature Oriented Software Development, Fea-
tureC++

1. INTRODUCTION
Current statistics reveal that 98 % of all microprocessors

sold worldwide are part of embedded systems [18, 12]. Em-
bedded systems play an important role in domains such
as automotive, industrial automation, and control systems.
Carrying out tasks in these domains involves the gathering,
processing, and storage of data. Embedded systems handle
data collected from several sources such as sensor data, tech-
nical service specifications, configuration, or protocol data.
Although the amount of data is usually small, an efficient
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data management plays a crucial role, since most embedded
systems come with very low computational power and only
a small amount of memory.

The need for an efficient data management system in
the embedded systems domain has been observed before.
Researchers and engineers proposed various systems, such
as IBM DB2 Everyplace [10], LGeDBMS [11], Smart Card
DBMS [1], TinyDB [14], and Stones DB [8]. Each system has
been developed from scratch to serve a specific application
that the developers had in mind. To this end, a fixed set of
data management functionalities is sufficient and, therefore,
each system contains no or few variabilities. This results in a
specialized software and is the reason why so many different
systems have been proposed. Moreover, each of these systems
is designed for a specific embedded platform, and, to this end,
existing hardware variabilities are not taken into account.

A way to overcome such limited hardware and software vari-
ability is product line engineering (PLE). PLE has already
been applied successfully in hardware engineering such as of
cars or mobile phones, and is gaining increasing attention in
software engineering [6, 15]. Since more and more products
consist of hardware and software variants, the combined PLE
application for hardware and software engineering is promis-
ing. However, very little is known about the impact that
PLE has on products that consist of hardware and software.

To investigate the impact of PLE, we use feature-oriented
programming (FOP), one implementation approach for PLE,
and develop the case study RobbyDBMS: an efficient data
management system for various embedded systems. We
evaluate RobbyDBMS regarding efficiency and variability.
Based on the results obtained, we discuss the benefits of the
PLE approach. PLE has been applied successfully earlier for
the development of efficient data management systems [17].1

Although Fame-DBMS aimed at a database family for embed-
ded systems, it did not meet our hardware requirements in
terms of computational power and size of available memory.

During the implementation of RobbyDBMS, we observed
that the data management system and the underlying embed-
ded platform exhibit functional interactions. For example, for
permanent data storage, a non-volatile memory or storage fa-
cility is necessary. We explain these interactions and propose
an integrated development process for hardware/software
PLE. Additionally, we highlight the benefits of our approach.

Specifically, we make the following contributions:
• We present our case study RobbyDBMS: an efficient

data management system for embedded systems.
• We evaluate and discuss FOP as one implementation

1Project Fame-DBMS – http://fame-dbms.org/



technique for PLE. The evaluation covers the efficiency
and the variability of the feature-oriented design.

• We highlight interactions between RobbyDBMS and
the underlying embedded platform.

• We propose and discuss the feasibility of an integrated
development process for systems like RobbyDBMS
based on domain/application engineering exhibiting
both hardware and software variability.

2. BACKGROUND

Product Line Engineering
Product line engineering is a concept comprising methods,
tools, and techniques for the development of product lines [2].
A product line is a set of mutually related products that are
tailored to a specific domain or market segment and that
share a common set of features [9]. A feature represents a
commonality or a variability among the set of products [19].
By selecting varying sets of features, different products (a.k.a.
variants), fulfilling the requirements of a specific application,
can be generated. Product lines are being developed in both
hardware and software engineering, and we refer to them
as hardware product lines (HPL) and software product lines
(SPL), resp. Furthermore, we refer to features of the HPL
and the SPL as hardware features resp. software features.

The process behind PLE is domain and application en-
gineering (Figure 4) [7]. It comprises the development of
reusable features in domain engineering that are used in appli-
cation engineering to derive a specific product. Domain and
application engineering both consist of three phases (domain
engineering: domain analysis, domain modeling, and do-
main implementation; application engineering: requirements
analysis, design analysis, and integration/test).

Feature-Oriented Programming
One approach to the implementation of SPLs is feature-
oriented programming, which aims at the modularization of
software systems using features [16, 5]. The idea is to modu-
larize features in feature modules and, consequently, to obtain
a 1-to-1 mapping between features as a domain abstraction
and feature modules as an implementation abstraction.

In particular, we use FeatureC++ [4, 3], an extension of the
programming language C++, which enables programmers
to encapsulate the functionality of a feature in a feature
module. A feature module represents program functionality
and is composed with the base system (feature composition)
via declarative expressions. With FeatureC++, one can add
variables and methods to existing classes or one can even add
new classes. Furthermore, FeatureC++ provides capabilities
for extending existing methods using method refinement [4].

3. CASE STUDY ROBBYDBMS
In this section, we describe our case study of RobbyDBMS.

Furthermore, we evaluate RobbyDBMS regarding efficiency
and variability, and discuss the benefits of using FOP for the
implementation of RobbyDBMS.

3.1 Overview

AVR HPL
The AVR HPL is a product line of 8-bit microprocessors
used in the embedded systems domain. Using the AVR
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Figure 1: AVR HPL; feature diagram

HPL, programmers face a number of resource constraints,
such as the low performance of the CPU (1 - 32 MHz), the
small supply of program storage (1 - 256 KB), and the small
main memory (32 B - 32 KB). Furthermore, different variants
of the AVR series have up to 4 KB of EEPROM storage,
which can be used as a permanent storage for data. These
resource constraints result in cost and energy savings. AVR
microprocessors are integrated in embedded systems, which
have additional hardware features like sensors or actuators.
Figure 1 contains a feature diagram, which is an excerpt of
the AVR HPL feature model [7], representing hierarchical
relationships of features in the AVR HPL. For example,
feature RAM is optional and, in case this feature is available,
different variants can have memory from 32 B to 32 KB.

The resource constraints mentioned before oblige to create
a data management systems that is both: (1) highly config-
urable in terms of the features that the data management
provides and (2) tailorable to a specific variant of the HPL
that is being selected.

RobbyDBMS SPL
RobbyDBMS is an embedded data management system aim-
ing at high configurability and the support of low-performance
embedded systems. To increase configurability, we model
most features, which are usually an integral part of data man-
agement systems, as optional (e.g., Indexing, Checksums,
Buffering, and Transaction). This reduces the amount
of program storage and main memory so as to leave as much
of the system resources as possible to the programmer who
makes use of the data management system. Figure 2 shows
an excerpt of a feature diagram representing the feature
model for RobbyDBMS.

Overall, RobbyDBMS consists of 33 feature modules with
46 classes and 37 class refinements. These refinements involve
33 method refinements, 39 additions of a function, and 15
additions of a field. The number of feature modules exceeds
the number of features because of functional dependencies
between different features that necessitated the split of a
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module. One example is feature Checksums that relies on
Read and Write. Since feature Write is optional, we
had to split feature Checksums for both variants (with and
without write support).

3.2 Evaluation
The usage of FeatureC++ for developing SPLs has been

evaluated before [13, 17]. Our results coincide with these
evaluations and exhibit further insights on the efficiency and
variability.

Efficiency
To evaluate the efficiency of FeatureC++, we developed
several test programs that record the overhead in program
storage (program size) and main memory caused by the use
of FeatureC++. Table 1 displays the results of our analysis.
The numbers reveal that, starting from a minimal variant
of RobbyDBMS (only feature Read is selected), different
variants with very little consumption of program storage
and main memory can be generated. Furthermore, the table
shows that the consumption of program storage and main
memory increases almost linearly with the number of fea-
tures selected. The overall deviation between the increase in
program size caused by each feature separately and by the
composition of all features is less than 2 %. To this end, the
composition mechanisms of FeatureC++ do not introduce
an overhead. Beside the generation of RobbyDBMS variants
and the measurement of their memory footprints, we also
investigated two optimization strategies for the composition.

First, we investigated whether the order of features has an
impact on the program size. We expected that the order in-
fluences the program size, since a different order may activate
different optimizations of the compiler during program com-
pilation. To this end, we selected two features (Checksums
and Index), that are independent but that address partially
the same classes, and measured the memory footprint. We
observed that the order of the two features has a small,
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Table 1: Different RobbyDBMS variants with the
used program storage and main memory (in bytes)

but measurable impact (∼ 0,53 %), on the program size. A
deeper analysis of the savings revealed that the resorting
affected multiple places in the binary and a clear relation to
the resorting was not possible. Thus, we were not able to
draw any conclusions; the savings might have occurred only
by chance. However, we suspect that the order of features
has only a very little effect on the program size. Usually,
a C++ compiler applies several optimizations during the
program compilation. These optimizations also involve the
resorting of source code pieces, which exceeds FeatureC++’s
resorting capabilities.

Second, we investigated whether the program size could
benefit from the application of optimization directives. For
example, an optimization directive forces a compiler to ap-
ply methods for reducing the program size. FeatureC++’s
compostion mechanisms rely on function inlining, which
can be controlled by such directives.2 We observed that,
when several features refine a function, function inlining
is not applied automatically by the C++ compiler. How-
ever, inlining can be enforced by the optimization directive
__attribute__((always_inline)).3 We measured that the
application of this directive reduces the program size by 6.3 %.
Although the reduction seems to be small, a different variant
of the underlying HPL may be applicable. Furthermore,
the C++ compiler used provides additional optimization
directives that may further reduce the program size.

Our analysis reveals that FeatureC++ is appropriate in
our case study. However, further research is necessary to
show that our observations also hold in different domains
and case studies.

Variability
Using PLE, we were able to model and implement a data
management system that can be configured to a large extent
based on features, such as Buffering, Indexing, or Trans-
action. The overall number of features is 19: 7 mandatory
features that subdivide the base system and 12 optional

2Function inlining instructs the compiler to replace a function
call with the body of the called function.
3This optimization directive is limited to the GCC com-
piler (http://gcc.gnu.org). However, other compilers have
similar method modifiers, such as __forceinline in Visual
C++.



features, which can be added via feature selection. How-
ever, a software feature like Transaction represents only
the variability of the SPL in terms of data management
functionality.

The tailoring of the data management to a specific em-
bedded systems platform is handled in the RobbyDBMS
SPL, too. This includes the development and use of device
drivers. Since hardware features are also variable (Figure 1;
the EEPROM storage ranges from 1 KB to 4 KB) we used
PLE for the development of these device drivers.

While implementing RobbyDBMS, we observed that a
software feature requires one ore more hardware features.
This requirement arises from functional interactions between
hardware and software features. In the next section, we
address this issue and discuss the influence of interactions
between hardware and software features on the PLE process.

4. INTERACTIONS BETWEEN THE
HPL AND THE SPL

In Figure 3, we give an example of possible interactions
between the HPL and the SPL. Hardware feature EEPROM
interacts with software features Read and Write, which
can be traced back to the activity of the EEPROM as a
data storage. Furthermore, feature Backup, which triggers
write-backs to the EEPROM in case the data is held par-
tially in main memory, either relies on feature 16-Bit Timer
or feature 8-Bit Timer. Each hardware feature, such as
EEPROM or 8-Bit Timer, can be used by software features.
We denote interactions between features on either side of
the figure with bidirectional, dashed arrows. Although the
necessity for a hardware feature arises on the SPL side, we
show next that the interaction actually goes both ways and
both sides influence each other.

Interactions between hardware and software features are
bidirectional. As stated before, a software feature interacts
functionally with hardware features. For example, software
feature Backup relies on two different hardware features.
From the product developer’s point of view, the opposite
direction, i.e., the dependence from the HPL to the SPL,
becomes useful. This way, a hardware feature determines all
possible variants of the SPL, which can be deployed on the
HPL variant chosen. For example, hardware feature 8-Bit
implies that 8 different variants of the SPL can be generated.
The interactions observed allow to create a restricted feature
model for the HPL and the SPL.

The treatment of interactions between HPLs and SPLs
complicates the development of product lines. We believe
that an integrated analysis and development process is neces-
sary to face this complexity. In the following, we propose and
discuss such an integrated process and highlight its benefits.

HPL and SPL Codesign.
In Figure 4, we depict our proposal of an integrated de-

velopment process covering both hardware and software. It
is based on domain engineering, where reusable features
are being developed, and application engineering, where the
reusable features developed are being used to generate a
specific product. The figure illustrates that both domain and
application engineering constitute chains of processes, such as
analysis, design, and implementation, and that both chains
are linked. We propose to extend this process with another
ingredient covering the development of the HPL. While the
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Figure 4: Integrated HPL and SPL development

output of each phase of HPL domain engineering is linked to
its corresponding phase in application engineering, all phases
of both domain engineering processes are linked mutually as
well.

The links between the domain engineering phases cover
the results of each phase (domain model, architecture, and
implementation). We have already highlighted the inter-
action between domain models, looking at feature models,
which constitute one form of representation of domain mod-
els (Figure 3). An interaction between both domain design
phases covers architectural design decisions based on pat-
terns used to describe a generic structure to achieve a highly
configurable system. Finally, an interaction between domain
implementations can be traced back to the software develop-
ment. We have highlighted this interaction, too, as hardware
features and their corresponding device drivers interact with
software features.

We are aware that a full hardware/software codesign is not
possible when dealing with a fixed HPL that a manufacturer
supplies. However, we highlighted that PLE can benefit from
taking the HPL in the process of domain engineering into
account. The benefit arises from choosing among variants of
an HPL.

5. PERSPECTIVE
In future work, we will investigate whether the observa-

tions we made and our proposed concept of an integrated
development process also apply to other domains like oper-
ating systems for embedded system platforms. To this end,
we plan to conduct further case studies. We will also study
domains other than embedded systems. An interesting case
study might be the Linux kernel, which consists of a huge
number of features, which also relies on many capabilities
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that different supported hardware platforms provide.
Besides conducting further case studies, we will also study

each link between both domain engineering phases in more
detail. The HPL used for this case study comprises a defined
set of variants. An interaction between an HPL and an SPL
might even be stronger than the ones we have observed so
far. One reason for a stronger interaction is the existence of
two technologies: (1) FPGAs4 and (2) hardware description
languages, such as VHDL5 or Verilog. An FPGA is a com-
puter chip, which contains programmable logic components
that can be configured by customers. FPGAs are being
programmed in hardware description languages. This way,
changing requirements of customers regarding the hardware
can also be handled. Furthermore, FPGAs add a further
degree of freedom to PLE, since a feature, such as decod-
ing a data stream, can be realized either in hardware with
programmable logic or in software with a program running
on a general purpose computer. Using both technologies to-
gether, the border between HPLs and SPLs becomes blurred
and we expect that domain engineering for HPLs and SPLs
consolidates.

6. CONCLUSION
We have reported on the development of an efficient data

management system, RobbyDBMS, using product line en-
gineering and employing the paradigm of feature orienta-
tion. We found that a feature-oriented design is suitable
for modularizing variability in software like a data manage-
ment system. We have achieved great variability in terms of
data management functionalities and support for different
embedded platforms. While implementing RobbyDBMS, we
observed that the data management system and the under-
lying embedded platform interact and both the hardware
and the software variability have to be taken into account.
Consequently, we proposed a unified development process
based on application and domain engineering, which com-
bines hardware and software variabilities enabling an easier

4field programmable gate arrays
5very high speed integrated circuit hardware description
language

development of product lines that consist of hardware and
software.
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[2] S. Apel and C. Kästner. An overview of
feature-oriented software development. Journal of
Object Technology (JOT), 8(5):49–84, 2009.

[3] S. Apel, T. Leich, M. Rosenmüller, and G. Saake.
FeatureC++: Feature-Oriented and Aspect-Oriented
Programming in C++. Technical Report 3, Fakultät
für Informatik, Universität Magdeburg, April 2005.

[4] S. Apel, T. Leich, M. Rosenmüller, and G. Saake.
FeatureC++: On the Symbiosis of Feature-Oriented
and Aspect-Oriented Programming. In Proceedings of
the International Conference on Generative
Programming and Component Engineering (GPCE),
volume 3676 of Lecture Notes in Computer Science,
pages 125–140. Springer-Verlag, 2005.

[5] D. Batory, J. Sarvela, and A. Rauschmayer. Scaling
Step-Wise Refinement. IEEE Transactions on Software
Engineering (TSE), 30(6):355–371, 2004.

[6] P. Clements and L. Northrop. Software Product Lines:
Practices and Patterns. Addison-Wesley, 2002.

[7] K. Czarnecki and U. Eisenecker. Generative
Programming: Methods, Tools, and Applications.
Addison-Wesley, 2000.

[8] Y. Diao, D. Ganesan, G. Mathur, and P. Shenoy.
Rethinking Data Management for Storage-centric
Sensor Networks. In Proceedings of the Conference on
Innovative Data Systems Research (CIDR), pages
22–31, 2007.



[9] K. Kang, S. Cohen, J. Hess, W. Novak, and
A. Peterson. Feature-Oriented Domain Analysis
(FODA) Feasibility Study. Technical Report
CMU/SEI-90-TR-21, Carnegie-Mellon University
Software Engineering Institute, November 1990.

[10] J. Karlsson, A. Lal, C. Leung, and T. Pham. IBM DB2
Everyplace: A Small Footprint Relational Database
System. In Proceedings of the International Conference
on Data Engineering (ICDE), pages 230–232. IEEE
Computer Society, 2001.

[11] G.-J. Kim, S.-C. Baek, H.-S. Lee, H.-D. Lee, and
M. Joe. LGeDBMS: a Small DBMS for Embedded
System with Flash Memory. In Proceedings of the
International Conference on Very Large Data Bases
(VLDB), pages 1255–1258. ACM Press, 2006.

[12] R. Krishnan. Future of Embedded Systems Technology.
Technical Report GB-IFT016B, BCC Research, Juni
2005.

[13] M. Kuhlemann, S. Apel, and T. Leich. Streamlining
Feature-Oriented Designs. In Proceedings of
International Symposium on Software Composition
(SC), volume 4829 of Lecture Notes in Computer
Science, pages 168–175. Springer-Verlag, 2007.

[14] S. Madden, M. Franklin, J. Hellerstein, and W. Hong.
TinyDB: An Acquisitional Query Processing System for
Sensor Networks. ACM Transactions on Database
Systems (TODS), 30(1):122–173, 2005.
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