
Tool Support for Feature-Oriented Software Development

FeatureIDE: An Eclipse-Based Approach

Thomas Leich
Otto-von-Guericke-University

Magdeburg, Germany

leich@iti.cs.uni-
magdeburg.de

Sven Apel
Otto-von-Guericke-University

Magdeburg, Germany

apel@iti.cs.uni-
magdeburg.de

Laura Marnitz
Otto-von-Guericke-University

Magdeburg, Germany

marnitz@cs.uni-
magdeburg.de

ABSTRACT
Software program families have a long tradition and will
gain momentum in the future. Today’s research tries to
move software development to a new quality of industrial
production. Several solutions concerning different phases
of the software development process have been proposed in
order to cope with different problems of program family de-
velopment. A major problem of program family engineering
is still the missing tool support. The vision is an IDE that
brings all phases of the development process together con-
sistently and in a user-friendly manner. This paper focuses
on AHEAD, a prominent design methodology and architec-
tural model for feature-based program families. We present
our first results on developing an Eclipse-based IDE that
supports building program families following the AHEAD
architecture model. Starting from current weaknesses and
pitfalls in implementing program families we outline several
challenges of the feature-based development process. There-
upon, we present our ideas to face these challenges and a
resulting integrated tool chain based on Eclipse.

1. INTRODUCTION
In recent years the idea of program families (a.k.a. prod-

uct lines1) has been discussed to overcome the software cri-
sis. The key idea is to build not individual programs, but
a family of similar programs. Program family members are
grouped by their commonalities. AHEAD is an architec-
tural model and design methodology to implement program
families [4]. The idea of the AHEAD model is to decom-
pose programs into separate modular units (features) and
to compose stacks of features to derive a concrete program.
When adding new programs to a family existing features
of other programs can be reused. This is also known as
step-wise refinement. The benefit is maintainable, compre-

1Although there is a subtle difference between program fam-
ilies and product-lines (see [5]) we use these terms synony-
mously.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

hensible software that can easily be reused, configured and
extended. AHEAD proposes compositional programming:
It generalizes the concept for features and feature refine-
ment.

The AHEAD Tool Suite2 provides a set of tools that sup-
port programming in the AHEAD style. However, using
the AHEAD Tool Suite is still a hard challenge, since most
of the functionality is provided by command-line tools. To
bring the AHEAD model to a widely accepted solution for
building software in praxis an adequate IDE tool support is
indispensable.

This article focuses on providing IDE support for pro-
gram family development. Firstly, we sketch out special
challenges for building program families using the AHEAD
model. Thereby, we do not only focus on design and pro-
gramming activities but also on the preliminary analysis
phase and subsequent configuration support. We perceive
features as the base concept that is used in all development
phases. Consequently, we present a tool-driven concept that
improves the overall Feature-Oriented Software Development
(FOSD) Process to support reuse of information from differ-
ent development phases. Moreover, we discuss our solutions
on how to enforce a consistent development process. We
propose generating and checking mechanisms that help to
guarantee consistent data in between the phases. Further-
more, we introduce a feedback mechanism that propagates
extracted implementation knowledge back to the design and
analysis phase. This allows us to use abstract design infor-
mation in the configuration process in order to overcome
the complexity of the configuration process. Additionally,
we present our first results providing IDE-support for the
combination of Feature-Oriented Programming (FOP) and
Aspect-Oriented Programming (AOP).

2. BACKGROUND
Feature-Oriented Software Development (FOSD) is the over-

all process of developing software systems in terms of its
features. FOSD aims on analyzing, designing, and imple-
menting features in program families. Following this idea
we utilize for the domain analysis the Feature-Oriented Do-
main Analysis (FODA) [7]. The design is based on step-
wise refinement and the collaboration design [12], and the
implementation is based on Feature-Oriented Programming
(FOP) and Mixin Layers [12].

2.1 Feature-Oriented Software Development
2http://www.cs.utexas.edu/users/schwartz/Hello.html

FODA: With the domain analysis feature modeling is an
appropriate method [7]. The goal of FODA is to analyze the
considered target application scenarios and to derive the re-
quired and optional features. Since the focus of FODA is
on a domain of applications the resulting features are cho-
sen with regard to a whole family of systems. The results
of feature modeling are feature models that describe the
features, their relations, constraints, and dependencies [5].
The models express variation points and commonalities of
the target-programs in an abstract and implementation in-
dependent way. Features are organized in a hierarchical
way (see Fig. 1).

B

A

C
D

E F I KJG H

Figure 1: Example feature tree

Step-wise Refinement and Collaboration Design:
Step-wise refinement and the collaboration design are meth-
ods to design software incrementally, using minimal building
blocks, and starting from a minimal base [12]. Exchang-
ing, adding and removing such building blocks, also called
layers, yield reusability, extensibility, and customizability.
Features3 are basic building blocks that satisfy intuitive
user formulated requirements on the software system. Ba-
tory et al. have mapped this concept to the object-oriented
world [3, 12]. They have observed that a new software fea-
ture often extends or modifies numerous existing classes.
Based on this observation, they perceive features as collab-
orations of class/object fragments, also referred to as roles.
Figure 2 shows a result of the step-wise refinement and col-
laboration design, a stack of collaborations (features).

Classes are arranged vertically (C1 – C3). Collaborations
are arranged horizontally and span several classes (L1 – L3).
Several features of a software system result in a stack of col-
laborations. Collaborations with the same interfaces are eas-
ily exchangeable. They are an instance of large-scale com-
ponents [3].

C
A

C
B

C
C

L
1

L
2

L
3

Figure 2: Stack of collaborations

FOP: Mixin Layers are one appropriate technique to im-
plement collaborations in a step-wise manner. As men-
tioned, the basic idea is that features are often implemented
by a collaboration of class fragments (a.k.a. roles). A Mixin
Layer is a static component encapsulating fragments of sev-
eral different classes (Mixins) so that all fragments are com-
posed consistently. Advantages are the high degree of mod-
ularity and the easy composition. The AHEAD Tool Suite,

3We use the terms feature and layer as synonym for collab-
oration.

including the Jak language, implements AHEAD for Java.
FeatureC++4 implements the AHEAD model for C++.
Using the Jak-language or FeatureC++ Mixin Layers are
represented by directories of the file system. Mixins are rep-
resented by included source files. Therefore, Mixin Layers
have no textual representation at code level. An equation
file specifies which features are required for a program con-
figuration. It defines ordered feature collections as algebraic
expressions. Those Mixins found inside the directories are
assigned to be members of the enclosing Mixin Layers.

Design Rule Checking: Type checking is provided by
the underlying language, but it does not catch deep seman-
tic composition violations. Not all combinations of features
are semantically correct. Selecting a feature may enable or
disable the selection of other features. Design rule checking
(DRC) [4] helps to overcome this problem. Defined as at-
tributive grammars the programmer specifies these checks.
Attributes are value annotations and predicates over these
annotations that determine which syntactically-legal combi-
nations of tokens are semantically correct.

3. CHALLENGES OF FOSD
The following considerations are based on our experiences

in developing FeatureC++ [2] and in building program
families in the area of embedded databases [9] and mid-
dleware [1]. We see three major fields of interest: (1) the
challenges regarding the missing tool support of the FOSD
process, (2) missing support for coding Mixin Layers, and
(3) challenges according to further improvements of FOP.

3.1 Supporting the FOSD-Process
The idea of developing program families is not to build

only one application, but rather the process of building a
family of applications. There is a broad spectrum of differ-
ent sources of information during the development process of
a program family. Without integrated software visualization
tools for displaying, connecting, and managing the different
sources, as well as navigation support, the handling of the
program families with more than 1,000 features is not feasi-
ble. Moreover, to avoid failures and to enforce a consistent
development process an automatic generation and checking
of models is necessary. We consider two major problems of
the FOSD process:

• Inconsistent states between development phases: FOSD
is a phase-oriented development process. Without hav-
ing tool support a lot of information regarding the dif-
ferent phases has to be redundantly fed into the differ-
ent development phases. This causes failures and in-
consistent states. One example is that information of
FODA are not connected to the design and implemen-
tation phases, e.g. constraints, dependencies, annota-
tions represented in feature diagrams are not present
in other phases. In subsequent phases the program-
mer has to integrate and evaluate these relationships
manually. This is errornous and leads and redundant
work. Furthermore, software engineering is seldom a
straightforward process. Often programmers discover
deeper relations between features not until the imple-
mentation phase. This encountered information has to
be back propagated to the previous software engineer-
ing phase.

4http://wwwiti.cs.uni-magdeburg.de/iti db/fcc/

• Dealing with the complexity of the configuration: Build-
ing concrete family members using AHEAD or Fea-
tureC++ requires a lot of implementation knowledge.
This is because of features interact with each other
mainly at implementation level. Program families con-
sisting of many features (¿ 100) are hard to handle.
Moreover, relationships and dependencies between them
are not to catchable by humans. During the develop-
ment of embedded middleware and database systems
we observed that due to the high variability in this field
– with millions of possible configuration variants – the
configuration process becomes impossible without tool
support. Dealing with these problems the configura-
tion process has to be lifted to a more abstract level
in order to handle the complexity.

3.2 Supporting FOP
Reading or writing code is still the most used way of build-

ing and understanding software. The main tasks of tool sup-
port in programming code is to point the programmer in an
easy way to the right location of the source code and help
him to read, modify, and/or write the code. Although the
languages Java and C++ and their feature-oriented exten-
sions Jak and FeatureC++ only differs in a handful of key
words, it is still a hard challenge to use them. In object-
oriented IDEs the class view is the dominating element of
representation. Instead, with FOP, the main subject of in-
terest are features. Features contain several software arte-
facts that contribute to the feature’s functionality.5 Stan-
dard object-oriented IDE-functionality as Eclipse supports
for Java e.g. source code completion, syntax checks on de-
mand, class navigation and debugging support, are not avail-
able for FOP. Furthermore, FOP yields some special prob-
lems:

• Handling the complexity of feature interactions: Fea-
tures interact with each other in many ways. These in-
teractions result in dependencies between different fea-
tures in that way that features exclude or require other
features. The programmer must take great care in
identifying every interaction before he can implement
or modify a feature. In AHEAD and FeatureC++
features have no direct textual representation. There-
fore, dependencies are not explicitly represented. This
complicates the development process.

• Supporting DRC specification: As mentioned in Sec-
tion 2 the specification of semantic correctness is en-
forced by design rules using an attributive grammar.
Unfortunately, the programmer has to map the knowl-
edge of feature dependencies of the analysis manually
to the design and implementation phase. This a non-
trivial task, not user friendly, and in most cases redun-
dant work for the programmer.

3.3 Combining AOP and FOP
Aspect-Oriented Programming (AOP) is a prominent tech-

nique to localize, separate, and modularizes crosscutting
concerns [8]. Thus, it is also adequate for building program

5Although the FOP concept allows the refinement of other
fragments like UML-diagrams or documentation we concen-
trate on implementation units, i.e. classes in this paper

families. The idea behind AOP is to implement so called or-
thogonal features as Aspects. This prevents the known phe-
nomena of code tangling and scattering. The core features
are implemented as components, as with common design and
implementation methods. Using join point specifications
(pointcuts), an aspect weaver brings aspects and compo-
nents together. There are several discussions on separating
crosscutting concerns using AOP and FOP [11, 10, 2]. All
current approaches focus on language support. Developing
FeatureC++, we discovered that visualizing dependencies
of aspects and features in different context views would be
extremely helpful for the programmer. These kinds of views
can help to control the powerful combination of AOP and
FOP. However, there are first attempts to achieve that for
pure AOP, e.g. the AcpectJ Visualiser6.

A second very important issue is the support of debugging
functionality. AHEAD and FeatureC++ are source-to-
source code transformation systems. The mapping of the
runtime-debugging code in the original source code is a hard
challenge, especially when integrating AOP support.

4. IDE SUPPORT FOR FOSD
Since Eclipse is being widely used by a growing user com-

munity and it is open to trying out new ideas, we imple-
mented FeatureIDE as an Eclipse 3.0 plug-in. Each com-
ponent of the workbench is extensible and customizable via
the plug-in interconnection model that supports any num-
ber of named extension points and any number of extensions
to one or more extension points in other plug-ins. More-
over, the elementary components of an IDE, such as the
workbench, file navigator, wizards, text editor, component-
version management, and publishing services are already
available. Besides the standard functionality we have used
the GEF and Visualiser plugin. Due to these facts the imple-
mentation process was relatively easy and straightforward.

4.1 FOSD-Process
A major goal of the FeatureIDE project is to handle

the complexity of the program family development process.
Taking an ambitious stance, we claim that the ultimate goal
of our work is to become the preferred way of developers
of looking at software in all phases. Therefore, we uti-
lize visualization and interaction techniques, e.g. detail and
overview, detail on demand, and graphical hints. Most of
the functionality is quite similar to the standard Java IDE.
We believe only this will help to bring FOP to an widely
accepted programming paradigm.

4.1.1 Preventing Inconsistent States
Preventing inconsistent states is enforced by mapping func-

tions that connect all phases of the development process.
The central elements of these mapping functions are the
features and their relationships and constraints. Doing so,
the results of FODA are propagated to the design phase
and all features are mapped to collaborations. An heuristic
function generates a half-order of layers (see Fig. 3).

This propagation helps the programmer during the de-
sign process to define a concrete sequence of the layer stack.
Furthermore, the additional relations are transferred into
the corresponding layers. If, e.g., two features exclude each
other, this relation is also known in subsequent phases (e.g.

6http://www.eclipse.org/ajdt/visualiser/main.html

b

a

b

heuristic based

transformation

a

Analysis Design

preliminary design for layer b

preliminary design for layers c,d,e

ed

c

a

b

d,e

Figure 3: Mapping Functions

implemented layers). Doing so, it is not allowed to use or
refine the functionality of these layers. As a result of the
design phase the relationships between features are further
refined. Using this information the implementation struc-
ture e.g. file directory folders, implementation files, and
DRC-file are generated.

However the development process is seldom straightfor-
ward. Commonly, new information are collected during the
design an implementation phases, which are inconsistent to
existing information from previous phases. It is very com-
mon to find that a feature has to be further differentiated.
According to our model, this has to be back propagated,
because it is not allowed to create new implementation files
for non existing analysis features. Only this restricted model
enforces consistency between all development phases and im-
proves the quality of the resulting program family architec-
ture.

4.1.2 Supporting the Configuration Process
Feature diagrams provide an abstract and intuitive repre-

sentation of the variation points of program families. There-
fore, these diagrams are perfect starting points to improve
the configuration process. Due to (1) achieving consistent
and synchronized states between all phases and due to (2)
the one-to-one mapping of features to their counterparts in
subsequent development phases we are able to utilize the
abstract feature tree to assist the configuration process. A
drawback of this abstract feature model is that not all re-
lationships are presented. Borrowed from [13] we improved
our model with detailed information about additional rela-
tionships from the design and implementation phase. Avoid-
ing an overkill of information the additional information is
highlighted only on demand in the feature diagram. Figure 4
shows the configuration process. According to the chosen
feature PhysAcessMethod additional relationships are dis-
played in the diagram.

4.2 Supporting FOP
The most challenging problem arises due to the fact that

the refinement chains are highly variable. Code comple-
tion features are realized using an on-the-fly analysis of the
collaboration stack. Context based views for analyses of de-
pendencies are essential for programmers and designers.

4.2.1 Handling the complexity of feature interactions

Figure 4: Feature Tree with DRC-Hints

There is a broad spectrum of different sources of informa-
tion about feature interactions. To overcome this complexity
we used different views on the implementation units. The
created collaboration stack is the main view because it pro-
vides a good overview of the global structure. Additionally,
this view is used for navigation through the implementation
units. Several filters allow the user to adjust the complex-
ity of the representation (file type, file name, relationship to
other features, refinement level). Figure 5 shows the collab-
oration view. The representations of the class fragments are
colored according to their type of the linked implementation
file, e.g. blue for classes, white for documentation, etc.

Figure 5: Collaboration Editor

With the collaboration view the programmer has a good
opportunity to get an overview of the features and their
refinement hierarchy. What is still missing is a possibil-
ity to get an overview of the refinements at implementation
level. Files that implement the same class fragments can
refine or add different code artifacts. For the programmer
it is very difficult to extract these relationships from textual
code. We used another representation to give the program-
mer a proper overview. Our visualization is based on an
approach which is called Seesoft [6].

Figure 6 shows an example: The boxes represent class
fragments that compose the resulting class. Thus, the pro-
grammer gets insight which feature contributes to which
class. The length of the boxes is determined by the size
of the corresponding implementation file. The colored lines

Figure 6: Feature Fragment Visualizer

in the boxes represent code fragments. Different code frag-
ments are encoded by different colors. The width of the col-
ored line encodes the size of the according code fragment.
The colored lines are connected to the corresponding code
and can be used to go quickly into the code to the right po-
sition. This functionality helps the programmer to quickly
make decisions that contribute to other class fragments.

4.2.2 Design Rules
AHEAD assumes that design rules are created during the

implementation phase. We already start creating design
rules during the analysis and design phase. The design rules
are automatically extracted from the modelled relationships
and constraints of these phases, e.g. encoded in feature di-
agrams, collaboration stacks, etc. Thereby the programmer
just has to add the design rules for those relationships and
constraints which are extracted during the implementation
process. Due to this proceeding, the concept of DRCs be-
comes more practical and can be used for easily enforcing
consistency. The design rules are a concentrated view on
the relationships and constraints in all phases. Therefore
inconsistency can be easily detected.

5. FURTHER RESEARCH
As in Section 3.3 discussed AOP is able to enhance FOP

in providing mechanisms to deal with certain crosscutting
concerns. A problem of current AOP languages is that the
binding of aspects is independent of the current develop-
ment stages. That means that aspect may affect subsequent
integrated features. This may lead to failures and unpre-
dicted program behavior. Using aspect-enhanced FOP the
power of aspects can be controlled. In [2] we present lan-
guage support to solve this problem. Using this mechanism
we discovered that in large-scale systems this language ca-
pabilities further has to be supported by visualization and
generative techniques.

6. CONCLUSIONS
FOSD is important to build future program families. Cur-

rent research on FOSD focuses mainly on language level sup-
port. Current tools are mostly command line based. We
argue that tool support for FOSD is indispensable to in-
crease the acceptance of feature-oriented techniques. In this
contribution we featured a discussion on challenges of de-
veloping software in a feature-oriented style using common
techniques and tools. Starting from identified weaknesses
we present FeatureIDE that solve certain problem of this
field. Due to the integration into Eclipse we hope to increase
the acceptance of FOSD.

7. ADDITIONAL AUTHORS
Gunter Saake (Otto-von-Guericke-University Magdeburg,

Germany, email: saake@iti.cs.uni-magdeburg.de).

8. REFERENCES
[1] S. Apel and K. Böhm. Towards the Development of

Ubiquitous Middleware Product Lines. In ASE
SEM’04, Springer, LNCS. 2005.

[2] S. Apel, T. Leich, M. Rosenmüller, and G. Saake.
FeatureC++: On the Symbiosis of Feature-Oriented
and Aspect-Oriented Programming. In GPCE’05,
Springer, LNCS, 2005.

[3] D. Batory and S. O’Malley. The Design and
Implementation of Hierarchical Software Systems with
Reusable Components. ACM TOSEM, 1992.

[4] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling
Step-Wise Refinement. IEEE TSE, 30(6), 2004.

[5] K. Czarnecki and U. Eisenecker. Generative
Programming: Methods, Tools, and Applications.
Addison-Wesley, 2000.

[6] S. Eick, J. Steffen, and E. Summer. Seesoft – a tool
for visualizing line oriented software statistics. In
IEEE TSE, 1992.

[7] K. Kang et al. Feature-Oriented Domain Analysis
(FODA) Feasibility Study. Technical report, Software
Engineering Institute, Carnegie Mellon University,
Pittsburgh, 1990.

[8] G. Kiczales et al. Aspect-Oriented Programming. In
ECOOP, 1997.

[9] T. Leich, S. Apel, and G. Saake. Using Step-Wise
Refinement to Build a Flexible Lightweight Storage
Manager. In ADBIS, 2005.

[10] R. E. Lopez-Herrejon, D. Batory, and W. Cook.
Evaluating support for features in advanced
modularization technologies. Technical report, 2005.

[11] M. Mezini and K. Ostermann. Variability
Management with Feature-Oriented Programming and
Aspects. In ACM SIGSOFT FSE, 2004.

[12] Y. Smaragdakis and D. Batory. Mixin Layers: An
Object-Oriented Implementation Technique for
Refinements and Collaboration-Based Designs. ACM
TOSEM, 2002.

[13] P. Sochos, I. Philippow, and M. Riebisch.
Feature-Oriented Development of Software Product
Lines: Mapping Feature Models to the Architecture.
In Object-Oriented and Internet-Based Technologies.
Springer, LNCS, 2004.

