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Abstract

Tuning a software system’s configuration is essential to meet perfor-
mance requirements. However, not only do configuration options
affect performance, but also the system’s interaction with external
factors such as the workload. Hence, tuning requires understanding
how a specific setting of external factors (e.g., a specific workload) in
combination with the system configuration influences performance.
To address this issue, we propose HyPerf, a Bayesian multi-level
performance modeling approach that systematically distinguishes
between setting-invariant and setting-variant influences, that is,
influences that remain consistent across settings versus those that
exhibit substantial variation. With HyPerf, we aim at balancing
accuracy and efficiency, achieving robust performance predictions
with significantly fewer training samples. Unlike the state of the
art, HyPerf is able to identify a minimal set of settings that captures
essential performance variations, so that developers can approxi-
mate whether all setting-variant influences have been accounted for.
Empirical evaluations on ten real-world software systems across
up to 35 workloads and scalability experiments on the Linux kernel
demonstrate that HyPerf matches or outperforms state-of-the-art
approaches while requiring fewer measurements. Notably, HyPerf
is indeed capable of interpretable performance reasoning and can
identify minimal workload subsets that capture essential perfor-
mance variations.
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1 Introduction

Most modern software systems provide configuration options to
tailor their behavior towards functional and non-functional re-
quirements as well as to external factors such as workloads and
hardware. Tuning a software system’s configuration to meet perfor-
mance requirements must, therefore, take not only the influence of
configuration options into account, but also their interaction with
external factors.

Prior research has explored learning predictive models that esti-
mate the performance of unseen configurations to guide the config-
uration process [1–7]. Yet, most of these approaches assume a fixed
setting, where external factors, such as workload and hardware,
remain constant. In practice, however, software systems operate
in vastly varying settings, rendering such performance estimates
unreliable. More recent approaches incorporate external factors as
features [8–10], treating them as dedicated configuration options.
This design introduces scalability challenges: many factors, such as
hardware, are inherently qualitative, and encoding them inflates
model complexity. Even worse, as external factors interact with
configuration options, the model size easily explodes when cap-
turing all interactions1. Alternatively, transfer learning might be
able to reduce data needs when adapting to a new setting [11, 12].
Unfortunately, this implies that, for every new setting, we need to
redo transfer learning, because it does not capture whether a con-
figuration’s performance remains stable or varies between settings.

More generally, existing approaches offer partial solutions but
fail to capture how configuration options influence performance
across settings in a way that remains both interpretable and effi-
cient. This calls for a novel approach—one that extends interpretable
models without assuming fixed influences or requiring excessive
measurements. A natural way to extend models across factors is
to train either a separate model for each setting or a single model
across all settings. Since a single setting is defined by the charac-
teristics of the external factors (e.g., different system inputs for
the workload factor), the number of possible settings is potentially
unbounded. So, learning a model per setting ensures high accuracy
but requires extensive additional measurements, leading to poor
sample efficiency. Moreover, single-factor models cannot capture
whether a configuration’s performance remains stable or varies
across settings, such that they hardly generalize. Learning instead
the influences across all settings within a single model improves ef-
ficiency, but assumes that performance influences remain constant.
This is often unrealistic, as configuration options may have condi-
tional effects depending on the setting, as has been demonstrated
for varying workloads [11–13].

1For example, an option that resembles the CPU frequency likely interacts with all
other configuration options to express how distinct frequencies affect performance of
each individual option, doubling the parameter count.
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Figure 1: Performance distribution across EncodeX’s settings

Neither of the two (i.e., learning a separate model for each setting
or a single model across all settings) systematically distinguishes
setting-invariant and setting-variant influences, that is, influences
that remain consistent across settings versus influences that exhibit
substantial variation. Making this distinction explicit is the essential
idea of this work—we introduce a third strategy: a Bayesian multi-
level performance modeling approach, called HyPerf. Rather than
treating external factors as fixed conditions or additional options,
HyPerf models them in a hierarchy in which the upper level iden-
tifies stable performance influences that hold across settings, while
the lower level refines these estimates with deviations that are spe-
cific to a particular setting. This allows HyPerf to balance accuracy
and sample efficiency while also improving interpretability.

Beyond improving prediction accuracy, HyPerf addresses a criti-
cal bottleneck in performance testing. Traditional methods evaluate
software across an exhaustive set of workloads (as an important fac-
tor) to account for possible performance variations—an expensive
process. Instead, HyPerf is able to identify aminimal coverage work-
load subset that captures essential variability in option influences,
significantly reducing the time and cost of testing.

To evaluate HyPerf’s effectiveness, we conduct an empirical
study on ten real-world software systems, each tested across up to
35 workloads as the factor of interest, thereby building up one of
the most comprehensive sets of evaluation material in this field.
Our results demonstrate that HyPerf achieves a predictive accu-
racy on par with or exceeding that of models tailored to the given
setting while requiring fewer measurements. Compared to complex
black-box state-of-the-art learners, HyPerf delivers competitive ac-
curacy at a fraction of the training cost. A scalability analysis with
the Linux kernel further confirms that HyPerf remains tractable
even for systems with thousands of options. More importantly,
HyPerf provides actionable insights into configuration–workload
interactions, enabling targeted performance tuning and efficient
workload selection. By improving both efficiency and interpretabil-
ity, HyPerf offers a scalable solution for performance modeling
in configurable systems, reducing the cost of performance testing
without sacrificing accuracy.

In summary, we make the following contributions:
• a Bayesian multi-level modeling approach, called HyPerf, for
modeling software performance considering multiple factors;

• a comparison of HyPerf’s prediction accuracy with state-of-the-
art methods for ten software systems across up to 35 workloads,
highlighting scenarios where the methods are most effective;

• a scalability analysis based on the Linux kernel;

• an investigation of HyPerf’s multi-level reasoning capability, re-
vealing configuration optionswhose influence is setting-invariant
or varies substantially across settings;

• a demonstration of HyPerf’s ability to calculate a coverage work-
load set, reducing time and cost in performance testing;

• a companion website2 to replicate our results and measurements.

2 Running Example & Related Work

In this section, we provide basic definitions used throughout the
paper, and we introduce a running example to explain existing
approaches for constructing performance models that consider a
single or multiple factors.

2.1 Preliminaries

A configurable software system provides a set of configuration op-
tions O, each possibly binary

(
dom(𝑜) = B

)
or numeric

(
dom(𝑜) ⊆

N
)
. A configuration is a mapping from options to values in their re-

spective domains. The set of valid configurations C results from the
Cartesian product of these domains, restricted by inter-option con-
straints. Hence, a configuration 𝑐𝑐𝑐 ∈ 𝐶 is a vector whose elements
represent the values assigned to each option.

Once configured, a software system is deployed into a specific
setting 𝑠 , which represents the values of external factors that af-
fect the software behavior, e.g., the specific workload. Since these
factors are often inherently qualitative (e.g., different operating
systems and hardware), we treat settings as categorical rather than
attempting numeric encodings of categorical values. Let S be the
set of all settings, we define a software system’s execution context
𝑥 ∈ X as a pair of configuration and setting, giving rise to the exe-
cution context space X = C × S. Given the execution context 𝑥 of
a software system, a performance-influence model Π̂(𝑥) : X ↦→ R
can be learned from a set of empirical observations to approxi-
mate the true performance behavior Π(𝑥) : X ↦→ R. The measured
configurations C∗ and used settings S∗ result in the set of ob-
served execution contexts X∗. The resulting measurement dataset
is D =

{ (
𝑥, Π(𝑥)

)
| 𝑥 ∈ X∗ }.

2.2 Running Example

We introduce EncodeX, a hypothetical video encoder with four
configuration options evaluated using three video files as work-
loads: CCTV.mp4 (a 10-second 720p clip without sound), vlog.mp4 (a
20-second 1080p mobile clip), and movie.mkv (a 30-second 4k movie
with multiple sound channels). EncodeX’s configuration options
reflect typical categories of encoding options, specifically nullO (no
effect), constO (always adds 5 seconds), varyO (increases time rela-
tive to video length [14]), and conO (influence varies conditional
on sound presence [13]) with two options per category. EncodeX’s
execution time ΠEncodeX : X ↦→ R depends both on the configura-
tion and the workload. The performance of a given configuration is
calculated by multiplying the vector of workload-specific influences
𝛽𝑠𝛽𝑠𝛽𝑠 by the configuration vector 𝑐𝑐𝑐 and adding a workload-specific
base run-time of 𝛼𝑠 . Adding a 5% noise factor 𝜀, the execution time
of a given configuration is given by ΠEncodeX (𝑠,𝑐𝑐𝑐) = 𝛼𝑠 + 𝛽𝑠𝛽𝑠𝛽𝑠𝑐𝑐𝑐 + 𝜀.
Figure 1a shows how performance varies across workloads, high-
lighting setting-specific shifts and conditional effects (e.g., handling
2https://github.com/AI-4-SE/hyperf-companion/

https://github.com/AI-4-SE/hyperf-companion/
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audio only matters for certain videos). Such multi-factor variability
complicates the modeling process.

2.3 Modeling Single-Factor Software Variability

Performance-influence modeling aims at understanding how differ-
ent options and their interactions affect software performance [15].
Most performance-influence models consider configurability as the
sole factor and assume a fixed setting [16]. Among those, linear-
regression-basedmethods [1, 4, 17] capture option influences and in-
teractions in an interpretable additive form. Others employ Fourier
expansions [5, 18], rule-based trees [2, 19], Bayesian approaches [1],
or white-box data [20, 21] from dynamic and static analysis [22–24].
All these approaches rely on performance data originating from
a single setting, limiting their ability to generalize across differ-
ent workloads or hardware. For instance, such an approach would
falsely dismiss option conO as non-influential when only analyzing
EncodeX’s first workload, overlooking its influence on others.

2.4 Modeling Multi-Factor Software Variability

Multi-factor software variability captures the interplay of factors
that affect software performance, including not only configurabil-
ity but also variations in hardware, operating systems, and input
data [25]. In what follows, we outline the challenges that this com-
plexity presents for model adaptability across settings and review
existing approaches that address these challenges.

2.4.1 Performance Variation Across Settings. The performance of a
configuration may correlate across similar settings [14], prompt-
ing the idea of a single “bellwether” setting [26] to generalize
performance-influence models across settings. However, not all
settings are sufficiently similar, and certain options can exhibit
drastically different or conditional performance influences [13, 27].
Thus, reusing a single model can be unreliable, motivating tech-
niques that explicitly account for setting-specific influences.

2.4.2 Transfer Learning. Transfer learning leverages data from a
well-understood setting to reduce the effort for sampling and learn-
ing in a new one, for instance, by identifying influential options [28]
or transferring a kernel function [11, 12]. Although effective for
pairwise setting transfers, these methods typically rely on a single
source model. As a result, when learning a model for a third set-
ting, such transfer-learning methods lack the ability to pin down
options that are consistently influential across settings, that can be
disregarded, and that may be conditionally influential.

2.4.3 Multitask Learning. While transfer learning adapts knowl-
edge from a single source setting to a new one, multitask learning
aims to build a single model for multiple settings. Several lines of
work touch on multitask principles. Krishna et al. propose using
a single bellwether setting for aggregating cross-setting measure-
ments [8]. However, this strategy is undermined by the substantial
variability of option influences across settings, as reported by re-
lated work [13, 27]. Ding et al. first characterizes workloads [29] to
derive new workload features and then evaluates different machine
learning algorithms in both a traditional and an active-learning
setting [9, 10]. However, it is limited to setting changes with a quan-
tifiable characteristic. Even for such setting changes, it attributes the
setting variability of options’ influences to the new characteristic

instead, obscuring interpretability. In contrast to transfer learning,
multitask learning simultaneously considers multiple settings at
once, which is key to identify both invariant and conditionally influ-
ential options. The challenges of sparse data and reported substan-
tial variance in option influences across settings [13, 27] highlight
not only transfer learning’s inadequacies but also underscore the
necessity for multitask learning’s holistic approach.

3 Multi-Level Performance-Influence Modeling

Data sparsity is a major challenge resulting from the high effort
of conducting performance measurements. Considering multiple
factors elevates this issue even further. Relying on an already con-
strained measurement budget, the inflated problem space X (see
Section 2.1) limits the ability of traditional performance-influence
models to offer reliable predictions across settings. To address this
issue, we explain how to process sparse multi-factorial data to allow
models to detect commonalities. From this, we derive how to extend
single-factor models to accommodate multiple factors.

3.1 Processing Multi-Factorial Data

As our goal is to model performance-influence changes across set-
tings, and given that factors are inherently qualitative in nature,
we treat the setting as a categorical variable rather than attempting
to extract numerical characteristics. This decision shapes how we
process multi-factorial data such that it supports model evalua-
tion, enables finding commonalities across settings, and facilitates
interpretability and learning.

3.1.1 Stratification. To ensure that our model is able to capture
which performance influences change across settings, we incorpo-
rate performance observations stemming from different settings.
Therefore, we stratify with respect to the setting and split our data
D into |S∗ | distinct datasets D𝑠 , with 𝑠 ∈ S∗. Before training a
model, we apply a split operation to each dataset D𝑠 to obtain a
training set Dtrain

𝑠 and a test set Dtest
𝑠 , giving rise to a correspond-

ing global training sample Dtrain =
⋃

𝑠∈S∗ Dtrain
𝑠 and a global test

sample Dtest =
⋃

𝑠∈S∗ Dtest
𝑠 .

3.1.2 Common Scale. As our data stem from different settings, per-
formance observations can vary substantially in scale. To mitigate
this, we standardize the performance values Π(Dtrain

𝑠 ) of each dis-
tinct datasetD𝑠 by subtracting the mean performance and dividing
by the standard deviation. This standardization implements a linear
transfer of data between settings, addressing the common shift-
ing and scaling effects in multi-factorial data and thereby aligning
performance distributions [11–13, 13, 27], as shown in Figure 1.

To ensure that the option values are within the same order of
magnitude, as required by various machine learning techniques
such as regularization, we normalize the values of each option
𝑜 ∈ O to the range [0, 1] via min-max scaling. This step leaves
binary options unchanged, while the values of numeric options are
scaled to the same order of magnitude.

3.1.3 Reducing Multicollinearity. The values of configuration op-
tions may be correlated, such as an option being selected in all
configurations (mandatory) or groups of option values being mutu-
ally exclusive (alternative groups). Although such multicollinearity
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does not affect predictive accuracy, it blurs the attribution of per-
formance influences to individual options [30]. To correct for multi-
collinearity, we follow a method from the literature [1]. Specifically,
we transform our dataset D by selecting and removing a default
option from mutually exclusive options and removing options with
unchanged values in Dtrain, as they do not account for any perfor-
mance variation. This transformation implicitly sets the influence
of removed options to zero and removes interactions between them
and other options from the dataset, since such interactions were
indistinguishable from individual options’ influences with the given
data. This leads to simpler models where the influences of the re-
maining options are interpretable.

3.2 Quantifying Uncertainty

Given the sparsity of multi-factorial data, Bayesian models provide
a promising alternative to frequentist models, as they explicitly
model uncertainty arising from data sparsity, measurement noise,
and the variance across settings. In what follows, we explain the
concept and implementation of Bayesian models and how they can
cope with data sparsity due to setting-specific budget splits.

Bayesian modeling provides a principled way to handle uncer-
tainty and variance in data analysis. Using Bayes’ theorem, initial
beliefs about model parameters 𝜃 are updated based on new evi-
dence, i.e., training data Dtrain. Model parameters are represented
as random variables, each with a probability density function (PDF)
that indicates the likelihood of different values for a random vari-
able. Bayesian models combine these random variables to compute
PDFs for predictions, denoted as Π̃.

Three key components define Bayesian models. First, the prior
𝑃 (𝜃 ) represents initial assumptions about the distribution of model
parameter values 𝜃 . In our case, priors capture the observation
that most configuration options have negligible impact on perfor-
mance [31] and that option influences remain stable across similar
settings but may diverge in less comparable settings [14]. To avoid
introducing arbitrary biases, we select priors that maximize en-
tropy while ensuring high probability mass in [−1, 1], matching
the standardized performance scale and accounting for possible
outliers. This strategy balances informativeness with flexibility: too
narrow priors could miss important effects, whereas too wide pri-
ors would provide insufficient regularization. Second, the posterior
𝑃 (𝜃 | D) represents the updated beliefs about parameter values af-
ter considering new data, blending prior knowledge with observed
evidence. Third, the likelihood 𝑃 (D | 𝜃 ) quantifies how probable
observed data is under a given set of model parameters. Unlike
non-Bayesian methods, this allows us to formalize how options
influence performance, opening unique ways of learning from data.

3.3 To Pool, or Not to Pool, or To Pool Partially

Capturing the variation of options’ performance influences across
settings requires a balance between flexibility and interpretability.
While complex models capture fine-grained interactions, they often
obscure insights. With preprocessing that aligns performance val-
ues to a common scale, linear models allow us to extract meaningful
patterns across settings without unnecessary complexity. In what
follows, we discuss different ways to handle multi-factorial data
with additive Bayesian models.

3.3.1 No Pooling (np). Most existing performance-influence mod-
els assume a fixed setting and vary only the configuration as the
only considered factor. A natural extension of such models to mul-
tiple settings would fit a dedicated model for each setting. Here,
no data are shared (pooled) across models, which, consequently,
captures only influences within a setting. In the case of EncodeX,
the data D is split into three setting-specific datasets DCCTV.mp4,
Dvlog.mp4, Dmovie.mkv, and a separate model on each dataset. For
instance, Mühlbauer et al. apply Lasso models with no-pooling,
requiring a comprehensive training set for each workload [13].

In our implementation of the no-pooling strategy, the likelihood
function starts with a base performance 𝛼𝑠 (analogous to the inter-
cept in a linear model) and a vector of option influences 𝛽𝛽𝛽𝑠 for each
setting 𝑠 . For the prior distribution of the base influence, we assume
only that there is finite uncertainty about a most likely value. With
this assumption, the normal distribution N(𝜇, 𝜎) is the maximum
entropy probability distribution, making it a natural choice:

𝛼𝑠 ∼ N(0, 1) ∀ 𝑠 ∈ S∗ (1a)

Acknowledging that not all options have a measurable influence
on performance, we apply Lasso regularization to eliminate non-
influential options. For this purpose, we choose a Laplace priorL for
the option influences 𝛽𝛽𝛽𝑠 , because Lasso can be derived as the poste-
rior mode of a Laplace prior [32]. The Laplace distribution’s equiv-
alent to Lasso’s regularization strength-defining penalty hyper-
parameter is its spread parameter 𝑏. Recognizing that the share
of influential options and, hence, the appropriate regularization
strength differs across systems, we let the model infer the best reg-
ularization strength from the data:

𝑏 ∼ Exp(1) (1b) 𝛽𝛽𝛽𝑠 ∼ L(0, 𝑏) ∀ 𝑠 ∈ S∗ (1c)

As a hyper prior, 𝑏 introduces the first new model level because it
priors the spread prior of the Laplace distribution. The exponential
distribution is a suitable prior for 𝑏 as it enforces positivity, and it
is the maximum entropy distribution when we assume only that
an expected value exists.

For each setting, we model the performance Π̃np (𝑠,𝑐𝑐𝑐) as a linear
combination of option influences and a given configuration, offset
by the base. While this model Π̃np can later be used for predictions,
learning the likelihood D | 𝜃 requires explicitly modeling the
frequentist residual 𝜀 as the observation variance 𝜎2𝑠 :

Π̃np (𝑠,𝑐𝑐𝑐) = 𝛼𝑠 + 𝛽𝛽𝛽𝑠𝑐𝑐𝑐 ∀ 𝑠 ∈ S∗ (1d)

𝜎2𝑠 ∼ Exp(1) ∀ 𝑠 ∈ S∗ (1e)

D | 𝜃 ∼ N
(
Π̃np (𝑠,𝑐𝑐𝑐) , 𝜎2𝑠

)
∀ 𝑠 ∈ S∗ (1f)

Since the individual models do not share information across set-
tings, the no-pooling approach cannot generalize to unseen settings
without a whole new set of training data. Combining single-factor
models, no-pooling serves as a base-line multi-factor approach.

3.3.2 Complete Pooling (cp). In contrast to the no-pooling ap-
proach, complete pooling aggregates all training data without dis-
tinguishing between settings, and a single model is trained on this
complete pool of data. While this strategy cannot detect setting-
specific variations, it efficiently learns common influences by using
the entire dataset. For EncodeX, a complete-pooling model could
derive performance predictions for a new setting, which will be
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inaccurate for options with setting-dependent influences such as
conO. However, this model would correctly capture the common
relative influence of varyO.

Our implementation of the complete-pooling strategy consid-
ers a single base influence 𝛼 and a single vector of influences 𝛽𝛽𝛽 ,
regularized by the spread hyper prior 𝑏. It remains setting-agnostic:

𝛼 ∼ N(0, 1) (2a)
𝑏 ∼ Exp(1) (2b)

Π̃cp (𝑠,𝑐𝑐𝑐) = 𝛼 + 𝛽𝛽𝛽𝑐𝑐𝑐 (2c)

𝛽𝛽𝛽 ∼ L(0, 𝑏) (2d)

𝜎2 ∼ Exp(1) (2e)

D | 𝜃 ∼ N
(
Π̃cp (𝑠,𝑐𝑐𝑐) , 𝜎2

)
(2f)

3.3.3 Partial Pooling (pp). Acknowledging that some option in-
fluences may vary across settings while others do not [13, 14, 28],
partial pooling combines the generalizability of complete pooling
with the flexibility of no pooling. Partial pooling is able to learn
that EncodeX’s option varyO has a consistent relative influence
across settings, but allows setting-specific influences for options
with varying influences, such as conO. To achieve this, we use the
complete-pooling model as prior for the expected influences of the
no-pooling models, adding a new level to the model. This results
in our partial-pooling approach, HyPerf:

𝛼𝜇 ∼ N(0, 1) (3a)

𝜎2𝑠 ∼ Exp(𝜎2𝜇 ) ∀ 𝑠 ∈ S∗ (3b)
𝛽𝛽𝛽𝜇 ∼ L(0, 𝑏) (3c)
𝑏 ∼ Exp(1) (3d)

𝛼𝑠 ∼ N(𝛼𝜇 , 𝛼𝜎2 ) ∀ 𝑠 ∈ S∗ (3e)
𝛽𝑠𝛽𝑠𝛽𝑠 ∼ N(𝛽𝛽𝛽𝜇 , 𝛽𝛽𝛽𝜎2 ) ∀ 𝑠 ∈ S∗ (3f)

Π̃pp (𝑠,𝑐𝑐𝑐) = 𝛼𝑠 + 𝛽𝑠𝛽𝑠𝛽𝑠𝑐𝑐𝑐 (3g) D | 𝜃 ∼ N
(
Π̃pp (𝑠,𝑐𝑐𝑐) , 𝜎2𝑠

)
(3h)

Here, the upper level in Equation 3c captures the general influ-
ences across settings, whereas the lower level adjusts them with
setting-specific deviations in Equation 3f. This strategy constitutes
multitask learning: the model shares statistical strength across tasks
(settings) through shared priors while allowing for setting-specific
refinements where warranted by the data. This enables HyPerf
to generalize across settings without assuming uniformity. The
partial-pooling approach requires additional priors for the expected
variance in the base (𝛼𝜎2 ) in Equation 3e and in options’ influ-
ences (𝛽𝛽𝛽𝜎2 ) in Equation 3f as well as an expected observation noise
variance 𝜎2𝜇 in Equation 3b. Imposing both Lasso regularization and
a positivity constraint, we use the exponential distribution as it is a
one-sided Laplace distribution: 𝛼𝜎2 , 𝛽𝛽𝛽𝜎2 , 𝜎2𝜇 ∼ Exp(1). Despite not
modeling interactions between options, partial pooling achieves
good results (see Section 5.1.2).

4 Study Design

This section outlines our research questions and describes the sub-
ject systems and setup of our experiments. Without loss of gen-
erality, we focus on workload as the external factor in our study
due to its substantial influence on execution times and to provide
comparability. We further elaborate on this choice in Subsection 5.6.

4.1 Research Questions

The overarching question is whether HyPerf’s multilevel design
achieves a prediction accuracy on-par with existing approaches
while providing additional insights about the influence of options

across settings.We address this overarching questionwith a number
of fine-grained research questions.
RQ1: In which circumstances is HyPerf beneficial for performance-

influence learning under varying settings?
RQ1 evaluates whether the promise of multilevel models of an in-
creased sample efficiency holds by comparing HyPerf’s predictive
accuracy on training sets with varying sizes. We investigate three
different aspects of modeling accuracy.
RQ1.1: How does HyPerf’s multilevel performance-influence mod-

eling compare to no and complete pooling strategies?
RQ1.1 assesses when HyPerf’s sharing of information across set-
tings is beneficial for accurate prediction.
RQ1.2:How does HyPerf perform compared to state-of-the-art

performance prediction models?
RQ1.2 positions HyPerf relative to established black-box learners by
evaluating its predictive accuracy and analyzing trade-offs between
interpretability and accuracy.
RQ1.3: How does HyPerf scale to very large software systems?
RQ1.3 investigates whether HyPerf’s Bayesian inference and pre-
dictions through MCMC sampling limit its applicability to systems
with only a limited number of configuration options.
RQ2: Does HyPerf produce interpretable models for reasoning

about performance influences of options across settings?
Understanding option influences across settings is crucial for per-
formance analysis and optimization. RQ2 studies how HyPerf’s
unified multi-level model may enable novel reasoning about option
influences across settings – not possible with existing methods.
RQ3: Does HyPerf provide information to derive a coverage work-

load set?
RQ3 is concerned with a practical question that none of the pre-
vious approaches can provide answers to. For the first time, we
have a means with HyPerf to determine how many different set-
tings practitioners should consider to understand the variation of
performance influences across settings and for compiling practical
benchmark suites. Hence, with RQ3, we investigate how many set-
tings are needed to cover the influence variation of most options,
and whose options’ influences cannot feasibly be covered in a finite
set as their influence is different for every new setting.

Table 1: Overview of our ten subject systems: eight from lit-

erature [13], two are original measurements. |S∗ |: # settings;

|C∗ |: # measured configurations per workload.

System (Version) Domain | O | | C∗ | |S∗ |

jump3r (1.0.4) Audio encoder 16 4 196 6
dconv (1.0.0-𝛼7) Image scaling 18 6 764 12
h2 (1.4.200) Database 16 1 954 8
batik (1.14) SVG rasterizer 10 1 919 11
xz (5.2.0) Data compression 33 1 999 13
lrzip (0.651) Data compression 11 190 13
x264 (baee40. . . ) Video encoder 25 3 113 9
z3 (4.8.14) SMT solver 12 1 011 12

VP9 (1.13.0) Video encoder 24 302 35
x265 (3.5) Video encoder 26 354 35
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4.2 Subject Systems, Settings & Execution

For our evaluation, we compile what is, to our knowledge, the
largest dataset of its kind, comprising ten real-world subject sys-
tems across diverse domains, with varying numbers of options and
workloads (see Table 1). We build upon an existing dataset of eight
widely used subject systems from related work [13]. We extended
the dataset with measurements for two video encoders, VP9 and
x265. For these systems, we selected a subset of configuration op-
tions based on those used for VP9 and x264 in related work [33]. As
workloads, we used video files from the “derf’s collection”3, which
spans diverse characteristics in resolution, encoding complexity,
and content, ensuring workload diversity and realistic variation in
performance behavior. We measured encoding times on a Debian
compute cluster with Intel Core i7-8559U CPUs and 32GB RAM per
node. Each configuration-workload pair was executed five times,
repeating another five times if the coefficient of variation exceeded
10%, following established practice [13, 21, 28, 33, 34]. Consider-
ing multiple workloads introduces a new independent experiment
variable, requiring substantially more measurements to ensure a
sound empirical analysis. For the two added software systems alone,
we invested 97 days of computation time to capture performance
variability across different workloads. Such efforts are needed to
provide a careful evaluation, limiting risks to internal and external
validity. We provide all data in our companion repository.

Implementation & Execution. We implemented HyPerf using
NumPyro 0.12.1 [35, 36] in Python 3.10.4, which infers the model
posterior using Monte-Carlo Markov Chain (MCMC) sampling. To
train a model, we ran three parallel chains of the No-U-Turn sam-
pler [37], each with 1 000 warm-up and 1 000 retained samples,
which ensures robust posterior exploration and accurate credible
interval estimation. We run our experiments on a server with two
AMD EPYC 7302 16-core processors and 256GB RAM. We used
Arviz 0.16.1 [38] to compute credible intervals.

5 Results

In this section, we present the results for each RQ, along with their
operationalization and a discussion.

5.1 Data Efficiency (RQ1.1)

5.1.1 Operationalization. To assess the sample efficiency of Hy-
Perf under varying settings, we train models for each subject sys-
tem with varying training set sizes and compare their prediction
accuracy. This naturally constitutes a multitask learning problem,
where each setting represents a distinct but related task. Specifically,
we consider the Bayesian models for no pooling (Π̃np), complete
pooling (Π̃cp), and HyPerf (i.e., the partial pooling model Π̃pp). As
a baseline, we include frequentist Lasso regression [32] to represent
frequentist point estimate models. We adapt it to no-pooling (equiv-
alent to Mühlbauer et al. [13]) and complete pooling, denoted as
Π̂
np
Lasso and Π̂

cp
Lasso, respectively. We omit transfer-learning methods

from the baselines as they adapt a pre-trained base model to each
setting individually. This pairwise transfer hinders learning pat-
terns that generalize across environments. For each subject system,
we select training datasets Dtrain of various sizes, such that there

3https://media.xiph.org/video/derf/

is the same amount of data for each setting, obtained via indepen-
dent random sampling. We construct training sets of sizes 𝛼 · |O|
with 𝛼 ∈ {1/8, 1/4, 1/2, 3/4, 1, 2, 3}, giving rise to a series of datasets
1/8Dtrain

𝑠 ⊂ . . . ⊂ 3Dtrain
𝑠 , whose size is relative to the software

system’s number of configuration options |O|. This range reflects
realistic measurement budgets when each setting must be sampled
individually. For instance, in z3 (12 options and 12 workloads; see
Table 1), 𝛼 = 1/8 yields two configurations per setting, but still pro-
duces 24 total observations. To ensure a fair evaluation, we reserve
a separate testing setDtest

𝑠 = D𝑠 \ 3Dtrain
𝑠 , ∀𝑠 ∈ S∗ that comprises

all configurations that are not included in the largest training set.
To assess the prediction accuracy of models with scalar pre-

dictions, related work computes the mean absolute percentage er-
ror (MAPE) [1, 4, 6, 39, 40]. This metric relies on the absolute er-
ror (AE), a measure of the deviation of the predicted scalar perfor-
mance Π̂ from the actual observed performance Π. The MAPE is
obtained by averaging all absolute errors, divided by the observed
performances, across all execution contexts:

MAPE(X∗ ) = 100
|X∗ |

∑︁
𝑥 ∈X∗

���� Π (𝑠,𝑐𝑐𝑐 ) − Π̂ (𝑠,𝑐𝑐𝑐 )
Π (𝑠,𝑐𝑐𝑐 )

���� , (𝑠,𝑐𝑐𝑐 ) ∈ X∗ (4)

To extend MAPE for models that predict probability distributions,
we replace the scalar-based AE with the continuous ranked prob-
ability score (CRPS) [41]. CRPS generalizes the concept of AE to
random variables by comparing the predicted cumulative probabil-
ity density function (CDF), 𝐹Π̃ (𝑠,𝑐𝑐𝑐 ) , to the ground truth Π(𝑠,𝑐𝑐𝑐). As
Π(𝑠,𝑐𝑐𝑐) is scalar, we express it as a stepwise CDF using the indicator
function 111{Π (𝑠,𝑐𝑐𝑐 ) } : R ↦→ {0, 1}:

111{Π (𝑠,𝑐𝑐𝑐 ) } (𝑡) =
{
1 if 𝑡 ≥ Π(𝑠,𝑐𝑐𝑐),
0 if 𝑡 < Π(𝑠,𝑐𝑐𝑐) .

(5)

CRPS is then computed by integrating the squared difference be-
tween the predicted CDF and this step function over all possible
performance values 𝑣 :

CRPS(𝑥 ) =
∫ ∞

−∞

(
𝐹Π̃ (𝑠,𝑐𝑐𝑐 ) (𝑣) − 111{Π (𝑠,𝑐𝑐𝑐 ) } (𝑣)

)2
d𝑣 , (𝑠,𝑐𝑐𝑐 ) = 𝑥 (6)

This accounts for the full predictive distribution rather than just a
single estimate. To extendMAPE accordingly, we define probabilistic
MAPE (pMAPE), which replaces AE with CRPS:

pMAPE(X∗ ) = 100
|X∗ |

∑︁
𝑥 ∈X∗

����CRPS(𝑥 )Π (𝑠,𝑐𝑐𝑐 )

���� , (𝑠,𝑐𝑐𝑐 ) ∈ X∗ (7)

As pMAPE reduces to MAPE for scalar predictions, we apply it to
all models. We repeat the training set generation along with model
training 30 times to account for the probabilistic nature of Bayesian
inference and random training set sampling. We report the mean
pMAPE across all repetitions.

5.1.2 Results. Comparing the pMAPE values of Lasso and Bayesian
models in Figure 2, we see that Bayesian models (in blue) consis-
tently outperform Lasso models for a given pooling strategy. As
both models share the same model structure, the improvement of
Bayesian models can be attributed to our chosen prior distributions,
which lead to a better regularization than Lasso.

Table 2 lists the pMAPE for each software system and pooling
strategy for Bayesianmodels. Apparently only for the smallest train-
ing set of 1/8|O|, the no-pooling strategy excels over the others for

https://media.xiph.org/video/derf/
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Table 2: pMAPE across all subject systems and training set sizes. The best pMAPE for each training set is shaded blue.

|Dtrain | 1/8 | O | 1/4 | O | 1/2 | O | 3/4 | O | 1 | O | 2 | O | 3 | O |

Model Π̃cp Π̃np Π̃pp Π̃cp Π̃np Π̃pp Π̃cp Π̃np Π̃pp Π̃cp Π̃np Π̃pp Π̃cp Π̃np Π̃pp Π̃cp Π̃np Π̃pp Π̃cp Π̃np Π̃pp

H2 14.1 13.8 14.2 10.9 11.7 10.4 9.4 10.4 8.7 8.9 9.4 7.9 8.7 8.5 7.4 8.2 6.9 6.7 8.1 6.6 6.5
VP9 162.2 156.6 132.4 85.8 133.5 58.1 52.7 128.5 37.4 40.4 115.5 31.2 36.5 99.4 29.6 29.9 51.6 27.8 27.5 37.1 29.3

batik 39.5 33.4 30.9 22.7 18.5 27.9 15.7 15.9 15.4 14.7 15.2 13.1 14.0 14.0 10.9 13.3 10.9 9.9 12.9 9.6 9.3
dconv 13.6 13.3 14.5 9.5 10.1 8.8 7.5 8.9 6.4 6.8 8.2 5.5 6.4 7.5 4.8 5.8 5.4 4.1 5.6 4.5 3.9
jump3r 53.8 49.9 71.9 41.1 42.3 44.8 23.7 36.7 24.0 19.8 33.2 20.4 17.8 28.3 17.5 16.2 18.3 15.7 15.6 16.0 15.0
lrzip 283.7 221.8 271.3 189.6 153.8 201.1 170.5 140.6 177.9 162.5 142.4 157.2 149.7 141.7 144.3 134.4 148.0 131.6 132.4 151.1 131.2
x264 99.0 106.2 116.6 60.5 102.3 62.5 51.9 83.6 62.0 51.5 61.7 59.6 50.4 50.4 54.3 49.3 47.7 50.9 49.8 48.6 50.7
x265 88.0 81.8 79.0 53.7 66.1 47.4 42.5 61.2 44.5 40.5 58.2 42.5 40.0 55.1 41.3 39.3 43.8 39.6 39.3 37.2 39.0
xz 70.8 63.2 74.4 63.2 63.8 69.8 60.0 62.3 70.0 59.9 61.2 67.0 60.2 59.5 64.0 60.5 58.6 62.2 60.7 59.0 61.8
z3 595.4 581.9 587.6 319.9 270.6 307.1 262.0 255.0 252.2 245.2 241.2 208.9 228.2 193.7 167.3 228.9 147.0 152.0 232.1 144.1 151.4

Mean 142.0 132.2 139.3 85.7 87.3 83.8 69.6 80.3 69.8 65.0 74.6 61.3 61.2 65.8 54.1 58.6 53.8 50.0 58.4 51.4 49.8
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Figure 2: pMAPE results for Bayesian models (Π̃) and Lasso

(Π̂). The color encodes the model type, whereas the line style

encodes the pooling strategy. The shaded area represents the

standard deviation across 30 repetitions.

most subject systems. In absolute numbers, these training sets have
one to four training samples per workload. For such small numbers,
the standardization in our data preparation (Subsection 3.1) fails to
find a common scale for performance values, giving an edge to the
no-pooling strategy, where no common scale is needed. For training
set sizes of 1/4|O| to 1|O|, we see a shift towards partial pooling and
complete pooling as the best strategies. Because complete pooling
merges all setting data, it excels when a system’s training data con-
tain many settings and relatively low variation across settings. For a
relative sample size of 3/4|O|, four subject systems can be best mod-
eled with complete pooling, while partial pooling yields best results
for six systems. However, given a larger sampling budget, complete
pooling loses its edge to no-pooling in cases where the data for
each setting contain enough information individually to accurately
learn all influences. While Figure 2 reveals substantial accuracy
differences between complete and no-pooling models, HyPerf’s

partial pooling (blue, dashed line) consistently either outperforms
the other pooling strategies or is close to the best strategy.

5.1.3 Discussion. Answering RQ1.1, HyPerf’s partial pooling pro-
vides reliable accuracy for datasets larger than 1/8|O|. Notably, Hy-
Perf achieves strong pMAPE results despite not incorporating
interaction terms between options in its current form (see also Sec-
tion 3.3.3). With ample training data, that is, |D| ≫ |O|, no-pooling
may be considered. However, the benefit of investing in additional
measurements for a new workload is often uncertain in practice.
If the new setting is similar to known ones, partial pooling is ad-
vantageous since there is little new to learn. So, while no-pooling
can, on average, increase accuracy, it may not be the most econom-
ical strategy. In essence, by combining the flexibility of Bayesian
multi-level models with enhanced sample efficiency, HyPerf offers
a good trade-off for stable and setting-dependent influences.

5.2 Predictive Accuracy (RQ1.2)

5.2.1 Operationalization. HyPerf ’s novel capabilities are no free
lunch [42] and may come at a cost in predictive accuracy. To as-
sess this trade-off, we compare HyPerf to three state-of-the-art
performance-prediction approaches that prioritize predictive power
over interpretability.We include Random Forest (RF) [43] as a strong
ensemble learner known for capturing complex, nonlinear inter-
actions between configuration options [16]. Specifically, we use
RandomForestRegressor from the scikit-learn library with 100
trees, squared-error splits, and bootstrap sampling. We further in-
clude DeepPerf [6], a deep-learning approach that automatically
composes and tunes feed-forward networks under ℓ1-regularization,
balancing model expressiveness and sparsity. We adopt DeepPerf’s
reference implementation, perform 50 hyperparameter optimiza-
tion trials, and enable early stopping after 20 epochs without im-
provement. Lastly, we include Divide-and-Learn (DaL) [7], a re-
cent approach that partitions the configuration space into diverse
regions and fits a sparsity-regularized deep model to each region
individually. Each prediction is computed by routing a configu-
ration to its closest local model. We follow the authors’ imple-
mentation. We evaluate each method with both no-pooling and
complete-pooling (i.e., one model per setting and a single model
shared across all settings). We replicate the experiments of RQ1 for
each pooling variant. To keep model training tractable, given the
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computational cost of these complex learners, we reduce the num-
ber of repetitions and restrict training to smaller sets of size 𝛼 · |O|
with 𝛼 ∈ {1/8, 1/4, 1/2, 1, 2}. Despite this reduced training budget, the
setup remains sufficient to reveal differences in accuracy.

5.2.2 Results. Figure 3 presents the prediction accuracy of all mod-
els across varying training sizes and subject systems. HyPerf consis-
tently achieves a low pMAPE, especially with small training sizes
(𝛼 ≤ 1), often outperforming competing approaches. Its partial
pooling enables it to leverage shared information across workloads,
yielding robust predictions even under sparse data. Exceptions in-
clude x264 and z3, where higher variability limits this benefit. In
contrast, DaL and DeepPerf exhibit large variance in low-data
regimes and occasionally fail to train completely, causing visible
irregularities in Figure 3. Pooling trends reveal additional insights.
For DaL and DeepPerf, complete pooling (solid lines) often per-
forms competitively across training sizes in systems such as VP9,
sws, and xz, suggesting that option influences in these systems
are largely stable across workloads. In settings with more diverse
workload-specific behavior, such as H2, x264, and z3, no-pooling
(dotted lines) tends to outperform complete pooling when 𝛼 > 1/2.
Across all training sizes, HyPerf’s partial pooling (dashed lines)
reliably balances sample efficiency and flexibility, adapting to both
high and low variance in option influences across settings.
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Figure 3: pMAPE results for HyPerf, Random Forest, Deep-

Perf and DaL. The color encodes the model type, whereas

the line style encodes the pooling strategy. The shaded area

represents the standard deviation across 5 repetitions.

5.2.3 Discussion. Overall, HyPerf achieves strong and consistent
prediction accuracies across subject systems, especially when train-
ing data are limited. In these cases, it often outperforms state-of-
the-art single-point estimation approaches such as DeepPerf and
DaL, which are prone to unreliable results or complete training
failures. While both models can achieve lower pMAPE with large
training sets, particularly when option influences are stable across

settings, they are substantially more expensive to train (up to 50
times for DeepPerf compared to HyPerf).

5.3 Scalability (RQ1.3)

5.3.1 Operationalization. To investigate whether HyPerf remains
operable and insightful in extreme-scale scenarios, we apply it to
the TuxKConfig dataset [44], which captures the Linux kernel’s
configuration space across seven versions (4.13–5.8), interpreted
as settings in our multi-level model. Each version contains over
12 000 binary options, with a total of more than 243 000 measured
configurations. We model the kernel’s binary size.

To consider realistic constraints, we train HyPerf with a mini-
mal budget of 𝛼 = 0.01 (i.e., 120 samples per version). We retain 500
MCMC samples after 500 warm-up iterations—a pragmatic compro-
mise to ensure feasibility while enabling posterior analysis. Due to
the large data size, we subsample a test set of 10 000 configurations
and skip multicollinearity reduction since the dataset is already pre-
processed. Missing values (e.g., from version-specific constraints)
are set to zero, treating unavailable options as inactive. We report
training time, prediction time, and memory usage.

5.3.2 Results and Discussion. Training took approximately 5 hours
and used up to 70GB of memory. Predicting 10 000 configurations
completed in under two minutes. These results suggest that Hy-
Perf remains operational on large-scale systems, with manageable
training cost and fast prediction. Users can further adjust the cost
of inference by tuning the number of MCMC samples. Compared
to the effort of compiling and measuring hundreds of kernels, the
computational cost of training remains modest. More importantly,
HyPerf’s Bayesian inference provides insights into model fitting.
The Pareto-smoothed leave-one-out diagnostic (𝑝loo) [45] revealed
that few parameters were effectively learned—indicating that pri-
ors dominated due to limited data per option. With thousands of
options, understanding whether generalization fails due to data
scarcity or model assumptions becomes challenging—a distinction
HyPerf’s Bayesian diagnostics help make.

5.4 Reasoning on Multi-Factorial Variance (RQ2)

5.4.1 Operationalization. To study HyPerf’s capabilities for cap-
turing the variation in the performance influence of options across
settings, we train and analyze one HyPerf model for each soft-
ware system, trained on its largest 3|O| dataset to minimize uncer-
tainty among the inferred performance influences. The multi-level
structure of these models enable novel quantitative and qualitative
analyses, which we discuss next.

Upper Level. HyPerf’s upper level enables analyses on the gen-
eral influences of options, that is, on the performance influence
patterns that are consistent across settings. This, however, requires
a prior step, because, after Bayesian inference updates an option’s
hyper prior into its hyper posterior, each option’s general influence
is split into its hyper posterior for the expected value 𝛽𝛽𝛽𝜇,𝑜 |D and
its spread 𝛽𝛽𝛽𝜎2,𝑜 |D. By inserting both into Equation 3f for HyPerf’s
specific influences, we compute 𝛽𝛽𝛽gen𝑜 , an option’s general influence
across settings. In essence, it reflects HyPerf’s updated best guess
for an option’s influence for any unseen setting.
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Awider spread in 𝛽𝛽𝛽gen𝑜 indicates more variance in setting-specific
influences (𝛽𝛽𝛽𝑜 |D). To quantify the spread of a given general influ-
ence, we compute its 95%-credible interval (CI) and that interval’s
width. This allows us to determine whether there is uniform vari-
ance in the general influences or whether specific options exhibit
significantly wider spreads. We use inter quartile range outlier de-
tection [46] to identify options Oout for which the hyper posterior
spread substantially deviates from the norm. These outliers indi-
cate options with an unusual level of variance in their performance
influence, requiring special attention in new settings. This method
adapts to a model’s overall magnitude of spread in its 𝛽𝛽𝛽gen𝑜 , which
can vary significantly across models.

Multi-level. The presence of both general and specific influences
in the samemodel allows us to identify workload-specific influences
that substantially deviate from their general influence. These unique
workloads are particularly insightful, hinting at new use cases of
the software system or performance bugs that manifest only for cer-
tain workloads. However, HyPerf’s robust hyper priors may treat
such deviations as outliers, potentially not reflecting them in the
general influences and being missed through the upper-level analy-
sis. From an information-theoretic perspective, specific influences
add information to the model if they deviate from their general
influence. The Kullback-Leibler Divergence (KLD) [47] quantifies
this information gain4. Consequently, we compute the KLD for each
pair of general and corresponding specific influence. The higher the
KLD, the more information that specific influence contributes to the
model. Consequently, we deem specific influences as informative
if their KLD is above a threshold of 1.0, which has proved robust
in our experiments. Finally, we consider an option’s performance
influence invariant if no specific influence is informative.

5.4.2 Results. Overall, our multi-level analysis reveals that infor-
mative influences, i.e., workload-specific influences that deviate
from general influence, are not evenly distributed across options.
Notably, 57 % of options exhibit no informative workload-specific
influence, suggesting their effect is stable across all workloads. An
example is x264’s option noasm, which shows identical general and
specific influences in Figure 6a. In contrast, 10 % of options exhibit
informative influences under every workload, indicating that no
consistent general influence can be identified.

4As a closed-form posterior PDF is unavailable, we approximate it using sampling [48].
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workload-specific ones for selected edge cases.

Figure 4 shows how informative influences are distributed across
options and systems. Each point in the violin plot represents the
proportion of informative setting-specific influences for one option.
Notably, a large number of options has 5 to 20 % informative influ-
ences. Such options have a common influence among the majority
of workloads, but there are notable workload-specific deviations.
The violin plot in Figure 5 visualizes these option influences across
all subject systems. Here, a point represents a software system,
which is positioned according to the relative number of options
with invariant influence. Counting the points on the upper half of
the plot shows that more than 50% of options have an invariant
performance influence for seven subject systems, with x264 exhibit-
ing the highest share of options with invariant influence of 88%.
At the same time, Figure 5 reveals a cluster consisting of batik,
Density Converter, z3, among whose options more than 90%
have informative workload-specific influences.

Our investigation at the upper model level has identified ten
general-influence outliers across several subject systems: xz, Den-
sity Converter, jump3r, x264, lrzip, and H2. The remaining sub-
ject systems exhibited no outliers, suggesting uniform variance
in their option’s influences across workloads. To gain deeper in-
sights, we conducted a qualitative analysis on the five options with
the largest credible intervals, investigating whether their variance
roots in their functional dependence on the workload: H2’s op-
tion MVSTORE enhances performance especially for concurrent
query workloads, leading to distinct specific influences shown in
Figure 6b. The lrzip option max-resident-set-size limits the available
RAM during run-time, directly influencing performance relative
to the workload size. This leads to a general influence with an ex-
ceptional CI width of 4.6, depicted in Figure 6c. Notably, the same
option was identified as an outlier for x264. Variance in the general
influence of option threads (Density Converter) suggests that
increasing the number of threads does not benefit all workloads.
Option RECOMPILE_ALWAYS of H2 affects workloads with repetitive
queries more severely by preventing caching. Lastly, the influence
of Mono (jump3r) depends on whether the workload is stereo or
mono. The clustered specific influences seen in Figure 6d reflect this
behavior. All this indicates that the outliers detected with HyPerf
are reasoned by the functionalities of these options.

5.4.3 Discussion. Our findings highlight the novel insights that
HyPerf is able to provide and emphasize the importance of con-
sidering influence variance across settings. Answering RQ2, our
results show that, depending on the system, 0% to 88% of options’
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influences are invariant across workloads. For options with varying
influences, we frequently observe one of two patterns: either each
workload exhibits a distinct influence, or most workloads share a
common influence with only a few causing deviations. This in-
sight enables focused optimization efforts by identifying which
options need workload-specific testing versus those that can be
configured uniformly. We furthermore observe that it is common
for a software system to have an option whose influence varies
substantially more compared to other options. Our results confirm
previous studies [13, 27], while providing finer granularity and qual-
itative insights. In particular, they demonstrate HyPerf’s reasoning
capability by detecting when a setting actually varies an option’s
influence. This capability stems from HyPerf’s method to model
distinct sources of uncertainty in its information loss quantification.

5.5 Coverage Sets of Workloads

During performance testing configurable software systems, detect-
ing workload-specific performance issues is crucial, yet testing
every known workload is impractical, as changes in other factors,
such as hardware, quickly lead to a combinatorial explosion. To
make testing practical, we need a systematic method for identify-
ing a minimal coverage set of workloads S◦ ⊂ S∗ that captures
essential performance variations across options’ performance influ-
ences, creating a tailor-made benchmark suite. While non-Bayesian
methods can compute only distances between specific influences
to judge whether they provide sufficient coverage of each other,
HyPerf’s inferred PDFs enable a more informative comparison
by capturing uncertainty from measurement noise and data spar-
sity. When comparing PDFs for coverage assessment, we consider
the asymmetric nature of the relationship: A workload whose per-
formance influence has a broader distribution naturally provides
better coverage of behaviors captured by several workloads with
narrower distributions, while the opposite would miss important
performance variations. A key challenge arises when performance
influences of options lack a common mode [12, 13, 27]. Such op-
tions would require considering all workloads in S∗ for complete
coverage, which would defy the purpose of coverage. Thus, se-
lecting workloads demands a careful balance between coverage
completeness and practicality.
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Figure 7: Representation matrix for jump3r’s Mono op-

tion, comparing how each workload-specific influence (in

rows) covers the others (in columns) using KLD. Blue cells

(KLD < 0.5) indicate sufficient coverage.

5.5.1 Operationalization. To answer RQ3, we compute the infor-
mation loss when using one workload-specific influence to cover
the influence under another workload. While symmetric measures

such as the Jensen-Shannon divergence [49] exist, we specifically
chose KLD because its asymmetry aligns with the directionality
of coverage relationships. To find a minimal coverage set, we first
compute the KLD for each pair of specific influences bidirectionally
across all options, forming information loss matrices, such as the
one for Mono (jump3r) depicted in Figure 7. The 𝑖th column in this
matrix quantifies the information loss when using the 𝑖th workload
to cover the performance influence of the given option instead of
the 𝑗 th workload, as indicated in the 𝑗 th row. Each cell represents a
coverage candidate. Such a candidate provides coverage if its KLD is
low enough. In RQ2, a KLD threshold of 1.0 was selected to classify
influences as informative (i.e., not being covered by its general in-
fluence). However, coverage between workloads requires a stricter
criterion. Our experiments suggest that a KLD threshold of 0.5
effectively distinguishes sufficient coverage, although practitioners
may adapt this based on their requirements. Coverage candidates
above this threshold appear red in Figure 7. For instance, while
Figure 6d suggests two clusters of specific influences for jump3r’s
option Mono, its information loss matrix in Figure 7 indicates that,
in fact, a third workload is needed for complete coverage. However,
it is unclear whether these three workloads suffice to cover spe-
cific influences for all options. To build the complete coverage set
S•, we iteratively add the workload that reduces the cumulative
information loss the most until all specific influences are covered.
Once this reduction falls below 10% of the information loss of the
initial workload S•

1 , we mark the set of the previous iteration as
our practical coverage set S◦. Thus, the practical coverage set S◦

aims to provide sufficient coverage of workload-specific influences
at minimal size, whereas the complete coverage set S• includes all
workloads required to cover every specific influence. Our termi-
nation criterion adapts to the scale of information loss in a given
model and prevents unnecessarily large coverage sets. Our compan-
ion website contains the full algorithm. As a baseline for evaluating
the practical (S◦) and complete (S•) coverage sets, we compute the
information loss for each individual workload.

5.5.2 Results. Our analysis reveals substantial improvements in re-
ducing information loss through information-loss-based workload
selection. Compared to other workloads, our initially computed set
of workloads reduce information loss by, on average, 31%, in some
cases even halving it. While these results witness the effectiveness
of choosing a bellwether workload (i.e., a single workload that pro-
vides the best coverage), our results in Table 3 show that adding a
second workload decreases the information loss compared to the
initial workload by 52%, on average. For instance, the red swarm
plot in Figure 8 illustrates that other workloads yield 282 % higher
information losses compared to the optimal first workload for x265,
while the second workload S◦

2 cuts the best initial loss by 50%.
Most subject systems require only three workloads for practical
coverage, with batik requiring four, and jump3r and x264 only
two. On average, these coverage sets achieve an information loss
reduction of 77 %, compared to the best initial workload, and 84%
compared to S∗, the average across all considered workloads. In
Figure 8, the dashed line marks the coverage set size of three work-
loads until the information loss (blue line) substantially declines in
each iteration (blue dots). The resulting coverage sets cover nearly
all workload-specific influences for all options, with the number of
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influences with un-covered specific influences never exceeding 4.
This suggests that HyPerf’s information-loss quantification reliably
excludes options with no common influence across workloads.

Table 3: Coverage set characteristics, listing average infor-

mation loss (S∗
), initial loss (S◦

1 ), improvement with second

workload (S◦
1 ↦→2), final loss (S

◦
), sizes of complete (|S• |) and

practical coverage set (|S◦ |), and the number of options with

un-covered specific influences (|Ounc |).

System Information loss with Set size | Ounc |

S∗ S◦
1 S◦

1↦→2 S◦ |S◦ | |S• |
jump3r 47 29 82% 4 2 3 2
dconv 207 154 79% 28 2 6 4
H2 89 54 54% 11 3 6 4
batik 219 193 55% 31 4 7 4
xz 154 106 47% 12 3 6 3
lrzip 36 16 37% 3 3 4 2
x264 51 28 44% 10 2 3 1
z3 339 257 44% 78 3 10 4
VP9 286 157 44% 44 3 9 3
x265 257 162 36% 39 3 8 4

Avg. 168.6 115.9 52.2% 26.3 2.8 6.2 3.1

5.5.3 Discussion. Our results for RQ3 demonstrate that HyPerf
is indeed able to determine minimal workload sets that provide
adequate coverage of performance variations across configuration
options, achieved through systematic quantification of information
loss. The practical impact is significant: Identifying workloads that
provide essential coverage and workloads that add minimal new
information is crucial for efficient (regression) performance test-
ing. Our computed savings in execution time of workloads, when
comparing 3 vs. up to 35 workloads, is substantial. Considering
6–35 workloads per system at once through HyPerf’s multi-task
design already enables a more robust analysis compared to prior
approaches. When a new workload emerges, HyPerf allows practi-
tioners to assess the information gain from measuring a small sam-
ple and even to understand which option’s influences deviate from
the existing test suite. Our results challenge the assumption that a
single bellwether setting suffices [26]. Adding a second workload
already halves information loss, indicating important uncovered
performance influences. Nevertheless, we encourage practitioners
to adapt both the selection procedure and the KLD threshold based
on their specific coverage requirements and resource constraints.

5.6 Threats to Validity

We address threats to internal validity arising from measurement
noise in our training data by repeating each performance exper-
iment, at least, five times, using the median. Each performance
experiment was run on a dedicated compute node with a minimum
of background processes and only necessary packages installed.

Increasing external validity, we study ten diverse, previously
studied subject systems that were selected from different domains
to ensure broad applicability. We focus on workload variability as
our external factor, because it strongly influences performance, it
can be varied without affecting other factors, and is easier to modify
to aid reproducibility. This choice enables direct comparison with
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Figure 8: Coverage set building for x265. Red shows informa-

tion losses of individual workloads; blue shows reduction by

HyPerf. Dashed line indicates practical set size.

prior work [9, 12, 13, 25, 28]. As HyPerf is agnostic to the specifics
of factors, its demonstrated capabilities hold for other qualitative
setting changes, although effectiveness may vary.

A potential threat to construct validity lies in the choice of op-
tions and workloads. Despite our dataset’s breadth, some options
may have limited performance impact, and certain workloads may
exhibit similar behavior, simplifying the modeling task.

6 Conclusion

Software configurability allows users to tailor systems to different
settings, yet existing approaches of performance-influence mod-
eling largely ignore external factors such as workload variability,
limiting their practical effectiveness. This is where our approach
comes into play: With HyPerf, a Bayesian multi-level performance
modeling approach, we propose to employ a hierarchical model
structure to model common performance influences of configura-
tion options on the upper level and setting-specific influences at the
lower level of the model. This ensures sample efficiency by gener-
alizing across settings while preserving their specific performance
characteristics, which is not possible with existing approaches.

Tested on ten real-world systems across up to 35 workloads,
HyPerf consistently matches or outperforms state-of-the-art meth-
ods (Lasso, Random Forest, DeepPerf, DaL) in predictive accuracy
while reducing training time by up to a factor of 50. HyPerf re-
mains computationally feasible even on very large systems—with
thousands of options and multiple settings—training in hours and
predicting in minutes, while its Bayesian diagnostics flag when
adaptive priors are needed under extreme sparsity. Our multi-level
analysis reveals that more than half of configuration options exhibit
invariant influences, while 10 % share no common influence across
workloads, enabling focused optimization efforts. Crucially, HyPerf
is able to compute coverage workload sets, cutting required per-
formance tests from as high as 35 to 3 while still capturing 77 % of
performance variance. This and the ability to quantify information
loss in workload coverage provides a robust method to create effi-
cient benchmark suites—a significant advancement in performance
engineering of configurable software systems.
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