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ABSTRACT

Modern software systems often provide configuration options for

customizing of the system’s functional and non-functional prop-

erties, such as response time and energy consumption. The valid

configurations of a software system are commonly documented

in a variability model. Supporting the optimization of a system’s

non-functional properties, variability models have been extended

with attributes that represent the influence of one or multiple op-

tions on a property. The concrete values of attributes are typically

determined only in a single environment (e.g., for a specific soft-

ware version, a certain workload, and a specific hardware setup)

and are applicable only for this context. Changing the environment,

attribute values need to be updated. Instead of determining all at-

tributes from scratch with new measurements, recent approaches

rely on transfer learning to reduce the effort of obtaining new at-

tribute values. However, the development and evaluation of new

transfer-learning techniques requires extensive measurements by

themselves, which often is prohibitively costly. To support research

in this area, we propose an approach to synthesize realistic attrib-

uted variability models from a base model. This way, we can support

research and validation of novel transfer-learning techniques for

configurable software systems. We use a genetic algorithm to vary

attribute values. Combined with a declarative objective function,

we search a changed attributed variability model that keeps some

key characteristics while mimicking realistic changes of individual

attribute values. We demonstrate the applicability of our approach

by replicating the evaluation of an existing transfer-learning tech-

nique.
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1 INTRODUCTION

Configurable software systems can be customized to meet differ-

ent use cases by setting binary and numeric configuration options.

Usually, a variability model (e.g., a feature model [1]) describes

all configuration options and constraints among them. A configu-
ration specifies a system variant’s functional and non-functional

properties. This way, users can tailor the software system not only

according to their functional requirements, but also optimize it

with respect to non-functional properties, such as response time,

memory size, and energy consumption.

Optimizing non-functional properties is a non-trivial task and

has been subject to considerable research [7, 8, 15, 16, 19, 24, 26,

27]. Most approaches rely on a surrogate model in the form of an

attributed variability model (AVM), which specifies not only the

variability of the configurable system, but also assigns attributes

to individual options and interactions among options. Figure 1

depicts an exemplary AVM with energy consumption as attribute.

Using all individual options’ attribute values, we can compute the

resulting configuration’s value by summing up the attribute values

of selected options. Equation 1 formalizes this computation as a

polynomial of options o1, . . . ,on ∈ {0, 1} that form a configuration

Ci from the set of all valid configurations C. The coefficient αi
represent the influence of oi on the attribute and α0 represents the
base values of the software system. Function π : C → R maps

a given configuration to a real value quantifying the property in

question:

π (Ci ) = α0 + α1 · o1 + α2 · o2 + · · · + αn · on (1)

Note that additional terms for interactions among options might be

added as software systems usually have non-linear non-functional

behavior.

Energy	
Consumption

+10 Wh +2 Wh +1 Wh

+3 Wh +5 Wh

Figure 1: Simplified attributed variability model of the data-

base system SQLite. Each option shows the estimated energy

consumption in terms of its attribute value.

https://doi.org/10.1145/3377024.3377040
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AVMs support optimization as they evaluate attribute values of

individual configurations without expensive measurement of the

corresponding variant. Beside optimization, developers may use

AVMs to analyze which options slow down their system and which

variant fits on memory-restricted devices.

Typically, an AVM represents attribute values of a single envi-

ronment [6, 10–12]. That is, the values have been determined by

measuring the software system in a specific version, with a specific

workload, and on specific hardware. As soon as the environment

changes, one cannot guarantee the soundness of the AVM anymore

since the attribute values may not reflect the specifics of the new

environment. Unfortunately, software is in constant change, and

different customers have different workloads and hardware settings,

rendering a static AVM insufficient.

Current practice is to obtain an entirely newAVM for the changed

environment by measuring non-functional properties again for

the same variants in the new environment and afterwards deduc-

ing the changed attribute values, for instance, via machine learn-

ing [5, 17, 20]. Clearly, this does not scale for frequent environmen-

tal changes and is also not efficient as always some information

remains relevant in the new environment. For example, Valov et al.

have shown that a change in hardware often only shifts the op-

tions’ influences by a linear amount [25]. Their relative importance

and ranking stay the same. Jamshidi et al. observed in an empir-

ical study that performance distributions, relative importance of

options and interactions, and the ranking of configurations with

respect to performance maintains some characteristics for various

environmental changes of configurable software systems [10].

Transfer learning is a technique for transferring knowledge from

a source model to a target model such that only few additional

measurements need to be conducted in the changed (target) envi-

ronment. The soundness of the newmodel depends on the quality of

the transfer-learning technique and its applicability to the specific

case. Hence, transfer-learning techniques must be evaluated care-

fully to find the best target model. Evaluating a transfer-learning

technique can be done by assessing the accuracy of the target model

for a representative set of environment changes. But here comes the

caveat: To extensively evaluate the AVM’s accuracy, we would need

to measure all variants across all environments. Clearly, this is infea-

sible even for medium-sized configurable software systems. Here,

we struggle not only with the complexity of a software system’s

configuration space, but also with an exponential number of envi-

ronments affecting the system’s non-functional properties. Thus,

the experimental effort for evaluating transfer-learning techniques

in the field of configurable software systems is even more challeng-

ing than for optimization techniques for single AVMs. Moreover,

for the development of new techniques in a single environment,

researchers often rely on synthetic, non-realistic attribute values

due to the huge measurement effort [21]. This can lead to biased

and non-optimal techniques when applied to realistic settings [21].

We expect that this problem even grows for the development of

transfer-learning techniques.

To address these problems and ease the development and eval-

uation of new practical transfer-learning techniques, we propose

Loki, a tool that synthesizes a realistic target AVM that is related

to, but different from a given source AVM. Loki supports the eval-

uation of transfer-learning techniques on several synthetic AVMs

and requires only a single source AVM, which can be based on

measurements. Using user specifications regarding the target AVM,

we build a set of candidate AVMs by modifying the source AVM

with operators that exist for certain user specifications. Next, we

use a genetic algorithm to find candidate AVMs with attribute val-

ues that best satisfy all user specifications, including those without

applicable operators.

Suppose the AVM of the database system in Figure 1 has been

built based on measurements on cheap cluster machines, but a

company intents to deploy it on high-performance server machines.

The company could generate a range of AVMswith different degrees

of relatedness to the source AVM in Figure 1 and test their transfer-

learning technique against the resulting pairs of source and target

models. They can also apply optimization on the target AVMs to

infer which configurations are suitable in range of environments.

This way, a subsequent optimization of the database system in

different environments can be simulated upfront.

Technically, we re-implemented the tool Thor
1
[21] as an op-

tional pre-step to start with a realistic AVM in cases where actual

measurements are not possible to conduct at all. To summarize,

our contributions are as follows:

• an approach to synthesize a realistic target AVM that is

related to a given source AVM to support the development

and evaluation of transfer-learning techniques;

• Loki, an open-source
2
tool that implements our approach;

• a replication of the existing transfer-learning approach Learn
to Sample [11] using Loki to demonstrate its applicability.

2 PRELIMINARIES AND RELATEDWORK

2.1 Transfer Learning

Attribute values in an AVM are either assigned manually based on

user experience or can be determined via machine learning from

a set of measurements, referred to as a training set. Typically, the
training set is acquired in a single fixed environment; consequently,

the inferred AVM is expected to be valid for the respective envi-

ronment only, and likely to perform worse for other environments.

Among several components, an environment is composed of (1) the

hardware setup that runs the software system, (2) the workload

that is executed, and (3) the version of the software system.

In the worst case, for each environment, a new AVM has to be

obtained from scratch with entirely newmeasurements. By contrast,

transfer-learning techniques leverage knowledge from an existing

model to infer a new model more data-efficiently.

Different approaches to transfer learning have been proposed

in the past. Jamshidi et al. developed Learning to Sample (L2S), an
approach that identifies influential options for an existing AVM and

guides measurements in the new environment to reuse information

on these options [11]. Valov et al. use a small training set from the

new environment to infer a linear transfer function for the existing

AVM, resulting in an AVM for the new environment [25]. Among

a guided-measurement, linear-transfer and tree-based non-linear

transfer approach, Iqbal et al. found the guided-sampling approach

1
Thor allows users to generate an AVM based on a given variability model and a

specification of attribute values and interactions. The generated values mimic the ones

found in real-world software systems.

2
Download and contribute to Loki at https://github.com/digital-bauhaus/Loki
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to be superior for transfer learning hyper parameters of deep neural

networks across different machines [9].

Reasons for the effectiveness of transfer learning were found in

an exploratory study [10] and confirmed by a causal analysis [12]:

• For non-severe hardware environment changes, a strong

linear correlation has been found for option attribute values.

• Across all studied environment changes, the distribution of

variant attribute values stays similar as measured with the

Kullback-Leibler-Divergence [2].

• Rank correlation of the variant attribute values proved to be

even more robust than Kullback-Leibler-Divergence.

• Half of all options and 6 − 28% of all possible interactions

were classified as influential and remained influential across

environments.

• The attribute values for the investigated interactions de-

picted a high linear correlation.

To the best of our knowledge, there exists no test-bed creation

tool for transfer learning that fits into a researcher’s experimental

pipeline, despite active research in the field of configurable software

systems. Such a tool should provide means to synthesize AVMs

based on a given AVM and reflect the aspects listed above.

2.2 State-of-the-Art AVM Synthesis

Loki is neither the first tool to synthesize AVMs nor is it the first

to target transfer learning. In the following, we describe existing

and missing capabilities of publicly available tools for synthesizing

AVMs.

Thor. Thor [21] is designed to support the evaluation of algo-

rithms and tools operating on a single AVM. It enables users to

synthesize attribute values for arbitrarily large and constrained

target variability models while behaving like a supplied source

AVM. Thor uses the genetic algorithm NSGA-II [4] to optimize

distribution similarities of option and interaction attribute values

as well as variant attribute values to synthesize a realistic AVM.

Varying the target model’s number of options and interactions, it

is possible to test an algorithm’s fitness on problems with different

complexities.

Loki covers the functionality of Thor while adding support for

transfer learning, which we describe in Section 3.

GenPerf. Jamshidi et al. use the tool GenPerf to evaluate their

transfer-learning approach [11]. Given a source AVM, GenPerf

synthesizes a target AVM that covers a subset of aspects observed

with real pairs of source and target AVMs. GenPerf is able to

synthesize target AVMs whose option attribute values correlate

to a (user-specified degree) with the given source AVM and, at

the same time, keeps the variant attribute distributions of both

AVMs similar. In this process, GenPerf changes attribute values for

options and interactions, while setting the attribute value for some

attributes and interactions to zero and increasing the value of others

significantly in a stochastic manner; thus, not all influential options

stay influential across environments and previously non-influential

options may become influential [11]. However, GenPerf does not

offer the selective change of only the most influential options and

interaction attribute values nor a way to ensure rank correlation

between source and target variant attribute values. In addition, the

user needs to define the number of desired influential options and

interactions as program variables, which requires the user to have

detailed knowledge of the source AVM and GenPerf’s internals.

This is, however, an unrealistic requirement.

BeTTy. While Thor generates attributions for variability models

based on existing AVMs, BeTTy [18] lets the user specify most

parameters for AVM generation. Attribute distributions may be

specified for options and interactions as well as parameters for

constraints and size of the target model. BeTTy does not provide

a mechanism to ensure a realistic distribution of variant attribute

values and does not support the generation of changed AVMs from

original AVMs.

3 SYNTHESIZING TARGET AVMSWITH LOKI

3.1 Overview

With Loki, we aim at applying realistic changes to a source AVM,

yielding a target model that may be used to evaluate transfer-

learning approaches. To be realistic, we pursue the synthesis of

all common aspects among environment changes, as laid out in

Section 2.1. With Loki, users are able to create a highly controlled

test bed in which they can control the degrees and types of changes

they want to see reflected in the target model.

Figure 2 visualizes the steps of our approach. Before synthesizing

a target model, the user may use the included Thor functionality

to derive a large source AVM from a given smaller AVM or com-

mon variability model (step 0). Using the synthesized AVM or an

AVM based on real measurements, Loki first forms an initial set

of candidate AVMs following the process described in Section 3.2

(step 1). This set AVMs forms the initial population for the opti-

mization step (step 2) using a genetic algorithm (GA), which we

explain in Section 3.3. Steps 1 and 2 are responsible for satisfying

user requirements regarding the conformity with realistic aspects

of environment changes as well as user-defined challenges to evalu-

ate transfer-learning techniques. Finally, Loki exports all AVMs of

the final population and provides analytic plots as well as a python

module that provides a sampling API for the new AVMs (step 3).

Alternatively, the user can constrain the export to a single AVM

that has the highest score according to a weighted average of all

fitness functions.

User specifications and optional expert settings are stated in a

single YAML configuration file, whose format is documented at

Loki’s online repository. In the following, we describe steps 1 and

2 of our approach in more detail. We refer to Siegmund et al. [21]

for details on the Thor functionality in step 0.

3.2 Generating Candidate AVMs

In step 1, Loki obtains a set of initial candidate AVMs, which forms

the starting point for the GA in step 2. The process starts by evalu-

ating the user specifications for generating the AVM. The user can

specify the following:

• Aspects for the target AVM (see below);

• Custom selection of options and interactions to change;

• Internal parameters for tailoring the optimization process.

Aspects describe relations between source and target AVM, in par-

ticular:



VaMoS ’20, February 5–7, 2020, Magdeburg, Germany Johannes Dorn, Sven Apel, and Norbert Siegmund

LokiThor

Initial Modified AVMs
Initial Modified AVMs

Initial Modified AVMs

Initial Modified AVMs
Initial Modified AVMs

Candidate AVMs for GA

1 2 30

Target AVM

Python API

AnalysesSource AVM

Larger Source AVM

User-defined
Aspects

Figure 2: Workflow of Loki: 0 optional AVM extension with Loki’s implementation of Thor, 1 directly apply aspects to

build initial population for the genetic algorithm, 2 optimize all aspects with the genetic algorithm, 3 chose final AVM(s).

• The level of Gaussian noise to be applied;

• The linear transformation or

• Exponential transformation of attribute values to be applied;

• The similarity of option, interaction, and variant attribute

values for source and target AVM given a desired similarity

metric;

• The target degree of similarity ranging 0 − 1.

The user can chose from the following similarity metrics:

• Pearson’s r [23]

• Spearman rank-order correlation [22]

• Euclidean Distance

• Kullback-Leibler-Divergence [14]

• Kolmogorov–Smirnov test statistic [3]

NSGA-II — the GA that we use — additionally has configurable

parameters. Loki exposes these parameters for expert users; how-

ever, these parameters can stay default. The configurable NSGA-II

parameters are the following:

• Population size

• Budget

• Cross-over strategy

• Number of reference variants used to assess fitness functions

• Sampling strategy for reference variants

We implemented genetic operators to change the source AVM in

way that we meet all user specifications. Also, some specifications

represent configuration options for the optimization process. Since

some specifications might provide a tradeoff or have conflicting

effects on the attribute values, we need to optimize for all objectives

(i.e., specifications) using a weighted fitness function. By default,

the GA applies the operators in the order they are listed. If another

order is desired, Loki needs to be executed once per individual user

specification. By repeatedly applying the genetic operators on the

source AVM, we obtain a set of candidate AVMs. Next, we describe

the genetic operators.

Formalization. We represent an AVM as a set of options and

interactions: O where option o ∈ O. Without loss of generality,

we model interactions similar to options. The only difference is

that an interaction cannot be set by a user or sampling approach;

instead, it is selected iff all options that the interaction corresponds

to are selected. Furthermore, function α : O → R maps for a

given configuration option or interaction to the corresponding

attribute value represented as a real number. In other words, α
returns for option o the coefficient αo . We further define function

Π : P(C) → R |C |
which enumerates the set of all configurations

and produces a real-valued set containing the attribute values of

all variants. Internally, we compute it as follows:

Π(C) = {π (c) | c ∈ C} (2)

In general, each operator has a user-specified per-option and

per-interaction probability p to be applied. This way, we realize

a stochastic and iterative process to change an AVM, making the

final model less deterministic and posing a challenge for the learn-

ing technique. Moreover, we can combine this probability with a

filter such that the following specification is possible: Apply large

noise (50%) randomly to 20% of the 50% most-influential options

and interactions. Options and interactions with higher absolute

coefficient value αo are considered to be more influential with an

AVM according to Equation 1.

Transformation Operator. Users may specify a linear or exponen-

tial transformation of attribute values from the source AVM to the

target AVM. That is, we change the attribute values of options and

interactions to meet the specified transformation. The factor λ is

multiplied with each attribute value α(o)s to yield α(o)t :

∀o ∈ O′
: α(o)t = λ · α(o)s , (3)
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where O′ ⊆ O. The user specifies whether all options’ values

should be transformed O′ = O or only the top p% most-influential

options and interactions O′ ⊂ O.

Recall that linear correlation is one of the aspects of a realistic

environment change [10]. Since linear transformation causes lin-

ear correlation, this specification is useful to evaluate whether a

transfer-learning approach harnesses this aspect. Conversely, the

user can specify an exponential mapping. In this case, λ is used as

exponent for α(o)s to compute a new α(o)t :

∀o ∈ O : α(o)t = α(o)λs (4)

Since an exponential relationship has not been observed to be

an aspect of realistic environment changes, this transformation is

useful to challenge a transfer-learning technique.

Gaussian-Noise Operator. Jamshidi et al. observed different types

of attribute-value correlations for source and target AVMs, although

none were perfect correlations [10]. To mimic imperfect correla-

tions, Loki’s supports the application of noise on attribute values

of the source model. The operator for Gaussian noise relies on the

bell-shaped Gaussian distribution N(µ, σ 2). It is centered around

its mean µ, while its shape is defined by its standard deviation σ .
Loki’s Gaussian-noise operator is configured with a relative noise

σrel and draws a new value for each attribute value according to

Equation 5. Thus, larger values are likely to be changed by a larger

margin.

α(o)t = N(α(o)s , (σrel · α(o)s )
2) (5)

3.3 Optimizing Aspects

As described before, the user can specify different aspects for the

new AVM to be met, such as transformations, similarities of dis-

tributions, noise, and so on. As these aspects might be conflicting,

there is no single AVM that meets all specifications, but a range

of AVMs that favor some aspects over others. Hence, we define

the search for a target AVM as a multi-objective optimization prob-

lem containing one objective per specification. In the following,

we abbreviate the source and target AVM with AVMs and AVMt ,

respectively and formalize the optimization using the following

fitness function:

max f (AVMs,AVMt ) = β0 · f1(AVMs,AVMt )

+ β1 · f2(AVMs,AVMt )

+ . . .

+ βn · fn (AVMs,AVMt ),

(6)

where f1 . . . fn represent individual fitness functions that assess

the fitness of an individual aspect and β represents the user-defined

weighting of the individual aspects.

We use the genetic algorithm NSGA-II [4] to solve this optimiza-

tion problem. It starts with the initial population of step 1 and

iteratively applies genetic operators to combine candidate AVMs,

assesses the combined AVMs by means of our fitness functions, and

finally selects the best candidates for the next iteration. We stop

the GA after a given budget of iterations or after three iterations

without improvement. To exemplify how we compute an individual

fitness score, we explain the computations of the fitness function

for Gaussian noise and the distribution similarity.

Gaussian-Noise Fitness. We assess how well the Gaussian-Noise

specification is fulfilled by comparing the relative option and in-

teraction attribute value differences between the source AVM and

the respective candidate AVM against the Gaussian distribution

specified by the user with Pearson’s r [23]:

∆α = {(α
target
i − α sourcei )/α sourcei | αi ∈ AVMs} (7)

fnoise = ρ(∆α ,N) (8)

Distribution-Similarity Fitness. Loki is the first tool in this field

that allows for the specification and evaluation of multiple distri-

bution distance metrics, such as (1) Pearson’s correlation coeffi-

cient to ensure linear correlation [23], (2) Spearman’s rank correla-

tion coefficient for high rank correlation, (3) Euclidean Distance,

(4) Kolmogorov–Smirnov test statistic, and (5) the Kullback-Leibler-

Divergence to keep option interaction, and variant attribute values

of the target model similar to the source model [11]. If the user

chooses multiple distance metrics, their average is used as the fit-

ness value.

We use as a fitness function fsimilarity the user-defined similar-

ity metric. For instance, when using Pearson’s correlation coeffi-

cient [23], the fitness function is as follows:

fsimilarity =
cov(Π(CAVMs ),Π(CAVM t ))

σ (Π(CAVMs )) · σ (Π(CAVM t ))
, (9)

where cov is the covariance between the variant attribute values

Π(C) of the source and the target AVM, andσ the standard deviation

of the attribute values of all variants of the respective AVM.

4 EVALUATION: APPLICABILITY

The applicability of Loki depends on whether we can mimic actual

changes in environments. That is, we need to evaluate whether

a generated target AVM assembles changes to be useful in the

evaluation of a transfer-learning technique. To this end, we state

the following question:

RQ: With increasing user-defined degree of change, does Loki

synthesize target AVMs that are harder to infer with transfer

learning?

The rationale for this research question is that small changes and

closely related target AVMs should be easy to learn with a transfer-

learning approach than larger changes. If we observe better learn-

ability of transfer learning for AVMs that are supposed to be very

similar than those that are supposed to be different, we conclude

that Loki is able to generate models according to the given specifi-

cation.

4.1 Setup

To answer our research question, we synthesize several target AVMs

with varying degree of change, based on source AVMs of different

real-world software systems. With the resulting pairs of source

and target AVMs, we can then run the transfer-learning technique

L2S [11] to obtain an estimate for the target AVMs. Then, we com-

pare the attribute values of options and interactions of the true

and estimated target AVM as described below. Overall, we examine
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Figure 3: Mean absolute percentage error (MAPE) of learning-to-sample AVMs built on target AVMswith different noise levels.

whether the estimated AVMs are more accurate for target AVMs

that were specified to be similar to the source AVMs than AVMs

with a higher degree of change. In the following, we will describe

our experiment in more detail.

There are several ways to specify degrees of change with Loki,

as described in Section 3. Here, we opted for specifying different

degrees of noise to specify the degree of change and keep other

aspects constant. The rationale is that the noise can be highly

controlled in our experiment and is simultaneously a stochastic

operator. Moreover, noise can mimic also linear transfers (as we

also observed during our experiments). The parameters were as

follows:

• Loki changes attribute values of the top 50% influential op-

tions and interactions and

• maximizes Person’s correlation coefficient for variant, op-

tion, and interaction attribute values of the source and target

AVM.

We choose 5%, 20%, 50%, and 100% as relative noise levels for

σr el in the noise specification for each target attribute value, which

is computed according to Equation 5. Note that this equality will

not strictly hold for every option and interaction in the target AVM,

because we also account for the constant aspects.

As source AVMs, we rely on attribute measurements for each

possible variant of three real-world software systems:

Berkeley DB (C) is an embedded database engine. The response

time as attribute in the source AVM has been measured for

different read and write queries.

X 264 is a video encoder for the H.264 compression format. From

different metrics that were recorded during the encoding of

a video clip, we use energy consumption as the attribute.

LLVM is a compiler infrastructure. With a compiling benchmark

as workload, we use energy consumption as the attribute

from several recorded metrics.

We refer to Kaltenecker et al. for details on the actual measure-

ments [13]. For each subject system, we obtain a source AVM with

Lasso regression using all available measurements. We use Loki

to synthesize target AVMs with each noise level, for each source

AVM. Finally, we run L2S on each pair of source and target AVM

Table 1: Mean absolute percentage error (MAPE) of AVMs

built with L2S on different system’s target AVMs with differ-

ent noise levels.

Noise

5% 20% 50% 100%

Berkeley DB (C) 421.3 100.3 126.0 115.7

LLVM 6.8 6.9 8.2 5.1

x264 5.9 6.9 14.2 19.8

and compute the accuracy for the resulting L2S AVMs [11]. The

accuracy computation is provided by L2S; it computes the mean

absolute percentage error (MAPE) for its evaluation set ofn variants

with Equation 10:

MAPE =
100%

n

n∑
i=1

�����Π(CiAVMt
) − Π(Ci

L2S
)

Π(CiAVMt
)

����� (10)

Π(CiAVMt
) is the measured variant attribute value of the target AVM,

whereas the prediction of the L2S AVM is given as Π(Ci
L2S

). We

repeated each run three times and report the result MAPE as box

plots.

4.2 Results

We report the median MAPE values for the three repetitions in

Table 1 and visualize all MAPE values in Figure 3. Note that we use

a training set size of only 5 configurations with which L2S infers

a new AVM from a given model. This small number of training

configurations led to acceptable results in prior tests and resembles

a case of scarce data in the source environment. In what follows, we

describe the results per subject system. For x264, the error increases

with higher relative noise. A relative noise of 5% results in an easy-

to-learn model. As expected, increasing noise (again, stochastically

distributed among options and interactions) increases the difficulty

to infer new attribute values that correspond to the ground truth

(an increasing error of up to 20%).
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Figure 4: Variant attribute distributions of a source and a target AVM of LLVM with 20% relative noise.

The picture is different for Berkeley DB (C): for 5% noise, L2S

results in an error rate of up to 400%. For the other noise levels,

the error is still high. Although these results seem odd at first,

they make actually sense when considering the low training set

size of 5 configurations and the usage of three repetitions. We will

discuss this aspect in more detail in Section 4.3. For LLVM, L2S

achieves similar error rates for all noise levels; it has no difficulties

in learning new attribute values.

4.3 Discussion

Berkeley DB (C). We obtained the highest MAPE for Berke-

ley DB (C) and error rates of up to 400% even when adding only

5% noise. We hypothesize that the low number of configurations

as input for L2S might be a reason for the problems of inferring a

correct model. Also, the variance in the selection of configurations

for the training set seems to be more influential for the error rate

than the noise level. To verify our assumptions, we conducted a

second experiment, in which we increased the training set size to

ten, which still are less than 0.4% of all valid configurations. Figure 5

shows the results. The error substantially decreased to a minimum

of 5% for the 5% noise case. Also, the MAPE shows now a similar

behavior as for x264.

x264. The results for x264 clearly meet our expectations in that

a larger change to the source AVM results in more difficulties for

learning a target AVM. The rationale is that L2S would need to see

more configurations to account for the severe changes and that less

information could be transferred from the source to the target. Here

lies the power of Loki: We can perform fine-grained analysis to

which degree information translation is possible for AVMs, which

aspects are easier to transfer than others, and what configurations

should be selected first by the transfer-learning approach to transfer

information (i.e., attribute values, distributions, etc.) in the most

efficient way.

LLVM. Since LLVM’s average MAPE values of all noise levels

are similar, we reason that source and target AVMs must be equally

closely related for all noise levels. Indeed, reviewing Loki’s out-

put plots, we find that the target AVM’s distribution of variant

attribute values is usually only a shifted version of the source AVM’

distribution. Figure 4 shows source and target variant attribute

distributions for one replication for the 20% noise specification. A

shift of the distribution of variant attribute values may happen

when the option with the highest attribute value overshadows the

influence of all other options on the attribute, thus shifting the

whole distribution by the extent this option changes. A shift in

the distribution of attribute values of variants resembles a scenario

that has been found to occur for real-world systems as described

in Section 2.1— an indication for Loki’s applicability. Since L2S

has been developed to utilize such environment changes, it is no

surprise but to be expected that it achieves a high accuracy. This

further backs our approach.
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Figure 5: MAPE of L2S AVMs built on Berkeley DB (C) tar-

get AVMs with varying noise levels and training set sizes.

Our results show that Loki is indeed able to provide a test bed

for transfer-learning techniques. We could replicate the error rates

for L2S as expected: A higher noise level leads to more difficulties

to learn a model. More importantly, we could even determine an

optimal training set size for Berkeley DB (C) and demonstrate

that the nature of the variability model together with the ratio of

attribute values (very small to large values for Berkeley DB (C))

can influence the accuracy of transfer-learning techniques. Already
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this insight can stimulate new developments in this area. It seems

that the training set size should be a function of the distribution

and range of attribute values, and thus be determined per subject

system. This agrees with the findings of LLVM, where even Gauss-

ian changes result in large shifts of the whole value distribution.

Hence, we answer our research question positively.

5 SUMMARY

Transfer learning is a growing research area in the field of config-

urable software systems, yet there exists no user-friendly tool that

can synthesize target attributed variability models (AVMs) for a

given source AVM such that both mimic a realistic environment

change. For that reason, we propose Loki, a tool and approach to

generate a target AVM such that it allows for simulating several

aspects of environment changes at once.

Loki provides a user-friendly implementation leveraging a ge-

netic algorithm to generate a target AVM according to multiple

user-specified criteria. We evaluated Loki by generating multiple

new AVMs from AVMs that have been determined from real-world

subject systems. We assessed whether the existing transfer-learning

approach Learn to Sample is able to infer the new attribute values

depending on the degree of change we have performed. We found

that the generated models indeed increase complexity for learning

the changed attribute values depending on the degree of change.

We also found that Loki can be used to find optimal training set

sizes for different systems.

By making the tool and implementation publicly available, we

aim at stimulating new research in this area and reducing the burden

of conducting a full-fledged evaluation or parameter adjustment of

a learning technique.
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