
Noname manuscript No.
(will be inserted by the editor)

Mastering Uncertainty in Performance Estimations of
Configurable Software Systems

Johannes Dorn · Sven Apel · Norbert
Siegmund

Received: date / Accepted: date

Abstract Understanding the influence of configuration options on the perfor-
mance of a software system is key for finding optimal system configurations,
system understanding, and performance debugging. In the literature, a number
of performance-influence modeling approaches have been proposed, which model
a configuration option’s influence and a configuration’s performance as a scalar
value. However, these point estimates falsely imply a certainty regarding an op-
tion’s influence that neglects several sources of uncertainty within the assessment
process, such as (1) measurement bias, (2) choices of model representation and
learning process, and (3) incomplete data. This leads to the situation that differ-
ent approaches and even different learning runs assign different scalar performance
values to options and interactions among them. The true influence is uncertain,
though. There is no way to quantify this uncertainty with state-of-the-art perfor-
mance modeling approaches.

We propose a novel approach, P4, which is based on probabilistic programming,
that explicitly models uncertainty for option influences and consequently provides
a confidence interval for each prediction alongside a scalar. This way, we can
explain, for the first time, why predictions may be erroneous and which option’s
influence may be unreliable. An evaluation on 13 real-world subject systems shows
that P4’s accuracy is in line with the state of the art while providing reliable
confidence intervals, in addition to scalar predictions. We qualitatively explain
how uncertain influences of individual options and interactions cause inaccurate
predictions.

Keywords Probabilistic Programming, Performance-Influence Modeling,
Configurable Software Systems, Bayesian Inference, P4

Johannes Dorn
Leipzig University, Leipzig, 04109, Germany,
E-mail: johannes.dorn@uni-leipzig.de

Sven Apel
Saarland University and Saarland Informatics Campus, Saarbrücken, 60041, Germany

Norbert Siegmund
Leipzig University, Leipzig, 04109, Germany

2 Johannes Dorn et al.

1 Introduction

Most software systems, such as database management systems, video trans-coders,
and compilers, exhibit configuration options so that users can tailor these sys-
tems’ functionality to a specific use case. Moreover, these configuration options
also affect performance, i.e., non-functional properties such as energy consump-
tion, response time, and throughput. The task of (optimally) configuring a soft-
ware system is of paramount importance because (1) many systems are shipped
with a sub-optimal default configuration [54, 16], (2) manually exploring configu-
rations does not scale [62], and (3) fine-grained tuning can improve performance
up to several orders of magnitude [23, 64]. This is why certain disciplines have
whole branches of parameter optimization [3] or algorithm selection [41], but with
substantially smaller and usually unconstrained configuration spaces.

Domain engineers often have tight non-functional constraints, for which they
need to find a satisfying configuration, for example, when a binary footprint of
a system needs to fit on a given flash size, or one seeks to minimize the energy
consumed when running the system. In these cases, we must understand an op-
tion’s influence on performance to find a proper combination of options. Different
approaches have been proposed to model the influence of options and interactions
among options on performance, including rule-based decision trees [10], symbolic
regression [48], and neural networks [12, 4]. These performance-influence models
require a set of configurations that is sampled from the software system’s config-
uration space and whose performance is subsequently measured. These data are
then fed into a learning algorithm, which yields a model that allows stakehold-
ers to estimate a single performance value for a given configuration. Since these
models treat option influences as having fixed, but unknown values, we refer to
then as frequentist models. Unfortunately, the scalar prediction value of frequentist
models falsely implies a certainty in its estimates which neglects several sources of
uncertainty in the modeling process: (1) measurement bias, (2) choices of model
representation and learning process, and (3) incomplete data (e.g., due to sampling
bias) [50].

Without a proper uncertainty measure, application engineers may be led to
unfavorable decisions as there is no available information about how certain a
learned option’s influence or estimated performance is. For example, a domain
engineer may rely on a frequentist model to configure a database management
system such that it has a large number of features but still allows a battery life
of 10 hours of the mobile platform onto which it will be deployed. In this case,
the domain engineer cannot judge how much fault tolerance to leave in the case
the frequentist model is wrong and has to resort to trial and error. Figure 1 illus-
trates the scalar influence of an exemplary option as a vertical bar. The different
bars exemplify that different learning approaches lead to different fitted scalar
influences, and even a single approach can produce substantially different values
arising from different runs and different hyper-parameter settings. That is, looking
at Figure 1, it is unclear which actual effect the option has on the system’s energy
consumption, and there is no way to quantify this uncertainty with state-of-the-art
frequentist performance-influence modeling approaches for configurable systems.
When configuring a database management system with a battery life constraint,
a frequentist model will guide a domain engineer to a single configuration while

Mastering Uncertainty in Performance Est. of Conf. Software Systems 3

20 30 40 50 60 70 80 90 100 110
Option influence

0.00

0.02

0.04

Pr
ob

ab
ilit

y

P4
Ordinary Least Squares
Lasso
Ridge with l2 = 0.1
Ridge with l2 = 0.2

Fig. 1: An exemplary option’s energy consumption influence modeled by different
scalar regression models (bars), which are contrasted by P4’s probability density
prediction (blue curve).

there may be better configurations that the model misjudged due to unconsidered
uncertainties.

We set out to address this issue and propose an approach, called P4, that
accounts for uncertainty about the true influences of individual options and their
interactions on performance, which may arise from measurement bias, the learning
procedure, and incompleteness of data [53]. By making uncertainty explicit across
the whole modeling process, using a Bayesian rather than a frequentist approach,
we foster model understanding, provide clear expectation boundaries for perfor-
mance estimates, and offer a means to quantify when and where a learned model
is inaccurate (e.g., due to missing data). All these pieces of information are absent
in current approaches, which harms trust in the models and transfer into practice.
In contrast, P4 allows users to rely on the expectation boundaries of our approach
to avoid trial and error while configuring a database management system under
battery life constraints.

To illustrate P4, let us compare the probability distribution (in blue) in Fig-
ure 1 against the scalars of the different frequentist learning approaches. Consider-
ing the distribution as a whole, we can derive how likely the influence of an option
or interaction falls into a value range. The spread of the distribution indicates
how certain the model is about the option’s actual influence and whether addi-
tional data for this option might be necessary. It also gives confidence intervals for
predictions and performance optimizations. This way, users are not only aware of
uncertain predictions, but they can also find out which option is not well enough
understood by the model to inflate the predicted uncertainty.

Our approach frames the problem of performance-influence modeling in a
Bayesian setting with probabilistic programming [45]. This requires the specifi-
cation of three key components: likelihood, prior, and observations. The likelihood
expresses a generative model of how the observations (i.e., measured configura-
tions) are distributed. The prior encodes the belief (or expectation) about each
option’s and interaction’s influence on performance. This is usually expressed as a
distribution over a specific value range (e.g., a uniform distribution between 40 and
65 s). However, the domain knowledge to specify this distribution is not always
available. As a remedy, P4 includes an automated prior estimation algorithm as a
key element, which can be used to learn accurate Bayesian performance-influence
models without domain knowledge.

This work extends an existing conference paper [5]: As part of the conference
version, we propose an approach for performance-influence modeling that incor-

4 Johannes Dorn et al.

porates and quantifies the uncertainty of influences of configuration options and
interactions on performance. A key ingredient is an automatic prior estimation
algorithm that takes the burden of guessing priors from the user. We conduct an
evaluation of the reliability of the uncertainty estimates of inferred models and
compare the accuracy of our approach to a state-of-the-art frequentist model. In
this journal extension, we furthermore study the distribution of uncertainty within
learned models and qualitatively investigate whether we can trace inaccurate pre-
dictions back to uncertain influences, which enables future work on active learning
in this direction.

We make the following contributions:
– P4, a probabilistic modeling approach for performance-influence modeling of

configurable software systems,
– a data preprocessing pipeline to avoid inference failures and to improve model

interpretability,
– an open-source implementation of P4,
– an evaluation of its prediction accuracy,
– an evaluation of the reliability of the uncertainty measures of inferred models,
– an analysis of the distribution of uncertainty measures of inferred models, and
– a qualitative root-cause analysis for highly uncertain predictions
With our approach, we add to the important trend on explainability and inter-
pretability of machine-learning models. We believe that this is especially important
in domains such as software engineering, in which machine-learning models must
provide insights and explanations to help improving the field.

2 Modeling Uncertainty

Performance-influence modeling entails different kinds of uncertainty, of which we
consider aleatoric and epistemic uncertainty in our work, similar to Kendall and
Gal [27] and Kiureghian and Ditlevsen [29]. Aleatoric uncertainty results from
errors inherent to the measurements of the training set, epistemic uncertainty ex-
presses doubt in the model’s parameters. Both can be be integrated into a Bayesian
performance model, for which we explain the basics in Section 2.3.

2.1 Aleatoric Uncertainty

Performance-influence models describe a system’s performance in terms of influ-
ences of its configuration options and interactions [49]. A configuration is a set
of assignments to all available options from a certain domain (e.g., binary or nu-
meric), that is c = {o1, o2, . . . , on}, where n is the number of options and oi is the
value assigned to the i-th option. We denote the assigned value of an option o in
a given configuration c with the predicate of the option’s name, o(c).

We measure the performance of a configuration by configuring a software sys-
tem, and executing a workload. Formally, we denote a configuration’s performance
π as a function that maps a configuration c from the set of valid configurations C
to its corresponding scalar performance value: π : C 7→ R. For a DBMS, we could
choose energy consumption as a performance metric, run a benchmark, and query
an external power meter to determine the energy needed. However, there are two

Mastering Uncertainty in Performance Est. of Conf. Software Systems 5

notable sources of error arising from measurement, which introduce uncertainty:
measurement error and representation error.

2.1.1 Measurement Error

Typically, the measurement process has an inherent error ε, which is typically
either absolute or relative [51]. Absolute errors εabs affect all measurements equally:

π̂(c) ∈
[
π(c)− εabs , π(c) + εabs

]
(1)

By contrast, relative errors εrel are given in percent and affect higher values more
severely:

π̂(c) ∈
[
π(c) · 100− εrel

100
, π(c) · 100 + εrel

100

]
(2)

Note that, depending on the context, this interval, called confidence interval, can
be defined to span all possible measurements for π̂ or, alternatively, to contain
π̂ only in a fraction of cases (e.g. 95%). Unfortunately, this information is rarely
available to the user.

The confidence interval of the measurement error constitutes an uncertainty
that can be reduced by aggregating repeated measurements, but it is fixed at mod-
eling time (i.e., the time when we fit the model). Moreover, absolute and relative
errors are examples for homoscedastic and heteroscedastic aleatoric uncertainty,
respectively. This means that, in the case of relative measurement error, the vari-
ance of uncertainty depends on the individual sample (heteroscedastic), whereas
it is constant for the absolute measurement error (homoscedastic).

2.1.2 Representation Error

Representation of measurement data requires discretization for storage and pro-
cessing. We assume a decimal representation for simplicity, as the precision of
floating-point representations is more complicated1. Discretization can happen on
the sensor side before we store the data. For example, an energy meter returning
only integer Watt-hour (Wh) values may cause a representation error of ± 0.5Wh,
while storing the execution time of a benchmark in seconds with two decimals may
yield a representation error of ± 5ms.

π̄(c) ∈
[
π̂(c)− u, π̂(c) + u

]
(3)

That is, in the general case, the performance value at modeling time lies around
the measured performance π̂(c) within ±u, the unit length of the discretization.
Depending on the use case, the representation error can induce substantial uncer-
tainty.

1 see 754-2019 - IEEE Standard for Floating-Point Arithmetic for precision

6 Johannes Dorn et al.

2.2 Epistemic Uncertainty

Models, in general, and performance-influence models, in particular, never match
reality perfectly. While, in our case, aleatoric uncertainty arises from the training
data samples, epistemic uncertainty stems from the model chosen and the amount
of data provided. Let us assume a linear performance model π(c) for a configurable
software system with n options:

π(c) = β0 + β1 · o1(c) + · · ·+ βn · on(c) (4)

Here, oi returns the value for the i-th option of configuration c; these values are
multiplied with the model parameters β, where β0 is the base performance of the
system. However, we can assign different values to β to model π as a one-point
estimate.

A typical use case in practice are linear regression models, which can be fitted
to minimize different objective functions. Lasso [52] and Ridge [18] regression are
alternatives to Ordinary Least Squares regression, which can be combined into
an Elastic Net [65]. Their objectives differ in their way of computing the learning
error (L1 and L2 normalization). A tuning parameter changes Elastic Net’s error
computation function such that there is no single right way to fit a linear model.
As Figure 1 shows, we obtain different values for the same coefficient βi when
applying Lasso, Ridge, and Ordinary Least Squares. Hence, the fitted value for βi

is uncertain, as the blue curve in Figure 1 illustrates.

Another reason why β can take different values lies in the training data used.
Different samples of configurations — sampled according to different sampling
strategies [26] — lead to different β values, even with the same error function,
as the literature on sampling approaches has demonstrated [25, 15, 48]. Yet, even
different hyperparameter settings can result in different coefficients depending on
how strong we penalize the learning error. In addition, unless a training set contains
all valid samples, we are uncertain whether β is a good fit, since increasing the
training set size usually improves the prediction accuracy of a regression model
by refining β and also reduces uncertainty about β. Note that although adding
samples to the training set reduces uncertainty, each sample itself is still subject
to aleatoric uncertainty.

Instead of specifying the model’s weights as a real-valued vector β ∈ Rn, we can
formally incorporate uncertainty into β by changing it to a probability vector β̂.
This way, each model weight becomes a probability density function that specifies
which values for β are more probable than others representing the best fit. Thus,
for Gaussian-distributed uncertainty, we can specify

β̂ ∼ N (µ,σ), (5)

as a probability vector, with µ,σ ∈ Rn. We do not know, though, whether un-
certainty is Gaussian-distributed for real-valued configurable systems and what
are the settings for µ,σ. To determine this distribution, we need probabilistic
programming.

Mastering Uncertainty in Performance Est. of Conf. Software Systems 7

2.3 Probabilistic Programming

Framing the problem of performance modeling in a Bayesian setting can be done
via probabilistic programming [45]. Users of this paradigm must specify three key
components with a probabilistic programming language (PPL): likelihood, prior,
and observations. With these, the PPL takes care of Bayesian inference according
to Bayes’ according to Bayes’ theorem:

Posterior︷ ︸︸ ︷
P(A |B) =

Likelihood︷ ︸︸ ︷
P(B |A) ·

Prior︷ ︸︸ ︷
P(A)

P(B)
(6)

We refrain from explaining Bayesian statistics from scratch, but explain in what
follows the necessary components for inference. If we assume that A and B are
distinct events, then P(·) maps an event to its probability to occur, P(· | ·) gives
the conditional probability of an event A given that another event B occurs. In
the context of probabilistic programming, A is a vector of random variables that
represents model parameters, whereas B represents observations. A Probability
Density Function (PDF) is a function of a random variable whose integral over an
interval represents the probability of the random variable’s value to lie within this
interval. Accordingly, P(·) maps a random variable to its PDF, and P(· | ·) returns
the conditional PDF of a random variable given that another random variable has
a certain PDF. With these definitions, we next explain the components of Bayes’
theorem that are relevant for probabilistic programming.

Likelihood
(
P(B |A)

)
The likelihood specifies the distribution of observations B

assuming that the PDFs for model parameters A are true. With probabilistic
programming, the likelihood is typically specified as a generative model that in-
corporates random variables. Imagine an example in which we repeatedly toss a
coin to find out whether and how it is biased. We can represent the probabilities of
the possible outcomes, heads and tails, with a Bernoulli distribution B(·), whose
parameter p ∈ [0, 1] defines the probability of heads. Formally, we first let A be a
Bernoulli-distributed random variable and then define the likelihood P(B |A) to
be determined by A:

A ∼ B(p)
B |A ∼ A

While this model has only one random variable, more complex models are possible;
however, the inference may not be analytically solvable, requiring approximations
such as Monte Carlo Markov Chain (MCMC) sampling [38]. Such a generative
model can make predictions that are PDFs (i.e., posterior distributions) them-
selves.

Prior
(
P(A)

)
Priors define our belief about the distribution of our random vari-

ables before seeing any training data. Choosing priors naturally requires domain
knowledge and is comparable to selecting a optimization starting point. An unin-
formed prior for the coin-toss example is

A ∼ B(0.5),

which assumes that both heads and tails are equally probable.

8 Johannes Dorn et al.

Posterior
(
P(A |B)

)
from observations B Given a likelihood, we can finally update

our prior beliefs with observations. From a machine-learning stance, observations
form the training set. In case of the coin-toss example, running Bayesian inference
with 5 observed heads will yield an updated generative model, the posterior, which
will give heads a higher probability.

3 Bayesian Performance Modeling

In this section, we describe our approach of incorporating uncertainty into perfor-
mance-influence models. Figure 2 provides an overview of all steps involved. In
a nutshell, we perform the following tasks: First, we preprocess a given set of
measured configurations (i.e., the training set) to ensure that inference (i) does
not break and that it, (ii) finishes in a reasonable time, and (iii) yields interpretable
models. Second, we apply probabilistic programming to build a Bayesian model
for a selection of options and interactions thereof. It is key for scalability that this
selection comprises the actual set of influencing options and interactions. Third, we
estimate the priors for the model’s random variables (i.e., options and interactions)
and compute a fitted model with Bayesian inference.

3.1 Data Preprocessing

Our approach relies on a training set consisting of a number of sampled config-
urations that are attributed with their performance. Thus, our approach can be
combined with any sampling strategy, such as feature-wise, t-wise [24], or random
sampling [9]. However, it is important to process the sample set to avoid inference
failures and to promote interpretability, as we explain next.

Similar to Ordinary Least Squares, Bayesian inference is prone to failure if
multicollinearity exists in the training set, which occurs when the values of inde-
pendent variables are intercorrelated [17, 8]. Let us consider the following training
set for an exemplary software system with options X, Y, Z, and M, illustrating
multicollinearity:

B X Y Z M π(·)

1 1 0 0 1 10
1 0 1 0 1 20
1 0 0 1 1 30

Option B is mandatory. It represents the base functionality of the system, which
results from configuration-independent parts of the code. Options X, Y, and Z form
an alternative group, that is, the system’s constraints enforce that exactly one of
them is active in each configuration. An important insight is that an alternative
group introduces multicollinearity to a training set because the selection of any
single option is determined by the remaining options, for example: Z = 1−X−Y.
Multicollinearity not only hinders inference, but also interpretability. Considering
the training set above, we see that the following performance-influence models are

Mastering Uncertainty in Performance Est. of Conf. Software Systems 9

2) Model Composition 1) Data Preprocessing 3) Prior Estimation

base

+ + +

o5o1 i1,5

4) Bayesian Performance Influence Model

Fig. 2: Workflow of P4: First, we preprocess data to evade multicollinearity. Sec-
ond, we compose model from options and interactions based on the information a
sample set can provide using Lasso selection. Third, we estimate priors for random
variables based on weights of linear models trained on the sample set. Fourth, we
infer a Bayesian performance-influence model using probabilistic programming.

accurate with respect to the measurements, but assigning different contributions
of individual options:

π(c) = 0 · c(B)+ 10 · c(X)+ 20 · c(Y)+ 30 · c(Z)
π(c) = 5 · c(B)+ 5 · c(X)+ 15 · c(Y)+ 25 · c(Z)
π(c) =10 · c(B)+ 0 · c(X)+ 10 · c(Y)+ 20 · c(Z)

Because exactly one option of the alternative group is active in each configuration,
the base performance of a software system can be attributed to the base function-
ality B and the options of an alternative with any ratio. For example, option X can
have an influence of 10, 5, or none, depending on how we assign the performance to
the system’s base functionality. Therefore, performance influence models for such
systems are difficult to compare and interpret. Here, we do not even know whether
an option (e.g., X) is influential at all. This is a problem that related approaches
share [47, 10].

Choosing a default configuration provides remedy for multicollinearity inference
failures and interpretability problems. That is, we select a default option for each
alternative group using domain knowledge or at random. We then remove these
options from the training set to achieve the following effects:

– Default options’ performance influences are set to 0.
– Multicollinearity arising from alternative groups is reduced, since the selection

of a single remaining option of an alternative group cannot be determined
without the removed default option (i.e., Z = 1−X−Y does not hold anymore
if any of these options is removed from the training set).

Mandatory options, which must be selected in each configuration, introduce a
special case of multicollinearity. Option M is mandatory and therefore present

10 Johannes Dorn et al.

in each configuration and indistinguishable from the base influence. Similar to
alternative groups, a model can split the base influence between mandatory options
and the base influence with any ratio.

Moreover, we can see that such an option does not contribute any information
to the model by computing the Shannon information entropy [46]:

H(o) = −
1∑

x=0

Po(x) · log2
(
Po(x)

)
(7)

AsM is selected in each configuration, its only selection value is 1, with selection
probability PM(1) = 1. We see that, therefore, the information entropy of M is 0:

H(M) = −PM(1) · log2
(
PM(1)

)
− PM(0) · log2

(
PM(0)

)
= −1 · log2 1− 0 · log2 0 = 0

(8)

For that reason, we can safely remove mandatory options from the training
set. The same applies for dead options, which are never active.

Note that options may only appear to be dead or mandatory as an artifact of
the sampling process. That is, it is insufficient to query only the system’s variability
model for its constraints to detect mandatory or dead options. Hence, we perform
constraint mining on the sample set rather than the whole system to overcome this
problem. We use the Shannon information entropy in Equation 7 as a means to
determine dead options and scan the set of options for combinations that appear
to be alternative groups.

3.2 Model Composition

To build a Bayesian model with probabilistic programming, we first need to specify
which options and interactions are present in the model. Subsequently, we create
random variables from this model structure to account for epistemic and aleatoric
uncertainty.

3.2.1 Option and Interaction Filtering

Composing a model from all options and all potential interactions, whose number
is exponential in the number of options, is impractical for large software systems,
because models with high numbers of parameters are difficult to interpret and,
more importantly, inference may become computationally infeasible [22]. There-
fore, we apply model selection to constrain the number of parameters. In particu-
lar, we use a subset selection approach [33], because it yields a subset of unaltered
options from a parent set, which is not the case for other approaches, such as
dimensionality reduction [55]. We build the parent set of available options S from
all options O of the system in question as well as all pair-wise interactions I with
S = O ∪ I. We map each pair-wise interaction i to a virtual option with respect
to its constituting options or and os:

c(on+p) = c(or) · c(os) with 1 ≤ p ≤ |I| ∧ r ̸= s (9)

Mastering Uncertainty in Performance Est. of Conf. Software Systems 11

Compared to higher-order interactions, pair-wise interactions have been found
to frequently influence performance [47] and to be the most common kind of inter-
action [30]. However, we acknowledge that considering higher-order interactions
may improve the accuracy of our approach [47], at the cost of possibly leading to
computationally intractable models. The explicit modeling of interactions intro-
duces non-linearity to the otherwise linear model structure.

Subset selection approaches define a filter function F : S 7→ {0, 1}, which
yield 1 if an option or interaction of the parent set S should be considered by the
model, and 0, otherwise. The result of subset selection consists of filtered options
and interactions:

V =
{
s | ∀s ∈ S and F (s) = 1

}
(10)

Similar to previous work [13], we apply Lasso regression [52] on the prepro-
cessed training set. As a result, Lasso assigns zero performance influence to less-
and non-influential options and interactions, and it distributes the NFP influence
among the remaining elements in V. Our Lasso filter selects vl ∈ V, whose NFP
influence IπLasso(vl) is non-zero according to Lasso regression:

FLasso(vl) =

{
0 IπLasso(vl) = 0

1 IπLasso(vl) ̸= 0
(11)

3.2.2 Applied Probabilistic Programming

We follow related approaches for performance modeling of configurable software
systems and choose an additive model to make the uncertainty of the options’ and
interactions’ performance influence explicit. We start with a model that takes the
form of Equation 4 (which represents the state of the art) with two differences:

1. Instead of scalar influences β ∈ Rn, we use a probability vector β̂, whose
elements each have a PDF and form the coefficients as explained in Section 2.2.

2. We use the filtered options and interactions V from Section 3.2.1 and thus
enable our model to capture non-linear performance influence:

πep(c) = β̂0 + β̂1 · c(o1) + · · ·+ β̂n · c(on)

+ β̂n+1 · c(on+1) + · · ·+ β̂n+|I| · c(on+|I|)
(12)

To infer the distribution of an option, we need to specify a prior distribution
for the probability vector β̂. This distribution should be continuous (i.e., defined
over all β ∈ R) and have non-zero mass for any β ∈ R, not to exclude certain values
entirely. For performance modeling, we choose the normal distribution N (µ, σ). It
has a mode that, other than the uniform distribution, lets us encode an influence
area of high probability. That is, an option’s or interaction’s influence has a nor-
mally distributed probability to fall into an interval to be inferred by probabilistic
programming. Note that, even if a normal distribution is not the best fit for all
random variables, Bayesian inference can adjust them. We describe how to deter-
mine the parameters for chosen prior distributions, such as the mean µ and the
standard deviation σ for the normal distribution N (µ, σ), in Section 3.3.

At this point, we have constructed πep , a model that incorporates epistemic
uncertainty in β̂. To account for aleatoric uncertainty (i.e., the uncertainty in

12 Johannes Dorn et al.

the training set), we use two different models, one for homoscedastic (constant
variance) and heteroscedastic (variance depending on true performance) aleatoric
uncertainty. These models build on πep . We adopt the common prior of a normal
distribution for both models.

Homoscedastic Model If we assume that the variance of uncertainty is equal for
all training set samples, we can complete our Bayesian model with a normal dis-
tribution around πep(c):

πho(c) = N (πep(c), σ) (13)

This normal distribution is modeled as an additional random variable, whose
σ parameter captures the variance of absolute errors in training set samples.

Heteroscedastic Model To account for errors in the training set that are relative
to the training set sample performance, we introduce σrel , a random variable that
captures uncertainty about the error ratio. As an error ratio is in R>0 (i.e., a
continuous, positive variable), we choose the Gamma distribution as prior for σrel .
The Gamma distribution with a shape parameter a and a spread parameter b can
take a (possibly skewed) bell shape with non-negative values:

σrel = G(a, b) (14)

Similar to the homoscedastic model, we define the heteroscedastic model as a
normal distribution around πep(c), but with the product of the epistemic perfor-
mance prediction and the relative error ratio σrel as standard deviation:

πhe(c) = N (πep(c), πep(c) · σrel) (15)

3.3 Prior Estimation

Regular Bayesian inference requires the user to estimate prior distributions for
the model’s random variables from domain knowledge or personal experience. Dis-
tributions that are too uninformative (i.e., very wide) can lead to a hold of the
inference, whereas distributions that are too informative will also slow down infer-
ence if they are imprecise [45]. Our approach automatically chooses which options
and interactions are modeled as random variables, such that the user does not
need to know which random variables need priors beforehand. For that reason, we
employ an automatic prior estimation following the empirical Bayes approach [42],
which differs from the regular Bayesian approach in that it estimates priors from
the training data. As a result, every aspect of Bayesian modeling is automated for
the user.

3.3.1 Epistemic Uncertainty Priors

We capture epistemic uncertainty in our Bayesian model in random variables for
the base influence and the influences for options and interactions, whose assumed
normally distributed priors rely on means µ and standard deviations σ.

We propose a prior estimation algorithm that uses the influence values of other
additive models to estimate priors. As models, we use instances of Elastic Net [65]

Mastering Uncertainty in Performance Est. of Conf. Software Systems 13

with r evenly distributed ratios of l1 ∈ [0, 1]. For l1 = 1, Elastic Net behaves like
Lasso, for l1 = 0 it behaves like Ridge regression and it interpolates the error
functions of both approaches for 0 < l1 < 1. We fit 50 Elastic Nets with evenly
distributed l1 parameter on the training set. This way, we obtain a set of 50 models
M with different performance influences I(·) for the previously selected options
and interactions. In initial experiments, increasing the number of Elastic Nets
did not improve accuracy of Bayesian models. Next, we determine the empirical
distribution of influences for each option and interaction:

ÎM(vl) = { Im(vl) | ∀m ∈ M} (16)

We could use the mean and standard deviation of ÎM as prior µ and σ for each
option and interaction. However, not all models in M will fit the training data
well. To reduce the influence for unfit models, we weigh each model according to
its average error on the training set ε̄(·):

w =

{
−ε̄(mi)∑∥M∥

i=1 −ε̄(mi)
∀mi ∈ M

}
(17)

We compute the weighted mean µw(t) and weighted standard deviation σw(t)
for a specific option or interaction t as follows:

µw(t) =
1∑∥w∥

i=1 wγ
i

∑
∀i∈ÎM(t)

wγ
i i (18)

σw(t) =

√√√√ 1∑∥w∥
i=1 wγ

i

∑
∀i∈ÎM(t)

wγ
i (µw(t)− i)2 (19)

We added the tuning parameter γ to enable polynomial weighting. That is, the
influence of models with the lowest average error ε̄ is increased for γ > 1. In a
pre-study, we empirically evaluated different values for γ and found that γ = 3
yields accurate priors.

3.3.2 Aleatoric Uncertainty Priors

We model aleatoric uncertainty (i.e., uncertainty in each training set sample) as a
normal distribution for the homoscedastic model πho and as a gamma distribution
as the relative uncertainty in the heteroscedastic model πhe . We build the set of all
absolute prediction errors for all models m ∈ M over the samples in the training
set and fit a normal distribution using maximum likelihood estimation to estimate
a prior for the aleatoric uncertainty in πho . Likewise, we estimate a prior for the
gamma distribution in πho , but we compute relative prediction errors, instead, to
model the error ratio (cf. Equation 15).

14 Johannes Dorn et al.

3.4 Bayesian Inference and Prediction

As discussed in Section 2.3, Bayesian inference uses prior assumptions on PDFs
of random variables that form a generative model, called likelihood, to compute
a posterior, that is, an updated belief about the random variable’s PDFs. Unfor-
tunately, the posterior to many Bayesian inference problems cannot be computed
directly, so recent research in this field has developed algorithms that can esti-
mate the posterior approximately. Two notable classes of inference algorithms are
variational inference and Markov chain Monte Carlo [34].

Variational inference algorithms tune the prior distribution’s parameters with-
out changing the types of the distributions (i.e., a prior normal distribution stays
a normal distribution) [43]. This method is preferred for quick results that do not
need to be precise.

Markov chain Monte Carlo (MCMC) algorithms draw samples from the pos-
terior distributions and are able to estimate arbitrary posterior distributions in
theory (a prior normal distribution may by transformed to a skewed distribution).
MCMC algorithms are considered more precise, but also slower than variational
inference.

We follow a combined approach by first estimating an approximate solution
with variational inference [43] and subsequently fine-tune with the No-U-Turn
Sampler (NUTS) [19], an MCMC algorithm. We allow 200, 000 iterations for vari-
ational inference, but abort on convergence. Initialized with the intermediate result
of variational inference, NUTS first draws 3, 000 samples for initial tuning and then
acquires 12, 000 of each random variable’s posterior distribution. The number of
posterior samples determines the granularity of subsequent analyses. For example,
a number of 100 posterior samples bounds the granularity of computed confidence
intervals to 1%, at best. To facilitate fine-granular confidence intervals covering
low-probability values for which MCMC draws fewer posterior samples, such as
a 95%-confidence interval, we need more posterior samples. While we acquire a
large number 12, 000 posterior samples, a lower number of MCMC samples in the
order of 1000 may be a more economic choice.

Prediction To predict the performance of a configuration c, we insert c’s option
selection values into o1(c), . . . , on(c) and determine active interactions according
to Equation 9. We can now draw a number of posterior samples to approximate
the distribution for the prediction. Increasing the number of posterior samples
makes the approximation more accurate, but also slows down prediction. We draw
1000 posterior samples to yield a good approximation. With this approximation,
we can make different kinds of predictions, for which we introduce individual
notations. The most informative kind of prediction is the sampled approximation
itself (π̃). Using π̃, we can compute a confidence interval for a desired confidence
αci ∈ [0%, 100%] (π̄α). This yields the interval around the mode of prediction
over which the predicted distribution integrates to αci . We use π̄ to indicate the
95%-confidence interval by default. The mode of the approximation also serves as
a single-point estimate prediction (π̇).

Figure 3 illustrates P4’s predictions process. For an Apache configuration with
seven active options, it shows that two options (ECDSA and TLS) have an in-
dividual influence in addition to the Core influence, which is always present. One
option (ComprLvl9) increases energy consumption when it interacts with the

Mastering Uncertainty in Performance Est. of Conf. Software Systems 15

Core

ECDSA

TLS

ComprLvl9 & ECDSA

ComprLvl9 & TLS

0 5000 10000 15000 20000 25000 30000
Energy consumption in Ws

PREDICTION 95%

Fig. 3: Prediction of the performance of Apache with options ECDSA, TLS, and
ComprLvl set to 9. The probability distributions represent P4’s inferred influences
for the chosen options and two interactions thereof. At the bottom, the prediction,
as well as its shaded 95%-confidence interval, are the result of propagating the
individual influences’ uncertainties and considering the inferred absolute error (not
shown here).

other two options (ECDSA and TLS). Each influence’s marginal posterior distri-
bution propagates into a predictive distribution displaying a wide 95%-confidence
interval.

4 Subject Systems

For our experiments, we use 13 real-world configurable software systems that have
been used in the literature, as presented in Table 1. We use measured execu-
tion time as performance for 10 subject systems from Kaltenecker et al. [25]. For
VPXENC, LLVM, and x264, we have additionally measured energy consumption
with a different workload. A further description of the systems including the used
benchmarks is given at our supplementary Web site2. In addition, we consider
energy consumption for three further subject systems: Apache, PostgreSQL
(short PSQL), and HSQLDB [60]. Following the state of the art [25], we mea-
sure each configuration’s performance five times. We repeat the measurement five
more times if the coefficient of variation (i.e., the standard deviation divided by
the mean) of the first 5 measurements was was above 10%.

We adopt the procedure of extracting training and test sets from each system’s
measurement data from Kaltenecker et al. [25]. That is, we apply t-wise sampling
with t ∈ {1, 2, 3} to obtain three training test sets, T1, T2, T3, of different sizes.
Apache poses an exception as its T1 size of 2 configurations breaks P4’s inference.
We therefore discard T1 for Apache. Each system’s whole population (i.e., all
measurements) form its test set. Table 1 lists the sizes of all training and test
sets.

2 https://git.io/JUfjy or an archived version at https://archive.softwareheritage.
org/swh:1:dir:e15e09dd53c9d48216ec8af4a117148f4857407c

https://git.io/JUfjy
https://archive.softwareheritage.org/swh:1:dir:e15e09dd53c9d48216ec8af4a117148f4857407c
https://archive.softwareheritage.org/swh:1:dir:e15e09dd53c9d48216ec8af4a117148f4857407c

16 Johannes Dorn et al.

Table 1: Overview of the subject systems with domain, number of valid configu-
rations |C|, number of options |O|, the size of training sets T1, T2, T3, and the
performance metric.

Domain |C| |O| |T1| |T2| |T3| Performance metric

7z File archive utility 68 640 44 39 600 4091 Compression time
Apache Web server 4 033 28 2 33 220 Energy consumption
BDB-C Embedded database 2 560 18 15 97 363 Response time
Dune Multigrid solver 2 304 32 25 265 1071 Solving time
HIPAcc Image processing 13 485 54 50 843 4601 Solving time
HSQLDB Java-based database 864 21 13 73 235 Energy consumption
JavaGC Garbage collector 193 536 39 32 468 3504 Collection Time
LLVM Compiler infrastructure 1 024 11 11 56 175 Compilation time &

energy consumption
lrzip File archive utility 432 19 18 99 250 Compression time
Polly Code optimizer 60 000 40 28 345 2172 Execution time
PSQL C-based database 864 14 12 64 202 Energy consumption
VP9 Video encoder 216 000 42 31 483 3893 Encoding time &

energy consumption
x264 Video encoder 1 152 16 12 65 212 Encoding time &

energy consumption

5 Evaluation

To evaluate our approach, we state three research questions that are in line with
related work and are also concerned with the new possibilities of obtaining a con-
fidence interval for performance predictions. Specifically, we answer the following
research questions:

RQ1: Can we accurately predict performance as a scalar value with proba-
bilistic programming?

This research question places our approach in relation to a state-of-the-art
approach that resorts only to a scalar value. Although this is not the main usage
scenario, we evaluate whether our approach has a comparable accuracy.

RQ2: Can we accurately predict performance in terms of a confidence interval
with probabilistic programming?

RQ2 refers to the ability that users can specify a confidence interval of predic-
tions. This can substantially affect prediction accuracy and evaluates the strength
of our approach.

RQ3: How reliable are predicted confidence intervals?

The third research questions aims at providing a deeper understanding of confi-
dence intervals and incorporated uncertainties in our approach. In contrast to RQ2,
RQ3 is not concerned with prediction accuracy. Instead, we evaluate whether pre-
dicted intervals with higher confidence contain the correct value more often and,
hence, truly capture the uncertainty in the predictions.

Mastering Uncertainty in Performance Est. of Conf. Software Systems 17

In addition to the research questions answered in this articles’ preceding con-
ference paper [5], we aim at explaining the occurrence of high prediction errors by
studying the distribution of uncertainty within P4 models. To this end, we first
analyze the nature of posterior influence distributions and then analyze the cause
for inaccurate predictions, answering two further research questions:

RQ4: How are P4’s marginal posteriors distributed?

With this research question, we study whether Gaussian prior distributions are
the right choice to model option and interaction influences. Although our experi-
ments in Section 5 use Gaussian priors, the inferred posteriors may be distributed
differently. Changing the prior distribution is possible since we use the Markov
chain Monte Carlo algorithm for inference.

RQ5: Do more training samples reduce the uncertainty inferred by P4?

As the lack of training data is one source of epistemic uncertainty, we expect
that building P4 models on a larger portion of the configuration space will reduce
epistemic uncertainty. However, since we compose the performance-influence model
in step 2 in an automated way using Lasso regression, increasing the training data
might automatically increase model complexity such that even more training data
might be needed. With RQ5, we investigate which effect prevails for real-world
software systems.

RQ6: Can P4 pinpoint individual options and interactions as a possible root
cause of uncertain predictions? If so, what causes the high uncertainty
of their influences?

RQ6 focuses on epistemic uncertainty, which captures the uncertainty of the
individual option and interaction influences. For some software systems, all options
and interaction influences may be similarly uncertain. However, P4 may reveal
instances where uncertainty of a single or few unreliable options and interactions
overshadows the rest, which can indicate an unbalanced training set or highly non-
deterministic option behavior. As a result, predictions for configurations containing
such an unreliable option or interaction will be substantially more uncertain. With
RQ6, we answer if there are unreliable options and study their cause.

5.1 General Experiment Setup

We implement our approach with the PyMC3 [45] framework. PyMC3 offers im-
plementations for MCMC, variational inference, as well as confidence interval com-
putation for model parameters β and predictions. For maximum likelihood prior
estimations, we rely on SciPy [58].

To answer our research questions, we infer Bayesian models with absolute and
relative error with P4 for the chosen subject systems using three training sets
T1, T2, T3 on a cluster of machines with Intel Xeon E5-2690v2 CPU and 64GB
memory. For the ten subject systems by Kaltenecker et al. [25], we use the training
sets provided at their supplementary Web site. For the remaining subject systems,
we sample new training sets with SPL Conqueror [48].

18 Johannes Dorn et al.

For t = 1, t-wise sampling equals option-wise sampling, which yields n ≤ |O|
samples. Since we want to evaluate our approach also for learning interactions
among options, creating n+|I| random variables leads to a modeling problem with
more variables than observations. We avoid this situation by excluding interactions
from our model for T1. This might affect prediction accuracy especially compared
to other approaches that do not exclude interactions. We will discuss this in RQ1.

To account for stochastic elements in MCMC, we run the inference for each sys-
tem’s training set with 5 repetitions for the purpose of our experiments. Nonethe-
less, these repetitions are not necessary to use P4 in practice, as an individual
run already quantifies uncertainty based on the priors and the training data. The
average fitting time over all experiments was 8min. Although in the worst case,
πhe needs 245.8min to fit VP9’s T3 training set, overall, 80% of all models were
fitted within 6min. The models for the T1 and T2 training sets were fitted in only
3min and 5min on average. They also contained fewer options and interactions
than the models for the T3 training sets. However, models with more options and
interactions do not always require more fitting time as we observe only a mod-
erate Kendall rank correlation [28] (τ = 0.52) between the number of options
and interactions in a model and its fitting time. We detail the fitting times in our
experiments on our supplementary website. As explained in Section 3.4, we recom-
mend an order of magnitude less inference samples, which also aids the reduction
of fitting time.

5.2 RQ1: Accuracy of Scalar Predictions

P4 is designed to both predict confidence intervals and point estimates. To assess
the accuracy of the point estimates, we compare P4 to state-of-the-art models,
which can only predict point estimates. RQ1 is concerned with whether P4 is
competitive even for point estimates and, thus, can replace traditional models. In
this scenario, we neglect P4’s capability to predict confidence intervals as P4 is, to
the best of our knowledge, the first approach to model uncertainty of performance
prediction. Hence, there is no baseline to compare to.

5.2.1 Setup

We chose SPL Conqueror for comparison because it shares the additive model
structure with our approach and is used as baseline in the literature [25, 40]. For
comparison, we rely on accuracies of SPL Conqueror as reported by Kaltenecker
et al. [25]. That is, we consider for RQ1 the ten subject systems that the origi-
nal authors have used. Another benefit is that Kaltenecker et al. provided raw
measurements of the whole population, so we have a reliable ground truth.

We use the inferred performance-influence models to predict the performance
of the whole populations of our subject systems. We adopt the Mean Absolute
Percentage Error (MAPE) from previous work [25] to quantify prediction accu-
racy. That is, we first compute the absolute percentage error (APE) for each
configuration c ∈ C with the measured performance πtrue(c) and predicted scalar
performance π̇(c) for our models πho and πhe:

APE(c) =
|πtrue(c)− π̇(c)|

πtrue(c)
(20)

Mastering Uncertainty in Performance Est. of Conf. Software Systems 19

We then compute the MAPE as the average over all APEs:

MAPE(C) =
∑

c∈C APE(c)

|C| (21)

5.2.2 Results

As Figure 4 shows, P4 achieves MAPE scores comparable to SPL Conqueror.
Table 2 allows for a more fine-grained view. We see that the overall accuracy is
higher when using SPL Conqueror, which is to be expected as only the mode is
taken from the performance distribution provided as predictions by our approach.
Nevertheless, we observe that, for many systems, especially when using πhe , the
model with relative error, we obtain a similar or even better prediction indicated
by underscored values. The mean error is, thus, distorted by some larger outliers,
such as HIPAcc and VP9. These systems have many alternative options such that
there is a larger uncertainty involved and since we are not using the provided
confidence interval, we deprive our approach of its strength.

Interestingly, compared to T1, for some subject systems P4 performs worse on
T2. The reason is that the increased number of random variables in P4, due to the
additional modeling of interactions, requires more measurements as provided by
T2 to effectively infer performance distributions. Moreover, we see a clear trend
that, with an increasing number of measurements, P4 closes the gap in prediction
accuracy with SPL Conqueror and even outperforms it for T3 and πhe for 7 out
of 10 systems.

To answer RQ1, our approach achieves the accuracy of state-of-the-art scalar
predictions when a sufficient number of measurements is provided. In the case
of fewer measurements, the overhead of learning probability distributions leads
to more inaccurate predictions.

5.3 RQ2: Accuracy of Confidence Intervals

One of P4’s key novelties is the ability to predict confidence intervals. With RQ2,
we ask how accurate P4’s predicted confidence intervals are. However, due to the
lack of a baseline, we cannot compare P4 to any other approach. Instead, we adopt
the error metric from RQ1 to confidence intervals instead of scalars.

5.3.1 Setup

Confidence intervals with confidence αCI ∈ [0%, 100%] specify a range in which a
given PDF integrates to αCI . For predictions, a 95% confidence interval specifies
a performance range for which the model is 95% confident that it contains the
true performance value of the corresponding configuration. Consequently, we can
expect the true performance to lie outside the 95% confidence interval in 5% of
predictions. Although we can expect to always capture the true performance with
a 100% confidence interval, such an interval will likely approach [−∞,+∞] for
PDFs that are defined over R.

20 Johannes Dorn et al.

0

20

40

60

80

Er
ro

r i
n

%

o: 26
i: 0

o: 26
i: 0

o: 26
i: 0

o: 26
i: 0

o: 7
i: 0

o: 7
i: 0

o: 7
i: 0

o: 7
i: 0

o: 16
i: 35

o: 16
i: 35

o: 16
i: 35

o: 16
i: 35

7z

0

50

100

150
o: 1
i: 0

o: 1
i: 0

o: 1
i: 0

o: 1
i: 0

o: 4
i: 4

o: 4
i: 4

o: 4
i: 4

o: 4
i: 4

o: 6
i: 11
o: 6
i: 11
o: 6
i: 11
o: 6
i: 11

BerkeleyDBC

0

10

20

Er
ro

r i
n

%

o: 3
i: 0

o: 3
i: 0

o: 3
i: 0

o: 3
i: 0

o: 18
i: 23

o: 18
i: 23

o: 18
i: 23

o: 18
i: 23

o: 21
i: 127
o: 21
i: 127
o: 21
i: 127
o: 21
i: 127

Dune

0

20

40

60
o: 4
i: 0

o: 4
i: 0

o: 4
i: 0

o: 4
i: 0

o: 39
i: 89

o: 39
i: 89

o: 39
i: 89

o: 39
i: 89

o: 40
i: 185
o: 40
i: 185
o: 40
i: 185
o: 40
i: 185

Hipacc

0

20

40

60

Er
ro

r i
n

%

o: 8
i: 0

o: 8
i: 0

o: 8
i: 0

o: 8
i: 0

o: 20
i: 66

o: 20
i: 66

o: 20
i: 66

o: 20
i: 66

o: 23
i: 178
o: 23
i: 178
o: 23
i: 178
o: 23
i: 178

JavaGC

0.0

2.5

5.0

7.5

10.0
o: 1
i: 0

o: 1
i: 0

o: 1
i: 0

o: 1
i: 0

o: 9
i: 3

o: 9
i: 3

o: 9
i: 3

o: 9
i: 3

o: 8
i: 3

o: 8
i: 3

o: 8
i: 3

o: 8
i: 3

LLVM

0

20

40

60

80

Er
ro

r i
n

%

o: 4
i: 0

o: 4
i: 0

o: 4
i: 0

o: 4
i: 0

o: 9
i: 15
o: 9
i: 15
o: 9
i: 15
o: 9
i: 15

o: 12
i: 41

o: 12
i: 41

o: 12
i: 41

o: 12
i: 41

lrzip

0

10

20

30

40 o: 4
i: 0

o: 4
i: 0

o: 4
i: 0

o: 4
i: 0

o: 11
i: 79

o: 11
i: 79

o: 11
i: 79

o: 11
i: 79

o: 13
i: 97

o: 13
i: 97

o: 13
i: 97

o: 13
i: 97

Polly

1 2 3
t

0

100

200

300

400

Er
ro

r i
n

%

o: 7
i: 0

o: 7
i: 0

o: 7
i: 0

o: 7
i: 0

o: 14
i: 99

o: 14
i: 99

o: 14
i: 99

o: 14
i: 99

o: 24
i: 172
o: 24
i: 172
o: 24
i: 172
o: 24
i: 172

VP9

1 2 3
t

0

10

20

30
o: 10

i: 0
o: 10

i: 0
o: 10

i: 0
o: 10

i: 0
o: 5
i: 0

o: 5
i: 0

o: 5
i: 0

o: 5
i: 0

o: 9
i: 23
o: 9
i: 23
o: 9
i: 23
o: 9
i: 23

x264

Model (line color):
Error Type (line style):

P4 with he (relative error)
MAPE

SPL Conqueror
50% MAPECI 95% MAPECI

Fig. 4: Scalar Mean Absolute Percentage Error (MAPE) of SPL Conqueror
compared to the MAPE and interval predictions MAPE (MAPECI) for confidence
levels 50% and 95% of P4 with relative error (πhe) for t-wise sampled training
sets. Vertical bars represent the standard deviation over experiment repetitions.
For each subject system’s training set, we specify P4’s model size in terms of
number modeled options (o) and interactions (i) below the system’s name.

Mastering Uncertainty in Performance Est. of Conf. Software Systems 21

Table 2: Scalar Mean Absolute Percentage Error (MAPE) of SPL Conqueror
(short SPLC) compared to the MAPE and confidence interval predictions MAPE
(MAPECI 95%) of P4, with absolute error (πho) and relative error (πhe) for t-wise
sampled training sets. Best scalar MAPE values for each training set are shaded
light gray , best overall MAPE values are shaded dark gray .

SPLC MAPE πho MAPE πhe MAPE πho MAPECI πhe MAPECI

T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3
7z 51.2 33.8 22.6 70.8 87.5 45.7 61.3 66.2 9.3 7.1 4.8 0 23.8 9.6 1.7
BDB-C 122.9 29 26.5 123.9 58.8 31.3 121.8 69.2 60.9 89.5 2.7 0 28.3 1.7 3.1
Dune 15.5 12.5 11.4 17.2 13.8 9.2 17.1 12.8 7.7 1.8 0.4 0.1 3.0 1.5 0.5
Hipacc 26.2 20.5 20.5 53 17.8 9.4 52.8 17 8 30.5 5.6 0.3 21.6 7.8 1.7
JavaGC 36.7 32.1 23.7 40.9 65.1 33.4 40.8 52.2 14.3 24.6 16.6 0.7 27.4 28.8 3.1
LLVM 6.2 6.2 5.8 6.9 5.8 2.8 6.9 5.8 2.8 0.2 1.3 0.2 1.4 1.9 0.4
Polly 19.7 12.7 7.3 31 11.5 11.1 31.3 12.4 11.1 6.9 1.3 0.8 11.2 4.3 2.4
VP9 100.3 96.3 45.3 160.3 109.5 88.5 269.4 157.2 108.7 1.9 0.6 0.1 3.5 3.3 2.7
lrzip 27.2 28.2 13.4 45.8 141.7 153.2 32.4 60.1 5 8.3 0 0 12.1 4.6 0.2
x264 20.9 11.9 10.9 9.8 16.5 4.7 7.7 9.6 1.5 0.1 0 0 7.2 2.2 0.6

Mean 42.7 28.3 18.7 56 52.8 38.9 64.2 46.3 22.9 17.1 3.3 0.2 14 6.6 1.6

Similar to RQ1, we use a relative error metric to answer RQ2. However, for
RQ2, we use P4 to predict confidence intervals as prediction, which is the actual
strength and novel feature of our approach. Instead of using the APE of a scalar
prediction, we compute the confidence interval’s APECI with relation to the closest
endpoint of the confidence interval Π̄α for an outlying true performance; we define
APECI = 0 for an α confidence interval that includes the measured performance:

APECI (c) =
min∀π∈π̄α(c)

∣∣πtrue(c)− π
∣∣

πtrue(c)
(22)

Hence, the MAPECI is the average over all APECI , similar to Equation 21. For
our models πho and πhe, we report the MAPECI for predicted confidence intervals
with αCI = 95% for highly confident predictions and αCI = 50% for less confident
predictions, for which we expect a narrower interval and, consequently, a higher
error.

5.3.2 Results

The dotted lines in Figure 4 illustrate a substantial decrease in prediction error
when using a confidence interval rather than a scalar prediction. Note that we
report in Figure 4 only MAPECI’s for Πhe; we provide similar results for πho at
our supplementary Web site. Table 2 provides further data for πho . It reveals that
the predicted confidence intervals for 7z, BDB-C, lrzip, and x264 contain all
measured performance values when training the absolute model πho on T3.

We illustrate how more training samples allow P4 to decrease uncertainty
in internal parameters to achieve better prediction accuracy using the variance
inflation factor (VIF). The VIF is an indicator for multicollinearity, which can be
computed for the activation values of an option oj in the training set T . It is based
on the coefficient of determination R2. To determine R2 for an option oj , we fit

22 Johannes Dorn et al.

Table 3: Five most uncertain features measured by the mean relative confidence
interval β?

j according to Equation 25, of models trained on T1. Values for the
variance inflation factor (VIF) larger 10 are in dark gray (highly problematic) and
values between 5 and 10 are in light gray (moderately problematic). Files 30 &
BlockSize 1024 were removed from T3.

T1 T3
System Attribute Option β? VIF β? VIF
VP8 Energy threads 4 24.64 10.50 0.15 3.24
VP9 Time bitRate 1500 16.93 10.58 2.84 2.90
7z Time Files 30 11.86 7.13 – 1.67
7z Time BlockSize 1024 11.44 7.13 – 1.63
VP9 Time variableBitrate 4.91 16.90 0.86 1.99

a linear regression function fj to predict whether oj is active in a configuration
c \ oj with the remaining options as predictors.

We compute the VIF as follows:

VIFj =
1

1−R2
j

(23)

R2
j = 1−

∑
∀c ∈ T

(
c(oj)− c̄(oj)

)2
∑

∀c ∈ T

(
c(oj)− fj(c \ oj)

)2 (24)

A VIF of 0 indicates an option with no multicollinearity in the training set,
while higher values mark increasingly problematic multicollinearity. We adopt the
thresholds of 5 and 10 [39, 61] to indicate moderate and highly problematic mul-
ticollinearity, respectively.

Although we could use the VIF as a filter for feature selection (cf. Section 3.3)
to remove options with high multicollinearity in the training set, the computa-
tional effort required to calculate all R2

j makes it infeasible in practice. Hence, we
compute the VIF only for the 5 most uncertain options in T1 to analyze whether
multicollinearity is a possible cause for uncertainty of options’ influences. To com-
pute the uncertainty of an option influence β?

j , we use its confidence interval β̄j

and point estimate β̇j . To remove the influence of differing influence scales between
software systems, we determine the scaled confidence interval width as the ratio
of the absolute confidence interval width |β̄j | and the point estimate:

β?
j =

|β̄j |
β̇j

(25)

Looking at Table 3, we see that all five options exhibit either a moderate or even
a high VIF for the training set T1. This points to a situation in which the learning
procedure cannot safely assign a performance ratio to the specific option. Investi-
gating this closer, four options are part of an alternative group despite our efforts
to avoid multicollinearity by removing one alternative from each alternative group.
For option threads 4, we found that it was active in almost every configuration (13
out of 16), reducing the contained information according to Equation 7.

Mastering Uncertainty in Performance Est. of Conf. Software Systems 23

To further confirm our hypothesis that multicollinearity can be a possible cause,
we show in Table 3 the uncertainty β?

j and the VIF for these five options using
the larger training set T3. We see a substantial reduction in uncertainty for three
options in line with the reduction of the VIF. This strongly indicates that a re-
duced multicollinearity reduces also the uncertainty of an option’s influence on
performance. Options Files 30 and BlockSize 1024 have no uncertainty as they
were chosen by P4 to be removed from the alternative group in T3.

Overall, πho yields better results than πhe in most cases, but both approaches
always show substantially lower relative errors than scalar predictions. Of course,
it would be easy for a model to predict all performance values correctly with a suf-
ficiently large confidence interval. However, our findings for RQ3 demonstrate that
P4’s prediction confidence intervals are reliable, as we will discuss in Section 5.4.

To answer RQ2, using confidence intervals to frame the confidence of predic-
tions substantially reduces the prediction error. That is, our approach is able to
model the uncertainty as well as the true performance distributions accurately.

5.4 RQ3: Reliability of Prediction Confidence Intervals

Contrary to RQ2, RQ3 is not concerned with the distance of predicted confidence
intervals to the measured performance intervals. Instead, we are interested whether
P4 judges the predicted uncertainty correctly and when predicted confidence in-
tervals may be too wide or too narrow. If P4 finds the sweet spot between too wide
and too narrow predictions, we call its prediction confidence intervals reliable.

5.4.1 Setup

As predictions, our approach can yield confidence intervals with any given con-
fidence level αCI ∈ [0%, 100%]. We call a model’s predicted confidence intervals
reliable if predictions with an αCI confidence interval contain the measured perfor-
mance with a similar observed frequency αobs (i.e., αobs (αCI) ≈ αCI). To compute
the observed frequency αobs(αCI) for an αCI confidence interval, we first define
the function within, which returns 1 if the measured performance πtrue(c) lies in
a predicted confidence interval π̄(c), and 0, otherwise:

within
(
πtrue(c), π̄(c)

)
=

{
1 πtrue(c) ∈ π̄(c)

0 else
(26)

Second, the observed frequency is computed as the average of within over all
configurations of a subject system and their measured performance πtrue(c):

αobs(αCI) =

∑
c∈C within (πtrue(c), π̄(c))

|C| (27)

If αCI ≫ αobs (αCI), the predicted confidence interval is inaccurate more often
than we expect and should have been broader; conversely, the predicted confidence
interval should be more narrow and thus more informative if αCI ≪ αobs (αCI).
Since using confidence intervals for performance predictions is novel, we have no

24 Johannes Dorn et al.

0.0 0.5 1.0
Model confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ob
se

rv
ed

 c
on

fid
en

ce

t = 1

0.0 0.5 1.0
Model confidence

t = 2

0.0 0.5 1.0
Model confidence

t = 3

0

20

40

60

0

20

40

60

0

20

40

60

CI
 M

AP
E

in
 %

Model (line color):
Metric (line type):

P4 with he (relative error)
CI MAPE in %

P4 with ho (absolute error)
Observed confidence

Fig. 5: MAPECI depending on model confidence (solid) versus uncertainty cali-
bration (dashed) for t-wise training set aggregated over all subject systems. Gray
dashed line indicates ideal calibration.

baseline to which we can compare. Hence, we report the observed frequencies for
confidence levels αCI from 5% to 95% in steps of 5% as well as the average error in
percentage to answer RQ3. In addition, we report the MAPECI for all confidence
intervals.

5.4.2 Results

Figure 5 shows a calibration plot that compares αCI with αobs using dashed lines.
A model with αCI = αobs for all αCI would yield values along the dashed gray
diagonal. Values above the diagonal indicate too broad confidence intervals (i.e.,
our predictions are more accurate than they should be), values below it signal
confidence intervals that are too narrow.

The solid lines in Figure 5 show the mean MAPECI over all subject systems for
both the relative and the absolute model. The shaded area around it constitutes
a 95% confidence interval.

When analyzing the dashed lines, we see that using the absolute error πho

yields intervals that are closer to the diagonal than when using the relative error
πhe . Moreover, there is a clear trend that, when using more measurements, the
intervals become either nearly perfectly aligned or are underestimating the mod-
els prediction accuracy. Hence, we see a picture that resembles the picture when
using the mode for scalar performance prediction: The approach requires a certain
number of measurements to become accurate, but then works robustly.

We can make a further interesting observation when comparing the confidence
intervals (dashed lines) with the MAPECI (solid lines). First and most importantly,
we see that using confidence intervals of varying sizes has a clear monotonic re-
lationship with the prediction error. That is, increasing the interval decreases the
error. Second, the errors fall rapidly, especially for T2 and T3, already when using
a narrow interval, such as 25%. This is good news as this clearly indicates that
narrow confidence intervals yield accurate predictions. Third, we observe that (for
the solid lines) the uncertainty is higher with fewer measurements, as indicated
by the colored area. That is, the model is aware that the measurements are insuf-
ficient to actually make trustworthy predictions. This is a feature missing in all

Mastering Uncertainty in Performance Est. of Conf. Software Systems 25

scalar prediction approaches. For example, for SPL Conqueror, there is no way
to determine whether the model is confident with a certain prediction. With P4,
we have a means to quantify this confidence.

To answer RQ3, with enough measurements, our approach yields confidence
intervals that contain the true value with a frequency that matches the specified
confidence. Even with our smallest training set T1, confidence intervals with
higher specified confidence contain the true value more often.

5.5 RQ4: Distribution of P4’s Posteriors

P4 uses a normal distribution as the default prior distribution for term influences.
Variational inference—the first step in P4’s inference—uses these priors as an
initial guess. Hence, the priors naturally influence the outcome of the inference.
Therefore, we are interested in whether the posteriors inferred with P4 in our
experiments challenge our choice of the default prior.

5.5.1 Setup

As the result of MCMC sampling, the influence of each term is inferred as the
marginal posterior πβ , which is represented as a set of 12, 000 MCMC samples.

Across the set of all models Π that were inferred in our previous experiments,
including both πho and πhe , we first obtain the set of all marginal posteriors Πβ :

Πβ =
{
πβ | ∀β ∈ π, ∀π ∈ Π

}
(28)

To test for normality, we apply a Shapiro-Wilk [44] test and refute the h0

hypothesis of πβ being normally distributed for α < 0.05. For non-normal posterior
distributions, we detect multi-modality with the dip test for uni-modality [14]. In
addition, we compute the standardized skewness and the excess kurtosis [66] to
quantify the effect size of non-normality for non-normal uni-modal posteriors. For
skewness values outside [−0.5, 0.5], a distribution is considered skewed. In this
case, the distribution has considerably more weight on one tail than the other.
The excess kurtosis measures how the weight of a distribution’s tails deviates
from those of a normal distribution. For positive excess kurtosis, the distribution
has heavier tails than anticipated by the prior. Conversely, the distribution has
thinner tails if the excess kurtosis is negative. Posterior distributions with heavy
tails, such as the Cauchy distribution, may be problematic for the computation of
confidence intervals because outliers of confident intervals approach ±∞ quickly.
This property makes confidence intervals of heavy-tailed distributions less useful
and can lead to wildly varying single-point predictions; nevertheless, knowing the
kurtosis can alarm a domain engineer, who would be otherwise ignorant of the
inherent uncertainty given only a scalar influence of a traditional performance-
influence model.

To evaluate the choice of normal-distributed marginal priors in an unbiased ex-
periment setting, we replicate our previous experiments using flat marginal priors
instead of normal-distributed ones. Flat priors have a probability of 0 for any possi-
ble influence. Thus, they avoid any bias through the choice of prior, but will result

26 Johannes Dorn et al.

0.0 0.2 0.4 0.6 0.8 1.0
Ratio of normal distributions

1

2

3Tr
ai

ni
ng

 se
t Prior shape

normal
flat

Fig. 6: Ratio of normal-distributed influences per training set and marginal prior
shape.

in more uncertainty in the marginal posteriors. We apply a Shapiro-Wilk test to
determine the number of normal-distributed marginal posteriors after inference.

5.5.2 Results

When P4 uses flat priors instead of normal-distributed priors, 83% of all inferred
marginal posterior distributions are normal-distributed using the T1 training set.
Because we do not consider interactions for T1, P4 has enough training data to
change the shape of the influence of the limited number of terms. Figure 6 shows
that 48% and 55% of the flat priors are inferred normal-distributed with T2 and
T3, even though the P4 models are more complex and require more training data
to change the shape of the marginal priors. Our results indicate that, with enough
training data, even flat priors are inferred normal-distributed.

When P4 regularly uses normal-distributed priors, 82% of all inferred posterior
distributions are normal-distributed, confirming the appropriateness of the choice
of a normal-distributed prior. Still, 18% of posterior distributions are non-normal,
for different reasons. Firstly, 35% of non-normal distributions are multi-modal.
That is, these influences have two or more distinct value ranges of high probabil-
ity. For these influences, P4 allows us to consider more than one probable influence
value, while traditional performance-influence models consider only one. Secondly,
15% of non-normal distributions are skewed. This means that, for these distribu-
tions, P4’s scalar prediction will not be in the center of it’s confidence interval
prediction. For skewed distributions, P4 therefore provides the information that,
with respect to the most likely value, other likely values will be either higher or
lower. Thirdly, we observe higher absolute kurtosis values for non-normal distri-
butions, which is to be expected because normal distributions by definition have a
excess kurtosis close to 0 whereas non-normal distributions may deviate. However,
as Figure 7 shows, there are distributions with kurtosis values as high as 160. This
option ref 9 of x264, which is inferred with the maximum kurtosis for T1 training
data, sets the number of reference video frames to 9. It is part of an alternative
group of other reference frame numbers. Due to P4’s pre-processing, we avoid
multicollinearity problems such that ref 9 has an unproblematic VIF of only 1.6
in T1 despite its membership in an alternative group. Hence, we conjecture that
T1 may be too small to allow inference with low uncertainty in this case.

Interestingly, Figure 6 reveals that there are fewer non-normal marginal poste-
riors with increasing training set size. Increasing the training set size from T1 and
T2 allows P4 to learn interactions and produces the largest decrease of normal-
distributed marginal posteriors. We argue therefore that non-normality among

Mastering Uncertainty in Performance Est. of Conf. Software Systems 27

Fig. 7: Comparison of the distribution of kurtosis values of inferred term influences.
Normal-distributed influences (orange) are close to 0, while non-normal influences
(blue) have a larger variance and reach values as large as 160.

marginal posteriors is partly an artifact of an undersized training set and an under-
complex model structure (e.g., when no interactions are modeled). For example,
P4 infers a non-zero distribution for only a single option (and the base influence)
with BDB-C’s T1 training set, which consequently is inferred as non-normal. By
contrast, P4 infers eight influential terms using T2. Overall, our results emphasize
the limitations of regular point-estimate models and show that P4 provides fine-
grained information on option and interaction influences. Moreover, by explicitly
modeling uncertainty, we can, for the first time, rationalize about the size of the
training set and its implications on the suitable model complexity.

To answer RQ4, 82% of influences remain normal-distributed after inference,
confirming the appropriateness of the choice of a normal-distributed prior.
Among the non-normal posterior distributions, 35% of non-normal distribu-
tions are multi-modal. This fact encourages modeling uncertainty, because
scalar influences can represent only a single mode, while P4 can reveal when
different plausible values exist. Among the uni-modal non-normal posterior
distributions, 15% are skewed and have higher kurtosis overall. This effect is
more pronounced for T1 and less for T3. This indicates that non-normality may
be an indicator for insufficient training samples and under-complex models.

5.6 RQ5: The Effect of More Training Data on Uncertainty

In theory, increasing the training set size of a model should decrease its epistemic
uncertainty. However, this expectation may hold only when we keep the model
complexity (i.e., the number of terms) constant. We designed P4 such that, with
more training data, P4 can build models with more terms. This way, the prediction
uncertainty may increase despite lower uncertainty for individual terms, because
adding up a large number of uncertainties may counteract that the uncertainties
are smaller. Consequently, we take both the uncertainty within learned internal
influences as well as the uncertainty in predictions into account. Studying this
relationship of prediction uncertainty and uncertainty of model terms is of practical
interest since increasing the complexity of the model with an increasing training
set size is sensible (e.g., fitting a quadratic curve with a linear function will not
work no matter how many training points we supply). So, there might be a fine
line in the relation of the growth of the training set size and in the growth of

28 Johannes Dorn et al.

model complexity. As mentioned in Section 3.2.1, we use Lasso to naturally limit
the growth of the model complexity. RQ5 helps also answering whether Lasso is
too restrictive or too lax in this sense.

5.6.1 Setup

To study the effect of increasing the training data set size, we analyze P4 models
trained on the T2 and T3 data sets. We exclude T1 data sets as P4 does not
learn interaction influences on them. We quantify the uncertainty of P4 with two
metrics: mean term-influence uncertainty and mean prediction uncertainty.

Mean term-influence uncertainty The mean term-influence uncertainty π̄β̄
95% cap-

tures the uncertainty within the inferred influences of P4 models. We compute
it by averaging the 95%-confidence interval widths W (π̄β

95%) of all terms β ∈ I
inside a given model π:

π̄β̄
95% =

∑
β∈I W (π̄β

95%)

|I| (29)

Mean prediction uncertainty The mean prediction uncertainty π̄rel(c) captures
the uncertainty in P4’s predictions. Similar to the MAPE, the mean prediction
uncertainty is relative to the mode (i.e., the most likely value) of the prediction.
However, instead of computing a prediction error in an evaluation setting where
the target value is known, the mean prediction uncertainty relies solely on the
predicted uncertainty. It is based on the scaled confidence interval width π̄rel(c)
for a given configuration c ∈ C, which we compute by dividing the 95%-confidence
interval width W (π̄95%(c)) by the prediction’s mode π̇(c):

π̄rel(c) =
W (π̄95%(c))

π̇(c)
(30)

Consequently, the mean prediction uncertainty π̄rel is the average across the
π̄rel of all valid configurations:

π̄rel =

∑
c∈C π̄rel(c)

|C| (31)

Aggregation For a given software system, attribute, training set, and model type
(πho and πhe), there are 5 models corresponding to the 5 repetitions we perform in
our experiments. To report a difference between T2 and T3, we take the median of
a metric for the P4 models resulting from the 5 repetitions. We choose the median
because it is more robust against outlier repetitions compared to the mean.

5.6.2 Results

Mean term-influence uncertainty The median differences in uncertainty of using
T2 versus T3 are detailed in Figure 8 for all subject systems and attributes. Here,
each bar shows the difference between the median π̄rel of the 5 repetitions for T2

versus T3. Across all subject systems and attributes, we observe that P4 infers
less uncertain influences using T3 with the notable exception of x264 (Energy)

Mastering Uncertainty in Performance Est. of Conf. Software Systems 29

50 0 50 100

7z
Apache
BDB-C
Dune

HSQLDB
Hipacc
JavaGC

LLVM
PSQLDB

Polly
VP8
VP9
lrzip

x264

ho

50 0 50 100

he

Mean term uncertainty difference of 2 vs. 3 in %

Time
Energy

Fig. 8: Median term-influence uncertainty difference of T2 versus T3 per software
system and per attribute.

with πhe . In this instance, the median term-influence uncertainty increases by
over 100% using T3 compared to T2. Moreover, one of the two inference failures
in our experiments occurred for a repetition of the experiment using T3, while
the other occurred for a repetition of the corresponding experiment using T2. We
discuss possible reasons for this effect in Section 5.7. Excluding the πho result for
x264 (Energy) with T3, the remaining term influence confidence intervals are 34%
smaller in πho models and 45% smaller in πhe models trained on T3 in comparison
to T2.

We present a more detailed view of individual term-influence uncertainty dif-
ference for two experiments 3 on the left of Figure 9. Here, each column color-
encodes a term influence confidence interval width for P4 trained on T2 (upper
row) and T3 (lower row), sorted in descending order for T3. Figure 9a shows that,
for LLVM (Energy), influences inferred with T2 become less uncertain (less sat-
urated) when using T3. P4 adds new terms with T3, which all are less uncertain
than the most uncertain terms of T2.

However, this observation is not consistent across all experiments. For ex-
ample, we see in Figure 9c that not all π̄β

95% become smaller for Berkeley-
DBC (Time). We observe that most options that were more uncertain with T2

remain more uncertain with T3. The interaction between HAVE CRYPTO and
PS32K, the most uncertain term with T2, becomes considerably less uncertain
with T2, whereas HAVE CRYPTO, the most uncertain term with T3, was far
less uncertain with T2. In this case, P4 selects too many interactions containing
HAVE CRYPTO, including the second-most uncertain term. We conjecture that
T3 does not contain enough data to sufficiently differentiate between the influ-
ence of option HAVE CRYPTO and its interactions. Next, we study whether
additional interactions may lead to more uncertain predictions using the mean
prediction uncertainty.

3 All comparison plots can be viewed on our supplementary website.

30 Johannes Dorn et al.

Term

2
3

Sa
m

pl
in

g ho for LLVM (Energy)

25

50

W
(

95
%

)

(a) P4 term influence confidence interval
widths for LLVM with energy consumption
as the attribute given in Ws.

Configuration

2
3

Sa
m

pl
in

g ho for LLVM (Energy)

20

25

re
l

(b) P4 energy prediction confidence interval
widths in % for all valid LLVM configura-
tions.

Term

2
3

Sa
m

pl
in

g he for BerkeleyDBC (Time)

1
2
3

W
(

95
%

)
(c) P4 term influence confidence interval
widths for BerkeleyDBC with execution
time in seconds as the attribute.

Configuration

2
3

Sa
m

pl
in

g he for BerkeleyDBC (Time)

500
1000 re

l

(d) P4 execution time prediction confidence
interval widths in % for all valid Berkeley-
DBC configurations.

Fig. 9: Term influence and prediction confidence interval width comparison for T2

versus T3. Each bar represents the width of the confidence interval for a single term
(on the left) of a single prediction (on the right). Matching terms are aligned for
comparison. We sort all bars in descending order according to the largest interval
width of T3 from left to right. Terms that were present only in T3 models are shown
gray in the T2 row and vice versa.

Mean prediction uncertainty P4 achieves decreased mean prediction uncertainty
π̄rel(c) for 4 out of 16 inference settings (software system & attribute) using πho

and for 10 out of 16 inference settings using πhe . However, this improvement stays
behind the reduction in term-influence uncertainty. The highly uncertain term in-
fluences of x264 (Energy) with πhe result in the highest increase of mean prediction
uncertainty with factor 3870. This increase exceeds the mean term-influence uncer-
tainty because the individual term-influence uncertainties accumulate for all the
terms that are active in a predicted configuration. Excluding this inference setting,
the mean prediction uncertainty using T3, on average, increases by 37% for πho and
decreases by 4% for πhe in comparison to T2. Figure 10 visualizes the difference in
mean prediction uncertainty of T3 versus T2 and illustrates that πhe performs bet-
ter than πho overall. In particular, we present the prediction uncertainties of two
inference settings on the right in Figure 9. Figure 9b illustrates that πhe consis-
tently increases its energy prediction uncertainty for LLVM configurations using
T3. The uniformly distributed values for T3 stem from the uniformly distributed
term influences uncertainties displayed in Figure 9a. Moreover, we show πho time
predictions for BerkeleyDBC in Figure 9d. Similar to LLVM, the distribution of
prediction uncertainties follows the distribution of its term-influence uncertainties
in Figure 9c. That is, as HAVE CRYPTO’s uncertainty increases but the uncer-
tainty of the interaction between HAVE CRYPTO and PS32K decreases with
T3, one subset of the most uncertain predictions with T2 becomes less uncertain
while the another subset remains among the most uncertain predictions with T2.

Although the mean prediction uncertainty does not improve for a number of
systems and attributes, P4 still improves prediction accuracy in terms of MAPE
and MAPECI as displayed in Figure 4. That is, although the 95%-confidence
interval width of predicted probability distributions does not become more narrow

Mastering Uncertainty in Performance Est. of Conf. Software Systems 31

100 0 100

7z
Apache
BDB-C
Dune

HSQLDB
Hipacc
JavaGC

LLVM
PSQLDB

Polly
VP8
VP9
lrzip

x264

ho

100 0 100

he

Prediction uncertainty difference of 2 vs. 3 in %

Time
Energy

Fig. 10: Median prediction uncertainty difference of T2 versus T3 per software
system and per attribute.

with T3 in general, its mode is still accurate enough to match the state of the art.
Moreover, the uncertainty calibration in Figure 5 shows that, with T2, both πho

and πhe were overconfident in their 95%-confidence interval. This means that the
correct value was not inside this interval for 95% of all predictions, but in only
less than 70% of the cases. P4 improved its calibration with T3, which can be due
to improved accuracy or adjusted confidence intervals. Our results contain both
effects: P4 became more accurate as measured by the MAPECI and it increased
predicted confidence interval widths. Moreover, Figure 5 shows that πho becomes
under-confident with T3, which means that it predicts confidence intervals that are
wider than necessary. This is explainable by the mean prediction uncertainty of
πho , which increases more than πhe . As both models incorporate the same terms
and only differ in the ability to model a relative error, we conjecture that the
relative error in πhe can model prediction error more accurately than πho given
enough training data.

Answering RQ5, more training data reduce the overall term-influence uncer-
tainty. However, lower term-influence uncertainty does not translate to lower
prediction uncertainty in our experiments because P4’s Lasso selects too many
interactions using T3. As a result, the numerous individual uncertainties amount
to an increase in prediction uncertainty in 18 out of 32 inference settings. At
the same time, the cases where the prediction uncertainty increases allow P4 to
improve the reliability of its predicted confidence intervals (i.e., its calibration).
While πhe yields a larger uncertainty reduction with more training data, it also
produces the only increase of term-influence uncertainty for x264 (Energy).

32 Johannes Dorn et al.

5.7 RQ6: Unreliable Options and Their Cause

Evaluation of frequentist point-estimate models on a test set cannot provide in-
formation about the cause of inaccurate predictions. By contrast, P4 provides a
degree of uncertainty for each option and interaction involved in a prediction.
This way, we can identify individual options and interactions that are responsible
for uncertain predictions. We refer to these terms in a model as unreliable terms.
Unreliable terms empower developers to identify code regions associated to these
options that may exhibit large variations of performance or are uncertain by na-
ture (e.g., due to non-determinism). Knowing unreliable terms also allows us to
improve the composition of a training set by acquiring more samples that add
information on the corresponding configuration options or interactions.

5.7.1 Setup

During prediction, P4 performs a convolution on the posteriors of the terms that
are active in the given configuration. Hence, extraordinarily uncertain predictions
must involve unreliable terms. We call a term unreliable if its influence’s confidence
interval is substantially wider than the confidence intervals of the model’s remain-
ing options and interactions. We quantify this property using the scaled confidence
interval width Wrel(π̄

β), which specifies the degree of uncertainty relative to the
mean within a model. It results from dividing a term’s 95%-confidence interval
width W (π̄β

95%) by the average 95%-confidence interval width of the model:

Wrel(π̄
β) =

W (π̄β
95%)

1
|I|

∑
β∈I W (π̄β

95%)
. (32)

To answer RQ6, we concentrate on the top 5% terms with the largest scaled
confidence interval width. In what follows, we present the distribution of unreliable
terms as well as a qualitative root-cause analysis on the 8 most unreliable terms
across all experiments.

5.7.2 Results

Throughout all experiments, P4 identifies a similar number of unreliable options
with both the πho (i.e., modeling an absolute error) and πhe (i.e., modeling a
relative error) model: 541 unreliable terms using πho and 491 using πhe . In Fig-
ure 11, we show the number of unreliable terms per subject system and model.
Each row depicts the number of unreliable terms in the respective model. With
both approaches, BerkeleyDBC, LLVM, PSQLDB, VP9 (Energy), and x264
have less than 30 unreliable terms across all training sets. Moreover, using πhe ,
P4 infers no unreliable terms for PSQLDB, VP9 (Energy), and x264 (Time). By
contrast, using either πho or πhe , JavaGC and HIPAcc have over 60 unreliable
terms. This shows that unreliable options are not common for all subject systems
and attributes. We see that P4 finds the highest number of unreliable terms for
the execution time of JavaGC using πho and for the execution time of VP9 using
πhe . Both models yield a high number of unreliable terms for HIPAcc. At the same
time, P4 identifies the highest number of terms for JavaGC, VP9, and HIPAcc,
as Figure 4 illustrates.

Mastering Uncertainty in Performance Est. of Conf. Software Systems 33

0 50 100
Unreliable terms

7z [Time]
BDB-C [Time]
Dune [Time]

HSQLDB [Energy]
Hipacc [Time]
JavaGC [Time]

LLVM [Time]
PSQLDB [Energy]

Polly [Time]
VP8 [Energy]

VP9 [Time]
lrzip [Time]

x264 [Energy]
x264 [Time]

ho

0 50 100
Unreliable terms

he

1
2
3

Fig. 11: Number of unreliable options for P4 trained on T1, T2, and T3 training
sets of different subject systems and attributes.

A possible explanation could be that the absolute number of terms for these
systems is high, but the relative number of uncertain terms remains moderate.
To examine if P4 generally identifies more unreliable options for subject models
with more terms, we compute Pearson’s correlation coefficient for the number of
unreliable terms and the total number of terms inferred for each model in our
experiments. The moderate correlation of r = 0.47 indicates that P4 models with
more terms also tend to contain more unreliable terms. Furthermore, we color-
coded the training sizes to compare the absolute number of unreliable terms per
subject system. Figure 11 shows that many subject systems have fewer unreliable
terms using T1 compared to T2 and T3, such as JavaGC and HIPAcc. By contrast,
we find numerous unreliable terms using T1 for x264 (Time), PSQLDB (Energy),
and 7z (Time). For these systems, P4 infers a similar number of terms for T1 and
T3. This is in line with previous observations that more unreliable terms occur
with more terms in a model.

We list the 8 terms with the highest scaled confidence interval width Wrel(π̄
β)

in Table 4. Out of these 8 most unreliable terms, the most common subject systems
are x264, JavaGC, and VP9. In what follows, we therefore concentrate on these
systems.

x264 Compared to the other subject systems, x264 (Energy) has few inferred
terms using T3. Although x264 (Energy) matches the previously described trend
of higher numbers of unreliable terms with a larger number of terms in a model,
it has ref 9 as the term with the highest overall Wrel(π̄

β) using πho . ref 9 is
part of an alternative group. Its 95%-confidence interval is 14–times as wide as
the mean of all intervals in the inferred model and will drastically increase the
uncertainty of predictions in which the option is active. In fact, we observed and
discussed these highly uncertain predictions in RQ5. Despite our efforts, the T3

training data still has a highly problematic VIF of over 10 for this option, as

34 Johannes Dorn et al.

Table 4: Most uncertain influences measured by the scaled confidence interval
width Wrel(π̄

β). Interactions are shown with a ×-sign linking their options, for
example between NewRatio 16 and UseAdaptiveSizePolicy (ASP). For each
term, we also list the variance inflation factor (VIF) inside the respective training
set (T) and denote whether the term influence πβ is multimodal (MM) or normal-
distributed (N).

System T Attribute π Term Wrel (π̄
β) VIF MM N

x264 3 Energy πhe ref 9 14.11 23.69 ✓
JavaGC 2 Time πho NewRatio 16 × ASP 11.52 1.61 ✓
x264 3 Energy πhe Base 11.04 — ✓
JavaGC 2 Time πhe NewRatio 32 × ASP 10.27 7.36
VP9 3 Encoding time πhe cpuUsed 4 9.45 25.87 ✓
HIPAcc 2 Solving time πhe Array2D × LocalMemory 9.30 3.93
x264 3 Energy πhe ref 5 9.30 14.29 ✓
VP9 3 Encoding time πhe Base 9.07 — ✓

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
Term influence

ref_9 in x264 (Energy) with 3

Fig. 12: Multi-modal, non-normal marginal posterior distribution with the highest
Wrel(π̄

β) reported in Table 4.

well as for Ref 5 (the 7th-most unreliable term). This reduces the amount of
information for these options that is present in the training data. As a result, the
πho model cannot differentiate between the two alternative group options and the
base influence (the third-most unreliable term) such that all three are unreliable.
In addition, the influences of all three terms are multi-modal. Looking at ref 9’s
marginal posterior distribution in Figure 12, we can clearly identify three modes
at 1.1 kJ, 1.5 kJ, and 2.4 kJ. Thus, P4 has identified several probable value ranges
due to remaining multicollinearity and the epistemic uncertainty due to the πho

model structure. These observations results in an important insight: Alternative
options may need individually more measurements to account for the inherent
multicollinearity than other options. We are not aware of any existing sampling
approach that adds to this insight.

JavaGC Among the most unreliable terms, we find two pairwise interactions for
JavaGC between UseAdaptiveSizePolicy and options of the NewRatio alter-
native group. The two NewRatio options set the maximum ratio of the young
versus the tenured generation in the Java heap to 1:16 (using πho) and 1:32 (using
πhe), respectively. As the default NewRatio is 2, these values are comparably
high and will lead to a small young generation and cause more frequent minor
garbage collections. The UseAdaptiveSizePolicy option on its own will auto-
matically adjust the young and the tenured generation size over time. However,

Mastering Uncertainty in Performance Est. of Conf. Software Systems 35

0 20 40 60 80 100 120 140
Term influence

JavaGC (Garbage collection time) terms with 2

NR16 × AS
AS

Fig. 13: Uni-modal, normal marginal posterior distribution of NewRatio 16 ×
UseAdaptiveSizePolicy with the second highest Wrel(π̄

β) reported in Table 4
and UseAdaptiveSizePolicy’s (AS) influence with less uncertainty.

40 20 0 20 40
Term influence

Unreliable VP9 term influences Model
ho

he

Term
cpuUsed_4
Base

Fig. 14: Bi-modal, non-normal marginal posterior distributions of πhe (in satu-
rated color) next to normal-shaped distributions of πho (in unsaturated color) for
cpuUsed 4, the term with the third highest Wrel(π̄

β) reported in Table 4. The
respective base influence takes a similar shape as cpuUsed 4, but mirrored along
the y-axis.

activating both options is discouraged and will lead to unexpected program be-
havior. Figure 13 displays the marginal posterior distribution of the interaction
between NewRatio 16 and UseAdaptiveSizePolicy in blue. In comparison to
the marginal posterior histogram of the option UseAdaptiveSizePolicy from
the same model shown in red, we see that, although both are normal-distributed,
the influence of NewRatio 16 is more uncertain by a large margin. Again, this
observation produces an insight not seen in related work: Uncertainties of inter-
actions may be traced to external factors, and, henceforth, cannot be reduced by
more measurements or a more complex model. P4 is a valuable detector of such
scenarios.

VP9 VP9’s option cpuUsed 4 is over nine times more uncertain than the other
influences in the πhe model trained on T3. This is due to the distance between its
two modes at −22 s and −5 s, which are shown in Figure 14. Similarly to x264’s
option Ref 9, we find a highly problematic VIF of 23.7 in the training data for this
option, explaining why cpuUsed 4 is unreliable. Interestingly, cpuUsed 4’s uncer-
tainty is tied to the uncertainty of the base influence, which is multi-modal and has
a Wrel(π̄

β) of over 9. In this instance, we did not entirely avoid the multicollinear-
ity of the cpuUsed alternative group which allowed cpuUsed 4’s influence to be
partly assigned to the base influence. Therefore, both become uncertain. However,
despite sharing the same training data T3, the option cpuUsed 4 is never inferred
unreliable in any πho model. To investigate this discrepancy, we display the base

36 Johannes Dorn et al.

Fig. 15: Comparison of term confidence interval widths and modes.

influence and cpuUsed 4’s influence for both a πho and a πhe model in Figure 14.
It shows that the πho influences for both terms are inferred uni-modal with the
same spread as the individual modes. While the uni-modality of the πho model
influences provide smaller confidence interval widths, it pushes the influence to
more extreme values, which is an undesirable effect of multicollinearity. This effect
is not limited to the aforementioned influences, but is present throughout all in-
ferred influences of πho . Figure 15 visualizes all inferred influences of πho and πhe

and shows that the modes of πho ’s influences go beyond ±40 s with absolute con-
fidence interval widths below 4 s. These data do not hint at issues in the training
data, whereas πhe ’s influences of ±20 s with absolute confidence interval widths
of up to 18 s certainly do. This indicates that the πhe model is able to signal the
uncertainty owing to multi-modality by inferring multiple modes. We therefore
recommend πhe when multicollinearity cannot be ruled out entirely.

Answering RQ6, we find unreliable options throughout all subject systems.
We identified multicollinearity as the most common reason for unreliability
among the most unreliable options, motivating further research for sampling.
In general, the πhe model is preferable to detect issues in the training data,
such as multicollinearity.

6 Threats to Validity

Threats to internal validity arise from measurement bias. We reuse a measurement
set from a recent paper whose authors controlled for this bias by repeating the
measurements several times [25]. A threat to construct validity may arise from the
model construction process in PyMC3. To this end, we selected probability distri-
butions for the random variables based on typical least squares error distributions
and best practices for regression modeling in probabilistic programming. How-
ever, since we limit the degree of modeled interactions, our analyzes are limited to
the same interaction degree. External validity refers to the generalizability of our
approach. Our data set comprises 13 different subject systems of varying domains
and sizes. Moreover, we assessed different properties, such as energy consumption
and response time. We made similar observations for all systems such that we are
convinced that our approach works on a large and practically relevant class of
configurable software systems.

Mastering Uncertainty in Performance Est. of Conf. Software Systems 37

7 Related Work

There are numerous approaches to model the performance of configurable software
systems. Black-box models only require performance observations of a configurable
software system under varying configurations. The modeling task, hence, becomes
a regression problem. For example, SPL Conqueror applies multiple linear re-
gression with forward feature selection [49]. Nair et al. achieve accurate ranking of
configurations according to their performance to facilitate optimization by training
inaccurate models that are inexpensive to fit[36]. CART [10] and its improved ver-
sion DECART [11] use rule-based models to accurately learn performance models
with a small number of samples. FLASH [37] is a sequential model-based method
that relies on active learning to fit CART [10] models more efficiently. A strength
of these CART-based approaches is their interpretability as rules for performance
behavior are explicit through branches in the decision tree. On the other hand,
more complex models can improve accuracy at the cost of interpretability. As
such, DeepPerf [12] is a deep learning-based approach which uses sparse neu-
ral networks for performance estimation [12]. HINNPerf constructs a hierarchical
ensemble of artificial neural networks to infer interactions [4]. This approach pro-
vides interpretability of their artificial neural networks by adopting the Integrated
Gradients method. Zhang et al. propose a framework to model performance influ-
ence with Fourier approximation [63], whereas Nair et al. employ spectral learning
with dimensionality reduction [35]. P4 also classifies as a black-box performance
model. In contrast, none of the other proposed approaches considers uncertainty in
predictions and in the internal representation of influences, producing only scalar
estimates.

White-box approaches also consider source code in addition to performance
observations. To this end, Velez et al. propose Comprex, an approach that leverages
taint analysis to segment the source code by configuration options [57]. This allows
Comprex to learn small models with few samples for each code segment and overall
reduce the number of required measurements. ConfigCrusher first conducts a data-
flow analysis to determine influential options [56]. Then, ConfigCrusher measures
configurations based on only these influential options to improve data-efficiency.
Similarly, Weber et al. propose an approach that uses a coarse-grained profiler
to infer a performance-influence model for each method [59]. Then, they conduct
more fine-grained measurements using a fine-grained profiler to improve the worst
models, providing a method-level understanding of the configuration influence on
performance. Although white-box models can pin-point performance-influences to
individual source code regions, these influences currently are still scalar and cannot
express uncertainty.

While typical regression models only provide correlative information, recent
work has studied causality between performance and environmental variables, such
as software configuration. Dubslaff et al. investigate causality in configurable soft-
ware systems with counterfactual reasoning [6]. This way, they find defect causes,
estimate option influences and identify interactions thereof. Unicorn builds a
causal performance model with causal reasoning [21]. Contrary to Dubslaff et al.,
UNICORN also considers intermediate causal mechanisms in addition to software
options in order to provide results that are more robust against environmental
changes. Causal reasoning has the potential to provide even more useful insights

38 Johannes Dorn et al.

into performance-influences of options than white-box models, but the current
methods cannot express how certain the causal relations are.

Notably, the need for incorporating uncertainty in performance modeling of
configurable software systems has been argued before by Trubiani and Apel [53].
While there are already considerations in other fields for both epistemic and
aleatoric uncertainty, such as for computer vision [27], for software engineering,
there are only approaches that model some kind of epistemic uncertainty. Antonelli
et al. have incorporated uncertainty by allowing two parameters of a performance
index for cloud computing systems to be uncertain and thus adapt to changing
hardware [1]. Another approach by Arcaini et al. transforms a feature model into
two Queuing Networks—one each for the two variants with minimal and maxi-
mal performance—and thereby represents uncertainty in performance [2]. To the
best of our knowledge, we are the first to follow Trubiani and Apel’s call to in-
corporate both epistemic and aleatoric uncertainty in performance modeling of
configurable software systems. However, probabilistic methods have been applied
in software engineering on different problems. Elbaum and Rosenblum discuss
the role of aleatoric and epistemic uncertainty in testing [7]. Horcas et al. use a
Monte Carlo tree search to perform automated analyses, such as localizing de-
fective configurations [20]. Mandrioli and Maggio combine Monte Carlo sampling
and extreme value theory as part of scenario theory to provide lower and upper
bounds for performance estimations [32]. In contrast to our work, they do not infer
probability distributions for individual options and interactions. ConEx employs
a Monte Carlo Markov Chain to optimize performance in vast configuration spaces
with over 900 options [31]. However, it does not yield insights into influences of
options and interactions as it does not build a model.

8 Summary

Existing approaches for performance-influence modeling provide only scalar predic-
tions based on modeling influences of options and interactions with scalar values.
We argue that these approaches neglect uncertainty arising from the modeling
and measurement process. We propose a novel performance-influence modeling
approach that incorporates uncertainty explicitly and yields confidence intervals
alongside scalar point-estimate predictions. This way, we provide not only a sin-
gular number as a performance estimate, but also a posterior distribution and a
confidence in which range a performance value lies. Our experiments with 13 real-
world software systems show that our implementation, P4, yields scalar prediction
accuracies that match the state of the art when provided with a sufficient number
of measurements. Further evaluation shows that the confidence intervals provided
are reliable and, when used for prediction, achieve competitive accuracies.

The analysis of our trained models indicates that options that are selected
in almost every configuration can reduce the amount of information contained in
a training set, rendering the option’s influence uncertain. This observation calls
for a shift in current sampling strategies by taking the information gain more
into account, as compared to coverage or uniformness. P4 showed its potential
especially with pairwise and triple-wise sampled training sets. Improving P4 for
small training sets, hence, remains an open issue. A possible remedy are P4’s
option influence uncertainties, which may be facilitated in an active learning setup

Mastering Uncertainty in Performance Est. of Conf. Software Systems 39

to learn more efficiently. In addition to our original findings, we report in this article
that a normal distribution is a reasonable choice for P4’s priors as most posteriors
are normal-distributed in our experiments. Nevertheless, P4 can also detect multi-
modal influences, indicating issues in the training data, such as multicollinearity.
In most cases, we find a reduction of uncertainty given more training data for
both modeled influence uncertainty as well as prediction uncertainty. For some
predictions, however, prediction uncertainty does not decrease as expected. We
show that, using P4, it is possible to identify individual unreliable options and
interactions thereof that cause particularly uncertain predictions. A qualitative
study on the most unreliable options and interactions shows multicollinearity and
interactions leading to non-defined program behavior as reasons for unreliability.
It motivates research into active sampling using P4 as a driving source.

Acknowledgements Siegmund’s and Apel’s work has been funded by the German Research
Foundation (SI 2171/3-1, SI 2171/2, and AP 206/11, as well as Grant 389792660 as part
of TRR 248 – CPEC) and the German Federal Ministry of Education and Research (Agile-
AI: 01IS19059A and 01IS18026B) by funding the competence center for Big Data and AI
”ScaDS.AI Dresden/Leipzig”.

Data Availability

The data that support the findings of this study are available from Github: https:
//git.io/JUfjy An archived version exists at https://archive.softwareheritage.org/

swh:1:dir:e15e09dd53c9d48216ec8af4a117148f4857407c.

Declarations

Conflict of Interests/Competing Interests

The authors have no competing interests to declare that are relevant to the content
of this article.

References

1. Fabio Antonelli, Vittorio Cortellessa, Marco Gribaudo, Riccardo Pinciroli,
Kishor S. Trivedi, and Catia Trubiani. Analytical Modeling of Performance
Indices under Epistemic Uncertainty Applied to Cloud Computing Systems.
Future Generation Computer Systems, 102:746–761, 2020. ISSN 0167-739X.
doi: 10.1016/j.future.2019.09.006.

2. Paolo Arcaini, Omar Inverso, and Catia Trubiani. Automated Model-Based
Performance Analysis of Software Product Lines under uncertainty. Journal
of Information and Software Technology (IST), 127:106371, 2020. ISSN 0950-
5849. doi: 10.1016/j.infsof.2020.106371.

3. James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms
for Hyper-Parameter Optimization. In J. Shawe-Taylor, R. Zemel, P. Bartlett,
F. Pereira, and K.Q. Weinberger, editors, Advances in Neural Information
Processing Systems, volume 24. Curran Associates, Inc., 2011.

https://git.io/JUfjy
https://git.io/JUfjy
https://archive.softwareheritage.org/swh:1:dir:e15e09dd53c9d48216ec8af4a117148f4857407c
https://archive.softwareheritage.org/swh:1:dir:e15e09dd53c9d48216ec8af4a117148f4857407c

40 Johannes Dorn et al.

4. Jiezhu Cheng, Cuiyun Gao, and Zibin Zheng. HINNPerf: Hierarchical Inter-
action Neural Network for Performance Prediction of Configurable Systems.
ACM Transactions on Software Engineering and Methodology, mar 2022. ISSN
1049-331X. doi: 10.1145/3528100.

5. Johannes Dorn, Sven Apel, and Norbert Siegmund. Mastering Uncertainty in
Performance Estimations of Configurable Software Systems. ASE ’20, page
684–696, New York, NY, USA, 2020. Association for Computing Machinery.
ISBN 9781450367684. doi: 10.1145/3324884.3416620.

6. Clemens Dubslaff, Kallistos Weis, Christel Baier, and Sven Apel. Causality in
Configurable Software Systems. page 13, 2022.

7. Sebastian Elbaum and David S. Rosenblum. Known Unknowns: Testing in the
Presence of Uncertainty. In Proceedings of the 22nd ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, FSE 2014, pages
833–836, New York, NY, USA, November 2014. Association for Computing
Machinery. ISBN 978-1-4503-3056-5. doi: 10.1145/2635868.2666608.

8. Donald E. Farrar and Robert R. Glauber. Multicollinearity in Regression
Analysis: The Problem Revisited. The Review of Economics and Statistics,
49:92–107, 1967. ISSN 0034-6535. doi: 10.2307/1937887.

9. Vibhav Gogate and Rina Dechter. A New Algorithm for Sampling CSP So-
lutions Uniformly at Random. In Principles and Practice of Constraint Pro-
gramming - CP 2006, pages 711–715. Springer, 2006. ISBN 978-3-540-46268-2.
doi: 10.1007/11889205 56.

10. Jianmei Guo, Krzysztof Czarnecki, Sven Apel, Norbert Siegmund, and An-
drzej Wasowski. Variability-Aware Performance Prediction: A Statistical
Learning Approach. In Proceedings of the International Conference on Au-
tomated Software Engineering (ASE), pages 301–311. IEEE, 2013. doi:
10.1109/ASE.2013.6693089.

11. Jianmei Guo, Dingyu Yang, Norbert Siegmund, Sven Apel, Atrisha Sarkar,
Pavel Valov, Krzysztof Czarnecki, Andrzej Wasowski, and Huiqun Yu. Data-
Efficient Performance Learning for Configurable Systems. Empirical Software
Engineering, 23:1826–1867, 2018. ISSN 1573-7616.

12. Huong Ha and Hongyu Zhang. DeepPerf: Performance Prediction for Con-
figurable Software with Deep Sparse Neural Network. In Proceedings of the
International Conference on Software Engineering (ICSE), pages 1095–1106.
IEEE, 2019. doi: 10.1109/ICSE.2019.00113.

13. Huong Ha and Hongyu Zhang. Performance-Influence Model for Highly Con-
figurable Software with Fourier Learning and Lasso Regression. In Proceedings
of the International Conference on Software Maintenance and Evolution (IC-
SME), pages 470–480. IEEE, 2019. doi: 10.1109/ICSME.2019.00080.

14. J. A. Hartigan and P. M. Hartigan. The Dip Test of Unimodality. The Annals
of Statistics, 13(1):70–84, 1985. ISSN 00905364.

15. Christopher Henard, Mike Papadakis, Mark Harman, and Yves Le Traon.
Combining Multi-Objective Search and Constraint Solving for Configuring
Large Software Product Lines. In Proceedings of the International Conference
on Software Engineering (ICSE), pages 517–528. IEEE/ACM, 2015. ISBN
978-1-4799-1934-5. doi: 10.1109/ICSE.2015.69.

16. Herodotos Herodotou, Harold Lim, Gang Luo, Nedyalko Borisov, Liang Dong,
Fatma Bilgen Cetin, and Shivnath Babu. Starfish: A Self-tuning System for
Big Data Analytics. In Proceedings of the Conference on Innovative Data

Mastering Uncertainty in Performance Est. of Conf. Software Systems 41

Systems Research (CIDR), pages 261–272. www.cidrdb.org, 2011.
17. R. Carter Hill and Lee C. Adkins. Collinearity. In A Companion to Theoretical

Econometrics, chapter 12, pages 256–278. John Wiley & Sons, Ltd, 2007. ISBN
978-0-470-99624-9. doi: 10.1002/9780470996249.ch13.

18. Arthur E. Hoerl and Robert W. Kennard. Ridge Regression: Biased Estimation
for Nonorthogonal Problems. Technometrics, 12:55–67, 1970. ISSN 0040-1706,
1537-2723. doi: 10.1080/00401706.1970.10488634.

19. Matthew D. Hoffman and Andrew Gelman. The No-U-Turn Sampler: Adap-
tively Setting Path Lengths in Hamiltonian Monte Carlo. The Journal of
Machine Learning Research, 15:1593–1623, 2014. ISSN 1532-4435.

20. Jose-Miguel Horcas, José A. Galindo, Ruben Heradio, David Fernandez-
Amoros, and David Benavides. Monte Carlo Tree Search for Feature Model
Analyses: A General Framework for Decision-Making. In Proceedings of
the 25th ACM International Systems and Software Product Line Conference
- Volume A, SPLC ’21, pages 190–201, New York, NY, USA, September
2021. Association for Computing Machinery. ISBN 978-1-4503-8469-8. doi:
10.1145/3461001.3471146.

21. Md Shahriar Iqbal, Rahul Krishna, Mohammad Ali Javidian, Baishakhi Ray,
and Pooyan Jamshidi. Unicorn: Reasoning about Configurable System Perfor-
mance through the Lens of Causality. In Proceedings of the Seventeenth Euro-
pean Conference on Computer Systems, EuroSys ’22, page 199–217, New York,
NY, USA, 2022. Association for Computing Machinery. ISBN 9781450391627.
doi: 10.1145/3492321.3519575.

22. Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An In-
troduction to Statistical Learning. Springer Texts in Statistics. Springer, 2013.
ISBN 978-1-4614-7137-0 978-1-4614-7138-7. doi: 10.1007/978-1-4614-7138-7.

23. Pooyan Jamshidi and Giuliano Casale. An Uncertainty-Aware Approach to
Optimal Configuration of Stream Processing Systems. In Proceedings of the
International Symposium on Modeling, Analysis and Simulation of Computer
and Telecommunication Systems (MASCOTS), pages 39–48. IEEE, 2016. doi:
10.1109/MASCOTS.2016.17.

24. Martin Fagereng Johansen, Øystein Haugen, and Franck Fleurey. An Algo-
rithm for Generating T-Wise Covering Arrays from Large Feature Models. In
Proceedings of the International Software Product Line Conference (SPLC),
page 46. ACM, 2012. ISBN 978-1-4503-1094-9. doi: 10.1145/2362536.2362547.

25. Christian Kaltenecker, Alexander Grebhahn, Norbert Siegmund, Jianmei Guo,
and Sven Apel. Distance-Based Sampling of Software Configuration Spaces. In
Proceedings of the International Conference on Software Engineering (ICSE),
pages 1084–1094. IEEE, 2019. doi: 10.1109/ICSE.2019.00112.

26. Christian Kaltenecker, Alexander Grebhahn, Norbert Siegmund, and Sven
Apel. The Interplay of Sampling and Machine Learning for Software Per-
formance Prediction. IEEE Software, 37(4):58–66, 2020. ISSN 0740-7459,
1937-4194. doi: 10.1109/MS.2020.2987024.

27. Alex Kendall and Yarin Gal. What Uncertainties Do We Need in Bayesian
Deep Learning for Computer Vision? In Proceedings of the International Con-
ference on Neural Information Processing Systems (NIPS), pages 5580–5590.
Curran Associates Inc., 2017. ISBN 9781510860964.

28. M. G. Kendall. A New Measure of Rank Correlation. Biometrika, 30(1-2):
81–93, June 1938. ISSN 0006-3444. doi: 10.1093/biomet/30.1-2.81.

42 Johannes Dorn et al.

29. Armen Der Kiureghian and Ove Ditlevsen. Aleatory or Epistemic? Does It
Matter? Structural Safety, 31:105–112, 2009. ISSN 01674730. doi: 10.1016/j.
strusafe.2008.06.020.

30. Sergiy Kolesnikov, Norbert Siegmund, Christian Kästner, and Sven Apel. On
the Relation of Control-Flow and Performance Feature Interactions: A Case
Study. Empirical Software Engineering (EMSE), 24(4):2410–2437, 2019.

31. Rahul Krishna, Chong Tang, Kevin Sullivan, and Baishakhi Ray. Conex:
Efficient Exploration of Big-Data System Configurations for Better Perfor-
mance. IEEE Transactions on Software Engineering, pages 1–1, 2020. doi:
10.1109/TSE.2020.3007560.

32. Claudio Mandrioli and Martina Maggio. Testing Self-Adaptive Software with
Probabilistic Guarantees on Performance Metrics: Extended and Comparative
Results. IEEE Transactions on Software Engineering, pages 1–1, 2021. ISSN
0098-5589, 1939-3520, 2326-3881. doi: 10.1109/TSE.2021.3101130.

33. Alan Miller. Subset Selection in Regression. CRC Press, 2002. doi: 10.1201/
9781420035933.

34. Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. Adaptive
Computation and Machine Learning Series. MIT Press, 2012. ISBN 978-0-
262-01802-9.

35. Vivek Nair, Tim Menzies, Norbert Siegmund, and Sven Apel. Faster Discovery
of Faster System Configurations with Spectral Learning. Automated Software
Engineering, 25:247–277, 2017. doi: 10.1007/s10515-017-0225-2.

36. Vivek Nair, Tim Menzies, Norbert Siegmund, and Sven Apel. Using Bad
Learners to Find Good Configurations. In Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2017, page
257–267. ACM, 2017. ISBN 9781450351058.

37. Vivek Nair, Zhe Yu, Tim Menzies, Norbert Siegmund, and Sven Apel. Finding
Faster Configurations Using FLASH. Transactions on Software Engineering,
46:794–811, 2020.

38. Radford M Neal. Probabilistic Inference Using Markov Chain Monte Carlo
Methods. Department of Computer Science, University of Toronto, 1993.

39. Robert M. O’Brien. A Caution Regarding Rules of Thumb for Variance In-
flation Factors. Quality & Quantity, 41:673–690, 2007. ISSN 0033-5177. doi:
10.1007/s11135-006-9018-6.

40. Jeho Oh, Don Batory, Margaret Myers, and Norbert Siegmund. Finding Near-
Optimal Configurations in Product Lines by Random Sampling. In Proceedings
of the Joint Meeting of the European Software Engineering Conference and
the ACM SIGSOFT Symposium on the Foundations of Software Engineering
(ESEC/FSE), pages 61–71. ACM, 2017. ISBN 978-1-4503-5105-8. doi: 10.
1145/3106237.3106273.

41. John R. Rice. The Algorithm Selection Problem. volume 15 of Advances
in Computers, pages 65–118. Elsevier, 1976. doi: https://doi.org/10.1016/
S0065-2458(08)60520-3.

42. Herbert E. Robbins. An Empirical Bayes Approach to Statistics. In Proceed-
ings of the Third Berkeley Symposium on Mathematical Statistics and Proba-
bility, Volume 1: Contributions to the Theory of Statistics. The Regents of the
University of California, 1956. doi: 10.1007/978-1-4612-0919-5 26.

43. Geoffrey Roeder, Yuhuai Wu, and David K Duvenaud. Sticking the Land-
ing: Simple, Lower-Variance Gradient Estimators for Variational Inference. In

Mastering Uncertainty in Performance Est. of Conf. Software Systems 43

Proceedings of the International Conference on Neural Information Processing
Systems (NIPS), pages 6928–6937. Curran Associates Inc., 2017.

44. S. S. Shapiro and M. B. Wilk. An Analysis of Variance Test for Normality
(Complete Samples)†. Biometrika, 52(3-4):591–611, December 1965. ISSN
0006-3444. doi: 10.1093/biomet/52.3-4.591.

45. John Salvatier, Thomas V. Wiecki, and Christopher Fonnesbeck. Probabilistic
programming in Python using PyMC3. PeerJ Computer Science, 2:e55, 2016.
ISSN 2376-5992. doi: 10.7717/peerj-cs.55.

46. Claude E. Shannon. A Mathematical Theory of Communication. The Bell
System Technical Journal, 27:379–423, 1948. ISSN 0005-8580. doi: 10.1002/j.
1538-7305.1948.tb01338.x.

47. Norbert Siegmund, Sergiy S. Kolesnikov, Christian Kastner, Sven Apel, Don
Batory, Marko Rosenmuller, and Gunter Saake. Predicting Performance via
Automated Feature-Interaction Detection. In Proceedings of the International
Conference on Software Engineering (ICSE), pages 167–177. IEEE, 2012.
ISBN 978-1-4673-1066-6 978-1-4673-1067-3. doi: 10.1109/ICSE.2012.6227196.

48. Norbert Siegmund, Marko Rosenmüller, Martin Kuhlemann, Christian
Kästner, Sven Apel, and Gunter Saake. SPL Conqueror: Toward Opti-
mization of Non-Functional Properties in Software Product Lines. Soft-
ware Quality Journal, 20:487–517, 2012. ISSN 0963-9314, 1573-1367. doi:
10.1007/s11219-011-9152-9.

49. Norbert Siegmund, Alexander Grebhahn, Sven Apel, and Christian Kästner.
Performance-Influence Models for Highly Configurable Systems. In Proceed-
ings of the Joint Meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on the Foundations of Software Engi-
neering (ESEC/FSE), pages 284–294. ACM, 2015. ISBN 978-1-4503-3675-8.
doi: 10.1145/2786805.2786845.

50. Ralph Smith. Uncertainty Quantification: Theory, Implementation, and Ap-
plications. Society for Industrial and Applied Mathematics, 2013. ISBN 978-
1-61197-321-1.

51. John R. Taylor. An Introduction to Error Analysis: The Study of Uncertainties
in Physical Measurements. University Science Books, 2nd edition, 1997. doi:
10.1063/1.882103.

52. Robert Tibshirani. Regression Shrinkage and Selection via the Lasso. Journal
of the Royal Statistical Society. Series B (Methodological), 58:267–288, 1996.
ISSN 0035-9246.

53. Catia Trubiani and Sven Apel. PLUS: Performance Learning for Uncertainty
of Software. In Proceedings of the International Conference on Software En-
gineering: New Ideas and Emerging Results, pages 77–80. IEEE, 2019. doi:
10.1109/ICSE-NIER.2019.00028.

54. Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, and Bohan Zhang. Au-
tomatic Database Management System Tuning Through Large-scale Machine
Learning. In Proceedings of the International Conference on Management of
Data (SIGMOD), pages 1009–1024. ACM, 2017. ISBN 978-1-4503-4197-4. doi:
10.1145/3035918.3064029.

55. Laurens Van Der Maaten, Eric Postma, and Jaap Van den Herik. Dimen-
sionality Reduction: A Comparative Review. Journal of Machine Learning
Research, 10, 2009.

44 Johannes Dorn et al.

56. Miguel Velez, Pooyan Jamshidi, Florian Sattler, Norbert Siegmund, Sven Apel,
and Christian Kästner. Configcrusher: Towards White-Box Performance Anal-
ysis for Configurable Systems. Automated Software Engineering, 27(3):265–
300, 2020.

57. Miguel Velez, Pooyan Jamshidi, Norbert Siegmund, Sven Apel, and Chris-
tian Kästner. White-Box Analysis over Machine Learning: Modeling Per-
formance of Configurable Systems. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE), pages 1072–1084, 2021. doi:
10.1109/ICSE43902.2021.00100.

58. Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland,
Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren
Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua
Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric
Jones, Robert Kern, Eric Larson, CJ Carey, Ilhan Polat, Yu Feng, Eric W.
Moore, Jake Vand erPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian
Henriksen, E. A. Quintero, Charles R Harris, Anne M. Archibald, Antônio H.
Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1. 0 Contributors.
SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Na-
ture Methods, 17:261–272, 2020.

59. Max Weber, Sven Apel, and Norbert Siegmund. White-box performance-
influence models: A profiling and learning approach. In 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE), pages 1059–1071,
2021. doi: 10.1109/ICSE43902.2021.00099.

60. Niklas Werner. Energy and Performance Evolution of Configurable Systems:
Case Studies and Experiments. Master thesis, University of Passau, 2019.

61. Jeffrey Wooldridge. Introductory Econometrics: A Modern Approach. South-
Western College Pub, 5 edition, 2012. ISBN 978-1-111-53104-1.

62. Tianyin Xu, Long Jin, Xuepeng Fan, Yuanyuan Zhou, Shankar Pasupathy, and
Rukma Talwadker. Hey, You Have given Me Too Many Knobs!: Understanding
and Dealing with Over-Designed Configuration in System Software. In Pro-
ceedings of the Joint Meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on the Foundations of Software Engineer-
ing (ESEC/FSE), pages 307–319. ACM, 2015. ISBN 978-1-4503-3675-8. doi:
10.1145/2786805.2786852.

63. Yi Zhang, Jianmei Guo, Eric Blais, and Krzysztof Czarnecki. Performance
Prediction of Configurable Software Systems by Fourier Learning. In Pro-
ceedings of the International Conference on Automated Software Engineering
(ASE), pages 365–373. IEEE, 2015. doi: 10.1109/ASE.2015.15.

64. Yuqing Zhu, Jianxun Liu, Mengying Guo, Yungang Bao, Wenlong Ma,
Zhuoyue Liu, Kunpeng Song, and Yingchun Yang. BestConfig: Tapping the
Performance Potential of Systems via Automatic Configuration Tuning. In
Proceedings of the Symposium on Cloud Computing (SoCC), pages 338–350.
ACM, 2017. ISBN 9781450350280. doi: 10.1145/3127479.3128605.

65. Hui Zou and Trevor Hastie. Regularization and Variable Selection via the
Elastic Net. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 67:301–320, 2017. ISSN 1369-7412. doi: 10.1111/j.1467-9868.
2005.00503.x.

66. Daniel Zwillinger and Stephen Kokoska. CRC Standard Probability and Statis-
tics Tables and Formulae. CRC Press, 1999.

	Introduction
	Modeling Uncertainty
	Bayesian Performance Modeling
	 Subject Systems
	Evaluation
	Threats to Validity
	Related Work
	Summary

