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ABSTRACT

Understanding the influence of configuration options on perfor-
mance is key for finding optimal system configurations, system
understanding, and performance debugging. In prior research, a
number of performance-influence modeling approaches have been
proposed, which model a configuration option’s influence and a
configuration’s performance as a scalar value. However, these point
estimates falsely imply a certainty regarding an option’s influence
that neglects several sources of uncertainty within the assessment
process, such as (1) measurement bias, (2) model representation and
learning process, and (3) incomplete data. This leads to the situation
that different approaches and even different learning runs assign
different scalar performance values to options and interactions
among them. The true influence is uncertain, though. There is no
way to quantify this uncertainty with state-of-the-art performance
modeling approaches. We propose a novel approach, P4, based on
probabilistic programming that explicitly models uncertainty for
option influences and consequently provides a confidence interval
for each prediction of a configuration’s performance alongside a
scalar. This way, we can explain, for the first time, why predictions
may cause errors and which option’s influences may be unreliable.
An evaluation on 12 real-world subject systems shows that P4’s
accuracy is in line with the state of the art while providing reliable
confidence intervals, in addition to scalar predictions.
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Figure 1: An exemplary option’s performance influence

modeled by different scalar regression models (bars) con-

trasted by P4’s probability density prediction (blue curve).

1 INTRODUCTION

Modern software systems are often configurable. They offer sev-
eral configuration options that affect the systems’ functional and
non-functional properties. Energy consumption, response time, and
throughput are examples of non-functional properties, which are
commonly subsumed by the term performance. Understanding an
option’s influence on performance and predicting performance for
particular configurations is key when it comes to finding optimal
system configurations. Finding an optimal configuration is an essen-
tial task because (1) many systems are shipped with a sub-optimal
default configuration [10, 40], (2) manually exploring configurations
does not scale [45], and (3) fine-grained tuning can improve perfor-
mance up to several orders of magnitude [15, 47]. To determine the
influence of individual configuration options and their interactions
on performance, a number of machine learning approaches have
been proposed, relying on rule-based decision trees [5], symbolic
regression [35], and artificial neural networks [7].

To model the influence of options on performance, a set of con-
figurations must be sampled and measured from a system’s config-
uration space. These data are fed into a learning algorithm to fit a
model which then allows users to estimate a scalar performance
value for a given configuration. However, this scalar value falsely
implies a certainty that neglects several sources of uncertainty in
the modeling process: (1) measurement bias, (2) model represen-
tation and learning process, and (3) incomplete data (e.g., due to
sampling bias) [36].

Without a proper uncertainty measure, application engineers
may be led to wrong decisions as there is no available information
about how certain a learned influence or estimated performance
is. Let us assume that we have trained a model using one of the
previously mentioned learning approaches. In the ideal case, we
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obtain an influence per configuration option and interaction stat-
ing the expected contribution to the overall system performance
when (de-)selecting an option or combinations of options. Figure
1 illustrates this influence as a scalar number using a vertical bar.
Each bar represents a different learning approach to determine the
scalar representing the option’s influence. As we can see, different
learning approaches lead to different scalars, and even a single
approach can produce substantially different values arising from
different runs and different hyper-parameter settings. Looking at
Figure 1, it is unclear which actual effect an option has on the sys-
tem’s performance, and there is no way to quantify this uncertainty
with state-of-the-art performance modeling approaches for con-
figurable systems. Likewise, applying an optimization approach
to automatically find an optimal configuration using only scalars
will yield a single optimal (possibly incorrect) configuration, while
there may be other better configurations that the model misjudged
due to unconsidered uncertainties.

Our key contribution is the following: We account for uncer-
tainty about an option’s and interaction’s true influence on per-
formance that may arise from measurement bias, the learning pro-
cedure, and incompleteness of data [39]. By making uncertainty
explicit across the modeling process using a Bayesian rather than
a frequentist approach, we foster model understanding for perfor-
mance engineers, provide clear expectation boundaries for perfor-
mance estimates of software configurations, and offer a means to
quantify when and where a learned model is inaccurate. All these
pieces of information are absent in current approaches, which can
harm trust in the models and transfer into practice.

To illustrate our approach, we compare the probability distri-
bution describing the possible performance value of an option (in
blue) in Figure 1 with the scalars produced by the different learning
approaches. Considering the distribution as a whole, we can state
how likely the influence of an option or interaction falls into a value
range. The spread of the distribution is an important indicator for
the certainty of estimation and whether additional data for this
option might be necessary. It also gives confidence intervals for
predictions and performance optimizations.

Framing the problem of performance modeling in a Bayesian
setting can be done via probabilistic programming [31]. It requires
the specification of three key components: likelihood, prior, and
observations. The likelihood expresses a generative model of how
the observations (i.e., measured configurations) are distributed. The
prior encodes the belief (or expectation) about each option’s and
interaction’s influence on performance. This is usually stated by
a distribution for a specific value range (e.g., uniform distribution
between 3 and 5 seconds). Specifying this distribution requires
domain knowledge, which is not always available. A key element of
our approach is an automated prior estimation algorithm, which can
be used to learn accurate Bayesian performance-influence models
without domain knowledge.

In summary, we propose an approach for performance-influence
modeling that incorporates and quantifies the uncertainty of influ-
ences of configuration options and interactions on performance.
A key ingredient is an automatic prior estimation algorithm that
takes the burden of guessing priors from the user. We conduct an
evaluation of the reliability of the uncertainty estimates of inferred

models and compare the accuracy of our approach to a state-of-the-
art point estimate model.

We make the following contributions:
• a probabilistic modeling approach for performance influence
modeling of configurable software systems,

• a data preprocessing pipeline to avoid inference failures and
to improve model interpretability,

• the tool called P4, which is an open-source implementation
of our approach,

• an evaluation of P4’s prediction accuracy, and
• an evaluation of the reliability of the uncertainty measures
of models inferred with P4.

With our approach, we add to the important trend on explainability
and interpretability of machine-learning models. We believe that
this is especially important in domains such as software engineer-
ing, in which machine-learning models must provide insights and
explanations to help improving the field.

2 MODELING UNCERTAINTY

Performance-influence modeling entails different kinds of uncer-
tainty, of which we consider aleatoric and epistemic uncertainty
in our work, similar to [19, 20]. Aleatoric uncertainty results from
errors inherent to the measurements of the training set, epistemic

uncertainty expresses doubt in the model’s parameters. Both can
be integrated into a Bayesian performance model, for which we
explain the basics in Section 2.3.

2.1 Aleatoric Uncertainty

Performance-influence models describe a system’s performance in
terms of influences of its configuration options and interactions [33].
A configuration is a set of assignments to all available options from a
certain domain (e.g., binary or numeric), that is c = {o1,o2, . . . ,on },
where n is the number of options and oi is the value assigned to
the i-th option.

We measure the performance of a configuration by configuring
a software system, and executing a workload. Formally, we denote
a configuration’s performance Π as a function that maps a configu-
ration c from the set of valid configurations C to its corresponding
scalar performance value: Π : C 7→ R. For a DBMS, we could
choose energy consumption as performance, run a benchmark, and
query an external power meter to determine the energy needed.
However, there are two notable sources of error arising from mea-
surement, which introduce uncertainty: measurement error and
representation error.

2.1.1 Measurement Error. Typically, the measurement process
has an inherent error ε , which is typically either absolute or rela-
tive [37]. Absolute errors ε

abs
affect all measurements equally:

Π̂(c) ∈
[
Π(c) − ε

abs
, Π(c) + ε

abs

]
(1)

By contrast, relative errors ε
rel

are given in percent and affect
higher values more severely:

Π̂(c) ∈

[
Π(c) ×

100 − ε
rel

100
, Π(c) ×

100 + ε
rel

100

]
(2)

Note that, depending on the context, this interval, called confi-

dence interval, can be defined to span all possible measurements for
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Π̂ or, altenatively, to contain Π̂ only in a fraction of cases (e.g. 95 %).
Unfortunately, this information is rarely available to the user.

The confidence interval of the measurement error constitutes
an uncertainty that can be reduced by aggregating repeated mea-
surements, but it is fixed at modeling time (i.e., the time when we
fit the model). Moreover, absolute and relative errors are examples
for homoscedastic and heteroscedastic aleatoric uncertainty, respec-
tively. This means that, in the case of relative measurement error,
the variance of uncertainty depends on the individual sample (het-
eroscedastic), whereas it is constant for the absolute measurement
error (homoscedastic).

2.1.2 Representation Error. Representation ofmeasurement data
requires discretization for storage and processing. We assume a de-
cimal representation for simplicity, as the precision of floating-point
representations is more complicated1. Discretization can happen
on the sensor side before we store the data. For example, an energy
meter returning only integer Watt-hour (Wh) values may cause
a representation error of +/- 0.5Wh, while storing the execution
time of a benchmark in seconds with two decimals may yield a
representation error of +/- 5ms.

Π̄(c) ∈
[
Π̂(c) − u, Π̂(c) + u

]
(3)

That is, in the general case, the performance value at modeling
time lies around the measured performance Π̂(c) within +/- u, the
unit length of the discretization. Depending on the use case, the
representation error can induce substantial uncertainty.

2.2 Epistemic Uncertainty

Models, in general, and performance-influence models, in particular,
never match reality perfectly. While, in our case, aleatoric uncer-
tainty arises from the training data samples, epistemic uncertainty
stems from the model chosen and the amount of data provided.
Let us assume a linear performance model Π(c) for a configurable
software system with n options:

Π(c) = β0 + β1 × c(o1) + · · · + βn × c(on ) (4)
Here, c(oi ) returns the value for the i-th option of configuration

c; these values are multiplied with the model parameters β , where
β0 is the base performance of the system. However, we can assign
different values to β to model Π as a one-point estimate.

A typical use case in practice are linear regression models, which
can be fitted to minimize different objective functions. Lasso [38]
and Ridge [12] regression are alternatives to Ordinary Least Squares
regression, which can be combined into an Elastic Net [48]. Their
objectives differ in their way of computing the learning error (L1
and L2 normalization). A tuning parameter changes Elastic Net’s
error computation function such that there is no single right way to
fit a linear model. As Figure 1 shows, we obtain different values for
the same coefficient βi when applying Lasso, Ridge, and Ordinary
Least Squares. Hence, the fitted value for βi is uncertain, as the blue
curve in Figure 1 illustrates.

Another reason why β can take different values lies in the train-
ing data used. Different samples of configurations — sampled ac-
cording to different sampling strategies [17] — lead to different β

1see 754-2019 - IEEE Standard for Floating-Point Arithmetic for precision

values, even with the same error function, as the literature on sam-
pling approaches has demonstrated [9, 18, 35]. Yet, even different
hyperparameter settings can result in different coefficients depend-
ing on how strong we penalize the learning error. In addition, unless
a training set contains all valid samples, we are uncertain whether β
is a good fit, since increasing the training set size usually improves
the prediction accuracy of a regression model by refining β and also
reduces uncertainty about β . Note that although adding samples to
the training set reduces epistemic uncertainty, each sample itself is
still subject to aleatoric uncertainty.

Instead of specifying the model’s weights as a real-valued vec-
tor β ∈ Rn , we can formally incorporate uncertainty into β by
changing it to a probability vector β̂ . This way, each model weight
becomes a probability density function that specifies which values
for β are more probable than others representing the best fit. Thus,
for Gaussian-distributed uncertainty, we can specify

β̂ ∼ N(µ,σ ) (5)

as a probability vector, with µ,σ ∈ Rn . We do not know, though,
whether uncertainty is Gaussian-distributed for real-valued confi-
gurable systems and what are the settings for µ,σ . To determine
this distribution, we need probabilistic programming.

2.3 Probabilistic Programming

Framing the problem of performance modeling in a Bayesian set-
ting can be done via probabilistic programming [31]. Users of this
paradigm must specify three key components with a probabilistic
programming language (PPL): likelihood, prior, and observations.
With these, the PPL takes care of Bayesian inference according to
Bayes’ theorem:

Posterior︷  ︸︸  ︷
P(A |B) =

Likelihood︷  ︸︸  ︷
P(B |A) ·

Prior︷︸︸︷
P(A)

P(B)
(6)

We refrain from explaining Bayesian statistics from scratch, but
explain in what follows the necessary components for inference. If
we assume thatA and B are distinct events, then P( · )maps an event
to its probability to occur, P( · | · ) gives the conditional probability
of an event A given that another event B occurs. In the context of
probabilistic programming, A is a vector of random variables that
represents model parameters, whereas B represents observations.
A robability ensity unction (PDF) is a function of a random variable
whose integral over an interval represents the probability of the
random variable’s value to lie within this interval. Accordingly,
P( · ) maps a random variable to its PDF, and P( · | · ) returns the
conditional PDF of a random variable given that another random
variable has a certain PDF. With these definitions, we next explain
the components of Bayes’ theorem that are relevant for probabilistic
programming.

Likelihood

(
P(B |A)

)
. The likelihood specifies the distribution of

observations B assuming that the PDFs for model parameters A are
true. With probabilistic programming, the likelihood is typically
specified as a generative model that incorporates random variables.
Imagine an example in which we repeatedly toss a coin to find out
whether and how it is biased. We can represent the probabilities of
the possible outcomes, heads and tails, with a Bernoulli distribution
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B(·), whose parameter p ∈ [0, 1] defines the probability of heads.
Formally, we first let A be a Bernoulli-distributed random variable
and then define the likelihood P(B |A) to be determined by A:

A ∼ B(p)

B |A ∼ A

While this model has only one random variable, more complex
models are possible; however, the inference may not be analytically
solvable, requiring approximations such as Monte Carlo Markov

Chain (MCMC) sampling [26]. Such a generative model can make
predictions that are PDFs (i.e., posterior distributions) themselves.

Prior

(
P(A)

)
. Priors define our belief about the distribution of

our random variables before seeing any training data. Choosing
priors naturally requires domain knowledge and is comparable to
selecting a optimization starting point. An uninformed prior for
the coin-toss example is

A ∼ B(0.5),

which assumes that both heads and tails are equally probable.

Posterior

(
P(A |B)

)
from observations B: Given a likelihood, we

can finally update our prior beliefs with observations. From a
machine-learning stance, observations form the training set. In
case of the coin-toss example, running Bayesian inference with 5
observed heads will yield an updated generative model, the poste-
rior, which will give heads a higher probability.

3 BAYESIAN PERFORMANCE MODELING

In this section, we describe our approach of incorporating uncer-
tainty into performance-influence models. Figure 2 provides an
overview of all steps involved. In a nutshell, we perform the follow-
ing tasks: First, we preprocess a given set of measured configura-
tions (i.e., the training set) to ensure that inference (i) does not break
and (ii) finishes in a reasonable time. Second, we apply probabilistic
programming to build a Bayesian model for a selection of options
and interactions thereof. It is key for scalability that this selection
comprises the actual set of influencing options and interactions.
Third, we estimate the priors for the model’s random variables (i.e.,
options and interactions) and compute a fitted model with Bayesian
inference.

3.1 Data Preprocessing

Our approach relies on a training set consisting of a number of
sampled configurations that are attributed with their performance.
Thus, our approach can be combined with any sampling strategy,
such as feature-wise, t-wise [16], or random sampling [4]. However,
it is important to process the sample set to avoid inference failures
and to promote interpretability, as we explain next.

Similar to Ordinary Least Squares, Bayesian inference is prone
to failure if multicollinearity exists in the training set, which occurs
when the values of independent variables are intercorrelated [3, 11].
Let us consider the following training set for an exemplary software
system with options X, Y, Z, and M, illustrating multicollinearity:

B X Y Z M Π(·)

1 1 0 0 1 10

1 0 1 0 1 20

1 0 0 1 1 30

Option B is mandatory. It represents the base functionality of the
system, which results from configuration-independent parts of the
code. Options X, Y, and Z form an alternative group, that is, the sys-
tem’s constraints enforce that exactly one of them is active in each
configuration. An important insight is that an alternative group
introduces multicollinearity to a training set because the selection
of any single option is determined by the remaining options, for
example: Z = 1−X−Y. Multicollinearity not only hinders inference,
but also interpretability. Considering the training set above, we see
that the following performance-influence models are accurate with
respect to the measurements, but assigning different contributions
of individual options:

Π(c) = 0 × c(B)+ 10 × c(X)+ 20 × c(Y)+ 30 × c(Z)

Π(c) = 5 × c(B)+ 5 × c(X)+ 15 × c(Y)+ 25 × c(Z)

Π(c) =10 × c(B)+ 0 × c(X)+ 10 × c(Y)+ 20 × c(Z)

Because exactly one option of the alternative group is active in
each configuration, the base performance of a software system can
be attributed to the base functionality B and the options of an alter-
native with any ratio. For example, option X can have an influence
of 10, 5, or none, depending on how we assign the performance to
the system’s base functionality. Therefore, performance influence
models for such systems are difficult to compare and interpret. Here,
we do not even know whether an option (e.g., X) is influential at
all. This is a problem that related approaches share [5, 34].

Choosing a default configuration provides remedy for multicol-
linearity inference failures and interpretability problems. That is,
we select a default option for each alternative group using domain
knowledge or at random. We then remove these options from the
training set to achieve the following effects:

• Default options’ performance influences are set to 0.
• Multicollinearity arising from alternative groups is reduced,
since the selection of a single remaining option of an alter-
native group cannot be determined without the removed
default option (i.e., Z = 1 − X − Y does not hold anymore if
any of these options is removed from the training set).

Mandatory options, which must be selected in each configuration,
introduce a special case of multicollinearity. OptionM is mandatory
and therefore present in each configuration and indistinguishable
from the base influence. Similar to alternative groups, a model can
split the base influence between mandatory options and the base
influence with any ratio. Moreover, we can see that such an option
does not contribute any information to the model by computing
the Shannon information entropy [32]:

H (o) = −

1∑
x=0

Po (x) · log2
(
Po (x)

)
(7)

AsM is selected in each configuration, its only selection value
is 1, with selection probability PM(1) = 1. We see that, therefore,
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Figure 2: Workflow of P4: 1) preprocess data; 2) compose model from options and interactions; 3) estimate priors for random

variables; 4) infer Bayesian performance-influence model.

the information entropy of M is 0:

H (M) = −PM(1) · log2
(
PM(1)

)
− PM(0) · log2

(
PM(0)

)
= −1 · log2 1 − 0 · log2 0 = 0

(8)

For that reason, we can safely remove mandatory options from
the training set. The same applies for dead options, which are never
active.

Note that options may only appear to be dead or mandatory as an
artifact of the sampling process. That is, it is insufficient to query
only the system’s variability model for its constraints to detect
mandatory or dead options. Hence, we perform constraint mining
on the sample set rather than the whole system to overcome this
problem. We use the Shannon information entropy in Equation 7
as a means to determine dead options and scan the set of options
for combinations that appear to be alternative groups.

3.2 Model Composition

To build a Bayesian model with probabilistic programming, we first
need to specify which options and interactions are present in the
model. Subsequently, we create random variables from this model
structure to account for epistemic and aleatoric uncertainty.

3.2.1 Option and Interaction Filtering. Composing a model from
all options and all potential interactions, whose number is expo-
nential in the number of options, is impractical for large software
systems, because models with high numbers of parameters are dif-
ficult to interpret and, more importantly, inference may become
computationally infeasible [14]. Therefore, we applymodel selection

to constrain the number of parameters. In particular, we use a subset
selection approach [22], because it yields a subset of unaltered op-
tions from a parent set, which is not the case for other approaches,
such as dimensionality reduction [41]. We build the parent set of
available options S from all options O of the system in question as
well as all pair-wise interactions I with S = O ∪ I. We map each
pair-wise option i to a virtual option with respect to its constituting
options or and os :

c(on+p ) = c(or ) × c(os ) with 1 ≤ p ≤ |I| ∧ r , s (9)

Compared to higher-order interactions, pair-wise interactions
have been found to frequently influence performance [34] and to be
the most common kind of interaction [21]. However, we acknowl-
edge that considering higher-order interactions may improve the
accuracy of our approach [34], at the cost of possibly leading to
computationally intractable models.

Subset selection approaches define a filter function F : S 7→

{0, 1}, which yield 1 if an option or interaction of the parent set S

should be considered by the model, and 0, otherwise. The result of
subset selection consists of filtered options and interactions:

V =
{
s | ∀s ∈ S and F (s) = 1

}
(10)

Similar to previous work [8], we apply Lasso regression [38]
on the preprocessed training set. As a result, Lasso assigns zero
performance influence to less- and non-influential options and
interactions, and it distributes the performance influence among
the remaining elements in V . Our Lasso filter selects vl ∈ V ,
whose performance influence IΠLasso

(vl ) is non-zero according to
Lasso regression:

FLasso(vl ) =

{
0 IΠLasso

(vl ) = 0
1 IΠLasso

(vl ) , 0
(11)

3.2.2 Applied Probabilistic Programming. We follow related ap-
proaches for performance modeling of configurable software sys-
tems and chose an additive model to make the uncertainty of the
options’ and interactions’ performance influence explicit. We start
with a model that takes the form of Equation 4 (which represents
the state of the art) with two differences:

(1) Instead of scalar influences β ∈ Rn , we use a probability
vector β̂ , whose elements each have a PDF and form the
coefficients as explained in Section 2.2.

(2) We use the filtered options and interactions V from Sec-
tion 3.2.1 and thus enable our model to capture non-linear
performance influence:

Πep(c) = β̂0 + β̂1 × c(o1) + · · · + β̂n × c(on )

+ β̂n+1 × c(on+1) + · · · + β̂n+ |I | × c(on+ |I |)
(12)

To infer the distribution of an option, we need to specify a prior
distribution for the probability vector β̂ . This distribution should
be continuous (i.e., defined over all β ∈ R) and have non-zero
mass for any β ∈ R, not to exclude certain values entirely. For
performance modeling, we choose the normal distribution N(µ,σ ).
It has a mode that, other than the uniform distribution, lets us
encode an influence area of high probability. That is, an option’s
or interaction’s influence has a normally distributed probability to
fall into an interval to be inferred by probabilistic programming.
Note that, even if a normal distribution is not the best fit for all
random variables, Bayesian inference can adjust them. We describe
how to determine the parameters for chosen prior distributions,
such as the mean µ and the standard deviation σ for the normal
distribution N(µ,σ ), in Section 3.3.
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At this point, we have constructedΠep , a model that incorporates
epistemic uncertainty in β̂ . To account for aleatoric uncertainty (i.e.,
the uncertainty in the training set), we use two different models, one
for homoscedastic (constant variance) and one for heteroscedastic
(variance depending on true performance) aleatoric uncertainty.
These models build on Πep . We adopt the common prior of a normal
distribution for both models.

Homoscedastic Model. If we assume that the variance of uncer-
tainty is equal for all training set samples, we can complete our
Bayesian model with a normal distribution around Πep(c):

Π
ho
(c) = N

(
Πep(c),σ

)
(13)

This normal distribution is modeled as an additional random
variable, whoseσ parameter captures the variance of absolute errors
in training set samples.

Heteroscedastic Model. To account for errors in the training set
that are relative to the training set sample performance, we intro-
duce σ

rel
, a random variable that captures uncertainty about the

error ratio. As an error ratio is in R>0 (i.e., a continuous, positive
variable), we choose the Gamma distribution as prior for σ

rel
. The

Gamma distribution with a shape a and a spread parameter b can
take a (possibly skewed) bell shape with non-negative values:

σ
rel
= G(a,b) (14)

Similar to the homoscedastic model, we define the heteroscedas-
tic model as a normal distribution around Πep(c), but with the
product of the epistemic performance prediction and the relative
error ratio σ

rel
as standard deviation:

Π
he
(c) = N

(
Πep(c), Πep(c) × σ

rel

)
(15)

3.3 Prior Estimation

Regular Bayesian inference requires the user to estimate prior distri-
butions for the model’s random variables from domain knowledge
or personal experience. Distributions that are too uninformative
(i.e., very wide) can lead to a hold of the inference, whereas distri-
butions that are too informative will also slow down inference if
they are imprecise [31]. Our approach automatically chooses which
options and interactions are modeled as random variables, such that
the user does not need to know which random variables need priors
beforehand. For that reason, we employ an automatic prior esti-
mation following the empirical Bayes approach [29], which differs
from the regular Bayesian approach in that it estimates priors from
the training data. As a result, every aspect of Bayesian modeling is
automated for the user.

3.3.1 Epistemic Uncertainty Priors. We capture epistemic un-
certainty in our Bayesian model in random variables for the base
influence and the influences for options and interactions, whose
assumed normally distributed priors rely on means µ and standard
deviations σ .

We propose a prior estimation algorithm that uses the influence
values of other additive models to estimate priors. As models, we
use instances of Elastic Net [48] with r evenly distributed ratios of
l1 ∈ [0, 1]. For l1 = 1, Elastic Net behaves like Lasso, for l1 = 0 it
behaves like Ridge regression and it interpolates the error functions

of both approaches for 0 < l1 < 1. We fit 50 Elastic Nets evenly
distributed with l1 on the training set. This way, we obtain a set
of 50 models M with different performance influences I ( · ) for the
previously selected options and interactions. Next, we determine the
empirical distribution of influences for each option and interaction:

ÎM (vl ) =
{
Im (vl ) | ∀m ∈ M

}
(16)

We could use the mean and standard deviation of ÎM as prior µ
and σ for each option and interaction. However, not all models in
M will fit the training data well. To reduce the influence for unfit
models, we weigh each model according to its average error on the
training set ε̄( · ):

w =


−ε̄(mi )∑ |M |

j=1 −ε̄(mj )

��� ∀mi ∈ M

 (17)

We compute the weighted mean µw (t) and weighted standard
deviation σw (t) for a specific option or interaction t as follows:

µw (t) =
1∑ |w |

j=1 w
γ
j

∑
∀i ∈ÎM (t )

w
γ
i (18)

σw (t) =

√√ 1∑ |w |

j=1 w
γ
j

∑
∀i ∈ÎM (t )

w
γ
i
(
µw (t) − i

)2 (19)

We added the tuning parameter γ to enable polynomial weighting.
That is, the influence of models with the lowest average error ε̄
is increased for γ > 1. In a pre-study, we empirically evaluated
different values for γ and found that γ = 3 yields accurate priors.

3.3.2 Aleatoric Uncertainty Priors. We model aleatoric uncer-
tainty (i.e., uncertainty in each training set sample) as a normal
distribution for the homoscedastic model Πho and as a gamma dis-
tribution as the relative uncertainty in the heteroscedastic model
Πhe . We build the set of all absolute prediction errors for all mo-
delsm ∈ M over the samples in the training set and fit a normal
distribution using maximum likelihood estimation to estimate a
prior for the aleatoric uncertainty in Πho . Likewise, we estimate a
prior for the gamma distribution in Πho , but we compute relative
prediction errors, instead, to model the error ratio (cf. Equation 15).

3.4 Bayesian Inference and Prediction

As discussed in Section 2.3, Bayesian inference uses prior assump-
tions on PDFs of random variables that form a generative model,
called likelihood, to compute a posterior, that is, an updated belief
about the random variable’s PDFs. Unfortunately, the posterior to
many Bayesian inference problems cannot be computed directly,
so recent research in this field has developed algorithms that can
estimate the posterior approximately. Two notable classes of infer-
ence algorithms are variational inference and Markov chain Monte
Carlo [23].

Variational inference algorithms tune the prior distribution’s
parameters without changing the types of the distributions (i.e., a
prior normal distribution stays a normal distribution) [30]. This
method is preferred for quick results that do not need to be precise.

Markov chain Monte Carlo (MCMC) algorithms draw samples
from the posterior distributions and are able to estimate arbitrary
posterior distributions in theory (a prior normal distribution may
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by transformed to a skewed distribution). MCMC algorithms are
considered more precise, but also slower than variational inference.

We follow a combined approach by first estimating an approx-
imate solution with variational inference and subsequently fine-
tune with the No-U-Turn Sampler (NUTS) [13], an MCMC algorithm.
We allow 200.000 iterations for variational inference, but abort on
convergence. NUTS uses the intermediate result of variational in-
ference and draws 5000 samples from the posterior distributions
in total, from which 1000 are reserved for internal tuning. In the
ideal case, we obtain 4000 samples of each random variable’s poste-
rior distribution, which enables analysis of uncertainty at a high
resolution.

Prediction. To predict the performance of a configuration c , we
insert c’s option selection values into c(o1), . . . , c(on ) and determine
active interactions according to Equation 9. We can now draw a
number of posterior samples to approximate the distribution for the
prediction. Increasing the number of posterior samples makes the
approximation more accurate, but also slows down prediction. We
draw 1000 posterior samples to yield a good approximation. With
this approximation, we can make different kinds of predictions, for
which we introduce individual notations. The most informative
kind of prediction is the sampled approximation itself (Π̃). Using
Π̃, we can compute a confidence interval for a desired confidence
αci ∈ [0 %, 100 %] (Π̄α ). This yields the interval around the mode of
prediction over which the predicted distribution integrates to αci .
We use Π̄ to indicate the 95 % confidence interval by default. We
can also use mode of the approximation as a single-point estimate
prediction ( ÛΠ).

4 EVALUATION

To evaluate our approach, we state three research questions that
are in line with related work and are also concerned with the new
possibilities of obtaining a confidence interval for performance pre-
dictions. Specifically, we answer the following research questions:

RQ1: Can we accurately predict performance as a scalar value
with probabilistic programming?

This research question places our approach in relation to a state-of-
the-art approach that resorts only to a scalar value. Although this
is not the main usage scenario, we evaluate whether our approach
has a comparable accuracy.

RQ2: Can we accurately predict performance in terms of a
confidence interval with probabilistic programming?

RQ2 refers to the ability that users can specify a confidence interval
of predictions. This can substantially effect prediction accuracy and
evaluates the strength of our approach.

RQ3: How reliable are predicted confidence intervals?

The third research questions aims at providing a deeper under-
standing of confidence intervals and incorporated uncertainties in
our approach. We evaluate whether the confidence intervals truly
capture the uncertainty in the predictions.

Table 1: Overview of the subject systems with domain, num-

ber of valid configurations |C|, number of options |O|, and

the kind of performance for prediction.

Domain |C | |O | Performance

7z File archive utility 68 640 44 Compression time
BDB-C Embedded database 2 560 18 Response time
Sune Multigrid solver 2 304 32 Solving time
HIPAcc Image processing 13 485 54 Solving time
HSQLDB Java-based database 864 21 Energy consumption
JavaGC Garbage collector 193 536 39 Time
LLVM Compiler infrastructure 1 024 11 Compilation time
lrzip File archive utility 432 19 Compression time
Polly Code optimizer 60 000 40 Runtime
PSQL Database system 864 14 Energy consumption
VP9 Video encoder 216 000 42 Encoding time

Energy consumption
x264 Video encoder 1 152 16 Encoding time

Energy consumption

4.1 Subject Systems

For our experiments, we use 12 real-world configurable software
systems that have been used in the literature, as presented in Table 1.
We use measured execution time as performance for 10 subject sys-
tems from Kaltenecker et al. [18]. For VPXENC and x264, we have
additionally measured energy consumption with a different work-
load. In addition, we consider energy consumption for two further
subject systems: PostgreSQL (short PSQL) and HSQLDB [43]. A
further description of the systems including the used benchmarks
is given at our supplementary Web site2.

We adopt the procedure of extracting training and test sets from
each system’s measurement data from Kaltenecker et al. [18]. That
is, we apply t-wise sampling with t ∈ {1, 2, 3} to obtain three
training test sets, T1,T2,T3, of different sizes. Each system’s whole
population (i.e., all measurements) form its test set.

4.2 Setup

We implement our approach with the PyMC3 [31] framework.
PyMC3 offers implementations for MCMC, variational inference,
as well as confidence interval computation for model parameters β
and predictions. For maximum likelihood prior estimations, we rely
on SciPy [42]. The result is a performance prediction tool based on
probabilistic programming, P4 for short.

To answer our research questions, we infer Bayesianmodels with
absolute and relative error with P4 for the chosen subject systems
using three training sets T1,T2,T3 on a cluster of machines with
Intel Xeon E5-2690v2 CPU and 64GB memory. For the ten subject
systems by Kaltenecker et al. [18], we use the training sets provided
at their supplementary Web site. For the remaining subject systems,
we sample new training sets with SPL Conqeror [35].

For t = 1, t-wise sampling is equal to option-wise sampling,
which yields n = |O| samples. Since we want to evaluate our ap-
proach also for learning interactions among options, creatingn+ |I |
random variables leads to a modeling problem with more variables
2https://git.io/JUfjy or an archived version at https://archive.softwareheritage.org/swh:
1:dir:5a525f45ec77dbe982081e7f8159e9541391725e/

https://git.io/JUfjy
https://archive.softwareheritage.org/swh:1:dir:5a525f45ec77dbe982081e7f8159e9541391725e/
https://archive.softwareheritage.org/swh:1:dir:5a525f45ec77dbe982081e7f8159e9541391725e/
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Figure 3: Scalar Mean Absolute Percentage Error (MAPE) of SPL Conqeror compared to the MAPE and interval predictions

MAPECI for confidence levels 50 % and 95 % of P4, with absolute error (Πho and relative error (Πhe ) for t-wise sampled training

sets. For each subject system’s training set, we specify P4’s model size in terms of the number of modeled options (o) and

interactions (i) below the system’s name.

than observations. We avoid this situation by excluding interac-
tions from our model for T1. This might affect prediction accuracy
especially compared to other approaches that do not exclude inter-
actions. We will discuss this in RQ1.

To account for stochastic elements in MCMC, we run the infer-
ence for each system’s training set with 5 repetitions. The inference
took 418 s , on average, with the times ranging from 98 s for the
smallest models and 4h for the largest. Among all inferences, two
failed despite our training set preprocessing in Section 3.1.

4.3 RQ1: Accuracy of Scalar Predictions

4.3.1 Setup. We chose SPL Conqeror for comparison because
it shares the additive model structure with our approach and is used
as baseline in the literature [18, 28]. For comparison, we rely on
accuracies of SPL Conqeror as reported by Kaltenecker et al. [18].
That is, we consider for RQ1 the ten subject systems that the orig-
inal authors have used. Another benefit is that Kaltenecker et al.
provided raw measurements of the whole population, so we have a
reliable ground truth.

We use the inferred performance-influence models to predict the
performance of the whole populations of our subject systems. We
adopt the Mean Absolute Percentage Error (MAPE) from previous
work [18] to quantify prediction accuracy. That is, we first compute
the absolute percentage error (APE) for each configuration c ∈

C with the measured performance Πtrue(c) and predicted scalar
performance ÛΠ(c) for our models Π

ho
and Π

he
:

APE(c) =

��Πtrue(c) − ÛΠ(c)
��

Πtrue(c)
(20)

We then compute the MAPE as the average over all APEs:

MAPE(C) =
∑
c ∈C APE(c)

|C|
(21)

4.3.2 Results. As Figure 3 shows, P4 achieves MAPE scores com-
parable to SPL Conqeror. Table 2 provides a more fine-grained
view. We see that the overall accuracy is higher when using SPL
Conqeror, which is to be expected, as only the mode is taken
from the performance distribution provided as predictions by our
approach. Nevertheless, we observe that, for many systems, espe-
cially when using the relative error Π

he
, we obtain a similar or

even better prediction indicated by underscored values. The mean
error is, thus, distorted by some larger outliers, such as for HIPAcc

and VP9. These systems have many alternative options, so there is
a larger uncertainty involved. Since we are not using the provided
confidence interval, we deprive our approach of its strength.

Interestingly, compared to T1, for some subject systems P4 per-
forms worse on T2. The reason is that the increased number of
random variables in P4, due to the additional modeling of interac-
tions, requires more measurements as provided by T2 to effectively
infer performance distributions. Moreover, we see a clear trend that,
with an increasing number of measurements, P4 closes the gap in
prediction accuracy with SPL Conqeror and even outperforms it
for T3 and Π

he
for 7 out of 10 systems.

To answer RQ1, our approach achieves the accuracy of state-
of-the-art scalar predictions when a sufficient number of mea-
surements is provided. In the case of fewer measurements, the
overhead of learning probability distributions leads to more
inaccurate predictions.
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Table 2: ScalarMeanAbsolute Percentage Error (MAPE) of SPLConqeror (short SPLC) compared to theMAPEand confidence

interval predictions MAPE (MAPECI) of P4, with absolute error (Πho ) and relative error (Πhe ) for t-wise sampled training sets.

Best scalar MAPE values for each training set are shaded light gray, best overall MAPE values are shaded dark gray.

SPLC MAPE Πho MAPE Πhe MAPE Πho -MAPECI (95 %) Πhe MAPECI (95 %)

t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3
7z 51.2 33.8 22.6 70.8 87.5 45.7 61.3 66.2 9.3 7.1 4.8 0 23.8 9.6 1.7
BDB-C 122.9 29 26.5 123.9 58.8 31.3 121.8 69.2 60.9 89.5 2.7 0 28.3 1.7 3.1
Dune 15.5 12.5 11.4 17.2 13.8 9.2 17.1 12.8 7.7 1.8 0.4 0.1 3 1.5 0.5
Hipacc 26.2 20.5 20.5 53 17.8 9.4 52.8 17 8 30.5 5.6 0.3 21.6 7.8 1.7
JavaGC 36.7 32.1 23.7 40.9 65.1 33.4 40.8 52.2 14.3 24.6 16.6 0.7 27.4 28.8 3.1
LLVM 6.2 6.2 5.8 6.9 5.8 2.8 6.9 5.8 2.8 0.2 1.3 0.2 1.4 1.9 0.4
Polly 19.7 12.7 7.3 31 11.5 11.1 31.3 12.4 11.1 6.9 1.3 0.8 11.2 4.3 2.4
VP9 100.3 96.3 45.3 160.3 109.5 88.5 269.4 157.2 108.7 1.9 0.6 0.1 3.5 3.3 2.7
lrzip 27.2 28.2 13.4 45.8 141.7 153.2 32.4 60.1 5 8.3 0 0 12.1 4.6 0.2
x264 20.9 11.9 10.9 9.8 16.5 4.7 7.7 9.6 1.5 0.1 0 0 7.2 2.2 0.6

Mean 42.7 28.3 18.7 56 52.8 38.9 64.2 46.3 22.9 17.1 3.3 0.2 14 6.6 1.6

4.4 RQ2: Accuracy of Confidence Intervals

4.4.1 Setup. Confidence intervals with confidence αCI ∈ [0 %,
100 %] specify a range in which a given PDF integrates to αCI .
For predictions, a 95 % confidence interval specifies a performance
range for which the model is 95 % confident that it contains the
true performance value of the corresponding configuration. Conse-
quently, we can expect the true performance to lie outside the 95 %
confidence interval in 5 % of predictions. Although we can expect
to always capture the true performance with a 100 % confidence
interval, such an interval will likely approach [−∞,+∞] for PDFs
that are defined over R.

Similar to RQ1, we use a relative error metric to answer RQ2.
However, for RQ2, we use P4 to predict confidence intervals as
prediction, which is the actual strength and novel feature of our
approach. Instead of using the APE of a scalar prediction, we com-
pute the confidence interval’s APECI with relation to the closest
endpoint of the confidence interval Π̄α for an outlying true per-
formance; we define APECI = 0 for an α confidence interval that
includes the measured performance:

APECI (c) =
min∀π ∈Π̄α (c)

��Πtrue(c) − π
��

Πtrue(c)
(22)

Hence, the MAPECI is the average over all APECI , similar to
Equation 21. For our models Π

ho
and Π

he
, we report the MAPECI for

predicted confidence intervals with αCI = 95 % for highly confident
predictions and αCI = 50 % for less confident predictions, for which
we expect a narrower interval and, consequently, a higher error.

4.4.2 Results. The dotted lines in Figure 3 illustrate a substan-
tial decrease in prediction error when using a confidence interval
rather than a scalar prediction. Note that we report in Figure 3
only MAPECI’s for Πhe

; we provide similar results for Πho at our
supplementary Web site. Table 2 provides further data for Πho . It
reveals that the predicted confidence intervals for 7z, BDB-C, lrzip,
and x264 contain all measured performance values when training
the absolute model Πho on T3.

Table 3: Five most uncertain features measured by the mean

relative confidence interval β?
j according to Equation 25, of

models trained on T1. Values for the variance inflation fac-

tor (VIF) larger 10 are in dark gray (highly problematic) and

values between 5 and 10 are in light gray (moderately prob-

lematic). Files_30 & BlockSize_1024 were removed from T3.

T1 T3

System Option β ? VIF β ? VIF
VP8 (E) threads_4 24.64 10.50 0.15 3.24
VP9 (T) bitRate_1500 16.93 10.58 2.84 2.90
7z (T) Files_30 11.86 7.13 – 1.67
7z (T) BlockSize_1024 11.44 7.13 – 1.63
VP9 (T) variableBitrate 4.91 16.90 0.86 1.99

We illustrate how more training samples allow P4 to decrease
uncertainty in internal parameters to achieve better prediction
accuracy using the variance inflation factor (VIF). The VIF is an
indicator for multicollinearity, which can be computed for the acti-
vation values of an option oj in the training set T . It is based on the
coefficient of determination R2. To determine R2 for an option oj ,
we fit a linear regression function fj to predict whether oj is active
in a configuration c \ oj with the remaining options as predictors.

We compute the VIF as follows:

VIFj = 1
1−R2

j
(23)

R2
j = 1 −

∑
∀c ∈ T

(
c(oj )−c̄(oj )

)2

∑
∀c ∈ T

(
c(oj )−fj (c\oj )

)2 (24)

A VIF of 0 indicates an option with no multicollinearity in the
training set, while higher values mark increasingly problematic
multicollinearity. We adopt the thresholds of 5 and 10 [27, 44] to
indicate moderate and highly problematic multicollinearity, respec-
tively.
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Figure 4: MAPECI depending on model confidence (solid) versus uncertainty calibration (dashed) for t-wise training sets, ag-

gregated over all subject systems. Gray dashed line indicates ideal calibration.

Although we could use the VIF as a filter for feature selection
(cf. Section 3.3) to remove options with high multicollinearity in
the training set, the computational effort required to calculate all
R2
j makes it infeasible in practice. Hence, we compute the VIF only

for the 5 most uncertain options in T1 to analyze whether multi-
collinearity is a possible cause for uncertainty of options’ influences.
To compute the uncertainty of an option influence β?

j , we use its
confidence interval β̄j and point estimate Ûβj . To remove the influ-
ence of differing influence scales between software systems, we
determine the relative confidence interval width as the ratio of the
absolute confidence interval width |β̄j | and the point estimate:

β?
j =

|β̄j |

Ûβj
(25)

Looking at Table 3, we see that all five options exhibit either a
moderate or even a high VIF for the training set T1. This points to
a situation in which the learning procedure cannot safely assign a
performance ratio to the specific option. Investigating this closer,
four options are part of an alternative group despite our efforts
to avoid multicollinearity by removing one alternative from each
alternative group. For option threads_4, we found that it was active
in almost every configuration (13 out of 16), reducing the contained
information according to Equation 7.

To further confirm our hypothesis that multicollinearity can be
a possible cause, we show in Table 3 the uncertainty β?

j and the
VIF for these five options using the larger training set T3. We see a
substantial reduction in uncertainty for three options in line with
the reduction of the VIF. This strongly indicates that a reduced
multicollinearity reduces also the uncertainty of an option’s influ-
ence on performance. Options Files_30 and BlockSize_1024 have
no uncertainty as they were chosen by P4 to be removed from the
alternative group in T3.

Overall, Πho yields better results than Πhe in most cases, but
both approaches always show substantially lower relative errors
than scalar predictions. Of course, it would be easy for a model to
predict all performance values correctly with a sufficiently large
confidence interval. However, our findings for RQ3 demonstrate
that P4’s prediction confidence intervals are reliable, as we will
discuss in Section 4.5.

To answer RQ2, using confidence intervals to frame the confi-
dence of predictions substantially reduces the prediction error.
That is, our approach is able to model the uncertainty as well
as the true performance distributions accurately.

4.5 RQ3: Reliability of Confidence Intervals

4.5.1 Setup. As predictions, our approach can yield confidence
intervals with any given confidence level αCI ∈ [0 %, 100 %]. We
call a model’s predicted confidence intervals reliable if predictions
with an αCI confidence interval contain the measured performance
with a similar observed frequency α

obs
(i.e., α

obs
(αCI ) ≈ αCI ). To

compute the observed frequency α
obs

(αCI ) for an αCI confidence
interval, we first define the function within, which returns 1 if
the measured performance Πtrue(c) lies in a predicted confidence
interval Π̄(c), and 0, otherwise:

within
(
Πtrue(c), Π̄(c)

)
=

{
1 Πtrue(c) ∈ Π̄(c)

0 else
(26)

Second, the observed frequency is computed as the average of
within over all configurations of a subject system and their mea-
sured performances Πtrue(c):

α
obs

(αCI ) =

∑
c ∈C within

(
Πtrue(c), Π̄(c)

)
|C|

(27)

If αCI ≫ α
obs

(αCI ), the predicted confidence interval is inac-
curate more often than we expect and should have been broader;
conversely, the predicted confidence interval should be more nar-
row and thus more informative if αCI ≪ α

obs
(αCI ). Since using

confidence intervals for performance predictions is novel, we have
no baseline to which we can compare. Hence, we report the ob-
served frequencies for confidence levels αCI from 5 % to 95 % in
steps of 5 % as well as the average error in percentage to answer
RQ3. In addition, we report the MAPECI for all confidence intervals.

4.5.2 Results. Figure 4 shows a calibration plot that compares
αCI with α

obs
using dashed lines. A model with αCI = α

obs
for

all αCI would yield values along the dashed gray diagonal. Values
above the diagonal indicate too broad confidence intervals (i.e., our
predictions are more accurate than they should be), values below
it signal confidence intervals that are too narrow. The solid lines
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in Figure 4 show the mean MAPECI over all subject systems for
both the relative and the absolute model. The shaded area around
it constitutes a 95 % confidence interval.

When analyzing the dashed lines, we see that using the absolute
error Π

ho
yields intervals that are closer to the diagonal than when

using the relative error Π
he
. Moreover, there is a clear trend that,

when using more measurements, the intervals become either nearly
perfectly aligned or are underestimating the models prediction
accuracy. Hence, we see a picture that resembles the picture when
using the mode for scalar performance prediction: The approach
requires a certain number of measurements to become accurate,
but then works robustly.

We can make a further interesting observation when compar-
ing the confidence intervals (dashed lines) with the MAPECI (solid
lines). First and most importantly, we see that using confidence
intervals of varying sizes has a clear monotonic relationship with
the prediction error. That is, increasing the interval decreases the
error. Second, the errors fall rapidly, especially for T2 and T3, already
when using a narrow interval, such as 25 %. This is good news as
this clearly indicates that narrow confidence intervals yield accu-
rate predictions. Third, we observe that (for the solid lines) the
uncertainty is higher with fewer measurements, as indicated by the
colored area. That is, the model is aware that the measurements
are insufficient to actually make trustworthy predictions. This is a
feature missing in all scalar prediction approaches. For example, for
SPL Conqeror, we have no clue whether the model is confident
with a certain prediction. With P4, we have a means to quantify
this confidence.

To answer RQ3, with enough measurements, our approach
yields confidence intervals that contain the true value with a
frequency that matches the specified confidence. Even with
our smallest training set T1, confidence intervals with higher
specified confidence contain the true value more often.

5 THREATS TO VALIDITY

Threats to internal validity arise frommeasurement bias. We reuse a
measurement set from a recent paper whose authors controlled for
this bias by repeating the measurements several times [18]. A threat
to construct validity may arise from the model construction process
in PyMC3. We selected probability distributions for the random
variables based on typical least squares error distributions and best
practices for regression modeling in probabilistic programming.
External validity refers to the generalizability of our approach. Our
data set comprises 12 different subject systems of varying domains
and sizes. Moreover, we assessed different properties, such as energy
consumption and response time. We made similar observations for
all systems such that we are convinced that our approach works
on a large and practically relevant class of configurable software
systems.

6 RELATEDWORK

There is a number of approaches in the field of performance model-
ing. CART [5] and its improved version DECART [6] use rule-based
models to accurately learn performance models with a small num-
ber of samples. FLASH [25] is a sequential model-based method

that relies on active learning to fit CART [5] models more efficiently.
DeepPerf [7] is a deep learning-based approach, which uses sparse
neural networks for performance estimation. Zhang et al. propose
a framework to model performance influence with Fourier approx-
imation [46], whereas Nair et al. employ spectral learning with
dimensionality reduction [24]. SPL Conqeror learns an additive
model with step-wise selection of new terms [33]. None of the
proposed approaches considers uncertainty in predictions and in
the internal representation of influences, producing only scalar
estimates.

Notably, the need for incorporating uncertainty in performance
modeling has been argued before by Trubiani and Apel [39]. While
there are already considerations in other fields for both epistemic
and aleatoric uncertainty, such as for computer vision [19], for soft-
ware engineering, there are only approaches that model some kind
of epistemic uncertainty. Antonelli et al. have incorporated uncer-
tainty by allowing two parameters of a performance index for cloud
computing systems to be uncertain and thus adapt to changing hard-
ware [1]. Another approach by Arcaini et al. transforms a feature
model into two Queueing Networks — one each for the two variants
with minimal and maximal performance — and thereby represents
uncertainty in performance [2]. To the best of our knowledge, we
are the first to follow Trubiani and Apel’s call to incorporate both
epistemic and aleatoric uncertainty in performance modeling of
configurable software systems.

7 SUMMARY

Existing approaches for performance-influence modeling provide
only scalar predictions based on modeling influences of options and
interactions with scalar values. We argue that these approaches ne-
glect uncertainty arising from the modeling and measurement pro-
cess.We propose a novel performance-influencemodeling approach
that incorporates uncertainty explicitly and yields confidence in-
tervals alongside scalar point-estimate predictions. This way, we
provide not only a singular number as a performance estimate, but
also a posterior distribution and a confidence in which range a per-
formance value lies. Our experiments with 12 real-world software
systems show that our implementation, P4, yields scalar prediction
accuracies that match the state of the art when provided with a
sufficient number of measurements. Further evaluation shows that
the confidence intervals provided are reliable and, when used for
prediction, achieve competitive accuracies.

The analysis of our trained models indicates that options that
are selected in almost every configuration can reduce the amount
of information contained in a training set, rendering the option’s
influence uncertain. This observation calls for a shift in current sam-
pling strategies by taking the information gain more into account,
as compared to coverage or uniformness. P4 showed its potential
especially with pairwise and triple-wise sampled training sets. Im-
proving P4 for small training sets, hence, remains an open issue. A
possible remedy are P4’s option influence uncertainties, which may
be facilitated in an active learning setup to learn more efficiently.
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