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3 Université catholique de Louvain, 1348 Ottignies-Louvain-la-Neuve, Belgium

Abstract. Lifted (family-based) static analysis by abstract interpreta-
tion is capable of analyzing all variants of a program family simultaneously,
in a single run without generating any of the variants explicitly. The ele-
ments of the underlying lifted analysis domain are tuples, which maintain
one property per variant. Still, explicit property enumeration in tuples,
one by one for all variants, immediately yields combinatorial explosion.
This is particularly apparent in the case of program families that, apart
from Boolean features, contain also numerical features with large domains,
thus giving rise to astronomical configuration spaces.
The key for an efficient lifted analysis is a proper handling of variability-
specific constructs of the language (e.g., feature-based runtime tests and
#if directives). In this work, we introduce a new symbolic representation
of the lifted abstract domain that can efficiently analyze program families
with numerical features. This makes sharing between property elements
corresponding to different variants explicitly possible. The elements of
the new lifted domain are constraint-based decision trees, where decision
nodes are labeled with linear constraints defined over numerical features
and the leaf nodes belong to an existing single-program analysis domain.
To illustrate the potential of this representation, we have implemented
an experimental lifted static analyzer, called SPLNum2Analyzer, for
inferring invariants of C programs. An empirical evaluation on BusyBox
and on benchmarks from SV-COMP yields promising preliminary re-
sults indicating that our decision trees-based approach is effective and
outperforms the baseline tuple-based approach.

1 Introduction

Many software systems today are configurable [6]: they use features (or config-
urable options) to control the presence and absence of functionality. Different
family members, called variants, are derived by switching features on and off, while
the reuse of common code is maximized, leading to productivity gains, shorter
time to market, greater market coverage, etc. Program families (e.g., software
product lines) are commonly seen in the development of commercial embedded
software, such as cars, phones, avionics, medicine, robotics, etc. Configurable
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options (features) are used to either support different application scenarios for
embedded components, to provide portability across different hardware platforms
and configurations, or to produce variations of products for different market
segments or customers. We consider here program families implemented using
#if directives from the C preprocessor CPP [20]. They use #if-s to specify in
which conditions parts of code should be included or excluded from a variant.
Classical program families use only Boolean features that have two values: on and
off. However, Boolean features are insufficient for real-world program families,
as there exist features that have a range of numbers as possible values. These
features are called numerical features [25]. For instance, Linux kernel, BusyBox,
Apache web server, Java Garbage Collector represent some real-world program
families with numerical features. Analyzing such program families is very chal-
lenging, due to the fact that from only a few features, a huge number of variants
can be derived.

In this paper, we are concerned with the verification of program families with
Boolean and numerical features using abstract interpretation-based static analysis.
Abstract interpretation [7,24] is a general theory for approximating the semantics
of programs. It provides sound (all confirmative answers are correct) and efficient
(with a good trade-off between precision and cost) static analyses of run-time
properties of real programs. It has been used as the foundation for various
successful industrial-scale static analyzers, such as ASTREE [8]. Still, the static
analysis of program families is harder than the static analysis of single programs,
because the number of possible variants can be very large (often huge) in practice.
The simplest brute-force approach that uses a preprocessor to generate all variants
of a family, and then applies an existing off-the-shelf single-program analyzer to
each individual variant, one-by-one, is very inefficient [3,27]. Therefore, we use
so-called lifted (family-based) static analyses [3,22,27], which analyze all variants
of the family simultaneously without generating any of the variants explicitly.
They take as input the common code base, which encodes all variants of a
program family, and produce precise analysis results corresponding to all variants.
They use a lifted analysis domain, which represents an n-fold product of an
existing single-program analysis domain used for expressing program properties
(where n is the number of valid configurations). That is, the lifted analysis
domain maintains one property element per valid variant in tuples. The problem
is that this explicit property enumeration in tuples becomes computationally
intractable with larger program families because the number of variants (i.e.,
configurations) grows exponentially with the number of features. This problem
has been successfully addressed for program families that contain only Boolean
features [1,2,11], by using sharing through binary decision diagrams (BDDs).
However, the fundamental limitation of existing lifted analysis techniques is that
they are not able to handle numerical features.

To overcome this limitation, we present a new, refined lifted abstract domain
for effectively analyzing program families with numerical features by means of
abstract interpretation. The elements of the lifted abstract domain are constraint-
based decision trees, where the decision nodes are labelled with linear constraints
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over numerical features, whereas the leaf nodes belong to a single-program analysis
domain. The decision trees recursively partition the space of configurations (i.e.,
the space of possible combinations of feature values), whereas the program
properties at the leaves provide analysis information corresponding to each
partition, i.e. to the variants (configurations) that satisfy the constraints along
the path to the given leaf node. The partitioning is dynamic, which means that
partitions are split by feature-based tests (at #if directives), and joined when
merging the corresponding control flows again. In terms of decision trees, this
means that new decision nodes are added by feature-based tests and removed
when merging control flows. In fact, the partitioning of the set of configurations
is semantics-based, which means that linear constraints over numerical features
that occur in decision nodes are automatically inferred by the analysis and do
not necessarily occur syntactically in the code base.

Our lifted abstract domain is parametric in the choice of numerical property
domain [7,24] that underlies the linear constraints over numerical features labelling
decision nodes, and the choice of the single-program analysis domain for leaf
nodes. In fact, in our implementation, we also use numerical property domains
for leaf nodes, which encode linear constraints over program variables. We
rely on the well-known numerical domains, such as intervals [7], octagons [23],
polyhedra [10], from the APRON library [19] to obtain a concrete decision
tree-based implementation of the lifted abstract domain. This way, we have
implemented a forward reachability analysis of C program families with numerical
(and Boolean) features for the automatic inference of invariants. Our tool, called
SPLNum2Analyzer4, computes a set of possible invariants, which represent
linear constraints over program variables. We can use the implemented lifted
static analyzer to check invariance properties of C program families, such as
assertions, buffer overflows, null pointer references, division by zero, etc [8].

In summary, we make several contributions: (1) We propose a new, param-
eterized lifted analysis domain based on decision trees for analyzing program
families with numerical features; (2) We implement a prototype lifted static
analyzer, SPLNum2Analyzer, that performs a forward analysis of #if-enriched
C programs, where numerical property domains from the APRON library are
used as parameters in the lifted analysis domain; (3) We evaluate our approach for
automatic inference of invariants by comparing performances of lifted analyzers
based on tuples and decision trees.

2 Motivating Example

To illustrate the potential of a decision tree-based lifted domain, we consider a
motivating example using the code base of the following program family SIMPLE:

4 Num2 in the name of the tool refers to its ability to both handle Numerical features
and to perform Numerical client analysis of SPLs (program families).
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1© int x := 10, y := 0;
2© while (x != 0) {
3© x := x-1;
4© #if (SIZE ≤ 3) y := y+1; #else y := y-1; #endif
5© #if (!B) y := 0; #else skip; #endif 6©}
7© assert (y > 1);

The set F of features is {B, SIZE}, where B is a Boolean feature and SIZE is a
numerical feature whose domain is [1, 4] = {1, 2, 3, 4}. Thus, the set of valid
configurations is K = {B ∧ (SIZE=1), B ∧ (SIZE=2), B ∧ (SIZE=3), B ∧ (SIZE=
4),¬B ∧ (SIZE = 1),¬B ∧ (SIZE = 2),¬B ∧ (SIZE = 3),¬B ∧ (SIZE = 4)}. The
code of SIMPLE contains two #if directives, which change the value assigned
to y, depending on how features from F are set at compile-time. For each
configuration from K, a different variant (single program) can be generated
by appropriately resolving #if-s. For example, the variant corresponding to
configuration B ∧ (SIZE=1) will have B and SIZE set to true and 1, so that the
assignment y := y+1 and skip in program locations 4© and 5©, respectively, will
be included in this variant. The variant for configuration ¬B∧ (SIZE=4) will have
features B and SIZE set to false and 4, so the assignments y := y-1 and y := 0 in
program locations 4© and 5©, respectively, will be included in this variant. There
are |K| = 8 variants that can be derived from the family SIMPLE.

Assume that we want to perform lifted polyhedra analysis of SIMPLE using
the Polyhedra numerical domain [10]. The standard lifted analysis domain used
in the literature [3,22] is defined as cartesian product of |K| copies of the basic
analysis domain (e.g. polyhedra). Hence, elements of the lifted domain are tuples
containing one component for each valid configuration from K, where each
component represents a polyhedra linear constraint over program variables (x
and y in this case). The lifted analysis result in location 7© of SIMPLE is an
8-sized tuple shown in Fig. 1. Note that the first component of the tuple in
Fig. 1 corresponds to configuration B ∧ (SIZE=1), the second to B ∧ (SIZE=2),
the third to B ∧ (SIZE=3), and so on. We can see in Fig. 1 that the polyhedra
analysis discovers very precise results for the variable y: (y=10) for configurations
B ∧ (SIZE= 1), B ∧ (SIZE= 2), and B ∧ (SIZE= 3); (y=−10) for configuration
B∧ (SIZE=4); and (y=0) for all other configurations. This is due to the fact that
the polyhedra domain is fully relational and is able to track all relations between
program variables x and y. Using this result in location 7©, we can successfully
conclude that the assertion is valid for configurations B∧(SIZE=1), B∧(SIZE=2),
and B ∧ (SIZE=3), whereas the assertion fails for all other configurations.

If we perform lifted polyhedra analysis based on the decision tree domain
proposed in this work, then the corresponding decision tree inferred in the final
program location 7© of SIMPLE is depicted in Fig. 2. Notice that the inner
nodes of the decision tree in Fig. 2 are labeled with Interval linear constraints
over features (SIZE and B), while the leaves are labeled with the Polyhedra
linear constraints over program variables x and y. Hence, we use two different
numerical abstract domains in our decision trees: Interval domain [7] for expressing
properties in decision nodes, and Polyhedra domain [10] for expressing properties
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( B∧(SIZE=1)︷ ︸︸ ︷
[y=10, x=0],

B∧(SIZE=2)︷ ︸︸ ︷
[y=10, x=0],

B∧(SIZE=3)︷ ︸︸ ︷
[y=10, x=0],

B∧(SIZE=4)︷ ︸︸ ︷
[y=−10, x=0],

¬B∧(SIZE=1)︷ ︸︸ ︷
[y=0, x=0],

¬B∧(SIZE=2)︷ ︸︸ ︷
[y=0, x=0],

¬B∧(SIZE=3)︷ ︸︸ ︷
[y=0, x=0],

¬B∧(SIZE=4)︷ ︸︸ ︷
[y=0, x=0]

)
Fig. 1: Tuple-based invariant at
location 7© of SIMPLE.

B

SIZE≤3 [y=0∧x=0]

[y=10∧x=0] [y=−10∧x=0]

Fig. 2: Decision tree-based invariant
at location 7© of SIMPLE (solid edges
= true, dashed edges = false).

in leaf nodes. The edges of decision trees are labeled with the truth value of
the decision on the parent node; we use solid edges for true (i.e. the constraint
in the parent node is satisfied) and dashed edges for false (i.e. the negation of
the constraint in the parent node is satisfied). As decision nodes partition the
space of valid configurations K, we implicitly assume the correctness of linear
constraints that take into account domains of numerical features. For example,
the node with constraint (SIZE≤3) is satisfied when (SIZE≤3) ∧ (1≤SIZE≤4),
whereas its negation is satisfied when (SIZE>3)∧ (1≤SIZE≤4). The constraints
(1≤SIZE≤4) represent the domain [1, 4] of SIZE. We can see that decision trees
offer more possibilities for sharing and interaction between analysis properties
corresponding to different configurations, they provide symbolic and compact
representation of lifted analysis elements. For example, Fig. 2 presents polyhedra
properties of two program variables x and y, which are partitioned with respect
to features B and SIZE. When (B ∧ (SIZE≤ 3)) is true the shared property is
(y= 10, x= 0), whereas when (B ∧ ¬(SIZE≤ 3)) is true the shared property is
(y=−10, x= 0). When ¬B is true, the property is independent from the value
of SIZE, hence a node with a constraint over SIZE is not needed. Therefore, all
such cases are identical and so they share the same leaf node (y=0, x=0). In
effect, the decision tree-based representation uses only three leafs, whereas the
tuple-based representation uses eight properties. This ability for sharing is the
key motivation behind the decision trees-based representation.

3 A Language for Program Families

Let F = {A1, . . . , Ak} be a finite and totaly ordered set of numerical features
available in a program family. For each feature A ∈ F, dom(A) ⊆ Z denotes the
set of possible values that can be assigned to A. Note that any Boolean feature
can be represented as a numerical feature B ∈ F with dom(B) = {0, 1}, such
that 0 means that feature B is disabled while 1 means that B is enabled. A
valid combination of feature’s values represents a configuration k, which specifies
one variant of a program family. It is given as a valuation function k : F→ Z,
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which is a mapping that assigns a value from dom(A) to each feature A, i.e.
k(A) ∈ dom(A) for any A ∈ F. We assume that only a subset K of all possible
configurations are valid. An alternative representation of configurations is based
upon propositional formulae. Each configuration k ∈ K can be represented by
a formula: (A1 = k(A1)) ∧ . . . ∧ (Ak = k(Ak)). We often abbreviate (B = 1)
with B and (B = 0) with ¬B, for a Boolean feature B ∈ F. The set of valid
configurations K can be also represented as a formula: ∨k∈Kk.

We define feature expressions, denoted FeatExp(F), as the set of propositional
logic formulas over constraints of F generated by the grammar:

θ ::= true | eFZ ./ eFZ | ¬θ | θ1 ∧ θ2 | θ1 ∨ θ2, eFZ ::= n | A | eFZ⊕eFZ

where A ∈ F, n ∈ Z, ⊕ ∈ {+,−, ∗}, and ./∈ {=, <}. We will use θ ∈ FeatExp(F)
to write presence conditions. When a configuration k ∈ K satisfies a feature
expression θ ∈ FeatExp(F), we write k |= θ, where |= is the standard satisfaction
relation of logic. We write [[θ]] to denote the set of configurations from K that
satisfy θ, that is, k ∈ [[θ]] iff k |= θ.

Example 1. For the SIMPLE program family from Section 2, the set of features
is F = {B, SIZE} where dom(SIZE) = [1, 4], and the set of configurations is
K = {B ∧ (SIZE=1), B ∧ (SIZE=2), B ∧ (SIZE=3), B ∧ (SIZE=4),¬B ∧ (SIZE=
1),¬B ∧ (SIZE=2),¬B ∧ (SIZE=3),¬B ∧ (SIZE=4)}. For the feature expression
(SIZE≤ 3), we have [[(SIZE≤ 3)]] = {B ∧ (SIZE= 1), B ∧ (SIZE= 2), B ∧ (SIZE=
3),¬B ∧ (SIZE = 1),¬B ∧ (SIZE = 2),¬B ∧ (SIZE = 3)}. Hence, B ∧ (SIZE =
2) |= (SIZE≤ 3) and B ∧ (SIZE= 4) 6|= (SIZE≤ 3), where B ∧ (SIZE= 2) ∈ K,
B ∧ (SIZE=4) ∈ K, and (SIZE≤3) ∈ FeatExp(F). ut

We consider a simple sequential non-deterministic programming language,
which will be used to exemplify our work. The program variables Var are statically
allocated and the only data type is the set Z of mathematical integers. To encode
multiple variants, a new compile-time conditional statement is included. The new
statement “#if (θ) s #endif” contains a feature expression θ ∈ FeatExp(F) as a
presence condition, such that only if θ is satisfied by a configuration k ∈ K the
statement s will be included in the variant corresponding to k. The syntax is:

s ::= skip | x:=e | s; s | if (e) then s else s | while (e) do s | #if (θ) s #endif,
e ::= n | [n, n′] | x | e⊕e

where n ranges over integers, [n, n′] over integer intervals, x over program variables
Var, and ⊕ over binary arithmetic operators. Integer intervals [n, n′] denote a
random choice of an integer in the interval. The set of all statements s is denoted
by Stm; the set of all expressions e is denoted by Exp.

A program family is evaluated in two stages. First, the C preprocessor CPP

takes a program family s and a configuration k ∈ K as inputs, and produces a
variant (without #if-s) corresponding to k as the output. Second, the obtained
variant is evaluated using the standard single-program semantics. The first
stage is specified by the projection function Pk, which is an identity for all
basic statements and recursively pre-processes all sub-statements of compound
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int x := 10, y := 0;
while (x != 0) {

x := x-1;
y := y+1;
skip; }

(a) PB∧(SIZE=1)(SIMPLE)

int x := 10, y := 0;
while (x != 0) {

x := x-1;
y := y-1;
skip; }

(b) PB∧(SIZE=4)(SIMPLE)

int x := 10, y := 0;
while (x != 0) {

x := x-1;
y := y+1;
y := 0; }

(c) P¬B∧(SIZE=1)(SIMPLE)

int x := 10, y := 0;
while (x != 0) {

x := x-1;
y := y-1;
y := 0; }

(d) P¬B∧(SIZE=4)(SIMPLE)

Fig. 3: Different variants of the program family SIMPLE from Section 2.

statements. Hence, Pk(skip) = skip and Pk(s;s′) = Pk(s);Pk(s′). The interesting
case is “#if (θ) s #endif”, where statement s is included in the variant if k |= θ,

otherwise, s is removed 5: Pk(#if (θ) s #endif) =

{
Pk(s) if k |= θ

skip if k 6|= θ
. For example,

variants PB∧(SIZE=1)(SIMPLE), PB∧(SIZE=4)(SIMPLE), P¬B∧(SIZE=1)(SIMPLE), as well as
P¬B∧(SIZE=4)(SIMPLE) shown in Fig. 3a, Fig. 3b, Fig. 3c, and Fig. 3d, respectively,
are derived from the SIMPLE family defined in Section 2.

4 Lifted Analysis based on Tuples

Lifted analyses are designed by lifting existing single-program analyses to work
on program families, rather than on individual programs. They directly analyze
program families. Lifted analysis as defined by Midtgaard et. al. [22] rely on
a lifted domain that is |K|-fold product of an existing single-program analysis
domain A defined over program variables Var. We assume that the domain A
is equipped with sound operators for concretization γA, ordering vA, join tA,
meet uA, bottom ⊥A, top >A, widening ∇A, and narrowing 4A, as well as sound
transfer functions for tests FILTERA and forward assignments ASSIGNA. More
specifically, FILTERA(a : A, e : Exp) returns an abstract element from A obtained
by restricting a to satisfy the test e, whereas ASSIGNA(a : A, x:=e : Stm) returns
an updated version of a by abstractly evaluating x:=e in it.

Lifted Domain. The lifted analysis domain is defined as 〈AK, v̇, ṫ, u̇, ⊥̇, >̇〉, where
AK is shorthand for the |K|-fold product

∏
k∈K A, that is, there is one separate

copy of A for each configuration of K. For example, consider the tuple in Fig. 1.

Lifted Abstract Operations. Given a tuple (lifted domain element) a ∈ AK, the
projection πk selects the kth component of a. All abstract lifted operations are
defined by lifting the abstract operations of the domain A configuration-wise.

γ(a) =
∏
k∈K(γA(πk(a))), a1v̇a2 ≡ πk(a1)vAπk(a2), for ∀k∈K

a1 ṫ a2 =
∏
k∈K(πk(a1) tA πk(a2)), a1 u̇ a2 =

∏
k∈K(πk(a1) uA πk(a2))

>̇ =
∏
k∈K>A = (>A, . . . ,>A), ⊥̇ =

∏
k∈K⊥A = (⊥A, . . . ,⊥A)

a1 ∇̇ a2 =
∏
k∈K(πk(a1)∇Aπk(a2)), a1 4̇ a2 =

∏
k∈K(πk(a1)4Aπk(a2))

5 Since k ∈ K is a valuation function, either k |= θ holds or k 6|= θ holds for any θ.
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Lifted Transfer Functions. We now define lifted transfer functions for tests,
forward assignments (ASSIGN), and #if-s (IFDEF). There are two types of
tests: expression-based tests, denoted FILTER, that occur in while-s and if-
s, and feature-based tests, denoted FEAT-FILTER, that occur in #if-s. Each
lifted transfer function takes as input a tuple from AK representing the invariant
before evaluating the statement (resp., expression) to handle, and returns a tuple
representing the invariant after evaluating the given statement (resp., expression).

FILTER(a : AK, e : Exp) =
∏
k∈K(FILTERA(πk(a), e))

FEAT-FILTER(a :AK, θ :FeatExp(F)) =
∏
k∈K

{
πk(a), if k |= θ

⊥A, if k 6|= θ

ASSIGN(a :AK, x:=e :Stm) =
∏
k∈K(ASSIGNA(πk(a), x:=e))

IFDEF(a :AK, #if (θ) s :Stm)=[[s]](FEAT-FILTER(a, θ))ṫFEAT-FILTER(a,¬θ)

where [[s]](a) is the lifted transfer function for statement s. FILTER and ASSIGN
are defined by applying FILTERA and ASSIGNA independently on each com-
ponent of the input tuple a. FEAT-FILTER keeps those components k of the
input tuple a that satisfy θ, otherwise it replaces the other components with ⊥A.
IFDEF captures the effect of analyzing the statement s in the components k of
a that satisfy θ, otherwise it is an identity for the other components.

Lifted Analysis. Lifted abstract operators and transfer functions of the lifted
analysis domain AK are combined together to analyze program families. Initially,
we build a tuple ain where all components are set to >A for the first program
location, and tuples where all components are set to ⊥A for all other locations.
The analysis properties are propagated forward from the first program location
towards the final location taking assignments, #if-s, and tests into account with
join and widening around while-s. The soundness of the lifted analysis based on
AK follows immediately from the soundness of all abstract operators and transfer
functions of A (proved in [22]).

Numerical Lifted Analysis The single-program analysis domain A can be instanti-
ated by some of the well-known numerical property domains [24], such as Intervals
〈I,vI〉 [7], Octagons 〈O,vO〉 [26], and Polyhedra 〈P,vP 〉 [10]. The elements of
I are intervals of the form: ±x ≥ β, where x ∈ Var, β ∈ Z; the elements of O are
conjunctions of octagonal constraints of the form ±x1 ± x2 ≥ β, where x1, x2 ∈
Var, β ∈ Z; while the elements of P are conjunctions of polyhedral constraints of
the form α1x1 + . . .+ αkxk + β ≥ 0, where x1, . . . xk ∈ Var, α1, . . . , αk, β ∈ Z.

5 Lifted Analysis based on Decision Trees

We now introduce a new decision tree lifted domain. Its elements are disjunctions
of leaf nodes that belong to an existing single-program domain A defined over
program variables Var. The leaf nodes are separated by linear constraints over
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numerical features, organized in the decision nodes. Hence, we encapsulate the
set of configurations K into the decision nodes of a decision tree where each top-
down path represents one or several configurations that satisfy the constraints
encountered along the given path. We store in each leaf node the property
generated from the variants representing the corresponding configurations.

Abstract domain for decision nodes. We define the family of abstract domains for
linear constraints CD, which are parameterized by any of the numerical property
domains D (intervals I, octagons O, polyhedra P). We use CI = {+−Ai ≥ β |
Ai ∈ F, β ∈ Z} to denote the set of interval constraints, CO = {+−Ai +−Aj ≥ β |
Ai, Aj ∈ F, β ∈ Z} to denote the set of octagonal constraints, and CP = {α1A1 +
. . .+αkAk+β ≥ 0 | A1, . . . Ak ∈ F, α1, . . . , αk, β ∈ Z, gcd(|α1|, . . . , |αk|, |β|) = 1}
to denote the set of polyhedral constraints. We have CI ⊆ CO ⊆ CP.

The set CD of linear constraints over features F is constructed by the
underlying numerical property domain 〈D,vD〉 using the Galois connection

〈P(CD),vD〉 −−−−→←−−−−
αCD

γCD 〈D,vD〉, where P(CD) is the power set of CD. The abstrac-

tion function αCD : P(CD)→ D maps a set of interval (resp., octagon, polyhedral)
constraints to an interval (resp., an octagon, polyhedral) that represents a con-
junction of constraints; the concretization function γCD : D → P(CD) maps
an interval (resp., an octagon, a polyhedron) that represents a conjunction of
constraints to a set of interval (resp., octagonal, polyhedral) constraints. We have
γCD(>D) = ∅ and γCD(⊥D) = {⊥CD}, where ⊥CD is an unsatisfiable constraint.

The domain of decision nodes is CD. We assume F = {A1, . . . , Ak} be a finite
and totally ordered set of features, such that the ordering is A1 > A2 > . . . > Ak.
We impose a total order <CD on CD to be the lexicographic order on the coefficients
α1, . . . , αk and constant αk+1 of the linear constraints, such that:

(α1 ·A1 + . . .+ αk ·Ak + αk+1≥0) <CD (α′1 ·A1 + . . .+ α′k ·Ak + α′k+1≥0)
⇐⇒ ∃j > 0.∀i < j.(αi = α′i) ∧ (αj < α′j)

The negation of linear constraints is formed as: ¬(α1A1 + . . . αkAk + β ≥
0) = −α1A1 − . . .− αkAk − β − 1 ≥ 0. For example, the negation of A− 3 ≥ 0
is the constraint −A + 2 ≥ 0 (i.e., A ≤ 2). To ensure canonical representation
of decision trees, a linear constraint c and its negation ¬c cannot both appear
as nodes in a decision tree. For example, we only keep the largest constraint
with respect to <CD between c and ¬c. For this reason, we define the equivalence
relation ≡CD as c ≡CD ¬c. We define 〈CD, <CD〉 to denote 〈CD/≡, <CD〉, such that
elements of CD are constraints obtained by quotienting by the equivalence ≡CD .

Abstract domain for constraint-based decision trees. A constraint-based decision
tree t ∈ T(CD,A) over the sets CD of linear constraints defined over F and the
leaf abstract domain A defined over Var is either a leaf node �a�with a ∈ A,
or [[c : tl, tr]], where c ∈ CD (denoted by t.c) is the smallest constraint with
respect to <CD appearing in the tree t, tl (denoted by t.l) is the left subtree of
t representing its true branch, and tr (denoted by t.r) is the right subtree of t
representing its false branch. The path along a decision tree establishes the set



10 A. S. Dimovski et al.

of configurations (those that satisfy the encountered constraints), and the leaf
nodes represent the analysis properties for the corresponding configurations.

Example 2. The following two constraint-based decision trees t1 and t2 have
decision nodes labelled with Interval linear constraints over the numeric feature
SIZE with domain {1, 2, 3, 4}, whereas leaf nodes are Interval properties:

t1 = [[SIZE≥4 :�[y≥2]�,�[y=0]�]], t2 = [[SIZE≥2 :�[y≥0]�,�[y≤0]�]] ut

Abstract Operations. The concretization function γT of a decision tree t ∈
T(CD,A) returns γA(a) for k ∈ K, where k satisfies the set C ∈ P(CD) of
constraints accumulated along the top-down path to the leaf node a ∈ A. More
formally, γT(t) = γT[K](t). The function γT accumulates into a set C ∈ P(CD)
constraints along the paths up to a leaf node, which is initially equal to the set of
implicit constraints over F, K=∨k∈Kk, taking into account domains of features:

γT[C](�a�)=
∏
k|=CγA(a), γT[C]([[c : tl, tr]])=γT[C∪{c}](tl)×γT[C∪{¬c}](tr)

Note that k |= C is equivalent with αCD({k}) vD αCD(C). Therefore, we can
check k |= C using the abstract operation vD of the numerical domain D.

Other binary operations of T(CD,A) are based on Algorithm 1 for tree unifica-
tion, which finds a common refinement (labelling) of two trees t1 and t2 by calling
function UNIFICATION(t1, t2,K). It possibly adds new constraints as decision
nodes (Lines 5–7, Lines 11–13), or removes constraints that are redundant (Lines
3,4,9,10,15,16). The function UNIFICATION accumulates into the set C ∈ P(CD)
(initialized to K, which represents implicit constraints satisfied by both t1 and t2),
constraints encountered along the paths of the decision tree. This set C is used
by the function isRedundant(c, C), which checks whether the linear constraint
c ∈ CD is redundant with respect to C by testing αCD(C) vD αCD({c}). Note that
the tree unification does not lose any information.

Example 3. Consider constraint-based decision trees t1 and t2 from Example 2.
After tree unification UNIFICATION(t1, t2,K), the resulting decision trees are:

t1 = [[SIZE ≥ 4 :�[y ≥ 2]�, [[SIZE ≥ 2 :�[y = 0]�,�[y = 0]�]]]],
t2 = [[SIZE ≥ 4 :�[y ≥ 0]�, [[SIZE ≥ 2 :�[y ≥ 0]�,�[y ≤ 0]�]]]]

Note that UNIFICATION adds a decision node for SIZE ≥ 2 to the right subtree of
t1, whereas it adds a decision node for SIZE ≥ 4 to t2 and removes the redundant
constraint SIZE ≥ 2 from the resulting left subtree of t2. ut

All binary operations are performed leaf-wise on the unified decision trees.
Given two unified decision trees t1 and t2, their ordering and join are defined as:

�a1�vT�a2�= a1vA a2, [[c : tl1, tr1]]vT [[c : tl2, tr2]]=(tl1vT tl2) ∧ (tr1vT tr2)
�a1�tT�a2�=�a1tAa2�, [[c : tl1, tr1]]tT [[c : tl2, tr2]]=[[c : tl1tTtl2, tr1tTtr2]]

Similarly, we compute meet, widening, and narrowing of t1 and t2. The top is a
tree with a single >A leaf: >T =�>A�, while the bottom is: ⊥T =�⊥A�.

Example 4. Consider the unified trees t1 and t2 from Example 3. We have that
t1vT t2 holds, and t1tTt2 =[[SIZE≥4:�[y≥0]�, [[SIZE≥2:�[y≥0]�,�[y≤0]�]]]].
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Algorithm 1: UNIFICATION(t1, t2, C)

1 if isLeaf(t1) ∧ isLeaf(t2) then return (t1, t2);
2 if isLeaf(t1) ∨ (isNode(t1) ∧ isNode(t2) ∧ t2.c <CD t1.c) then
3 if isRedundant(t2.c, C) then return UNIFICATION(t1, t2.l, C);
4 if isRedundant(¬t2.c, C) then return UNIFICATION(t1, t2.r, C);
5 (l1, l2) = UNIFICATION(t1, t2.l, C ∪ {t2.c});
6 (r1, r2) = UNIFICATION(t1, t2.r, C ∪ {¬t2.c});
7 return ([[t2.c : l1, r1]], [[t2.c : l2, r2]]);

8 if isLeaf(t2) ∨ (isNode(t1) ∧ isNode(t2) ∧ t1.c <CD t2.c) then
9 if isRedundant(t1.c, C) then return UNIFICATION(t1.l, t2, C);

10 if isRedundant(¬t1.c, C) then return UNIFICATION(t1.r, t2, C);
11 (l1, l2) = UNIFICATION(t1.l, t2, C ∪ {t1.c});
12 (r1, r2) = UNIFICATION(t1.r, t2, C ∪ {¬t1.c});
13 return ([[t1.c : l1, r1]], [[t1.c : l2, r2]]);

14 else
15 if isRedundant(t1.c, C) then return UNIFICATION(t1.l, t2.l, C);
16 if isRedundant(¬t1.c, C) then return UNIFICATION(t1.r, t2.r, C);
17 (l1, l2) = UNIFICATION(t1.l, t2.l, C ∪ {t1.c});
18 (r1, r2) = UNIFICATION(t1.r, t2.r, C ∪ {¬t1.c});
19 return ([[t1.c : l1, r1]], [[t1.c : l2, r2]]);

Algorithm 2: ASSIGNT(t, x:=e)

1 if isLeaf(t) then return �ASSIGNA(t, x:=e)�;
2 return [[t.c : ASSIGNT(t.l, x:=e),ASSIGNT(t.r, x:=e)]];

Transfer functions. The transfer functions for forward assignments (ASSIGNT)
and expression-based tests (FILTERT) modify only leaf nodes of a constraint-
based decision tree. In contrast, transfer functions for variability-specific con-
structs, such as feature-based tests (FEAT-FILTERT) and #if-s (IFDEFT) add,
modify, or delete decision nodes of a decision tree. This is due to the fact that
the analysis information about program variables is located in leaf nodes, while
the information about feature variables is located in decision nodes.

Transfer function ASSIGNT for handling an assignment x:=e in the input tree
t is described by Algorithm 2. Note that x ∈ Var, and e ∈ Exp may contain only
program variables. We apply ASSIGNA to each leaf node a of t, which substitutes
expression e for variable x in a. Similarly, transfer function FILTERT for handling
expression-based tests e ∈ Exp is implemented by applying FILTERA leaf-wise.

Transfer function FEAT-FILTERT for feature-based tests θ is described by
Algorithm 3. It reasons by induction on the structure of θ (we assume negation is
applied to atomic propositions). When θ is an atomic constraint over numerical
features (Lines 2,3), we use FILTERD to approximate θ, thus producing a set of
constraints J , which are then added to the tree t, possibly discarding all paths of
t that do not satisfy θ. This is done by calling function RESTRICT(t,K, J), which
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Algorithm 3: FEAT-FILTERT(t, θ)

1 switch θ do
2 case (eFZ ./ eFZ) || (¬(eFZ ./ eFZ)) do
3 J = FILTERD(>D, θ); return RESTRICT(t,K, J)

4 case θ1 ∧ θ2 do
5 return FEAT-FILTERT(t, θ1) uT FEAT-FILTERT(t, θ2)

6 case θ1 ∨ θ2 do
7 return FEAT-FILTERT(t, θ1) tT FEAT-FILTERT(t, θ2)

adds linear constraints from J to t in ascending order with respect to <CD as
shown in Algorithm 4. Note that θ may not be representable exactly in CD (e.g.,
in the case of non-linear constraints over F), so FILTERD may produce a set of
constraints approximating it. When θ is a conjunction (resp., disjunction) of two
feature expressions (Lines 4,5) (resp., (Lines 6,7)), the resulting decision trees
are merged by operation meet uT (resp., join tT). Function RESTRICT(t, C, J),
described in Algorithm 4, takes as input a decision tree t, a set C of linear
constraints accumulated along paths up to a node, and a set J of linear constraints
in canonical form that need to be added to t. For each constraint j ∈ J , there
exists a boolean bj that shows whether the tree should be constrained with
respect to j or with respect to ¬j. When J is not empty, the linear constraints
from J are added to t in ascending order with respect to <CD . At each iteration,
the smallest linear constraint j is extracted from J (Line 9), and is handled
appropriately based on whether j is smaller (Line 11–15), or greater or equal
(Line 17–21) to the constraint at the node of t we currently consider.

Finally, transfer function IFDEFT is defined as:

IFDEFT(t, #if (θ) s) = [[s]]T(FEAT-FILTERT(t, θ)) tT FEAT-FILTERT(t, ¬θ)

where [[s]]T(t) denotes the transfer function in T(CD,A) for statement s.
After applying transfer functions, the obtained decision trees may contain

some redundancy that can be exploited to further compress them. Function
COMPRESST(t, C), described by Algorithm 5, is applied to decision trees t in order
to compress (reduce) their representation. We use five different optimizations.
First, if constraints on a path to some leaf are unsatisfiable, we eliminate that
leaf node (Lines 9,10). Second, if a decision node contains two same subtrees,
then we keep only one subtree and we also eliminate the decision node (Lines
11–13). Third, if a decision node contains a left leaf and a right subtree, such that
its left leaf is the same with the left leaf of its right subtree and the constraint in
the decision node is less or equal to the constraint in the root of its right subtree,
then we can eliminate the decision node and its left leaf (Lines 14,15). A similar
rule exists when a decision node has a left subtree and a right leaf (Lines 16,17).

Lifted analysis. The abstract operations and transfer functions of T(CD,A) can
be used to define the lifted analysis for program families. Tree tin at the initial
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Algorithm 4: RESTRICT(t, C, J)

1 if isEmpty(J) then
2 if isLeaf(t) then return t;
3 if isRedundant(t.c, C) then return RESTRICT(t.l, C, J);
4 if isRedundant(¬t.c, C) then return RESTRICT(t.r, C, J);
5 l = RESTRICT(t.l, C ∪ {t.c}, J) ;
6 r = RESTRICT(t.r, C ∪ {¬t.c}, J) ;
7 return ([[t.c : l, r]]);

8 else
9 j = min<CD

(J) ;

10 if isLeaf(t) ∨ (isNode(t) ∧ j <CD t.c) then
11 if isRedundant(j, C) then return RESTRICT(t, C, J\{j});
12 if isRedundant(¬j, C) then return �⊥A�;
13 if j =CD t.c then (if bj then t = t.l; else t = t.r) ;
14 if bj then return ([[j : RESTRICT(t, C ∪ {j}, J\{j}),�⊥A�]]) ;
15 else return ([[j :�⊥A�, RESTRICT(t, C ∪ {j}, J\{j})]]) ;

16 else
17 if isRedundant(t.c, C) then return RESTRICT(t.l, C, J);
18 if isRedundant(¬t.c, C) then return RESTRICT(t.r, C, J);
19 l = RESTRICT(t.l, C ∪ {t.c}, J) ;
20 r = RESTRICT(t.r, C ∪ {¬t.c}, J) ;
21 return ([[t.c : l, r]]);

location has only one leaf node >A and decision nodes that define the set K. Note
that if K ≡ true, then tin = >T. In this way, we collect the possible invariants in
the form of decision trees at all program locations.

We establish correctness of the lifted analysis based on T(CD,A) by showing
that it produces identical results with tuple-based domain AK. Let [[s]]T and [[s]]
denote transfer functions of statement s in T(CD,A) and AK, respectively. Recall
that ain =

∏
k∈K>A, and so γT(tin) = γ(ain).

Theorem 1. γT
(
[[s]]T(tin)

)
= γ

(
[[s]](ain)

)
.

Proof. The proof is by induction on the structure of s. We consider the most
interesting cases: #if (θ) s #endif. Transfer functions for #if are identical in
both lifted domains. We only need to show that FEAT-FILTER(a, θ) and FEAT-
FILTERT(t, θ) are identical. This is shown by induction on θ [13]. ut

Example 5. Let us consider the code base of a program family P given in Fig. 4.
It contains only one numerical feature SIZE with domain N. The decision tree
inferred at the final location 4© is depicted in Fig. 5. It uses the Interval domain
for both decision and leaf nodes. Note that the constraint (SIZE < 3) does
not explicitly appear in the code base, but we obtain it in the decision tree
representation. This shows that partitioning of the configuration space K induced
by decision trees is semantics-based rather than syntactic-based.
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Algorithm 5: COMPRESST(t, C)

1 switch t do
2 case �n�do
3 return �n�;
4 case [[t.c : l, r]] do
5 l′ = COMPRESST(t.l, C ∪ {t.c}) ;
6 r′ = COMPRESST(t.r, C ∪ {¬t.c}) ;
7 switch l′, r′ do
8 case �n′l�,�n′r�do
9 if UNSAT(C ∪ {t.c}) then return �n′r�;

10 if UNSAT(C ∪ {¬t.c}) then return �n′l�;
11 if n′l = n′r then return �n′l�;

12 case [[c1 : l1, r1]], [[c2 : l2, r2]] when c1 = c2 ∧ l1 = l2 ∧ r1 = r2 do
13 return [[c1 : l1, r1]];

14 case �n′l�, [[c2 : l2, r2]] when �n′l�= l2 ∧ c ≤CD c2 do
15 return [[c2 : l2, r2]];

16 case [[c1 : l1, r1]],�n′r�when �n′r�= r1 ∧ c1 ≤CD c do
17 return [[c1 : l1, r1]];

18 case default: do
19 return [[t.c : l′, r′]];

1© int x := 0;
2© #if (SIZE ≤ 4) x := x+1; #else x := x-1; #endif

3© #if (SIZE==3 || SIZE==4) x := x-2; #endif 4©

Fig. 4: Code base for program family P .

SIZE<3

[x=1] [x=-1]

Fig. 5: Decision tree at loc. 4© of P .

Example 6. Let us consider the code base of a program family P ′ given in Fig. 6.
It contains one numerical feature A with domain [1, 4] and a non-linear feature
expression A ∗ A < 9. At program location 2©, FEAT-FILTERT(�x = 0�, A ∗ A < 9)
returns an over-approximating tree �x = 0�, whereas FEAT-FILTERT(�x =
0�,¬(A ∗ A < 9)) returns [[A ≥ 3,�x = 0�,�⊥I�]]. In effect, we obtain an
over-approximating result at the final program location 3© as shown in Fig. 7.
The precise result at the program location 3©, which can be obtained in case we
have numerical domains that can handle non-linear constraints, is given in Fig. 8.
We observe that when ¬(A ≤ 2), we obtain an over-approximating analysis result
(−1≤x≤1 instead of x = −1) due to the over-approximation of the non-linear
feature expression in the numerical domains we use. ut
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1© int x := 0;
2© #if (A ∗ A < 9) x := x+1;

#else x := x-1; #endif 3©

Fig. 6: Code base for P ′.

A≤2

[x=1] [−1≤x≤1]

Fig. 7: Over-approximating
decis. tree at loc. 3© of P ′.

A≤2

[x=1] [x=-1]

Fig. 8: Precise decision
tree at loc. 3© of P ′.

6 Evaluation

Implementation We have developed a prototype lifted static analyzer, called
SPLNum2Analyzer, that uses lifted abstract domains of tuples AK and deci-
sion trees T(CD,A). The abstract domains A for encoding properties of tuple
components and leaf nodes as well as the abstract domain D for encoding linear
constraints over numerical features are based on intervals, octagons, and poly-
hedra domains. Their abstract operations and transfer functions are provided
by the APRON library [19]. Our proof-of-concept implementation is written
in OCaml and consists of around 6K lines of code. The current front-end of
the tool accepts programs written in a (subset of) C with #if directives, but
without struct and union types. It currently provides only a limited support
for arrays, pointers, and recursion. The only basic data type is mathematical
integers. SPLNum2Analyzer automatically infers numerical invariants in all
program locations corresponding to all variants in the given family. We use
delayed widening and narrowing [7,24] to improve the precision of while-s.

Experimental setup and Benchmarks All experiments are executed on a 64-bit
IntelrCoreTM i7-8700 CPU@3.20GHz × 12, Ubuntu 18.04.5 LTS, with 8 GB
memory, and we use a timeout value of 300 sec. All times are reported as average
over five independent executions. The implementation, benchmarks, and all
results obtained from our experiments are available from: https://github.com/
aleksdimovski/SPLNUM2Analyzer. In our experiments, we use three instances
of our lifted analysis via tuples: AΠ(I), AΠ(O), and AΠ(P ), and via decision
trees: AT(I), AT(O), and AT(P ), which use intervals, octagons, and polyhedra
domains as parameters, respectively.

SPLNum2Analyzer was evaluated on a dozen of C programs collected from
several categories of the 8th International Competition on Software Verification
(SV-COMP 2019, https://sv-comp.sosy-lab.org/2019/): loops, loop-invgen

(invgen for short), loop-lit (lit), termination-crafted (crafted); as well
as from the real-world BusyBox project (https://busybox.net). In the case of
SV-COMP, we have first selected some numerical programs with integers, and
then we have manually added variability (features and #if directives) in each
of them. In the case of BusyBox, we have first selected some programs with
numerical features, and then we have simplified those programs so that our tool
can handle them. For example, any reference to a pointer or a library function is
replaced with [−∞,+∞]. Table 1 presents characteristics of the benchmarks. We

https://github.com/aleksdimovski/SPLNUM2Analyzer
https://github.com/aleksdimovski/SPLNUM2Analyzer
https://sv-comp.sosy-lab.org/2019/
https://busybox.net


16 A. S. Dimovski et al.

Table 1: Performance results for lifted static analyses based on decision trees vs.
tuples (which are used as baseline). All times are in seconds.

Benchmark folder |F| |K| LOC
AT(I) AT(O) AT(P )

Time Impr. Time Impr. Time Impr.

half 2.c invgen 2 36 60 0.010 2.4× 0.017 3.5× 0.022 4.6×
heapsort.c invgen 2 36 60 0.036 2.2× 0.226 1.1× 0.191 2.0×
seq.c invgen 3 125 40 0.039 9.3× 0.460 4.3× 0.164 11×
eq1.c loops 2 36 20 0.015 3.4× 0.049 3.1× 0.052 4×
eq2.c loops 2 25 20 0.013 1.9× 0.047 1.3× 0.040 1.9×
sum01*.c loops 2 25 20 0.016 1.7× 0.086 1.5× 0.062 2.2×
hhk2008.c lit 3 216 30 0.023 10× 0.153 4.5× 0.074 12.5×
gsv2008.c lit 2 25 25 0.013 1.5× 0.035 1.2× 0.037 2×
gcnr2008.c lit 2 25 30 0.021 2× 0.070 2.1× 0.102 2.6×
Toulouse*.c crafted 3 125 75 0.043 6.1× 0.259 2.4× 0.175 7.6×
Mysore.c crafted 3 125 35 0.019 3.7× 0.090 1.1× 0.056 5.4×
copyfd.c BusyBox 1 16 84 0.013 3.9× 0.041 6.2× 0.054 5.2×
real path.c BusyBox 2 128 45 0.023 14× 0.077 28× 0.085 32×

list: the file name (Benchmark), the category (folder), the number of features
and configurations (|F|, |K|), and lines of code (LOC).

Performance Results Table 1 shows the results of analyzing our benchmark files
by using different versions of our lifted static analyses based on decision trees
and on tuples. For each version of decision tree-based lifted analysis, there are
two columns. In the first column, Time, we report the running time in seconds
to analyze the given benchmark using the corresponding version of lifted analysis
based on decision trees. In the second column, Impr., we report the speed up
factor for each version of lifted analysis based on decision trees relative to the
corresponding baseline lifted analysis based on tuples (AT(I) vs. AΠ(I), AT(O)
vs. AΠ(O), and AT(P ) vs. AΠ(P )). The performance results confirm that sharing
is indeed effective and especially so for large values of |K|. On our benchmarks,
it translates to speed ups (i.e., (AT(−) vs. AΠ(−)) that range from 1.1 to 4.6
times when |K|<100, and from 3.7 to 32 times when |K|>100.

Computational tractability The tuple-based lifted analysis AΠ(−) may become
very slow or even infeasible for very large configuration spaces |K|. We have tested
the limits of AΠ(P ) and AT(−). We took a method, testkn(), which contains n
numerical features A1, . . . , An, such that each numerical feature Ai has domain
dom(Ai) = [0, k − 1] = {0, . . . , k − 1}. The body of testkn() consists of n sequen-
tially composed #if-s of the form #if (Ai = 0) i := i+1 #else i := 0 #endif

For example, test32() with two features A1 and A2, whose domain is [0, 2], is:

1© int i := 0;
2© #if (A1 = 0) i := i+1 #else i := 0 #endif
3© #if (A2 = 0) i := i+1 #else i := 0 #endif 4©
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(A1=0∧A2=0︷ ︸︸ ︷
[i = 2] ,

A1=0∧A2=1︷ ︸︸ ︷
[i = 0] ,

A1=0∧A2=2︷ ︸︸ ︷
[i = 0] ,

A1=1∧A2=0︷ ︸︸ ︷
[i = 1] ,

A1=1∧A2=1︷ ︸︸ ︷
[i = 0] ,

A1=1∧A2=2︷ ︸︸ ︷
[i = 0] ,

A1=2∧A2=0︷ ︸︸ ︷
[i = 1] ,

A1=2∧A2=1︷ ︸︸ ︷
[i = 0] ,

A1=2∧A2=2︷ ︸︸ ︷
[i = 0]

)
Fig. 9: AΠ(P ) results at 4© of test32().

A2=0

A1=0 [i=0]

[i=2] [i=1]

Fig. 10: AD(P ) results at 4© of test32().

Subject to the chosen configuration, the variable i in location 4© can have a
value in the range from value 2 when A1 and A2 are assigned to 0, to value 0 when
A2 ≥ 1. The analysis results in location 4© of test32() obtained using AΠ(P ) and
AT(P ) are shown in Fig. 9 and Fig. 10, respectively. AΠ(P ) uses tuples with 9
interval properties (components), while AT(P ) uses 3 interval properties (leafs).

Table 2: The performance results of analyzing testkn.

n
k = 3 k = 5 k = 7

AΠ(P ) AT(P ) Impr. AΠ(P ) AT(P ) Impr. AΠ(P ) AT(P ) Impr.

5 0.164 0.137 1.2× 2.859 0.139 20.6× 19.976 0.138 144.7×
6 0.701 0.293 2.4× 23.224 0.294 79.1× infeasible 0.299 ∞×
8 17.420 1.761 9.9× infeasible 1.765 ∞× infeasible 1.767 ∞×
10 278.7 5.591 49.8× infeasible 5.596 ∞× infeasible 5.639 ∞×
11 infeasible 13.807 ∞× infeasible 13.859 ∞× infeasible 13.809 ∞×
14 infeasible 327.10 ∞× infeasible 442.23 ∞× infeasible 459.19 ∞×

We have generated methods testkn() by gradually increasing variability. In
general, the size of tuples used by AΠ(P ) is kn, whereas the number of leaf
nodes in decision trees used by AT(P ) in the final program location is n + 1.
The performance results of analyzing testkn, for different values of n and k,
using AΠ(P ) and AT(P ) are shown in Table 2. In the columns Impr., we report
the speed-up of AT(P ) with respect to AΠ(P ). We observe that AT(P ) yields
decision trees that provide quite compact and symbolic representation of lifted
analysis results. Since the configurations with equivalent analysis results are
nicely encoded using linear constraints in decision nodes, the performance of
AT(P ) does not depend on k, but only depends on n. On the other hand, the
performance of AΠ(P ) heavily depends on k. Thus, within a timeout limit of 300
seconds, the analysis AΠ(P ) fails to terminate for test311, test58, and test76. In
summary, we can conclude that decision trees AT(P ) can not only greatly speed
up lifted analyses, but also turn previously infeasible analyses into feasible.
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7 Related Work

Decision-tree abstract domains have been successfully used in the field of abstract
interpretation recently [18,9,4,26]. Decision trees have been applied for the disjunc-
tive refinement of Interval domain [18]. That is, each element of the new domain
is a propositional formula over interval linear constraints. Segmented decision
tree abstract domains has also been defined [9,4] to enable path dependent static
analysis. Their elements contain decision nodes that are determined either by
values of program variables [9] or by the branch (if) conditions [4], whereas the
leaf nodes are numerical properties. Urban and Mine [26] use decision tree-based
abstract domains to prove program termination. Decision nodes are labelled
with linear constraints that split the memory space and leaf nodes contain affine
ranking functions for proving program termination.

Recently, two main styles of static analysis have been a topic of considerable
research in the SPL community: a dataflow analysis from the monotone framework
developed by Kildall [21] that is algorithmically defined on syntactic CFGs, and an
abstract interpretation-based static analysis developed by Cousot and Cousot [7]
that is more general and semantically defined. Brabrand et. al. [3] lift a dataflow
analysis from the monotone framework, resulting in a tuple-based lifted dataflow
analysis. Another efficient implementation of the lifted dataflow analysis from the
monotone framework is based on using variational data structures [27]. Midtgaard
et. al. [22] have proposed a formal methodology for systematic derivation of tuple-
based lifted static analyses in the abstract interpretation framework. A more
efficient lifted static analysis by abstract interpretation obtained by improving
representation via BDD domains is given in [11]. Another approach to speed up
lifted analyses is by using so-called variability abstractions [14,15], which are
used to derive abstract lifted analyses. They tame the combinatorial explosion
of the number of configurations and reduce it to something more tractable by
manipulating the configuration space. The work [5] presents a model checking
technique to analyze probabilistic program families.

8 Conclusion

In this work we employ decision trees and widely-known numerical abstract
domains for automatic inference of invariants in all locations of C program
families that contain numerical features. In future, we would like to extend the
lifted abstract domain to also support non-linear constraints [17]. An interesting
direction for future work would be to explore possibilities of applying variability
abstractions [14] as yet another way to speed up lifted analyses. We can also
define a backward lifted analysis in combination with a preliminary forward lifted
analysis to infer the necessary preconditions in order a given assertion to be
satisfied or violated. The obtained preconditions in the form of linear constraints
can be analyzed using model counting techniques to quantify how likely is an
input or a variant to satisfy them [16,12].
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24. Antoine Miné. Tutorial on static inference of numeric invariants by abstract
interpretation. Foundations and Trends in Programming Languages, 4(3-4):120–372,
2017.

25. Daniel-Jesus Munoz, Jeho Oh, Mónica Pinto, Lidia Fuentes, and Don S. Batory.
Uniform random sampling product configurations of feature models that have
numerical features. In Proceedings of the 23rd International Systems and Software
Product Line Conference, SPLC 2019, Volume A, pages 39:1–39:13. ACM, 2019.
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