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Abstract

MapReduce frameworks allow programmers to write distributed, data-
parallel programs that operate on multisets. These frameworks offer con-
siderable flexibility to support various kinds of programs and data. To
understand the essence of the programming model better and to provide
a rigorous foundation for optimizations, we present an abstract, functional
model of MapReduce along with a number of customization options. We
demonstrate that the MapReduce programming model can also represent
programs that operate on lists, which differ from multisets in that the or-
der of elements matters. Along with the functional model, we offer a cost
model that allows programmers to estimate and compare the performance
of MapReduce programs. Based on the cost model, we introduce two
transformation rules aiming at performance optimization of MapReduce
programs, which also demonstrates the usefulness of our model. In an
exploratory study, we assess the impact of applying these rules to two
applications. The functional model and the cost model provide insights
at a proper level of abstraction into why the optimization works.

1 Introduction
Since the advent of (cheap) cluster computing with Beowulf Linux clusters in
the 1990s [1], Google’s MapReduce programming model [2] has been one of the
contributions with highest practical impact in the field of distributed comput-
ing. MapReduce is closely related to functional programming, especially to the
algebraic theory of list homomorphisms: functions that preserve list structure.
List homomorphisms facilitate program composition, optimization of intermedi-
ate data, and parallelization. To put these theoretical benefits to practical use,
we strive for a combination of the formal basis of list homomorphisms with the
scalability and industrial-strength distributed implementation of MapReduce.

MapReduce Programming Model Viewed at an abstract level, MapReduce
is a simple data-parallel programming model enhanced with sorting, grouping,
and reduction capabilities, and with the ability to scale to very large volumes of
data. Looking more closely, MapReduce offers many customization options with
many interdependences. For example, one can set the total amount of buffer
memory to be used during sorting, as well as the total memory available to a
task—a value by which the former parameter is bounded. Another example is
the SortComparator function: the user can supply a custom function to spec-
ify the order in which the members of a group will be passed to the Reducer
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function of a MapReduce program, but the same parameter will also be used
to specify groups that are passed to another function, the Combiner function.
MapReduce programmers must keep many details in mind. Making the wrong
choices can result in two kinds of bugs: correctness bugs and performance bugs.
First, the program may be incorrect, which may be noticed only for larger
inputs—a condition which makes testing difficult. Second, the program may be
correct, but it may run not much faster than a sequential program, yet consume
far more resources. The program may even fail due to a lack of resources. So,
our foremost question is: What is the essence of the MapReduce programming
model? Answering this question will help to avoid these bugs. To address it,
we develop a functional model, an abstract view of the behavior of MapReduce
computations.

Cost Model The functional model also allows us to extract the primitive op-
erations that we have to consider in a corresponding cost model for MapReduce
computations, which we develop on top. The cost model includes startup, com-
putation, and I/O costs for the different phases of a MapReduce computation.
It is parameterized with the input size of the problem to be solved, with selected
properties of the MapReduce program executed, as well as with properties of
the MapReduce cluster environment on which the program is being run. This
helps the programmer to estimate the scaling behavior, and to compare differ-
ent MapReduce programs, taking the underlying cluster platform into account.
More importantly, the cost model is the foundation for the optimization rules
that we develop further on.

Focus on Order We put a special focus on a class of MapReduce programs
that operate on lists, in which elements are ordered by their position. Stan-
dard MapReduce programs work only on multisets, in which order is of no
importance. This is explained by the fact that, in a distributed computation, it
can become very costly to preserve (list) order, because this requires additional
synchronization between distributed nodes. So, there are good reasons for the
MapReduce programming model not to preserve order by default. Still, there are
many practical uses of MapReduce programs that operate on lists, for example,
the Maximum Common Subsequence problem, or the analysis of consecutive re-
visions of a file in version control systems for the accumulated effect of changes,
or different analyses of financial time series (of stock prices), or many others
that are formulated in a (sequential) way that requires list structure implicitly.
We demonstrate that, with our functional model, it is possible—with reasonable
extra effort—to write MapReduce programs that respect list order. To this end,
we require that the input data be encoded as a sequence of key–value pairs with
consecutive indices as keys. Furthermore, we describe which of the user-defined
functions (with which the MapReduce framework is parameterized) need to be
made order-aware, and we give example implementations of them. We do not
have to change the MapReduce framework itself.

Optimization Rules To demonstrate the expressiveness and applicability of
the model, we propose optimization rules for MapReduce programs that are
applicable to two important classes of parallel algorithms. These classes are



1. multiset homomorphisms that aggregate data to produce a small result,
and

2. list homomorphisms that aggregate data to produce a small result.

We formulate the optimization rules based on our functional model. Using our
cost model, we show that these rules are beneficial when applied to MapReduce
computations on input sizes above a certain threshold. Furthermore, we validate
these theoretical predictions in practical experiments.

Experiments We have conducted a series of experiments to evaluate our cost
model and optimization rules on a 16-node, 128-core Hadoop cluster. (Apache
Hadoop MapReduce [3] is the most widely used MapReduce framework, written
in Java.) To this end, we use the example problems described next, create
different Hadoop Java programs per problem, and measure and compare their
executions on the Hadoop cluster. We obtain speedups between 16 and more
than 64 for larger input sizes. These results provide initial evidence that the
functional and cost model are practical and that the optimization rules work.

Example Programs For experimentation, we have developed, for two canon-
ical problems, different Hadoop MapReduce programs that vary in parallelism
and performance. The two problems are the Maximum (Max) problem and the
Maximum Segment Sum (MSS) problem [4, 5], of which the latter is a classical
example of data-parallel programming, skeletal parallelism, and list homomor-
phisms [6]. These problems are canonical in the sense that they represent a
whole class of useful and relevant applications. For example, the Max problem
can easily be extended to record also the indices of the maximal elements in the
input, or changed to perform a sum computation instead. Basically, all stan-
dard database aggregation operators are covered by the Max example, along
with many customization possibilities not easily possible in standard database
management systems.

For each of these two problems, we have created three MapReduce programs.
Beginning with a sequential program, we use a first optimization rule to intro-
duce parallelism without sacrificing correctness, which leads us to a two-step
parallel program involving huge amounts of communication. Then, we use a
second optimization rule to fuse both steps into a single-step parallel program
with minimized communication. For the Max problem, these optimizations are
just more formal and structured descriptions of best practices, whereas for the
MSS problem, they involve intricate control of list order to preserve correctness.

Contributions Let us summarize our contributions:

• a formal model of MapReduce programs suitable for optimization (com-
prising a functional model and a cost model),

• an approach to write MapReduce programs that operate on lists instead
of on multisets only,

• a total of four optimization rules for MapReduce programs formulated on
top of our formal model,

• experiments to validate the model and the optimization rules.



Structure The rest of this article is structured as follows, In Section 2, we give
some background on the relevant functional concepts of MapReduce and discuss
related work. In Section 3, we introduce our functional model and cost model
of MapReduce computations. Section 4 presents the optimization rules appli-
cable to two classes of MapReduce algorithms: multiset homomorphisms and
list homomorphisms. To be able to deal with list homomorphisms, we present
a general approach for creating MapReduce programs that depend on proper
handling of list order. In Section 5, we apply each rule to an example pro-
gram. To this end, we start with a simple Maximum computation and continue
with the Maximum Segment Sum problem—thereby outlining our approach to
write MapReduce programs that operate on lists. We report on an exploratory
performance evaluation, using these examples on a practical Hadoop cluster.
In Section 7, we conclude and outline avenues of further work.

2 Background
Let us discuss the background on Google’s MapReduce as well as on universal
algebra and list homomorphisms, on which our work is based.

2.1 MapReduce
MapReduce is a framework for large-scale, distributed, data-intensive batch
processing, developed by Google. Google has promoted MapReduce in several
publications [2, 7, 8], which has lead to the creation of multiple alternative im-
plementations and their adoption in industry. In parallel, many research groups
from different communities have pinpointed limitations and proposed improve-
ments, extensions, and alternative frameworks in over a thousand publications
to day that cite one of Google’s MapReduce publications [9].

Mapper and Reducer Conceptually, MapReduce is an algorithmic template
that leaves, in the simplest variant, two functions to be implemented by the
user. The Mapper function transforms a key and a value to a list of key–value
pairs; the type of keys may differ from the type of values. The Reducer function
transforms its parameters—a key and a list of values—to a list of key–value pairs.
The framework applies these functions in the following manner, yielding a useful
template applicable to many problems: It applies the Mapper function to all key–
value pairs in the input, groups the resulting intermediate data by key, applies
the Reducer function to each group, and, finally, stores all the results. All this
happens in a distributed fashion and, after a brief startup phase, without any
sequencing.

Infrastructure A distributed implementation of the MapReduce framework
requires an underlying distributed file system to access input data, giving pref-
erence to local access, and to store output and log data. Consequently, Map-
Reduce normally runs as a set of server processes on each node in a cluster, and
manages most of the available disk space.



Hadoop ApacheHadoop1 [3] is an open-source Java implementation of Google’s
MapReduce and the distributed Google File System. Users can choose to run it
in their own environment or on a virtual cluster in a cloud environment. Hadoop
is the MapReduce implementation most widely used today, available in different
distributions from different vendors. It was this maturity and popularity that
let us chose to base our work on Hadoop MapReduce. From now on, we will
mean Hadoop MapReduce when we speak of MapReduce, and few details may
be specific to this implementation.

Further Functions In MapReduce, partitioning is done (usually by hashing)
to form larger chunks (that is, partitions) of intermediate data to be grouped.
Grouping and (optional) ordering of the data in each partition are achieved by
an external sorting function. MapReduce operates on pairs of keys and values
(although, theoretically, one could, in the Mapper, store all data in the keys, thus
making the values obsolete). Between the execution of Mapper and Reducer,
all intermediate data are re-distributed to the different nodes in the cluster,
as specified by the partitioning. To reduce the amount of communication, an
additional Combiner function can be used, which the framework can invoke on
parts of intermediate data to reduce their volume. For example, MapReduce
can be used with Combiner functions to count the number of occurrences of each
word in a set of documents: The Mapper function extracts each word from a
document, uses it as the key and associates it with the value 1 as the occurrence
count. The Reducer function then accepts a word together with a long list of 1’s
and computes the sum. Finally, a Combiner function sum up all the local values
of a node executing the Mapper function, before they are transmitted over the
network and passed to the Reducer function.

Data Parallelism MapReduce aims at data parallelism, in which each con-
stituting piece of data is (implicitly) processed by the same function in parallel.
This is in contrast to task parallelism, in which possibly heterogeneous concur-
rent tasks (or threads) need to be created explicitly and synchronized, while
avoiding deadlocks, starvation, or the corruption of shared data. In data paral-
lelism, the mental model of a programmer can be sequential: there is no need
to consider complex interactions between different parallel processes, because
all interactions are made explicit via function parameters and return values.
Despite the simplicity of this model of parallelism, there are many real applica-
tions.

Task Farming MapReduce employs the concept of task farming : a job is
divided automatically into many tasks. (More exactly, the input data is divided
into many chunks.) Each task is assumed to take the same amount of time to
complete. If this is not the case, we have probably encountered data skew. This
problem is partly solved by creating multiple smaller tasks per processor (core)
in a node, and by the use of dynamic scheduling: tasks are scheduled at run
time, such that the scheduler can react to imbalances. Large differences in task
completion time that are not due to inherent characteristics of the task input
data, but rather stem from temporary differences in node performance in the
distributed environment, are addressed by a specific latency optimization [2].

1http://hadoop.apache.org



2.2 Foundations from Universal Algebra
When we talk about correctness and different classes of MapReduce programs in
our functional model later on, we take an algebraic view of data structures. In
universal algebra, data are represented by basic singleton (one-element) struc-
tures (of type X) and a binary operator ⊕ (of type X→ X→ X) on (non-empty,
basic or complex) data. Assume an operator S from numbers to a singleton
structure of type X, we can formulate the following example data structure (sub-
sequently named d1): (S(0)⊕S(7))⊕S(0), which we will use in the remaining
discussion.

Trees, Lists, Multisets, and Sets The data structure defined varies depend-
ing on the algebraic properties of the binary operator ⊕ used in our example.
In particular, these properties specify which instances of the data structure are
considered equal, that is, cannot be distinguished. This will be important later
on when optimizing MapReduce programs (Section 4), because the optimiza-
tions require some of the following properties to hold for the data processed and
the user-defined functions employed.

• If we know nothing about operator ⊕, we need to store all information
of the operator tree defining an instance like d1: We have defined a tree,
the simplest (easiest to define) data structure in algebra. Trees are only
considered equal iff their syntactical representations are identical. For ex-
ample, the following tree t2 differs from tree d1, because it has a different
structure: S(0)⊕ (S(7)⊕ S(0)).

• If operator ⊕ is known to be associative (∀ xs, ys, zs : xs, ys, zs ∈ X :
(xs⊕ys)⊕zs = xs⊕(ys⊕zs)), we can neglect the operator/tree structure
and use a linear representation without parentheses: we are speaking of
lists. As lists, both d1 and t2 are the same as the following l1: S(0) ⊕
S(7)⊕ S(0). Yet they are all different from this l2: S(0)⊕ S(0)⊕ S(7).

• If, in addition to associativity, we also have the commutativity (∀ xs, ys :
xs, ys ∈ X : xs ⊕ ys = ys ⊕ xs) of ⊕, we can also neglect the order of
construction. We can, for example, choose some arbitrary order to define
a normal form to represent the elements of this multiset (or bag), thereby
grouping multiple identical elements. Alternatively, we may choose not to
impose a specific order, but rather work with any existing ordering, which
is very useful in a distributed context, in which any order, if imposed,
would necessitate synchronization. As multisets, l1 and l2 and the fol-
lowing m1: S(7) ⊕ S(0) ⊕ S(0) are equal, too. Still, they differ from the
following m2: S(0)⊕ S(7).

• Finally, if the operator ⊕ is also idempotent (∀ xs : xs ∈ X : xs⊕xs = xs),
we do not even need to consider multiples of an element: we have defined
sets. As sets, m1 and m2 and the following s1: S(7)⊕ S(0) are also equal.

Of course, the simplest data structure to use is the set, which is why it
plays such an important role in mathematics and also, for example, in the
semantics of relational databases.



As an aside, there are also are other important properties, for example, the
existence of a (left/right) neutral element to allow for empty data, and other
combinations of the algebraic properties mentioned.

2.3 Correctness Conditions for Combiner Functions
A Combiner function is a Reducer function whose output type coincides with its
input type and that is associative and commutative (when viewed as a binary
operator ⊕ on individual key–value pairs (k1, v1)). When viewed as a unary
function (for example, function C of type X → X) on multisets, it should also
be idempotent (∀ xs : xs ∈ X : C(C(xs)) = C(xs)), because it may be applied
multiple times (at least, in newer versions of Hadoop). The Combiner function
may not even be applied at all by the framework. To ensure correctness in
this case, the user-defined Reducer function should first apply the Combiner
function on its input, and may only then conduct an arbitrary computation.

2.4 Combinators and List Homomorphisms
Important ingredients of functional programming are higher-order functions or
combinators—functions that have other functions as parameters or results. In
this sense, they are (usually very small) algorithmic templates.

Lists in Functional Programming Usually, the basic data structure in
functional programming is the immutable linked list. This is why most stan-
dard combinators can be defined on lists. Such a list, if finite, corresponds
largely to a stack, which only offers access to one end of the linked data struc-
ture. For example, in the syntax of the functional language Haskell, the type of
homogeneous lists with elements of type a is denoted by [a].

Basic List Combinators Two of the simplest higher-order functions on this
kind of lists are map and reduce. Function map is of type (a→b)→[a]→[b]. It
applies a user-defined function to all elements of an input list, and it returns
an output list consisting of the results of all these applications. The type of
reduce is (a→a→a)→[a]→a. It applies a user-defined associative binary func-
tion successively to two neighboring elements of the list. The consideration of
some special cases is instructive: Because reduce cannot possibly be written to
return any concrete element of an arbitrary type a (a type selected at invocation
time), it cannot handle the empty list. Thus, we will restrict its input to non-
empty lists. If we wanted to allow also non-associative functions as parameters
of reduce, we would have to specify the order of iteration over the list.2

List and Multiset Homomorphisms A list homomorphism is a function
that operates on lists, preserving their algebraic structure. Recall that, in
universal algebra, unlike in functional programming, list structure is defined
through a list concatenation operator, where a list with at least two elements
is viewed as a concatenation of two non-empty segments; in the extreme case,
at least one of the segments is a singleton list. All list homomorphisms can

2In Haskell, a generalized reduce, iterating from left to right with an additionally supplied
initial value is known as foldl.



be written in Haskell as the composition of a map before a reduce combinator.
The function map exposes (massive) independent data parallelism, because its
application-specific function parameter (say f) can be applied to all list elements
in parallel. In parallel functional programming, the function reduce is also as-
sumed to be data-parallel, because, exploiting the associativity of its function
parameter (say g), it can be implemented as a balanced tree of applications of
g; in consequence, its execution requires a logarithmic number of parallel steps.
Applications of list homomorphisms will often also use a post-processing func-
tion, which shall be a constant-time, sequential function. In summary, every
list homomorphism can be formulated in Haskell as [10]:

listHomomorphism = (postProcess) . reduce(g) . map(f)

This code uses the right-to-left function composition operator . , the map and
the reduce combinator, and three user-defined function parameters, each put
between brackets.

A multiset homomorphism is a function that respects the algebraic struc-
ture of multisets. The only difference to a list homomorphism is that a multiset
homomorphism may disregard the order of its input, because the algebraic mul-
tiset concatenation (or better: union) operator is commutative, as we have seen
above. (It follows that the function parameter, say g, of the combinator reduce
must also be commutative.)

MapReduce and Combinators MapReduce does not offer the combinators
map and reduce directly. Rather, it offers a map (or, more exactly, a concatMap),
followed by a groupBy on sorted lists and a second map (concatMap), where the
second map is often parameterized by a user-implemented reduce [11]. This
standard case is known as a segmented reduction in the MPI community [12]
Consequently, although MapReduce is not simply a composition of a reduce
after map (as the name would suggest), there is often a reduce involved in
MapReduce programs. For details, refer to our functional model of MapReduce
(Section 3.1).

Combinators in Practical Distributed Systems We have just seen that
MapReduce is rooted in functional programming with combinators. One of the
Google MapReduce papers [7] even cites earlier work on the parallelization of
combinators [13]. Yet, unlike the combinators used in functional programming,
Google’s MapReduce is available as a robust, large-scale, distributed system
that is used in practice by companies all over the world (in the form of its open-
source clone Apache Hadoop). In this regard, it is comparable with the Message
Passing Interface (MPI) [12], which offers functional combinators (called col-
lective operations) on distributed data, which include, for example, a variant of
reduce and a segmented reduction. Though one can use MPI without using
its collective operations, it has been the distributed platform offering functional
combinators with the most practical impact before the rise of Google’s Map-
Reduce. Of course, the C-based MPI has many downsides from the point of view
of functional or high-level programming, one of which is its lack of abstraction
and a type system: there are no data structures, no static types (everything is
a void*), and in the C implementation, code is not even made type-safe using
run-time checks.



3 A Model of MapReduce
In a first step, we present a functional model of MapReduce. Based on it, we
proceed to develop a cost model. Both models are inspired by the semantics of
Apache Hadoop.

3.1 Functional Model
We use the functional language Haskell [14] to represent our functional model
of MapReduce in a concise way, expressing all transformations as state-less data
flow.

3.1.1 Types

In the functional model, a MapReduce program is expressed as a function
(mapReduce) from input to output that is parameterized with user-defined func-
tions that employ three user-defined types. Function mapReduce is a generic
function, parametric in the types of its input (m), its intermediate data (r),
and its final output (o). We begin with an explanation of the types of the six
user-defined function parameters of function mapReduce.

mapReduce ::
(m -> [r]) -- Mapper

-> ([r] -> [r]) -- Combiner
-> ([r] -> [o]) -- Reducer
-> (r -> r -> Ordering) -- Partitioner
-> (r -> r -> Ordering) -- SortComparator
-> (r -> r -> Ordering) -- GroupingComparator
-> [[m]] -- input
-> [[o]] -- output

The first three parameters of mapReduce (Mapper, Combiner and Reducer; see
the comments) describe transformations from input type m to intermediate type
r, within intermediate type r, and from r to output type o, respectively. All
three functions can produce multiple results or no result at all; this is modeled
with list types as result types. In the same vein, whereas the Mapper input
is a single value, both Combiner and Reducer take a (non-empty) group of
values as input, which is passed lazily as an iterator in Hadoop MapReduce;
we represent this in the functional model with the Haskell list type. We make
the model abstract enough to neglect the possible distinction of key and value,
resulting in a simplification of all types involved. This does not preclude the
possibility to instantiate the model with standard MapReduce key–value pairs—
or, alternatively, with a more database-oriented view in which all data is in the
keys only, and part of these data are projected away when not needed.

Comparator Functions Since we do not distinguish between keys and val-
ues, we need the remaining three function parameters (Partitioner, Sort-
Comparator, and GroupingComparator): they are different comparison oper-
ators, each on two values of the intermediate type r, returning whether their
first value parameter is less than, equal to, or greater than their second parame-
ter, according to a user-defined order. They are used by function mapReduce to



guarantee that intermediate data is sent to the correct partition (Partitioner),
processed together with (only) the values in the correct group (Grouping-
Comparator) in this partition, and that all groups in a partition are processed
in the correct order (SortComparator). (Note that, in Hadoop, Partitioner is
not defined using comparison, but rather using hashing, which enables slightly
faster processing; nevertheless, we abstract from this detail, for consistency with
sorting and grouping.) Finally, function mapReduce takes as a last parameter
a distributed input of values of type m, and produces a distributed output of
values of type o. Using nested lists (denoted [[a]] for elements of type a), we
model the fact that there are multiple values, distributed in different partitions,
and that the individual values in a partition are read or written sequentially.

3.1.2 Basic Syntax

We assume basic knowledge of Haskell syntax and of some standard library func-
tions. Additionally, we use x0 $> f x1 ... xn to denote left-to-right function
application, similarily to object-oriented method calls x0.f(x1, ..., xn) in
Java. (Think of data flowing in the direction of the arrow head to a parameter-
ized function that will process it.) Furthermore, we use custom variants of the
Haskell functions map, concat, groupBy, and mergeBy. Their names carry the
prefix mr (for MapReduce) to mark non-standard behavior; extra prefixes of d
(or s) denote distributed (or sequential) execution, whereby multiple prefixes
describe, from left to right, the computation from the outermost list level to
more deeply nested levels. For example, the prefix ds means outer distributed,
inner sequential computation. So, function dsMap is the map combinator that
applies its argument function to a two-level list, whereby only the outer level
is executed in a distributed manner. All the remaining functions used are de-
scribed next.

3.1.3 Data flow

Our functional model of MapReduce describes the data flow from input to out-
put in different steps.3 The six user-defined function parameters of function
mapReduce all end in F (for function), and they use shortened names (for exam-
ple, mapF for Mapper function).

Let us start with a general remark on the types of the data passed between
the different steps. When the level of nesting of the lists that hold the data
changes between any two consecutive steps, this change is indicated in the com-
ment after the first step with the new type of the data just produced. To enable
this form of explanation, we model explicitly—by means of an extra step in
both Mapper and Reducer tasks—the flattening of the innermost list level using
dMap mrConcat, although this happens implicitly in MapReduce.

Mapper execution We start with the input, which is modeled as a two-level
list with inner elements of type m in Figure 1. The outer level is distributed
across the cluster nodes that execute the Mapper function in parallel, and the
nested lists represent the mostly local data that are read sequentially by each
node. For each input value, the first four steps are executed together in a pipeline

3In reality, all steps are fused, and the only global synchronization happens after the
shuffling.



mapReduce mapF combF redF partF sortF groupF input =
input -- [[ m ]]

-- in Mapper tasks
$> dsMap mapF -- [[[r]]]
$> dMap mrConcat -- [[ r ]]
$> dMap (mrGroupBy partF) -- [[[r]]]
$> dMap (repeatUntilSorted (\ir -> ir

$> sMap combF
$> sMap (oneRunOfExternalSortBy sortF)

))

-- pulled by all Reducer tasks from all Mapper tasks
$> dmrShuffle partF

-- in Reducer tasks
$> dMap (mrMergeBy sortF) -- [[ r ]]
$> dMap (mrGroupBy groupF) -- [[[r]]]
$> dsMap redF
$> dMap mrConcat -- [[ o ]]

Figure 1: Data-flow implementation of the mapReduce function in Haskell;
changes of the nesting depth are indicated in comments.

on the same Mapper node. Overall, this takes place in a distributed fashion in
the Mapper tasks on many cluster nodes (all four functions are prefixed with d):
This way, we can also take the global view of all the data being processed “at
once” on all nodes, producing a single global, distributed result after each of the
four steps:

1. The user-defined Mapper function mapF is applied to each inner element
of the input, possibly producing multiple results (of different type r) per
input element. Consequently, an additional third list level is introduced.

2. The new third list level is then fused (using mrConcat) at the second list
level, denoting sequentially accessed data.

3. The result is grouped according to the user-defined Partitioner function
partF, again producing an additional third list level. Each of the result-
ing third-level lists represents a partition that will be sent to a different
Reducer node.

4. These third-level data are sorted according to the user-defined sort func-
tion sortF. An external sort algorithm is used to cater for intermediate
data too big to fit into the main memory available to the Mapper task
effecting the sort. Sorting possibly requires multiple runs across the data.
These runs are interspersed with calls to the user-defined Combiner func-
tion combF, whose purpose is to combine a list of multiple elements (which
will be equal according to sortF) into a smaller list, this way reducing the
size of intermediate data to be further processed.



Shuffle execution The step in the middle of the computation (dmrShuffle)
models the global communication and synchronization between the computa-
tion by the Mapper tasks just described, and the subsequent computation by
the Reducer tasks. Here, we take again a global view, modeling a completely
distributed computation as a single function call. In practice, each Reducer task
pulls “its” partition of intermediate data from each Mapper task. Synchroniza-
tion is implied by each Reducer task waiting for each Mapper task to supply all
the data needed. This synchronization cannot be avoided, because the merging
procedure done in the next step is a pipeline breaker, a computation that will
not produce output before it has consumed all of its input. (For simplicity, our
function dmrShuffle may use partF, although this is not needed in practical
implementations.)

Reducer execution The last four steps are executed, again, in a distributed
fashion but, this time, in the Reducer tasks on the different nodes. In the
following description, we take a local view of one Reducer task.

1. All sorted partitions (one from each Mapper task) are merged into a single
local list using sortF.

2. The single local list is divided into different groups according to the user-
defined grouping function groupF, creating one more level of nested list
structure.

3. Each of the groups (consisting of multiple elements) is passed in one func-
tion call to the user-defined Reducer function redF, which produces, for
each group, a list of output elements of type o.

4. Finally, all the lists produced by one Reducer task (for different groups)
are fused (using mrConcat) into a single local output list (per Reducer
task).
The distributed list containing all these local lists forms the output of the
MapReduce job.

Overall, we have crafted a data-flow model of MapReduce that is customiz-
able via a handful of function parameters. It is as complex as needed to repre-
sent different classes of MapReduce programs (see Section 4), and as simple as
possible for this undertaking.

3.2 Modelling Performance
We start with some preliminaries about the platforms on which MapReduce
programs are typically executed; then, we give a general overview of the kinds
of resources and costs that our cost model addresses.

Cluster Environment MapReduce is designed for cluster-local execution on
cost-effective homogeneous nodes with large local hard disks. As a consequence,
network latency can largely be ignored. Considering network bandwidth, the
situation is different. Each node’s local bandwidth is limited. And, there is
another bottleneck: for large installations, full network bisection width is very
costly to realize, and thus rare. Because this is likely to change, we do not
consider limits of bisection width.



Chunked I/O An important design goal of MapReduce has been to avoid
random access patterns for input/output (I/O) operations. This is in line with
its functional roots: Customary data structures, such as arrays or graphs, do
not require random memory access, and existing data are never updated, new
data are created instead. As a consequence, MapReduce shares many properties
with data-flow and stream programming, although it is batch-oriented. For I/O,
this means that data are read in large, contiguous chunks using sequential disk
scans; this is also the goal when writing data. Hence, caches are effective in
hiding disk and memory latency, both of which are ignored by our cost model.

Resources Ignoring caches, the following resources remain to be considered:
CPUs (the number of CPU cores), memory and disks (both with bandwidth,
without latency, and with size), and network (with local bandwidth, without
latency). Because the location of data in a MapReduce cluster can hardly be
controlled, we will assume sufficient disk space on every node in the cluster,
and ignore disk size. For reasons of coherence, we will also exclude memory size
from our considerations.

Cost We are interested in MapReduce job latency. This is opposed to other
cost measures such as throughput, or utilization, in a shared cluster or efficiency
of usage of individual resources, as achieved by low-level improvements in the
implementation of the Hadoop framework. We define cost as the minimum
latency of MapReduce job execution on an otherwise unused cluster.

Skew in Data The minimum in this cost measure corresponds to the best
case, which is never attained in practice because of skew in the data: the divi-
sion of the job into tasks is not perfect because it is driven only be the input
size and not by the processing effort needed. Consequently, some tasks take
longer to complete than others. Yet, in practice, there is often only a small
deviation. This is partly due to an optimization that executes speculation a
redundant copy of the slowest tasks that have yet to complete (see the discus-
sion on “stragglers” [7]). But, often enough, there is sufficient skew in either the
input or the intermediate data, to let the MapReduce job in question will never
come close to the best case because some of the tasks in its execution will need
considerably longer than the average to complete. We specifically do not model
this aspect.

Performance Portability Furthermore, we assume the same, fixed process-
ing speed for all CPU cores; we do not model the performance of programs
ported to different hardware (despite the fact that porting a Hadoop program
is easy because it is written in run-anywhere Java for a framework that hides
most machine details).

In summary, we restrict ourselves in several dimensions. Nevertheless, the
experiments confirm that our model of MapReduce performance is relevant,
(see Section 5).



3.3 Cost Model
Given the considerations in Section 3.2, we propose the analytical model of the
performance of MapReduce programs, as shown in Figure 2. It is a linear model
for costing time, so the unit of each summand (1a–h) is time in seconds. Each
summand is a product of a per-unit cost factor and the number of units affected.
The unit differs between startup costs (seconds) and processing costs (seconds
per byte processed).

3.3.1 Basic Parameters

Let us describe the three different kinds of basic parameters, used in the formula
of Figure 2, before we explain the total cost of a MapReduce job (a run of a
MapReduce program in a given environment) and each of its summands in
detail.

Input and Dependent Data (size in bytes)

inputSize is the size of the job’s input in bytes.

mapOutputSize is the total size of the output of all Mapper tasks, directly after
applying the Mapper function only.

combineOutputSize is the total size of the output of all Mapper tasks, after
application of the Combiner function (if applied; otherwise, it is equal to
mapOutputSize).

outputSize is the total size of the job’s output.

These sizes enter into calculations involving the size of data processed by dif-
ferent kinds of tasks.

Cluster Configuration Parameters (various units)

numCpuCores (unitless) is the number of processor cores in the cluster.

chunkSize (size in bytes) is the size of a chunk of data in an I/O operation
(about 64MByte).

These parameters will be used to calculate the number of tasks into which the
MapReduce job is divided.

Program Parameters (unitless)

numReducers is the number of Reducer tasks requested by the program.

numReducersEff is the number of Reducer tasks used effectively: those that
receive data to process; it can be, at most, numReducers (in the best case);
it may be smaller, if there are Reducer tasks that receive little or no data
groups to process. Its actual value depends on how well the user-defined
Partitioner function divides the intermediate data into chunks of equal
size.

Parameter numReducers is the most important tuning parameter for many
MapReduce programs but, in practice, the number of Reducer tasks that do
useful work during a job may be smaller, which is modelled by parameter
numReducersEff .



cost = (1a)

costjobStartup (1b)

+ costtaskStartup ∗
( inputSize
chunkSize + numReducers)

numCpuCores
(1c)

+ (costreadDFS + costMapper) ∗
inputSize

numCpuCores
(1d)

+ (costsort + costCombiner) ∗
mapOutputSize

numCpuCores
(1e)

+ costwrite ∗
combineOutputSize

numCpuCores
(1f)

+ (costreadNet + costmerge + costReducer) ∗
mapOutputSize

numReducersEff
(1g)

+ costwriteDFS ∗
outputSize

numReducersEff
(1h)

Figure 2: The MapReduce cost model.

3.3.2 Explanation of Each Cost Term

Next, we explain the total cost of running a MapReduce program and each of
the cost summands (1a–h) in detail, including the basic costs from which the
cost summands are composed.

Absolute Performance (time in seconds)

cost (1a) is the estimated (minimum) latency of the execution of a MapReduce
job, consisting of a MapReduce program (which may have been defined
just-in-time before execution), a cluster configuration (or the default con-
figuration for local single-threaded execution with one Reducer task only),
and an input to be processed.

We define the total cost as the sum of individual startup costs and processing
costs, as described below. This implies a sequencing and barrier synchronization
between the different processing steps which, in practice, occurs only between
some of these steps. As a consequence, we can model CPU-bound as well as
I/O-bound jobs, but we will over-estimate the costs of jobs that need much pro-
cessing and much I/O. We could model this over-estimation with some maximum
operators, but decided that this would complicate our model unnecessarily.

Startup Costs (time in seconds)

The startup costs depend on the cluster configuration, especially, on whether
execution is local or distributed.

costjobStartup (1b) is the cost incurred when submitting a MapReduce job, in-
cluding the time needed by the Splitter function (see Section 3.3.3 for
more detail) to compute the split boundaries of all files in the input; it
can be ignored for realistic input sizes.



costtaskStartup (1c) is the cost incurred when starting an additional task in
a job. For local execution, is it negligible, whereas it amounts to some
time for distributed execution; it can be ignored if each input file’s size
is larger than chunkSize, the input is divided with a standard Hadoop
Splitter into large partitions, and thus the processing time of each
task outweighs its startup costs. This cost must be multiplied with the
(average) number of tasks (Mapper plus Reducer tasks) per CPU core
(numCpuCores). The number of Reducer tasks is specified explicitly by
parameter numReducers, whereas the number of Mapper tasks depends on
the Splitter used, which, by default, divides each file into chunks of size
of, at most, chunkSize. This is an under-approximation, as we abstract
slightly from the fact that the input consists often of multiple files, whose
sizes may not be multiples of chunkSize. So, in practice, there may be one
additional small chunk per input file.

Processing Costs (1/throughput in seconds/byte)

costreadDFS (1d) is the cost of reading a byte from the distributed file system
(DFS). In most cases, the MapReduce framework schedules Mapper tasks
to be executed on the node on which their input data are located; then,
it is equal to the cost of a local read. Like all other read and write costs,
it includes (de-)serialization overhead.

costMapper is the cost of executing the Mapper function on the byte of input
just read. It is often negligible, but it can be arbitrarily large, depend-
ing on the Mapper code (for example, in the extreme case of running a
complete, possibly non-terminating sequential program in a single Mapper
task). The sum of these two costs has to be multiplied with the (average)
size of the input (inputSize) that is processed in parallel, per CPU core
(numCpuCores).

costsort (1e) is the cost of sorting a byte externally (which is necessary because
the entire task output may not fit into the main memory available to the
Mapper task).

costCombiner is the cost of executing the Combiner function on a byte of input.
As for the Mapper function, this cost depends on the application code.
The sum of the last two cost items has to be multiplied with the size of
the data on which they operate (mapOutputSize), which is often similar
to the size of the input; but, in some cases, it is an order of magnitude
larger, and, in some cases, it is considerably smaller. Furthermore, the
cost model makes the assumptions that sorting is linear and that it only
occurs before the Combiner function sees the data. Both these assump-
tions are gross abstractions: Hadoop MapReduce uses external QuickSort
and MergeSort, and the Combiner function is applied after each of the
normally multiple rounds of external sorting in practice. So, in the worst
case, in which the Combiner function is superfluous because it is the iden-
tity on its input, it will be executed in each round of external sorting on
the entire intermediate data, wasting resources.

costwrite (1f) is the cost of writing a byte to local disk. It is multiplied with
(combineOutputSize), the size of the data on which it operates which, in



most cases, will be considerably smaller than (mapOutputSize), and often
a constant.

costreadNet (1g) is the cost of reading a byte that has to be transmitted across
the cluster network.

costmerge is the cost of externally merging a byte from pre-sorted inputs just
read from the network. This establishes the grouping of the complete input
of one Reducer task into different groups, which will then be processed
by the Reducer function, one group at a time. Additionally, it establishes
the ordering in which the groups are handed over to the Reducer function,
and can also be used to establish some order inside each group.

costReducer is the cost of executing the Reducer function on a byte of input. As
for the Mapper and Combiner functions, this cost depends on the applica-
tion code.

costwriteDFS (1h) is the cost of writing a byte to the distributed file system.
This is a local write plus, typically, two additional redundant copies on
other nodes in the same cluster.

3.3.3 Relation to the Functional Model

Our cost model is based on our functional model. Yet, there are some differences.
First, there are some functions in the functional model that are not explicit

in the cost model. This includes the user-defined comparison functions partF,
sortF, and groupF. These functions are comparison operators on user-defined
data. As such, they should take constant time per comparison, and their total
cost should be subsumed by the costs of sorting and merging, which are already
part of our model. Recall that the choice of function parameter partF influences
the value of numReducersEff heavily, so its effect is already incorporated indi-
rectly in our cost model. In the same vein, we have also mentioned the Hadoop
Splitter function in the cost model without attributing a separate cost to it.
This is legitimate because the Splitter function induces negligible overhead
when it computes the split points for each input file; later on, this guarantees
that each task has at most chunkSize input data to process, so the data will be
more evenly distributed between tasks. Furthermore, we also do not attribute
costs to dmrConcat because, in practice, it does not constitute an extra step
of computation, but rather happens on the fly without incurring a discernible
cost.

Second, there are additional cost terms that do not refer explicitly to el-
ements of the functional model. This includes the startup costs of jobs and
tasks (1a–b), which are considerable for some MapReduce jobs, although they
do not appear in a simplified data-flow view. More importantly, our cost model
contains individual I/O costs for input, intermediate, and output data, which
takes the amount of data transferred at the different stages of a MapReduce
computation into account. We believe that an explicit inclusion of I/O in the
functional data-flow model would complicate this model unnecessarily, whereas,
in the cost model, I/O is too important to omit.



4 Optimization of MapReduce Programs
To demonstrate the feasibility of our functional model and our cost model, we
use them as a basis for formulating optimization rules for MapReduce programs.
The transformations that we discuss in this section aim mainly at performance
optimization. Nevertheless, the transformations are undirected: they can be
applied forward, in the direction of target code, to optimize performance or,
alternatively, backward, in the direction of source code, to refactor MapReduce
programs into a more modular and less tangled form. We formulate two pairs
of transformation rules for MapReduce programs—one pair for each of the al-
gorithm classes considered, as we explain next.

Classes of Algorithms Considered We concentrate on two important classes
of homomorphisms that are compatible with MapReduce, namely, homomor-
phisms on multisets (Section 4.3) and on lists (Section 4.4), both with one
restriction concerning resource consumption: they may only produce a single
result of constant size. To produce a global result, as homomorphisms do, the
MapReduce programs considered here must have a single Reducer task in the
final program step.4 This is in line with the common view that, in the Map-
Reduce world, only linear-time, constant-space algorithms are considered to be
really scalable. More precisely, the size of the data processed by each parallel
task created should be bounded by a constant. As a consequence, all programs
that do not reduce the volume of data massively—using heavy filtering (in the
Mapper function) or heavy reduction (in the Combiner function)—need multi-
ple Reducer tasks in the first MapReduce program step. This also amounts to
producing only a single result of constant size in the single Reducer task in the
last program step, for example, a single maximum value or a single count of
entities of some kind. Results that are more complicated are also allowed, for
example, a histogram of values (which consists of a fixed number of counts of
entities of some kind). Results whose size depends on the size of the input are
not considered. This excludes many simple, embarrassingly parallel map-only
problems, which is okay because we do not consider them to be very interesting.
It also excludes interesting complex data transformations with big distributed
results, which form only a small percentage of MapReduce programs executed,
although the MapReduce programming model really excels at them. In con-
trast, we include most reporting and summarization problems, which makes our
optimizations very relevant in practice.

4.1 Implementing Homomorphisms Using MapReduce
First, we show how to implement basic versions of both classes of homomor-
phisms in MapReduce. We start with multiset homomorphisms and then extend
the approach to include preservation of order, thus handling list homomorphisms
as well.

FromMultiset Homomorphisms to MapReduce Programs MapReduce
does not directly offer the combinators map and reduce, which are normally used
to implement list homomorphisms (see Section 2.4). Let us demonstrate how to

4There is no such restriction on the other program steps in these MapReduce programs.



replace these combinators with appropriate MapReduce counterparts. Because
we need a single global result, computed by taking all input values into account,
we can only use one segment of the segmented reduction, which must contain
all data. Then, although all Mapper tasks can work in parallel in a distributed
fashion, the real work is done sequentially by a single Reducer task. So, the
simplest MapReduce implementation of a homomorphism is effectively sequen-
tial. Furthermore, because we want only a single group in the only segment,
we need to regard all keys as equal during grouping. If the keys are not used
in computing the result, then the simplest way to guarantee this is to project
all input keys to the same constant intermediate key in the Mapper function.5
Then, the function subject to a map in a homomorphism has to be applied to
the current value by the Mapper. Similarly, the function subject to a reduce
in a homomorphism has to be applied to any two values in the iterator by the
Reducer—so, the programmer needs to implement also the reduce combinator
in the Reducer.

From List Homomorphisms to MapReduce Programs Next, we show
how to extend our approach of creating MapReduce programs from multiset
homomorphisms to list homomorphisms. To implement list homomorphisms
in MapReduce, we have to take special care to preserve the order of input
elements in all steps. To begin, we need some representation of the input list
order. We use positions (or indices), for simplicity. In Hadoop MapReduce,
there is no notion of a global index for a datum in the input; to remedy this
limitation, we assume that the input has been preprocessed and each element
is carrying a globally unique index, which is exactly 1 greater than the index
of its predecessor (we will call such indices contiguous). An even better (but
more costly, and thus not pursued) solution would be to use ranges of begin and
end indices, because they allow to represent exactly the segments on which list
homomorphisms work.

4.2 Optimization Rules
We can now proceed to the formalism that we use to describe optimization rules
for MapReduce programs.

Rule Notation Formally, we denote a program transformation rule as follows.
A tuple of original program steps is transformed (denoted by a horizontal line)
into a tuple of new program steps. Often, these tuples only have a single element,
in which case we omit the enclosing parentheses. In all rules, we denote variables
in italics, and constants and predicates in sans-serif font. As a simple but not
very useful example, Rule Example, which divides, under a specific condition,
a MapReduce program s into two MapReduce program steps i and t, would
look as follows:

isCompositionOf(s, (i, t))
s → (i, t)

(Example)

In the condition (premise) of a rule, above the horizontal bar, we use binary
relations (for example, isCompositionOf), whose names hint at their meaning

5Of course, alternatively, one could employ a user-defined GroupingComparator instead.



when they are read as infix relations (“s is composition of (i, t)”). Multiple
conditions are combined with conjunction.

Number of Reducer Tasks as Parameter In addition to the parameters in-
troduced in the functional model (Section 3.1), the transformation rules depend
on the number of Reducer tasks specified in the MapReduce program. We spec-
ify the number of Reducer tasks as an additional parameter that can be either
zero (0), one (1), or more than one (N). These three cases correspond to three
semantically different kinds of behavior: do not execute Reducer tasks, always
execute a single (sequential) task, and execute at least two tasks (in parallel, if
the cluster has more than one CPU core). The latter case corresponds to the
optimal number of parallel, distributed Reducer tasks given the specification of
the problem and the cluster at hand.

4.3 Optimization of Multiset Homomorphisms
Let us describe first the two optimization rules on multiset homomorphisms
(see Section 2.4). The basic idea of the first rule is to parallelize a sequential
MapReduce program, whereas the second rule optimizes this or another parallel
program further by reducing communication overhead and discarding interme-
diate results. Before we come to the rules, we provide some technical context
that is common to both rules.

Context Although there is no order in multisets, programs on multisets make
special use of the three order-related parameters (Partitioner, SortComparator,
and GroupingComparator) of our functional model (see Section 3.1).

• For grouping, all keys are considered equal (allEqualCmp). This gives us
more freedom in defining keys.

• For sorting, we do the same to avoid some of the overhead associated with
sorting.

• We do not change the default (hash) Partitioner function, because it is
well suited for distributing most kinds of data to different partitions.

These order-related functions are the same for all programs treated by the
multiset rules. For brevity, we omit the parameters for SortComparator and
GroupingComparator from all rules. We keep the parameter for the Partitioner
function to be able to show that, in cases that have only a single Reducer task,
the choice of the Partitioner function does not matter (which we denote by
an asterisk, ∗). Other than the order-related parameters, we have four param-
eters for each MapReduce program step: the user-defined Mapper, Combiner,
and Reducer function, and the number of Reducer tasks. Because Combiner
functions are optional in MapReduce, we model the absence of a Combiner func-
tion with the special value ε. Functionally, if we do not consider differences in
performance, this amounts to specifying the identity function as Combiner.



4.3.1 Multiset Parallelization Rule

The first rule (Rule M-Par, short for multiset parallelization) describes the
transformation of a sequential MapReduce program to a potentially faster two-
step MapReduce program with parallelism.6 The two parameters m and r of
the original program describe fully the multiset homomorphism that we want
to optimize.

isCompositionOf(m, (m’, oneKeyMapper))
isMapperFor(m’, (stdPartitioner,N)) isCombinerFor(c, r)

(m, ε, r, 1, ∗) → ((m’, ε, c,N, stdPartitioner), (oneKeyMapper, ε, r, 1, ∗))
(M-Par)

Parallelism In the original program, only the Mapper function is executed
in parallel. We consider the original MapReduce program to be sequential, for
its sequential execution of the single Reducer task. This judgment stems from
the view that it is the Reducer function parameter that is responsible for the
expressiveness of homomorphisms, and of much of MapReduce as well. In the
resulting two-step MapReduce program, the first step is parallel (N means many
Reducer tasks; the number is approximately one Reducer task per processor
core), while the subsequent reduction in the second step is executed sequentially
by a single Reducer task (1). Of course, the only step of the sequential program
has a single Reducer task as well.

Computation on Values, only Grouping on Keys For simplicity, we
have chosen to use the keys of the key–value pairs as meta-data only. So, the
original program needs to store all user data in the value part of the key–value
pairs on which it works, and to use the keys only to make the MapReduce
framework use the default partitioning and grouping (and sorting) on them.
This is asserted by the condition isCompositionOf, which constrains the original
program’s Mapper function m. To this end, it makes use of one special function,
named oneKeyMapper, which has to be predefined to be used in MapReduce
programs for homomorphisms. It maps each input key–value pair to a pair
consisting of a single constant key and the value of the input. This way, we
can guarantee that the output produced by this Mapper function only contains
a single key, which will then lead to a single group to be processed by a single
Reducer task. Likewise, the condition isMapperFor asserts that the Mapper
function m’ in the transformed program produces sufficiently many different
keys to make up N different partitions of roughly equal size when using the
default partitioning function (stdPartitioner). Note that, here, we benefit from
the fact that all keys are considered equal for grouping. This way, we can use
a key type with many different values, allowing for a balanced partitioning of
keys, while still grouping and reducing all values in a partition into a single
value.

Decomposition of Multiset Homomorphisms in MapReduce Rule M-
Par is a variant of a classical bookkeeping rule [15], for multiset homomorphisms
in a MapReduce framework. The idea is to decompose the Reducer function
r into a Combiner function that is executed in a parallel, distributed fashion,

6Note that, for performance, we desire distributed execution mostly for the parallelism
gained; fault tolerance and other aspects are not in the center of our discussion.



and a Reducer function for the final computation on the intermediate results.
So, in the target program, we make use of segmented reduction implemented by
MapReduce. This program produces multiple partial results: one local result
for each of the many Reducer tasks. We regard these partial results as interme-
diate results in a compound computation (a multi-step program or workflow7)
consisting of two MapReduce programs. The parallelism in the target program
has the structure of a two-level tree with the global result as the root, the in-
termediate results as its children, and all partitions of the initial input in the
first MapReduce job as the grandchildren.

Correctness Condition for Decomposition For correctness, function c,
used as the Reducer function in the first step of the transformed MapReduce
program, must also be a Combiner function compatible with r as a Reducer
function: isCombinerFor asserts that both functions implement the same re-
duction, and composing them in the order stated does not change the result.
This is needed to guarantee that the composition of a segmented reduction and
a global reduction (the two MapReduce programs in the transformed program)
is semantically equivalent to a single global reduction (the original program).
We need to impose this constraint on function c, not allowing arbitrary Reducer
functions here, because a Reducer function in MapReduce is more general: after
executing a reduction, a Reducer function may also execute some other func-
tion (for example, an additional map or filter function). In the same vein,
note that a function parameter m for specifying a Mapper function is not even
needed to implement global reduction; allowing only an identity function here
would suffice to implement multiset homomorphisms. However, parameter m
gives the user the flexibility to specify an additional preprocessing function to be
applied to each input value, which is executed in the same MapReduce program
step, without creating the need to add an extra program step with its associated
(communication) overhead.

Cost If we compare the original program (left of the arrow) of Rule M-Par
and the transformed program (right of the arrow) using our cost model, there
are several things to note. First, there are two MapReduce program steps in
the transformed program, so it may take up to twice the resources of the orig-
inal program, including twice the time. Actually, this is the worst case, which
happens only for small input sizes, in which the startup overheads outweigh any
other costs. Second, through parallelization on numReducers nodes, the cost
associated with the execution of the Reducer function (see 1g in the cost model
of Figure 2) is decreased by a factor of numReducers. In the best case, this
cost dominates all other costs. For large input sizes, this is also more or less the
expected typical case. So, we can expect to attain a cost reduction by a factor
of between numReducers

2 and numReducers when applying Rule M-Par to real
programs. The resulting program can be optimized further using the following
transformation rule.

7Although not directly modeled in the basic MapReduce papers of Google [2, 7, 8] and
by Lämmel [11], multi-step MapReduce programs are very common in practice. A draw-
back of using them is that the programmer support provided by MapReduce implementations
(libraries) is limited even for single-step MapReduce programs, and quasi non-existent for
workflows. Thus, the use of multiple, chained MapReduce programs places a significant addi-
tional burden on the programmer.



4.3.2 Multiset Combiner Rule

The second rule (Rule M-Comb, multiset Combiner) describes the transforma-
tion of a two-step MapReduce program without Combiner function (for example,
a program produced by applying Rule M-Par above) to a (somewhat faster)
single-step program that uses a standard Hadoop Combiner function.

isCompositionOf(m, (m’, oneKeyMapper))
isMapperFor(m’, (stdPartitioner,N)) isCombinerFor(c, r)

((m’, ε, c,N, stdPartitioner), (oneKeyMapper, ε, r, 1, ∗)) → (m, c, r, 1, ∗)
(M-Comb)

Parallelism Observe that it is not obvious whether the transformed program
is sequential (like the input program to Rule M-Par) or parallel (which it is,
in fact). The only syntactic difference between these two programs is the pres-
ence of a Combiner function (c) in the transformed program. Yet, a syntactic
difference may not be a semantic difference and, more importantly, a semantic
difference may not be visible in the syntax.8 The important difference here is
semantic: the Combiner function c is reducing the size of the intermediate data
by a factor large enough that the subsequent single Reducer task can run in very
short time, shorter than that of an average Mapper task. If this were not the
case, the transformed program would also be sequential, like the input program
to Rule M-Par. Of course, this line of argument also applies to the two-step
program produced by Rule M-Par, but it is easier to show using the example
just discussed.

Overview Both programs, the original one on the left and the transformed one
on the right side of Rule M-Comb, implement a global reduction in MapReduce.
In contrast, the first step of the original program alone implements a segmented
reduction, a local reduction in each partition/segment of input data. The idea
is best explained by applying three smaller transformations in a row: first move
the reduction in the first step of the original MapReduce program to the empty
Combiner position, then move the single-Reducer reduction of the second step in
the original MapReduce program to the now empty position of the Reducer, and
finally omit the now empty second MapReduce program step. The first part of
this transformation is only possible because the original program does not make
use of the repartitioning and grouping facilities of MapReduce. Actually, this is
an instance of a bigger pattern:

If, in a MapReduce program with multiple Reducer tasks, you need
only the (Map and) Reduce part(s) but not the implicit Group-By
or Sort-By, try to make use of a Combiner function to speed up
processing.

Details In the original program, parameters m’, c, and r describe fully the
multiset homomorphism that we want to optimize. A necessary correctness
condition is here that the function parameter c is a Combiner function that
is compatible with the Reducer function r (isCombinerFor; see above). As a

8Without changing the semantics, we could add an identity Combiner function in the other
program, thus, removing any difference in syntax between the two programs with Combiner
function.



slight generalization beyond multiset homomorphisms, in both the original and
the transformed program, function parameter r may, again, apply also some
other function (for example, an additional map or filter function) after this
reduction. Much like in Rule M-Par, we also need isCompositionOf to constrain
the Mapper function m’ in the original program with respect to Mapper function
m in the transformed program.

Effects on Parallelism and I/O Rule M-Comb does not change the degree
of parallelism: both the original and the optimized program are equally par-
allel. Only the second MapReduce program step in the original program and
the Reducer task execution in the optimized program are sequential—and nec-
essarily so, as described earlier. The costs for I/O operations are reduced only
slightly (because we do not create redundant copies of intermediate data). The
performance optimization intended here is to reduce the delay and the overhead
incurred by a second MapReduce program step.

Effects on Programming Comfort Having only a single program left also
avoids the hassle of programming multiple consistent MapReduce programs. As
described in Section 2, Combiner functions have been introduced in MapReduce
for a closely related kind of optimization [MR]: they shall reduce the size of
intermediate data that has to be communicated from all the Mapper nodes over
the cluster-network to all the Reducer nodes. Because the original MapReduce
model [MR] assumes a single MapReduce program, this is the only application
that could have been thought of. Yet, in our case of a chain (workflow) of two
consecutive, closely related MapReduce programs, the benefit of using Combiner
functions is even greater than in the original use case.

Cost In the case of a small input, the cost decreases by, at least, a factor of
2, because the overhead of creating an extra MapReduce job with all its tasks
disappears. This is the best case for Rule M-Comb. There cannot be a cost
increase due to additional Combiner runs compared to a single Reducer run in
the original program, because the result of each application of the Combiner
function c to intermediate data of any size has constant size. As a consequence,
in the worst case, the transformed program incurs the same cost as the original
program. Furthermore, because the first program step in the original program
incurs much cost for the data transfer between Mapper and Reducer tasks to
achieve a deterministic grouping (which is not actually needed), the transformed
program will be faster for large input sizes. In summary, we expect a speedup
of slightly more than a factor of 2 for most practical problem sizes.

4.4 Optimization of List Homomorphisms
Now that we have seen two optimization rules for the comparatively simple case
of multiset homomorphisms, we strive to port these optimization rules to the
more difficult-to-parallelize case of list homomorphisms. Recall that the basic
idea of the first rule is to parallelize the execution of Reducer functions, whereas
the second rule fuses a two-step MapReduce program, possibly created by the
first rule, into a—likely faster—single-step program. In the end, we will see
these rules ported from multiset to list homomorphisms but, first, we have to



work out what even a basic sequential list homomorphism looks like when cast
as a MapReduce program. As mentioned earlier, in MapReduce, the order of
input data is not preserved by default. Yet, to implement list homomorphisms,
we need exactly this feature. We will have to take extra care to preserve order
in all MapReduce programs of this section, including the sequential program
that is the starting point of the transformations.

Preserving Order in MapReduce Programs (Sequential) One might
assume that the original, sequential program need not take the list order into
account, because computation can proceed along the list. But, because Map-
Reduce is inherently parallel, this is not true—at least not after the shuffle has
happened in the execution of a MapReduce program: Even though the single
Reducer function works only on a single partition, we need non-standard Sort-
Comparator and GroupingComparator functions to preserve order and create
a single group. Sorting is achieved using the natural ordering on the indices
(naturalCmp; this is different from the multiset case!) and, for grouping, all
indices are considered equal (allEqualCmp). Of course, these two functions and
the Partitioner function must match the types of the data to be processed; this
needs to be coded manually, by overloading these functions on the data types
used. Fortunately, we can even re-use the SortComparator and Grouping-
Comparator functions from the original program in both optimized programs.
For simplicity, we will also omit them from the rules for list homomorphisms.
So, compared to the rules for multiset homomorphisms, we do not need to add
additional parameters to each program step. As for multiset homomorphisms,
once again we use keys only as meta-data.

4.4.1 List Parallelization Rule

The third rule (Rule L-Par, list parallelization) describes the transformation of
a sequential MapReduce program on lists to a two-step program. It is a variant
of the bookkeeping rule for list homomorphisms, applied to MapReduce.

isListMapperFor(m, (semiContiguousPartitioner,N))
isCombinerFor(c, r)
(m, ε, r, 1, ∗) →

((m, ε, c,N, semiContiguousPartitioner), (idMapper, ε, r’, 1, ∗))

(L-Par)

Preserving Order (Parallel) The transformed program works in parallel on
individual list segments, which form individual partitions of intermediate data.
We need to take special care of the contiguity of index values in both steps of
this MapReduce program.

In the first program step, we depend on the previously stated assump-
tion of contiguous indices in the input, and use a custom partitioner function
(semiContiguousPartitioner) that preserves this contiguity (as much as possible,
i.e., for input sizes of at most 231 records). The Partitioner function in Hadoop
MapReduce projects the indices to the small data range of partition numbers (a
Java int value). Furthermore, the Mapper function m needs to produce roughly
the same number of keys in each of the different partitions for the parallelization
to be effective (compare for the discussion of the parameter numReducersEff in



the cost model, Section 3.3.1). We combine all these constraints into the fol-
lowing condition: isListMapperFor(m, (semiContiguousPartitioner, N)).

In the second program step, the input data have no longer contiguous indices,
because all values of one partition have been combined into a single value, with a
single index as the key, leaving a gap between subsequent indices. As mentioned
previously, we could resort to transforming indices to ranges, either directly in
the first Mapper function (m), incurring an additional overhead of around 20%
for storing and transferring six instead of five numeric values per record, or in the
first Reducer function (c), which would then no longer be a Combiner function.
We have opted for another solution: We continue working with indices, and
accept that we will not be able to detect errors (that is, intermediate data in an
incorrect order) in a fail-fast manner, but only at the end of the computation.
This means that, in the second Reducer function (r’ ), we reduce any values
with strictly increasing indices, and we can only detect (programming) errors
when there are duplicate or decreasing indices. Put simply, we perform a relaxed
check on the indices.

Input and Output Programs The input program (left of the arrow) of
Rule L-Par consists of one program step. It has variable Mapper (m) and
Reducer functions (r), no Combiner function, uses a single Reducer task (1)
and any partitioner function. The output program is a two-step MapReduce
program, with a parallel first step (N) and a sequential second step (1). Like the
input program, it does not use Combiner functions. It is parameterized with the
Mapper function (m) of the original program, a Combiner (c) function used as a
Reducer function, and a second Reducer function (r’ ), as described above. In
the second step, it uses an identity function as the Mapper function (idMapper).
We could also use the oneKeyMapper function here, that we introduced in
Rule M-Par, with the advantages of not having to store a key for each record,
and of more flexibility in the Mapper function of the original program, but we
prefer to pursue an alternative approach that spares us one rule condition. Once
again, because the second step is sequential, any Partitioner function can be
used (∗).

Additional Rule Conditions In addition to constraint isListMapperFor de-
scribed above, this rule is only applicable if the Reducer functions c and r are
in relation isCombinerFor, that is, if the first Reducer function c is a Combiner
function compatible with the second Reducer function r.

Cost The cost estimates are very much the same here, for ordered (list) data,
as those for unordered (multiset) data, except for two small differences. One
difference is the extra sorting step necessary to guarantee preservation of order.
Although the data are almost sorted (as they consist of a comparably small
number of sorted chunks), they need to undergo the complete process of ex-
ternal sorting with multiple reads and writes to disk. There seems to be some
opportunity for optimization in the Hadoop framework here. Yet, this work is
also needed to achieve grouping alone, and so there is no difference to the case
for multisets. The second difference concerns the type of data processed. In
the multiset case, we do not need to store anything in the keys of intermediate
data whereas, in the list case, we have chosen to store unique (and contiguous)



list indices. Consequently, we incur more overhead during I/O and comparison.
But the additional overhead is present in both list programs, before and after
application of Rule L-Par, so there is no difference compared to Rule M-Par
for multisets: We expect the same best and worse cases and, for real programs,
we can expect to attain a cost reduction by a factor of between numReducers

2 and
numReducers via Rule L-Par.

4.4.2 List Combiner Rule

The fourth rule (Rule L-Comb, list Combiner) describes the transformation
of a two-step MapReduce program on lists to a single-step program that uses
a custom Combiner function that is run exactly once. In this rule, the two
steps of the original program together implement a global, ordered reduction
in MapReduce (whereas the first step alone implements a segmented, ordered
reduction).

isListMapperFor(m, (semiContiguousPartitioner,N))
isMapperWithCombinerOnceFor(mc1, (m, c”)) isCombinerFor(c, r)

((m, ε, c,N, semiContiguousPartitioner), (idMapper, ε, r’, 1, ∗)) →
(mc1, ε, r’, 1, ∗)

(L-Comb)

Hadoop Combiner Function The idea of Rule L-Comb is, once again, to
speed up processing using a Combiner function. Unfortunately, we cannot use
Hadoop Combiner functions on list data for three reasons that are caused by rea-
sonable design choices in distributed programming. First, to be able to reduce
the volume of intermediate data as much as possible, Hadoop applies Combiner
functions arbitrarily often; thus, they must be idempotent. This is problem-
atic because our Combiner function does not preserve the contiguity it requires,
and an alternative Combiner function that preserves contiguity by transforming
indices to ranges is not idempotent either. Second, to keep the implemen-
tation simple and fast, Hadoop Combiner functions are applied to arbitrary
subsets of intermediate data; this,they must be associative-commutative. This
means that non-contiguous values will occur frequently, rendering the Combiner
function almost useless. Third, Hadoop prioritizes sorting over combining, so
Combiner functions are only applied to groups of values that are equal according
to GroupingComparator and also SortComparator—and, for sorting, we need
groups of single values, which cannot be combined, rendering the Combiner
function a no-op.

Preserving Order (Optimized Parallel) As a resort, we use a custom-
built function (mc1 ). It is a Mapper function that also executes the logic of
a Combiner function, but only once, on the complete list of intermediate val-
ues produced by the Mapper, and in the order in which they have been produced.
This requirement is expressed by relation isMapperWithCombinerOnceFor, which
is parameterized with the new Mapper function mc1 and the defining Mapper
and Combiner functions (here, m and c”). For our experiments (Section 5), we
have implemented this by refactoring the Combiner code, thereby adding a new
function that can perform the reduction in a streaming fashion, and we call this
function from the Mapper code for each new intermediate value produced. This



eliminates problems with memory management (the worry of whether the inter-
mediate values fit into the memory assigned to the Mapper task), and it does not
require a reimplementation of the rather complicated interface between Mapper
and Combiner functions (a read-once iterator reusing mutable singleton con-
tainers for possibly serialized keys and values, grouped by some function).

Variables Rule L-Comb is parameterized with two different Mapper functions
(m, mc1 ), and different variants of Combiner (c, c”) and Reducer functions (r,
r’ ). The difference between the Reducer functions is that function r’ only
performs a relaxed check, as described above; the Combiner function c” does
not perform any check at all.

Input and Output Programs The input program is a two-step MapReduce
program. It uses the functions idMapper and semiContiguousPartitioner de-
scribed above. More precisely, it is of the form produced by Rule L-Par. The
resulting program is single-step. It uses the custom-built function mc1 as its
Mapper function, no Hadoop Combiner function (as explained above), the re-
laxed Reducer function r’, any Partitioner function, and it has only a single
Reducer (1; no parallelism here). All parallelism is associated with function
mc1.

Additional Rule Conditions isListMapperFor and isCombinerFor are the
same as in Rule L-Par, with the same parameters as mentioned there; concern-
ing the relation isMapperWithCombinerOnceFor, see the explication on pre-
serving order given above.

Cost All arguments that we have given for Rule M-Comb also hold for Rule L-
Comb. So, we expect a speedup of slightly more than a factor of 2 for most
practical problem sizes.

5 Experiments
So far, we have developed a lot of theory: We have started with a functional
model of MapReduce, continued with a cost model, and finished with four op-
timization rules—-two rules for each of two classes of programs, resembling
multiset and list homomorphisms.

We do not prove the correctness of these rules formally, an approach others
have pursued [16]. Instead, we will take an experimental approach to demon-
strate their practicality.

5.1 Research Question
We consider Hadoop Java programs and perform tests to measure performance
and speedup. Our research question is: “Do the optimization rules achieve the
indicated performance gain?” So, we report on an exploratory evaluation of the
optimization rules in this section. Our conclusion is that the results justify the
formal model, on which the rules are based.



5.2 Experimental Setup
In the following, we describe the code of the Hadoop MapReduce programs that
we have implemented. First, we describe briefly the Java interface to Hadoop
that we developed to resemble our functional model. Then, we proceed with the
example programs for two problems to which we apply the optimization rules.

5.2.1 Java MapReduce Skeleton

Hadoop MapReduce programs are meta-programs that make heavy use of Java
reflection. In particular, the semantics and the type of result data depend on
a numeric parameter (called numReducers in the cost model). When porting
the formal model of MapReduce (in Section 3.1) from Haskell to Java with
Generics, we needed to create two Java instances to enable type checking: one
with a Hadoop Combiner function and one without.9 In Java, we do represent
the key–value pairs that we have abstracted away in the functional model. They
are modelled as separate keys and values, forgoing the notion of being part of
a pair. So, the Mapper function parameter in our formal model (Section 3.1)
with Haskell type m -> [r] becomes an object parameter of our Java skeleton,
which takes the form of a Java function; the object needs to be an instance
of the generic Hadoop class Mapper<K1,V1, K2,V2>, where K1 and V1 are the
Java types of the keys and values in the input type m, and K2 and V2 are the
Java types of the keys and values in the result type r (the list in the result type
[r] is not represented explicitly). When passed to Hadoop, the Mapper function
parameter will have the even less expressive reflective type of Class<? extends
Mapper>. In both instances of the Java skeleton, parameter numReducers is
also passed on to Hadoop. Furthermore, we pass on some more type parameters
needed by Hadoop for (de)serialization. Lastly, we use Hadoop’s Partitioner
function on keys and values instead of a third comparator. Apart from this,
the two resulting Java skeletons are straightforward adaptations of our Haskell
skeleton. More information on the Java skeletons are available in Appendix A
as well as in Doerre et al. [17].

5.2.2 Subject Programs

For each of the two pairs of optimization rules, we created an example program
from the class of programs to which the first rule of the pair applies, optimized it
according to this rule, and optimized it further using the second rule of the pair.
This enables us to assess the performance of the original and the transformed
programs. Thus, for both multiset and list homomorphisms, we have three
program variants of an example program each.

Sequential: the original, unoptimized program, using one Hadoop program
step; the baseline variant

TwoStep: the program after application of the corresponding parallelization
rule (Rule M-Par or L-Par), using two Hadoop program steps; no Combiner
function

9Two additional instances will be needed to support MapReduce programs without a
Reducer function



Optimized: the final program after also applying the corresponding Combiner
rule (Rule M-Comb or L-Comb), using one Hadoop program step; a
suitable Combiner function

Multiset Homomorphism: Maximum We will first apply the optimization
rules on multisets to the Maximum (Max) problem. The problem consists of
finding the maximum value in a list of signed 32-bit Java int values. This
problem represents a whole set of database aggregation operators, for example,
count, sum, and average (i.e., it can be easily modified to implement these
operators). Because the binary operator max is associative and commutative,
Max is a multiset homomorphism.

Given the Java MapReduce skeleton for Hadoop, it is now straightforward
to implement the Sequential Maximum problem in Hadoop, and to derive the
TwoStep and the Optimized variant using the optimization rules stated in Sec-
tion 4.3. Each of them makes use of the same user-defined Reducer function
that implements a max computation on a list (or, more exactly, on an iterator)
of intermediate values. Note that, for Maximum, the optimized parallel Map-
Reduce program is known and easy to write without this method. This example
is mainly used as an intermediate step to the more complex Maximum Segment
Sum problem that follows.

List Homomorphism: Maximum Segment Sum Our next example is
the Maximum Segment Sum (MSS) problem, which is defined as follows: For
an input list of integers, look at each segment (a sublist containing only consec-
utive list elements), and compute its sum; return the maximum of these sums.
We have selected MSS for several reasons: It works on lists, it is non-trivial to
parallelize, using a complex operator on intermediate data and post-processing,
and it has been studied extensively in parallel functional programming [6]. Nev-
ertheless, MSS is grounded in a practical use case: Its original two-dimensional
formulation was intended to be used as a simplified maximum likelyhood es-
timator on digital images [4]. A naïve implementation of this algorithm is of
cubic time complexity. Optimal sequential implementations have linear time
complexity and run in a streaming fashion (as a linear scan), requiring only
constant space at any time. The algorithm described next will also have these
properties when run sequentially. Nevertheless, we are concerned with paral-
lel implementations here. MSS is both an instance of the divide-and-conquer
program skeleton and a list homomorphism [6].

As with the Maximum problem, we have created three different MapReduce
implementations of MSS. More information on the subject programs are avail-
able in Appendix B.

5.2.3 Test Input Data

Now that we have described the test programs, let us describe the test input
data which they process.

Format The test input data are made up of random 32-bit signed integer
values. For consistency, we use the same input data for both problems in the
evaluation. This means that, although this is only needed for list homomor-
phisms, all input records also contain the current (32-bit signed integer) index



in the key part of a key–value pair. For ease of access, each input record is
stored as the textual representation of the key and the textual representation
of the value, separated by a tab and terminated by a newline.

Scaling Because Hadoop is optimized for larger files, we start testing with a
size of 16 million (224) input records (see parameter chunkSize of our cost model,
described in Section 3.3.1). We double the input size between consecutive tests,
which gives us an evenly-spaced doubly-logarithmic scale. Technically, we re-use
the input file(s) of the smaller size and add the same number of input files of
size 224 records each to reach the next (binary) order of magnitude. We stop at
231 input records for two reasons. First, disk space and run time do not allow
for much bigger inputs, given the cluster on which we run our experiments, as
described in Section 5.3.1. Second, and more importantly, the return type of
the Java Object’s hashCode method is a 32-bit signed integer (a Java int). It
is used pervasively by the Hadoop MapReduce framework for partitioning and
cannot be changed easily to a bigger type. We depend on this functionality
when preserving order for list homomorphisms and, for consistency, we use the
same input sizes also for multiset homomorphisms.

5.3 Experiments
Next, we describe the experiments performed, to quantify the performance gains
obtainable using the optimization rules.

5.3.1 Measurement Setup

The measurement environment consists of hardware, software, and measurement
tools.

Hardware All experiments were run on the same 16-node cluster (which has
one additional master node with a similar configuration); the input was dis-
tributed across the cluster (in the Hadoop distributed file system); each node
has

• 2 ∗ 4 CPU cores (Intel(R) Xeon(R) CPU E5405 @ 2.00GHz)

• 16 GB of RAM (plus 8 GB of swap space on hard disk)

• 1 hard disk volume (striped on 2 ∗ 72 GB physical disks; one node has
2 ∗ 600 GB)

• 1 GBit Ethernet, connected through a switch

In total, there are 16 ∗ 2 ∗ 4 = 128 CPU cores in the cluster. In the optimal
case, CPU-bound programs that can run fully parallel will be able to make
use of this degree of parallelism. Any additional speedup is likely due to cache
effects.

Third-Party Software The operating system was a 64-bit openSUSE 10.3
Linux (kernel 2.6.22.17-0.1-default). The Java Virtual Machine (from Ora-
cle) was: Java(TM) SE Runtime Environment (build 1.6.0_15-b03) with Java
HotSpot(TM) 64-Bit Server VM (build 14.1-b02, mixed mode).



Hadoop Configuration With the given data encoding, inputSize is 310MB
for each file of 224 records. Given the chunkSize of 64MB, this amounts to 6
input splits per input file. We have verified that the outputSize for all programs
is a very small constant (some dozen bytes). We used a replication factor of 2
in the Hadoop DFS. In Hadoop MapReduce, we used at maximum 8 Mapper
tasks and 8 Reducer tasks per 8-core cluster node, allowing for potentially full
utilization in all phases, even if only Mapper or only Reducer tasks are at work.
Following standard guidelines [numReducers in Hadoop Wiki], in all parallel
program steps, we used 111 Reducer tasks (which is slightly less than the number
of CPU cores).

Measuring Runtime We used the tool GNU time 1.7 to measure the wall-
clock run time, including startup overheads of the user program. The server
processes on each cluster node ran for weeks, and the Java just-in-time compiler
and the data caches have been warmed up with the real input data for both
programs before the measurements start for each input size. We only measured
each point once, because the small measurement differences that occurr have
little influence on the trends that we expected to observe and compare.

5.3.2 Performance Results

In the Figures 3 and 4, we show, for both the Max and the MSS problem, the
performance of the original program and the program after applying only the
first and both optimization rules, respectively.

For both problems, we used the same setup. The results are plotted on a
doubly-logarithmic scale. On the horizontal axis, we have the binary (or dyadic)
logarithm of the number of elements in the input, as described in Section 5.2.3;
it starts at 224, because this is the minimum number of input records. The
vertical axis records the binary logarithm of the program run time in seconds,
as just described. The raw results are also shown in Table 1.
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Figure 3: Wall-clock run time of the Sequential, TwoStep, Optimized programs
for the Max problem on input sizes between 224 and 231 records.

Max Problem For the Max problem, the TwoStep program is much faster
than the Sequential program for large inputs (by a factor of 24.2), and the
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Figure 4: Wall-clock run time of the Sequential, TwoStep, Optimized programs
for the MSS problem on input sizes between 224 and 231 records.

Optimized program is even faster for all inputs (up to a factor of 25.2 compared
to the Sequential program).

MSS Problem For the MSS problem, the TwoStep program is orders of mag-
nitude faster than the Sequential program for medium and large inputs (up to
a factor of 24.8), and the Optimized program is even faster for all inputs (up to
a factor of 26.4).

Raw data Table 1 shows the raw data for Figure 3 and Figure 4, again as
doubly-logarithmic values. The run time for input sizes between 224 and 231

records is shown in log2 seconds.

5.4 Discussion
Next, we discuss the performance gains obtained by applying the optimization
rules, and the consequences for both the functional and the cost model.

Table 1: Raw data (log2 of wall-clock run time in seconds) of the Sequential,
TwoStep, Optimized programs for both the Max and the MSS problem on input
sizes between 224 and 231 records.

Max MSS

log2 records Optimized TwoStep Sequential Optimized TwoStep Sequential

24 5.07 6.48 5.50 5.06 6.55 6.18
25 5.07 6.48 5.70 5.06 6.52 6.48
26 5.07 6.48 6.40 5.06 6.56 7.42
27 5.16 6.50 7.38 5.08 6.57 8.48
28 5.24 6.41 8.52 5.15 6.59 9.49
29 5.79 6.86 9.76 5.70 7.06 11.19
30 6.32 7.37 11.11 6.09 7.61 12.27
31 7.05 8.04 12.25 6.88 8.44 13.28



Performance Overall, the results for the optimization of the Max and MSS
problems are very similar. The biggest difference is that Max is up to twice
as fast as MSS, especially when comparing the Sequential variants for the two
problems. So, let us discuss them together. Looking at the diagrams, the Se-
quential variants take very long for larger input sizes (more than 228 records);
the TwoStep variants are much faster and the Optimized variants are the fastest
by some factor of 2. For smaller input sizes (224 to 228 records), the execution
times of the non-sequential variants do not depend on the input size, but are con-
stant; this can be explained by the dominance of the startup overhead. For even
smaller input sizes, this is likely to apply also to the Sequential variants. The
TwoStep variants take around three times as long as the Optimized variants—
except for the Max program with large inputs, in which case the slowdown factor
is 2, not 3.

Speedup Compared to the Sequential variant, the speedup of the TwoStep
program for the Max problem grows from 2−1 to 24.2 with an increase of a
factor of 27 in input size (from 224 to 231 records), and the speedup of the
Optimized program grows from 20.4 to 25.2 in the same frame. Likewise, for the
MSS problem, the TwoStep program shows a speedup of between 2−0.4 and 24.8

(with a slightly different slope), and the Optimized program exhibits a speedup
of between 21.1 and 26.4 (which is a speedup of around 85).

Interpretation The observed speedups are not unexpected. In Section 4,
we describe the cost reduction associated with each optimization rule. These
costs ranged from a slowdown by a factor of 2 (as exhibited by the TwoStep
program variant of the Max problem on the smallest input size) to a speedup of
2 ∗ numReducers ≈ 2 ∗ 128 = 256 = 28 (theoretically, if the best cases of both
rules apply to the same input size; we observed 26.4 for the Optimized program
variant of the MSS problem on the biggest input size). The data points between
these extreme values also align well with our expectations.

Justification We have chosen a formal and algebraic approach to explore the
possibilities of MapReduce program optimizations. Our approach has the ad-
vantage of being both better founded and able to give more practical advice than
the current best practice for MapReduce program development, namely, rules
of thumb as, for example, the following one, taken from the introduction of the
Hadoop documentation: If your program is slow, try to use a Combiner func-
tion. We had to apply several simplifications in the functional and cost model
and the optimization rules compared to the practical evaluation using Hadoop.
We have already discussed the performance-related points in Section 3.2, Sec-
tion 3.3.3 and Section 4.2. Nevertheless, the optimization rules worked. This is
because, at least, for the problem classes described, the models seem to match
the Hadoop programs well.

Recommendation of Use For all but trivially small input sizes, the paral-
lelization sule M-Par and L-Par should be applied to MapReduce programs.
Concerning the combiner rules M-Comb and L-Comb, the situation is less
clear: The performance gain alone (a factor of 2 or 3) may not pay off, given the



development effort needed to implement it. But, the target program has the ex-
tra benefit of expressing a one-step computation (in the logical/homomorphism
view) by a one-step program (instead of two separate MapReduce steps). This
is more intuitive, and it renders operations more manageable.

Further Applications We have demonstrated that our functional model and
our cost model are useful and principled tools for formulating and reasoning
about performance optimization of MapReduce programs. Beyond formulat-
ing further optimizations, the models can serve as a basis for reasoning about
properties other than performance. First, the functional model can be a foun-
dation for modeling and reasoning about functional correctness of MapReduce
programs and their optimizations. Second, the cost model can be extended to
cover also other non-functional properties, such as reliability and energy con-
sumption. Overall, a formal approach to this domain—as taken by us—will help
to classify, compare, inspire, and guide further work on MapReduce program-
ming and similar models for distributed programming.

6 Related Work
Since its invention, a huge amount of research has been conducted on Hadoop
MapReduce optimization [9]. Yang et al. [18] state the main principles and
requirements of MapReduce implementations.

The authors of MapReduce themselves recommend that one should take
advantage of natural indices whenever possible [8]. This supports our interest in
list homomorphisms, in which order plays an important role. Map-Join-Reduce
extends MapReduce by user-specified join functions that allow to control the
order or items during joining [19].

HaLoop optimizes the execution of MapReduce programs by caching in-
termediate results between MapReduce jobs [20]. This is an alternative to
our approach of merging jobs structurally based on our model. Similarly to
HaLoop, iMapReduce also optimizes the execution of MapReduce programs,
not by caching, but by pooling and reusing suspended MapReduce jobs [21].

The MRShare system transforms a batch of queries into a new batch by
merging jobs into groups and an evaluating each group as a singlen query [22].
The transformation is based on a cost model. Again, this is not really a struc-
tural program rewrite, as we do it.

Babu [23] introduces a profiler that monitors, based on instrumentation, the
execution of a Hadoop MapReduce program, and a cost-based optimizer that
tunes the underlying parameters of the Hadoop framework. This is parameter
tuning, which is complementary to our approach of a structural program opti-
mization. Similarly, Herodotou et al. [24, 25, 26] perform parameter tuning, in
this case, based on clustering.

The Manimal system performs a static analysis to determine relational op-
timizations and to generate proper indexes for the raw data [27, 28], no archi-
tectural optimization, as we do it.

Several approached concentrate on increasing fault tolerance, mostly by mon-
itoring and job re-scheduling: ParaTimer [29, 30], LATE [31], RAFT [32, 33]
and Hadoop++ [34]. Several systems perform optimization on logical query



plans, much like in ordinary databases: FlumeJava [35], Pig Latin [36] and
Tenzing [37].

Finally, some tools provide declarative interfaces to Hadoop, but these are
rather SQL-like data processing interfaces, and not architectural models like
ours: Sawzall [38], Pig Latin [36], Tenzing [37], Hive [39] and SQL/MapReduce
[40].

7 Conclusions and Future Work
Google’s MapReduce programming model has been one of the contributions
with highest practical impact in the field of distributed computing in the re-
cent year. It is closely related to functional programming, especially to the
algebraic theory of list homomorphisms. List homomorphisms facilitate pro-
gram composition, optimization of intermediate data, and parallelization. To
put these theoretical benefits to practical use, we strive for a combination of the
formal basis of list homomorphisms with the scalability and industrial-strength
distributed implementation of MapReduce.

In particular, we have developed a formal model of MapReduce programs
suitable for optimization (comprising a functional model and a cost model),
an approach to write MapReduce programs that operate on lists instead of
on multisets only, a total of four optimization rules for MapReduce programs
formulated on top of our formal model, and a series of experiments to validate
the model and the optimization rules.

We believe that the development of MapReduce programs, for example using
Hadoop, benefits from the use of a formal functional model and cost model. Our
work is a first step on the way to easier MapReduce programming.

There are several avenues that can be followed in the future. First, one
can conduct a complete, controlled experimental evaluation as a follow-up of
the exploratory evaluation reported on here. Second, one can try to extend or,
even better, further simplify the (cost) model, and to mechanize it in the form
of an automatic optimizer for (certain) MapReduce programs. Third, one can
generalize the findings beyond the (Hadoop) MapReduce context.
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A Java Skeleton for Hadoop MapReduce
In this section, we provide more detail of the Java incarnation of our functional
model. We pay special attention to the typing issues that arise because of the
use of generic types in Java, in continuation of our work on improved static
typing for MapReduce programs [17].

On the implementation side, we use Java and Hadoop for our example Map-
Reduce programs. In our functional model (Section 3.1), we have extracted the
most important parameters from the many parameters that Hadoop and other
MapReduce frameworks accept. If we port the functional model to Java, the
result is a Java program skeleton that is very similar to our Haskell program
skeleton of MapReduce. The main difference is that, on the Java side, because
of the pervasive use of reflection in Hadoop, we really have a meta-program with
more flexibility than we could attain in plain Haskell. This flexibility allows us
to introduce an additional parameter (a natural number) that specifies exactly
the number of Reducer tasks to run. (We have already used this parameter in
the cost model and in the optimization rules.) There are three possible kinds of
behavior and associated (Java) types of result data depending on the value of
this numeric parameter.

• With zero Reducer tasks, only the Mapper function is run. The user-
defined Partitioner, SortComparator, GroupingComparator, Combiner,
and Reducer functions are not used. Consequently, the user-defined type
of the final output data is given by the return type of the Mapper function,
and not by the return type of the Reducer function, as would normally be
the case.

• With one Reducer task, any Partitioner specified produces only a single
partition. Thus, the single Reducer task processes all intermediate data,
and it has a global view of this data.

• With any larger number of Reducer tasks, everything happens as normal
(as described in Section 2.1).

The types in last two cases can be unified, regarding a single result as a singleton
list, but the MapReduce program skeleton still has two different possible result
types.

No Compile-Time Checks Of course, the flexibility of selecting different
behaviors, via a numeric value at run time, comes at a price. For example, unlike
in Haskell (the programming language of our functional model), two MapReduce
programs using the Java skeleton cannot be composed in a type-safe manner,
because they are not fully type-checked until run time. One would need to take
the number of Reducer tasks specified into account to be able to decide between
the two possible result types of the first MapReduce program, and to verify type
correctness. Of course, this would be possible using an external type checker;
yet, in our current implementation, this is impossible to achieve at compile time,
because there is only a thin wrapper library around the Hadoop Java API that
uses the standard Java type-checker and its support for generics. The best we
could do is to provide a separate skeleton for the case of zero Reducer tasks,
and to throw a run-time error if the user specifies a zero value in the normal



skeleton which would, thus, be restricted to accept only a number of Reducer
tasks larger than zero as parameter. Using this approach, we could then extract
the skeleton parameters into different variants of data objects, and provide a
type-safe composition function with run-time checks for them.

Types To represent the parametric types of our functional model, we have
to resort to Java Generics. The drawbacks of using Java Generics are the fol-
lowing: they have no representation of type parameters at run time, not even
in reflective values, and their interaction with subclassing is difficult. So, our
Java skeleton is a Java method parameterized with six type parameters for the
types of keys and values of input, intermediate and output data (Figure 5). Let
us proceed to explaining the parameters of this method. Its first parameter (of
type Job) will be explained further down. We represent the most important
parameters using normal Java values to circumvent some of the problems with
Java reflection mentioned. These are the Mapper and Reducer function (and
the Combiner function in the variant of the skeleton with Hadoop Combiner
function). We check that the Mapper and Reducer function work on the same
type of intermediate data (key–value pairs with key of type K2 and values of
type V2). The next parameter for the (natural) number of Reducer tasks is
represented using a Java int. All other parameters are reflective Java values
(Class<Type>). For them, we also document expected nested type parameters
in Figure 5 in comments (/* ... */). The first of these parameters is the
Partitioner function, defined on keys and values of intermediate data. The
comparator functions for sorting and grouping are specified next; they work on
serialized data. Compared to the functional model, there are four additional pa-
rameters: the types of keys and values of intermediate data and of final output
data, respectively. They are needed for serialization.

public static <K1,V1, K2,V2, K3,V3>
void mrSkeletonNoCombiner(Job job,

Mapper <K1,V1, K2,V2> mapF,
Reducer <K2,V2, K3,V3> redF,
int numReduceTasks,
Class<? extends Partitioner/*<? super K2, ? super V2>*/> partF,
Class<? extends RawComparator/*<K2>*/> sortF,
Class<? extends RawComparator/*<K2>*/> groupF,
Class<K2> mapKeyClass, Class<V2> mapValueClass,
Class<K3> keyClass, Class<V3> valueClass)

throws IllegalStateException { /* ... */ }

Figure 5: The signature of a variant (without Hadoop Combiners) of our skeleton
in Java, interfacing Hadoop.

Implementation The return type of our skeleton is void, because its im-
plementation is based on a side-effect. It uses Hadoop’s Java API to set, in
a Hadoop Job object (the first parameter of our skeleton), the corresponding
reflective values for all skeleton parameters, whether they be already reflective
values or given as Java objects. This Job object can then be used to start a



distributed Hadoop job. (As an aside: a job already running cannot be config-
ured any further, which leads to the IllegalStateException mentioned in the
type.)

In Figure 6, we show a call to this Java skeleton, which is suitable for the
Sequential variant of the MSS example program. As described before, the first
parameter is the Hadoop Job object to be configured.

public class MssMainIndexedSequential /* ... */ {

Mapper<LongWritable, Text, LongWritable, LongWQuadruple>
map = new IndexedTextToLongWQuadrupleValueMapper();

Reducer<LongWritable,LongWQuadruple, LongWritable,LongWQuadruple>
reduce = new IndexedMssReducerRelaxed();

mrSkeletonNoCombiner(job,
map,
reduce,
1,
HashPartitioner/*<LongWritable,Object>*/

/*<Object,Object>*/.class,
NaturalLongWritableComparator.class,
AllEqualComparator/*<LongWritable>*/ /*<Object>*/.class,
LongWritable.class, LongWQuadruple.class,
LongWritable.class, LongWQuadruple.class);

/* ... */
}

Figure 6: A call (from the Sequential program for the MSS problem) to the Java
skeleton shown in Figure 5.

We store the Mapper (map) and Reducer (reduce) objects in separate vari-
ables make the types that they use explicit. The input (when read by the
standard Hadoop TextInputFormat) consists of the (binary) position offset in
the current input file as the key of type LongWritable, and the textual values of
index and data item as the value of type Text. These are the first two type pa-
rameters of the Mapper object used. The text is then parsed, the index is stored
in the intermediate key of type LongWritable, and the data item is stored as
a quadruple with four identical entries in the value of type LongWQuadruple.
This is needed to apply a homomorphism to the data: we need to store this
additional information in the intermediate data to be able to re-combine partial
results (for contiguous data) in multiple passes, and even to forgo the need to
store all input data. The Reducer function implements a true reduction on this
intermediate data; in consequence, it produces output of the same type. The
Mapper and Reducer objects are the second and third parameters of the Map-
Reduce skeleton (in the variant without Hadoop Combiner function), which
guarantees that the types of intermediate data used by Mapper and Reducer
function coincide. This can be checked by looking at the declarations of map
and reduce. They also need to coincide with the types represented by the Java
class literals that are the four last parameters of the skeleton (two for interme-



diate keys/values, two for output keys/values). The remaining parameters are
the number of Reducer tasks in a sequential program (1), and the class literals
of the functions for partitioning, sorting, and grouping the type of intermediate
data used.

B Descriptions of Subject Programs
In this section, we describe how the optimization rules (Section 4) must be
instantiated for the subject programs used in the experiments (Section 5.2.2).

B.1 Multiset Homomorphism: Max
The Max problem can be defined using an associative, commutative, binary
reduction operator max (which is the parameter of reduce; see Section 2.4).
Commutativity entails that the order of elements in the input list (and also in
possible intermediate result lists) does not matter, so the input can be regarded
as a multiset. Furthermore, every reduction can be regarded as a list homo-
morphism with the identity function (id), both as the parameter to the map
combinator and as the post-processing function. Thus, a Haskell implementa-
tion of the Max problem might look as follows:

maximum = (id) . reduce(max) . map(id)

Finally, every list homomorphism with a commutative reduction operator is a
multiset homomorphism. So, this Haskell implementation of Max is a multiset
homomorphism, too.

Max MapReduce Programs Let us now describe three different implemen-
tations of Max in MapReduce, and how to get from one to the next, using the
optimization rules stated in Section 4.3.

Sequential There are two variables on the left-hand side of rule M-Par
(Section 4.3.1), which have to be instantiated for the Max problem: Mapper
function m and Reducer function r. The Mapper function m is called on each
a line of the input text file. It splits the line into key and value, discards the
unnecessary index in the key, parses the value into a Java long integer, converts
it to a Hadoop LongWritable, and returns it together with a constant key. The
Reducer function r iterates over the LongWritable values that are passed to it,
converts each value into a Java long integer, reduces all these values using the
max function, and finally converts the single result to a Hadoop LongWritable
and returns it together with a constant key.

TwoStep We use rule M-Par to create a two-step parallel MapReduce
program for the Max problem. On the right-hand side of rule M-Par, Reducer
function r is already bound to the value used on the left-hand side of this rule.
The additional variables that need to be instantiated are Mapper function m’
and Combiner function c. They are constrained by the relations in the condition
of the rule. The choice of Combiner function c is given by Reducer function
r. Concerning Mapper function m’, there is some freedom in the set to which



the input keys are mapped: we need to map the set of all input keys to a
(not too) small set of different intermediate keys. This is because we need
a certain number (some hundreds or thousands) of segments, which will be
processed in parallel. So, we need sufficiently many keys for parallelism in the
first MapReduce program step and, at the same time, not too many groups of
keys in this step, to reduce the input size in the first program step only, such
that the second step does not dominate execution time. Having the Grouping-
Comparator defined to yield always a single group simplifies things: we need
not bother about the number of groups, and we can just re-use the input key
set (long integer).

Optimized Now we can use rule M-Comb to derive an even more opti-
mized, single-step parallel MapReduce program for the Max problem. Combiner
function c and Reducer function r on the right-hand side of rule M-Comb are
already bound by the left-hand side. As to Mapper function m, we can just
re-use the Mapper function from the Sequential Max program (also named m
there).

B.2 List Homomorphism: MSS
To parallelize MSS, we formulate it as a list homomorphism, a function that
operates on lists while respecting their structure. To encode MSS as a list
homomorphism, we need, as a parameter to the map function, a simple function
f that maps a value to a quadruple (encoded as a pair of pairs), which is
necessary to store additional intermediate values. These are needed if we do
not process all input sequentially. Parameter g of the reduce function has to
operate on two of these quadruples, producing a third, and will consequently
be more complex than f. It can be expressed as a combination of one addition
operator and two maximum operators. The post-processing function will then
extract the first component from the single final nested pair.

MSS MapReduce Programs As with the Max programs, we now describe
three different MapReduce implementations of MSS, and how to get from one
to the next.

Sequential In the first variant of the MSS Hadoop program, we also have
a single group and a single partition of intermediate values, as for the Max
program. Additionally, the elements of the only group have to be in input
order for correctness. We state this in the program by specifying an own Sort-
Comparator that compares elements based on their indices.

TwoStep We use rule L-Par to create a two-step parallel MapReduce
program for the MSS problem. Because we have multiple partitions, it is now
also important in which way the data are partitioned. By default, Hadoop uses
hashing and modulo calculations here. To preserve correctness, we must only
process contiguous list segments at a time (instead of lists of interleaved list
elements). So, we specify an own Partitioner function that uses long integer
division internally.



Optimized We can now use rule L-Comb to derive an even more opti-
mized, single-step parallel MapReduce program for the MSS problem. In other
words, we would like to replace the Reducer tasks in the first MapReduce job
with a Combiner function, to be able to fuse the two jobs later on. Unfortu-
nately, in Hadoop, the framework may choose to run a Combiner function more
than once. This has two consequences for a MapReduce program using standard
Hadoop Combiner functions.

First, correctness is lost if a Combiner function assumes to be fed original
input while it cannot be applied in a semantically correct way to intermediate
results. This happens, for example, if a Combiner function for MSS assumes
contiguous indices in its input, yet it produces non-contiguous ones, for it can
only keep one index for all the values which it consumes.

Second, efficiency may degrade even more seriously if a Combiner function
does not reduce the data volume much. Then, the Combiner function runs mul-
tiple times over largely the same data, mostly incurring costs without achieving
much.

As a consequence, we cannot use the way in which Hadoop runs Combiner
functions. Instead, we call the Combiner function directly from our Mapper
function. This is a manual replacement for the former Hadoop behavior, and
it assures that the Combiner function is only called once, thus, preserving cor-
rectness and efficiency.
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