
Several Lifted Abstract Domains for Static Analysis of

Numerical Program Families

Aleksandar S. Dimovskia, Sven Apelb, Axel Legayc

aMother Teresa University, 12 Udarna Brigada 2a, 1000 Skopje, Mkd
bSaarland University, Campus E1.1, 66123 Saarbrücken, Germany

cUniversité catholique de Louvain, 1348 Ottignies-Louvain-la-Neuve, Belgium

Abstract

Lifted (family-based) static analysis based on abstract interpretation is capa-
ble of analyzing all variants of a program family (or any other configurable
software system), simultaneously, in a single run without generating any of
the variants explicitly. The elements of the underlying lifted domain are
tuples, which maintain one property per system variant. Still, explicit prop-
erty enumeration in tuples, one by one for all variants, immediately yields
combinatorial explosion. This is particulary apparent in the case of program
families that, apart from Boolean features, contain also numerical features
with large domains, thus giving rise to astronomical configuration spaces.

The key for an efficient lifted analysis is a proper handling of variability-
specific constructs of the language (e.g., feature-based runtime tests and #if

directives). In this work, we introduce new symbolic representations of the
lifted domain that can efficiently analyze program families with numerical
features. This makes sharing between property elements corresponding to
different variants explicitly possible. In the first approach, elements of the
new lifted domain are decision trees, in which decision nodes are labeled
with linear constraints defined over numerical features and the leaf nodes
belong to an existing single-program analysis domain. The lifted domain is
parametric in the choice of the domains for representing linear constraints
and leaf nodes. Furthermore, we propose another alternative approach for
efficient lifted analysis. We encode a program family with numerical features
as a family with only Boolean features, and then use a BDD lifted domain
to analyze the resulting program family.

To illustrate the potential of our representations, we have implemented
an experimental lifted static analyzer, called SPLNum2Analyzer, for infer-

Preprint submitted to Journal of Science of Computer Programming September 17, 2021

ring invariants of #if-annotated C programs. The tool implements all three
approaches for lifted analysis based on abstract interpretation: tuple-based,
decision tree-based, and BDD-based. It uses existing numerical abstract do-
mains (e.g., intervals, octagons, polyhedra) from the APRON library as
parameters. An empirical evaluation on benchmarks from SV-COMP and
BusyBox yields promising results indicating that our tool can be successfully
used for analyzing program families with very large configuration spaces.

Keywords: Static Analysis, Abstract Interpretation, Software Product
Lines, Lifted Domains: Tuples, Decision Trees, and BDDs

1. Introduction

Many software systems today are configurable [1]: they use features (or
configurable options) to control presence and absence of functionality. Dif-
ferent family members, called variants, are derived by switching features on
and off, while reuse of common code is maximized, leading to productivity
gains, shorter time to market, greater market coverage, etc. Program fami-
lies (a.k.a. Software Product Lines) are commonly seen in the development
of commercial embedded software, such as cars, phones, avionics, medicine,
robotics, etc. Configurable options (features) are used to either support dif-
ferent application scenarios for embedded components, to provide portability
across different hardware platforms and configurations, or to produce vari-
ations of products for different market segments or customers. We consider
here program families implemented using #if directives from the C prepro-
cessor CPP [2]. They use #if-s to specify under which conditions parts of
code should be included or excluded from a variant.

Classic program families use only Boolean features that have two values:
on and off. However, Boolean features are insufficient for real-world program
families, as there exist features that have a range of numbers as possible
values. These features are called numerical features [3, 4]. For instance,
Linux kernel, BusyBox, Apache web server, Java Garbage Collector are real-
world program families that contain numerical features, also called numerical
program families. Their analysis is very challenging, due to the fact that from
only a few features, huge number of variants can be derived.

Software verification and static analysis of program families address the
problem of checking that all variants of a given family satisfy certain prop-
erties [5]. In this paper, we are concerned with the verification of numerical

2

program families using abstract interpretation-based static analysis. Abstract
interpretation [6, 7] is a general theory for approximating the semantics of
programs. It provides sound (all positive answers are correct) and efficient
(with a good tradeoff between precision and cost) static analyses of run-time
properties of real programs. It has been used as the foundation for various
successful industrial-scale static analyzers, such as ASTREE [8]. Still, the
static analysis of program families is harder than the static analysis of single
programs, because the number of possible variants can be very large (often
huge) in practice. The simplest brute-force approach that uses a preprocessor
to generate all variants of a family and then applies an existing off-the-shelf
single-program analyzer to each individual variant, one-by-one, is very in-
efficient [9, 10]. Therefore, we use so-called lifted (a.k.a. family-based or
variability-aware) static analyses [9, 10, 11], which analyze all variants of
the family simultaneously, without generating any of the variants explicitly.
They take as input the common code base, which encodes all variants of a
program family, and produce analysis results corresponding to all variants.
The standard abstract interpretation-based lifted analysis [9, 11] uses a lifted
domain that represents a n-fold product of an existing single-program analy-
sis domain for expressing program properties (where n is the number of valid
configurations). That is, the lifted domain maintains one property element
per valid variant in tuples. This explicit property enumeration in tuples
is a bottleneck when dealing with families that have high variability. The
problem is that this enumeration becomes computationally intractable with
larger program families because the number of variants grows exponentially
(or even faster) with the number of features. This problem has been suc-
cessfully addressed for program families that contain only Boolean features
[12, 13, 14, 15], by using sharing through binary decision diagrams (BDDs).
However, the fundamental limitation of existing lifted analysis techniques is
that they are not able to handle numerical features.

To overcome this limitation, we present two new approaches for effec-
tively analyzing program families with both Boolean and numerical features
by means of abstract interpretation. The first approach is inspired by the
decision tree abstract domain proposed by Urban and Mine [16, 17, 18] for
proving program termination. In particular, elements of our lifted domain
are decision trees, in which decision nodes are labelled with linear constraints
over features, whereas leaf nodes belong to a single-program analysis domain.
The decision trees recursively partition the space of configurations (i.e., the
space of possible combinations of feature values), whereas the program prop-

3

erties at the leaves provide analysis information corresponding to each par-
tition, i.e. to the variants (configurations) that satisfy the constraints along
the path to the given leaf node. The partitioning is dynamic, which means
that partitions are split by feature-based tests (at #if directives), and joined
when merging the corresponding control flows again. In terms of decision
trees, this means that new decision nodes are added by feature-based tests
and removed when merging control flows. In fact, the partitioning of the set
of configurations is semantics-based, which means that linear constraints over
numerical features that occur in decision nodes are automatically inferred by
the analysis and do not necessarily occur syntactically in the code base. The
decision tree lifted domain is parametric in the choice of numerical domain
which underlies the linear constraints over numerical features labelling de-
cision nodes, and the choice of the single-program analysis domain for leaf
nodes. In fact, in our implementation, we also use numerical domains for leaf
nodes, which encode linear constraints over program variables. The numer-
ical domains, such as intervals [6], octagons [19], polyhedra [20], are widely
used in practice to maintain information about the set of possible values
of variables along with the possible relations between them. To implement
the decision tree lifted domain, we adapt the operations of the decision tree
termination domain [17, 18] for implementing decision nodes and use the nu-
merical domains from the APRON library [21] for implementing leaf nodes.

The second approach for lifted analysis uses a boolean encoding of nu-
merical program families and a binary decision diagram (BDD) lifted domain
introduced by [15]. In particular, we first define a syntactic transformation
to convert a numerical program family into a Boolean program family that
contains only Boolean features. This is done by replacing every atomic lin-
ear constraint over numerical features by a fresh Boolean feature. Then, we
use the BDD lifted domain [15] to analyze the resulting Boolean program
family. To implement the BDD lifted domain, we use the BDDAPRON
library [22] that represents the power domain of Boolean formulae and any
APRON domain. The operations provided by the BDDAPRON library
are highly optimized, which often leads to better time performances of this
approach. For example, the library of our decision tree lifted domain is still a
prototype implementation and many operations can be further optimized and
improved. In fact, the efficient implementation is the main motivation for
introducing the BDD-based approach to analyze numerical program families.

Another approach for efficient lifted analysis would be to replace compile-
time variability with run-time variability (non-determinism) [23]. In particu-

4

lar, a given program family is transformed into a single program by encoding
features with ordinary program variables that are non-deterministically ini-
tialized to any value from their domain and by encoding static configuration
options (#if directives) with conditional if statements. The resulting single
programs, called variability simulators, can be analyzed using off-the-shelf
single-program analyzers. For example, we can use the numerical abstract
domains for this aim. However, the convexity of these numerical domains
makes them infer conjunctions of linear constraints over variables. This
leads to imprecisions and rough approximations in the analysis, which of-
ten results in failure of showing the required program properties. The lifted
domains proposed here can remedy this shortcoming by considering disjunc-
tions arising from features. The elements of lifted domains partition the
space of all possible values of features inducing disjunctions into the base
domain defined over program variables. This way, we obtain more precise,
but also more expensive lifted analysis.

We have implemented a tool, called SPLNum2Analyzer, 1 that per-
forms a forward reachability analysis of C program families with Boolean
and numerical features using three lifted domains: tuples, decision trees, and
BDDs. The tool computes a set of possible numerical invariants, which rep-
resent linear constraints over program variables, in all program locations. We
can use the invariants inferred from the implemented lifted static analyzer to
check invariance properties of C program families, such as assertions, buffer
overflows, null pointer references, division by zero, etc [8].

In summary, we make several contributions:

� We propose a new, parameterized lifted analysis domain based on de-
cision trees for analyzing numerical program families.

� We propose a new lifted analysis based on Boolean encoding of numer-
ical program families and BDD-based lifted domain.

� We implement a prototype lifted static analyzer, SPLNum2Analyzer,
that performs a forward analysis of #if-enriched C programs, where
numerical domains from the APRON library are used as parameters.

1Num2 in the name of the tool refers to its ability to both handle Numerical features
and to perform Numerical client analysis of SPLs (program families).

5

� We evaluate our approaches for automatic inference of program in-
variants. We compare performances of our lifted analyzers based on
tuples, decision trees, and BDDs; as well as the approach based on
single-program analysis and variability simulator.

This work extends and revises the conference article [24]. We make the
following extensions here: (1) we provide another approach for lifted anal-
ysis using Boolean encoding and BDD-based lifted domain; (2) we expand
the evaluation by implementing the new BDD-based approach, by consider-
ing more benchmarks, and by extending the performance results including a
comparison with a single-program analysis of variability simulators; (3) we
provide formal proofs for all main results in the work; (4) we provide addi-
tional illustrations, explanations, and examples. The paper proceeds with a
motivating example that illustrates our new approaches for lifted analysis.
The language for writing program families is introduced in Section 3. The
basics of tuple-based lifted analysis are introduced in Section 4. Section 5 de-
fines our new decision tree-based lifted analysis, while Section 6 describes the
alternative approach via BDD-based lifted analysis. Section 7 presents the
evaluation on benchmarks taken from SV-COMP and BusyBox. Finally,
we discuss related work and conclude.

2. Motivating Example

To illustrate the potential of our new lifted domains, we now consider a
motivating example using the following program family SIMPLE:

1O int x := 10, y := 0;
2O while (x 6= 0) {
3O x := x-1;
4O #if (SIZE ≤ 3) y := y+1; #else y := y-1; #endif
5O #if (¬ON) y := 0; #else skip; #endif 6O}
7O assert (y > 1);

The set F of features is {ON, SIZE}, where ON is a Boolean feature and SIZE is
a numerical feature whose domain is [1, 4] = {1, 2, 3, 4}. Thus, the set of valid
configurations is K = {ON ∧ (SIZE=1), ON ∧ (SIZE=2), ON ∧ (SIZE=3), ON ∧
(SIZE=4),¬ON∧(SIZE=1),¬ON∧(SIZE=2),¬ON∧(SIZE=3),¬ON∧(SIZE=
4)}. The code of SIMPLE contains two #if directives, which change the
value assigned to y, depending on how features from F are set at compile-
time. For each configuration from K, a different variant (single program)

6

(ON∧(SIZE=1)︷ ︸︸ ︷
[y≥1, x=0],

ON∧(SIZE=2)︷ ︸︸ ︷
[y≥1, x=0],

ON∧(SIZE=3)︷ ︸︸ ︷
[y≥1, x=0],

ON∧(SIZE=4)︷ ︸︸ ︷
[y≤−1, x=0],

¬ON∧(SIZE=1)︷ ︸︸ ︷
[y=0, x=0],

¬ON∧(SIZE=2)︷ ︸︸ ︷
[y=0, x=0],

¬ON∧(SIZE=3)︷ ︸︸ ︷
[y=0, x=0],

¬ON∧(SIZE=4)︷ ︸︸ ︷
[y=0, x=0]

)
(a) Intervals

(ON∧(SIZE=1)︷ ︸︸ ︷
[y=10, x=0],

ON∧(SIZE=2)︷ ︸︸ ︷
[y=10, x=0],

ON∧(SIZE=3)︷ ︸︸ ︷
[y=10, x=0],

ON∧(SIZE=4)︷ ︸︸ ︷
[y=−10, x=0],

¬ON∧(SIZE=1)︷ ︸︸ ︷
[y=0, x=0],

¬ON∧(SIZE=2)︷ ︸︸ ︷
[y=0, x=0],

¬ON∧(SIZE=3)︷ ︸︸ ︷
[y=0, x=0],

¬ON∧(SIZE=4)︷ ︸︸ ︷
[y=0, x=0]

)
(b) Polyhedra.

Figure 1: Tuple-based analyses results at program location 7O of SIMPLE.

can be generated by appropriately resolving #if-s. For example, the variant
corresponding to configuration ON ∧ (SIZE=1) will have ON and SIZE set to
true and 1, so that the assignment y := y+1 and skip in program locations

4O and 5O, respectively, will be included in this variant. The variant for
configuration ¬ON ∧ (SIZE = 4) will have features ON and SIZE set to false
and 4, so the assignments y := y-1 and y := 0 in program locations 4O and

5O, respectively, will be included in it. There are |K| = 8 variants that can
be derived from the family SIMPLE.

Assume that we want to perform lifted analysis of SIMPLE using the
numerical domains: intervals [6] and polyhedra [20]. The standard lifted
domain used in the literature [9, 11] is defined as the Cartesian product of
|K| copies of the basic analysis domain (e.g. interval, polyhedra). Hence,
elements of the lifted domain are tuples containing one component for each
valid configuration from K, where each component represents a linear con-
straint over program variables (x and y in this case). The analysis results
at location 7O of SIMPLE obtained using the lifted interval and polyhedra
analyses are 8-sized tuples shown in Fig. 1a and Fig. 1b, respectively. Note
that the first component of a tuple in Fig. 1 corresponds to configuration
ON ∧ (SIZE= 1), the second to ON ∧ (SIZE= 2), the third to ON ∧ (SIZE= 3),
and so on. We can see in Fig. 1 that the interval analysis discovers impre-
cise (approximative) results for the variable y: (y ≥ 1) for configurations
ON∧ (SIZE=1), ON∧ (SIZE=2), and ON∧ (SIZE=3), as well as (y ≤ −1) for
configuration ON ∧ (SIZE=4). This is due to the fact that the interval anal-
ysis cannot reason about the relations between variables x and y. Using this
result at location 7O, we can not answer whether the given assertion (y > 1)
is valid or fails for the configurations ON ∧ (SIZE= 1), ON ∧ (SIZE= 2), and
ON∧ (SIZE=3), whereas we can successfully conclude that the assertion fails
for all other configurations. However, the polyhedra lifted analysis reports
the most precise results for both x and y in all configurations: (y = 10) for

7

ON

SIZE≤3 [y=0,x=0]

[y≥1,x=0] [y≤−1,x=0]

(a) Intervals

ON

SIZE≤3 [y=0∧x=0]

[y=10∧x=0] [y=−10∧x=0]

(b) Polyhedra.

Figure 2: Decision tree-based analyses results at program location 7O of SIMPLE (solid
edges = true, dashed edges = false). Each constraint is satisfied by the left subtree of the
decision node, while the right subtree satisfies its negation.

configurations ON ∧ (SIZE= 1), ON ∧ (SIZE= 2), and ON ∧ (SIZE= 3), as well
as (y = −10) for ON ∧ (SIZE=4). This is due to the fact that the polyhedra
domain is fully relational and is able to track all (linear) relations between
program variables. Using the polyhedra analysis, we can answer that the
assertion is valid for ON ∧ (SIZE=1), ON ∧ (SIZE=2), and ON ∧ (SIZE=3).

If we perform lifted interval and polyhedra analyses based on the decision
tree domain proposed in this work, then the corresponding decision trees in-
ferred at the final program location 7O of SIMPLE are depicted in Fig. 2a
and Fig. 2b, respectively. Notice that the inner nodes of the decision tree in
Fig. 2 are labeled with Boolean features (ON) and interval linear constraints
over numerical features (SIZE), while the leaves are labeled with the elements
from the property domain we use (interval and polyhedra linear constraints
over program variables x and y). The edges of decision trees are labeled with
the truth value of the decision on the parent node; we use solid edges for
true (i.e. the constraint in the parent node is satisfied) and dashed edges for
false (i.e. the negation of the constraint in the parent node is satisfied). As
decision nodes partition the space of valid configurations K, we implicitly
assume the correctness of linear constraints that take into account domains
of numerical features. For example, the node with constraint (SIZE≤ 3) is
satisfied when (SIZE≤ 3) ∧ (1≤ SIZE≤ 4), whereas its negation is satisfied
when (SIZE>3)∧(1≤SIZE≤4). The constraint (1≤SIZE≤4) represents the
domain [1, 4] of SIZE. We can see that decision trees offer more possibilities
for sharing and interaction between analysis properties corresponding to dif-
ferent configurations, they provide symbolic and compact representation of
lifted analysis elements. For example, Fig. 2b presents polyhedra properties

8

of the two program variables x and y, which are partitioned with respect to
features ON and SIZE. When (ON ∧ (SIZE≤3)) is true the shared property is
(y=10, x=0), whereas when (ON∧¬(SIZE≤3)) is true the shared property is
(y=−10, x=0). When ¬ON is true, the property is independent from the value
of SIZE, hence a node with a constraint over SIZE is not needed. Therefore,
the cases when ¬ON is true are all identical, and share the same leaf node
(y=0, x=0). This invariant can be written as the following disjunctive prop-
erty in first order logic:

(
ON ∧ (SIZE≤3) ∧ y=10 ∧ x=0

)
∨
(
ON ∧ ¬(SIZE≤

3) ∧ y=−10 ∧ x=0
)
∨
(
¬ON ∧ y=0, x=0

)
.

The third approach for analyzing numerical program families is based on
the BDD lifted domain [15]. First, the code of SIMPLE is transformed
by replacing the linear constraint (SIZE ≤ 3) with a fresh Boolean feature
SIZE3 (see the result of this transformation in Fig. 8). Then, the BDD lifted
domain proposed in [15] is used to analyze the resulting Boolean program
family. BDDs inferred at the final program location 7O are the same as
in the case of decision trees in Fig. 2, but now the linear constraint in the
decision node (SIZE≤ 3) is replaced with SIZE3 (see also Fig. 9). That is,
when (ON ∧ SIZE3) holds the shared property is (y=10, x=0), whereas when
(ON ∧ ¬SIZE3) holds the shared property is (y=− 10, x=0).

In summary, we observe that decision tree-based and BDD-based repre-
sentations use only three leaf nodes (properties), whereas the tuple-based
representation uses eight properties. This ability for sharing is the key mo-
tivation behind the usage of new representations.

Alternatively, the program family SIMPLE can be transformed into
a single program, called variability simulator [23], which can be analyzed
using the single-program APRON polyhedra domain. More specifically,
variability simulator of SIMPLE is obtained by encoding features as or-
dinary program variables that are non-deterministically initialized, that is:
int SIZE = [1, 4], ON = [0, 1], and by encoding #if directives as ordinary if

statements. The single-program polyhedra analysis will infer the invariant:
−10 ≤ y ≤ 10 at location 7O. However, this invariant is not strong enough
to establish the validity of the given assertion. Although the assertion is
valid for variants satisfying ON ∧ (SIZE≤3), convex numerical domains that
only infer conjunctions of constraints will not be able to establish the valid-
ity. As we have seen, lifted domains can remedy this problem by allowing
disjunctions determined by values of features.

9

3. A Language for Program Families

Let F = {A1, . . . , An} be a finite and totaly ordered set of numerical
features available in a program family. For each feature A ∈ F, dom(A) ⊆ Z
denotes the set of possible values that can be assigned to A. Note that
any Boolean feature can be represented as a numerical feature B ∈ F with
dom(B) = {0, 1}, such that 0 means that feature B is disabled while 1
means that B is enabled. A valid combination of feature’s values represents a
configuration k, which specifies one variant of a program family. It is given as
a valuation function k : F→ Z, which is a mapping that assigns a value from
dom(A) to each featureA, i.e. k(A) ∈ dom(A) for anyA ∈ F. We assume that
only a subset K of all possible configurations are valid. Note that dom(A) is
finite for each A ∈ F, thus K is also a finite set. An alternative representation
of configurations is based upon propositional formulae. Each configuration
k ∈ K can be represented by a formula: (A1 = k(A1)) ∧ . . . ∧ (An = k(An)).
We often abbreviate (B = 1) with B and (B = 0) with ¬B, for a Boolean
feature B ∈ F. The set of valid configurations K can also be represented as
a formula: ∨k∈Kk.

The set of valid configurations K of a program family with numerical fea-
tures is typically described by a numerical feature model [3], 2 i.e. a tree-like
structure that describes which combinations of feature’s values and relation-
ships among them are valid. In this work we disregard syntactic representa-
tions of the set K, as we are concerned with behavioural analysis of program
families rather than with implementation details of K. Therefore, we use the
set- and logic-theoretic views of K, which is convenient for our purpose.

We define feature expressions, denoted FeatExp(F), as the set of proposi-
tional logic formulas over constraints of F generated by the grammar:

θ ::= true | ef1 ./ ef2 | ¬θ | θ1 ∧ θ2 | θ1 ∨ θ2, ef ::= n | A | ef1�ef2

where A ∈ F, n ∈ Z, � ∈ {+,−, ∗}, and ./∈ {=, <}. When a configuration
k ∈ K satisfies a feature expression θ ∈ FeatExp(F), we write k |= θ, where
|= is the standard satisfaction relation of logic. We write [[θ]] to denote the
set of configurations from K that satisfy θ, that is, k ∈ [[θ]] iff k |= θ.

2Other terms that appear (e.g. [25]) as a way to extend classical Boolean feature models
with non-Boolean features are extended, advanced, or attributed feature models.

10

Example 1 Let us revisit the program family SIMPLE from Section 2. The
set F of features is {B, SIZE}, where dom(SIZE) = [1, 4]. There are eight
possible valid configurations K = {ON ∧ (SIZE = 1), ON ∧ (SIZE = 2), ON ∧
(SIZE = 3), ON ∧ (SIZE = 4),¬ON ∧ (SIZE = 1),¬ON ∧ (SIZE = 2),¬ON ∧
(SIZE = 3),¬ON ∧ (SIZE = 4)}. For the feature expression (SIZE ≤ 3), we
have [[(SIZE≤3)]] = {ON ∧ (SIZE=1), ON ∧ (SIZE=2), ON ∧ (SIZE=3),¬ON ∧
(SIZE = 1),¬ON ∧ (SIZE = 2),¬ON ∧ (SIZE = 3)}. Therefore, it holds that
ON ∧ (SIZE = 2) |= (SIZE ≤ 3) and ON ∧ (SIZE = 4) 6|= (SIZE ≤ 3), where
ON ∧ (SIZE=2) ∈ K, ON ∧ (SIZE=4) ∈ K, and (SIZE≤3) ∈ FeatExp(F). �

We consider a simple sequential non-deterministic programming language,
which will be used to exemplify our work. The variables are statically allo-
cated and the only data type is the set Z of mathematical integers. Note that
our implementation, described in Section 7, actually supports a subset of the
C language enriched with #if-s, which is sufficient to handle realistic pro-
gram families. To encode multiple variants, a new compile-time conditional
statement is included. The new statement “#if (θ) s #endif” contains a
feature expression θ ∈ FeatExp(F) as a presence condition, such that only if
θ is satisfied by a configuration k ∈ K the statement s will be included in
the variant corresponding to k. The syntax is:

s ::= skip | x:=e | s; s | if (e) then s else s | while (e) do s | #if (θ) s #endif,
e ::= n | [n, n′] | x | e⊕e

where n ranges over integers, [n, n′] over integer intervals, x over program
variables Var, and ⊕ over binary arithmetic-logic operators. Integer intervals
[n, n′] have constant and possibly infinite bounds and denote a random choice
of an integer in the interval. This provides a notion of non-determinism useful
to model user input or to approximate expressions. The set of all statements
s is denoted by Stm; the set of all expressions e is denoted by Exp.

Remark The C preprocessor uses the following keywords: #if, #ifdef, and
#ifndef to start a conditional construct; #elif and #else to create addi-
tional branches; and #endif to end a construct. Any of such preprocessor
constructs can be desugared and represented only by #if construct.

A program family is evaluated in two stages. First, a preprocessor takes
a program family s and a configuration k ∈ K as inputs, and produces a
variant (that is, a single program without #if-s) corresponding to k as the

11

int x:= 10, y:= 0;
while (x != 0) {

x := x-1;
y := y+1;
skip; }

assert (y > 1);
(a) PON∧(SIZE=1)(SIMPLE)

int x:= 10, y:= 0;
while (x != 0) {

x := x-1;
y := y-1;
skip; }

assert (y > 1);
(b) PON∧(SIZE=4)(SIMPLE)

int x:= 10, y:= 0;
while (x != 0) {

x := x-1;
y := y+1;
y := 0; }

assert (y > 1);

(c) P¬ON∧(SIZE=1)(SIMPLE)

int x:= 10, y:= 0;
while (x != 0) {

x := x-1;
y := y-1;
y := 0; }

assert (y > 1);

(d) P¬ON∧(SIZE=4)(SIMPLE)

Figure 3: Different variants of the program family SIMPLE from Section 2.

output. Second, the obtained variant is evaluated using the standard single-
program semantics [11]. The first stage is specified by the projection function
Pk, which is an identity for all basic statements and recursively pre-processes
all sub-statements of compound statements. Hence, Pk(skip) = skip and
Pk(s;s

′) = Pk(s);Pk(s
′). The interesting case is “#if (θ) s #endif”, where the

statement s is included in the resulting variant if k |= θ, otherwise, if k 6|= θ
the statement s is removed:

Pk(#if (θ) s #endif) =

{
Pk(s) if k |= θ

skip if k 6|= θ

Notice that since any k ∈ K is a valuation function, we have that either k |= θ
holds or k 6|= θ (which is equivalent to k |= ¬θ) holds, for any θ ∈ FeatExp(F).
For example, PON∧(SIZE=1)(SIMPLE), PON∧(SIZE=4)(SIMPLE), P¬ON∧(SIZE=1)(SIMPLE),
and P¬ON∧(SIZE=4)(SIMPLE), shown in Fig. 3a, Fig. 3b, Fig. 3c, and Fig. 3d,
respectively, are variants derived from SIMPLE defined in Section 2.

4. Lifted Analysis based on Tuples

In this section, we introduce the product lifted domain.

4.1. Lifted Analysis with Tuples

Lifted analyses are designed by lifting existing single-program analyses
to work on program families, rather than on individual programs. They
directly analyze program families, without preprocessing them by taking the
variability of program families into account.

Lifted analysis as defined by Midtgaard et al. [11] rely on a lifted do-
main that is |K|-fold product of an existing single-program abstract domain
A defined over the set of program variables Var. The abstract domain

12

A employs data structures and algorithms specific to the shape of invari-
ants (analysis properties) it represents and manipulates. We assume that
the single-program abstract domain A is equipped with sound operators for
concretization γA, ordering vA, least upper bound (called join) tA, great-
est upper bound (called meet) uA, the least element (called bottom) ⊥A,
the greatest element (called top) >A, widening ∇A, and narrowing 4A, as
well as sound transfer functions for tests FILTERA and forward assignments
ASSIGNA. More specifically, the concretization function γA assigns a con-
crete meaning to each element in the abstract domain A, ordering vA conveys
the idea of approximation since some analysis results may be coarser than
some other results, whereas join tA and meet uA convey the idea of conver-
gence since a new abstract element is computed when merging control flows.
To analyze loops effectively and efficiently, the convergence acceleration op-
erators such as widening ∇A and narrowing 4A are used. Transfer functions
give abstract semantics of expressions and statements at the level of single-
programs. Hence, FILTERA(a : A, e : Exp) returns an abstract element from
A obtained by restricting the input abstract element a to satisfy the given
test e, whereas ASSIGNA(a : A, x:=e : Stm) returns an updated version of
the input abstract element a by abstractly evaluating assignment x:=e in it.

Numerical Property Domains. In this work, we will instantiate A with one of
the numerical property domains 〈D,vD〉 [7], such as intervals, octagons, and
polyhedra. They differ in expressive power and computational complexity.
The Interval domain [6], denoted as 〈I,vI〉, is a non-relational numerical
domain that identifies the range of possible values for every variable as an
interval. The elements are: {⊥I}∪ {[l, h] | l ∈ Z∪{−∞}, h ∈ Z∪{+∞}, l≤
h}. The Octagon domain [19], denoted as 〈O,vO〉, is a weakly-relational
numerical domain, where elements are conjunctions of linear constraints of
the form +−xj+−xi ≥ β between variables xi and xj, and β ∈ Z. The Polyhedra
domain [20], denoted as 〈P,vP 〉, is a fully relational numerical property
domain. It expresses conjunctions of linear constraints of the form α1x1 +
. . .+ αnxn + β ≥ 0, where x1, . . ., xn are variables and αi, β ∈ Z.

Lifted Domain. The lifted analysis domain is defined as 〈AK, v̇, ṫ, u̇, ⊥̇, >̇〉,
where AK is shorthand for the |K|-fold product

∏
k∈K A, that is, there is one

separate copy of A for each configuration of K.

Example 2 Consider the tuple in Fig. 1a, in which components are prop-
erties from the Interval domain and K = {ON ∧ (SIZE = 1), ON ∧ (SIZE =

13

2), ON ∧ (SIZE = 3), ON ∧ (SIZE = 4),¬ON ∧ (SIZE = 1),¬ON ∧ (SIZE =
2),¬ON ∧ (SIZE = 3),¬ON ∧ (SIZE = 4)}. Note that to simplify the pre-
sentation, we write x ≥ n short for x 7→ [n,+∞], x ≤ n for x 7→ [−∞, n],
n ≤ x ≤ n′ for x 7→ [n, n′], and x = n for x 7→ [n, n]. In first order logic, the
tuple in Fig. 1a can be written as the following disjunctive property:(

ON ∧ (SIZE=1) ∧ [y≥1, x=0]
)
∨
(
ON ∧ (SIZE=2) ∧ [y≥1, x=0]

)
∨(

ON ∧ (SIZE=3) ∧ [y≥1, x=0]
)
∨
(
ON ∧ (SIZE=4) ∧ [y≤−1, x=0]

)
∨(

¬ON ∧ (SIZE=1) ∧ [y=0, x=0]
)
∨
(
¬ON ∧ (SIZE=2) ∧ [y=0, x=0]

)
∨(

¬ON ∧ (SIZE=3) ∧ [y=0, x=0]
)
∨
(
¬ON ∧ (SIZE=4) ∧ [y=0, x=0]

)
Lifted Operations. Given a tuple (i.e., an element of the product lifted do-
main) a ∈ AK, the projection πk selects the kth component of a. All lifted
operations are defined by lifting the corresponding operations of the domain
A configuration-wise.

γ(a) =
∏

k∈K(γA(πk(a))), a1 v̇ a2 ≡ πk(a1) vA πk(a2),∀k∈K
a1 ṫ a2 =

∏
k∈K(πk(a1) tA πk(a2)), a1 u̇ a2 =

∏
k∈K(πk(a1) uA πk(a2))

>̇ =
∏

k∈K>A = (>A, . . . ,>A), ⊥̇ =
∏

k∈K⊥A = (⊥A, . . . ,⊥A)

a1 ∇̇ a2 =
∏

k∈K(πk(a1)∇Aπk(a2)), a1 4̇ a2 =
∏

k∈K(πk(a1)4Aπk(a2))

Lifted Transfer Functions. We now introduce lifted transfer functions for giv-
ing abstract semantics of expressions and statements at the level of program
families. We define lifted transfer functions for tests, forward assignments
(ASSIGN), and #if-s (IFDEF). There are two types of tests: expression-
based tests, denoted FILTER, that occur in while and if statements, and
feature-based tests, denoted FEAT-FILTER, that occur in #if-s. Each lifted
transfer function takes as input a tuple from AK representing the invariant
(i.e., property) before evaluating the statement (resp., expression) to handle,
and returns a tuple from AK representing the invariant after evaluating the
given statement (resp., expression).

FILTER(a : AK, e : Exp) =
∏

k∈K(FILTERA(πk(a), e))

FEAT-FILTER(a :AK, θ :FeatExp(F)) =
∏

k∈K

{
πk(a), if k |= θ

⊥A, if k 6|= θ

ASSIGN(a :AK, x:=e :Stm) =
∏

k∈K(ASSIGNA(πk(a), x:=e))

IFDEF(a : AK, #if (θ) s #endif : Stm) = [[s]](FEAT-FILTER(a, θ)) ṫ
FEAT-FILTER(a, ¬θ)

14

where [[s]](a) represents the lifted transfer function in AK for statement s.
FILTER and ASSIGN are defined by applying FILTERA and ASSIGNA indepen-
dently on each component of the input tuple a. FEAT-FILTER keeps those
components k of the input tuple a that satisfy θ, otherwise it replaces the
other components of a that do not satisfy θ with ⊥A. IFDEF captures the
effect of analyzing the statement s in those components k of a that satisfy θ,
otherwise it is an identity for the other components that do not satisfy θ.

Lifted Analysis. The operators and transfer functions of the lifted domain
AK are combined together to analyze program families. Initially, we build
a tuple where all components are set to >A for the first program location.
The >̇ analysis properties are propagated forward from the first program
location towards the final program location taking assignments, #if-s, and
(expression- and feature-based) tests into account with join and widening
around while-s. We apply delayed widening [26], which means we start
extrapolating by widening only after some fixed number of iterations we
analyze the loop’s body. We improve the precision of the solution obtained
by delayed widening by further applying a narrowing operator [26]. The
soundness and correctness of the lifted analysis based on 〈AK, v̇〉 follows
immediately from the soundness of all operators and transfer functions of
〈A,vA〉 (see the proof in [11]).

Example 3 Consider the program family SIMPLE from Section 2. We
want to perform lifted interval analysis of SIMPLE using the lifted domain
IK. The final analysis results at program locations from 1O to 7O are shown
in Fig. 4. They represent 8-sized tuples, which contain one interval property
(store) for each configuration. �

5. Lifted Analysis based on Decision Trees

In this section, we introduce a new lifted domain that relies on decision
trees. Its elements are disjunctions of the leaf nodes that belong to an ex-
isting single-program analysis domain A defined over program variables Var.
The leaf nodes are separated by linear constraints over features, organized
in the decision nodes. Hence, we encapsulate the set of valid configurations
K into the decision nodes where each top-down path represents one or sev-
eral configurations from K that satisfy the constraints encountered along
the given path. We store in each leaf node the property from an existing

15

1O (
[y=>I, x=>I], [y=>I, x=>I], [y=>I, x=>I], [y=>I, x=>I], [y=>I, x=>I], [y=>I, x=>I], [y=>I, x=>I], [y=>I, x=>I]

)
2O (

[y=0, x=10], [y ==0, x=10], [y=0, x=10], [y=0, x=10], [y=0, x=10], [y ==0, x=10], [y=0, x=10], [y=0, x=10]
)

3O (
[y≥0, x≤10], [y≥0, x≤10], [y≥0, x≤10], [y≤0, x=10], [y=0, x≤10], [y=0, x≤10], [y=0, x≤10], [y=0, x≤10]

)
4O (

[y≥0, x≤9], [y≥0, x≤9], [y≥0, x≤6], [y≤0, x≤9], [y=0, x≤9], [y=0, x≤9], [y=0, x≤9], [y=0, x≤9]
)

5O (
[y ≥ 1, x ≤ 9], [y ≥ 1, x ≤ 9], [y ≥ 1, x ≤ 9], [y ≤ −1, x ≤ 9], [y = 1, x ≤ 9], [y = 1, x ≤ 9], [y = 1, x ≤ 9], [y = −1, x ≤ 9]

)
6O (

[y ≥ 1, x ≤ 9], [y ≥ 1, x ≤ 9], [y ≥ 1, x ≤ 9], [y ≤ −1, x ≤ 9], [y = 0, x ≤ 9], [y = 0, x ≤ 9], [y = 0, x ≤ 9], [y = 0, x ≤ 9]
)

7O (
[y≥1, x=0], [y≥1, x=0], [y≥1, x=0], [y≤−1, x=0], [y=0, x=0], [y=0, x=0], [y=0, x=0], [y=0, x=0]

)
Figure 4: Tuple-based (interval) analyses results at all program locations of SIMPLE.

single-program analysis domain A generated from the variants representing
the corresponding configurations.

We assume F = {A1, . . . , An} be a finite and totally ordered set of nu-
merical features, such that the ordering is A1 > A2 > . . . > An. We develop
an efficient lifted analysis for numerical program families, which is based on
a lifted domain of decision trees.

Domain for Decision Nodes. We define the family of abstract domains for
linear constraints CD, which are parameterized by any of the numerical do-
mains D (intervals I, octagons O, polyhedra P). We use CI = {+−Ai ≥
β | Ai ∈ F, β ∈ Z} to denote the finite set of interval constraints, CO =
{+−Ai +− Aj ≥ β | Ai, Aj ∈ F, β ∈ Z} to denote the finite set of octag-
onal constraints, and CP = {α1A1 + . . . + αnAn + β ≥ 0 | A1, . . . An ∈
F, α1, . . . , αn, β ∈ Z, gcd(|α1|, . . . , |αn|, |β|) = 1} to denote the finite set of
polyhedral constraints. We have CI ⊆ CO ⊆ CP.

The finite set CD of linear constraints over features F is constructed by the

underlying domain 〈D,vD〉 using the Galois connection 〈P(CD),vD〉 −−−−→←−−−−
αCD

γCD

〈D,vD〉, where P(CD) is the power set of CD. The concretization function
γCD : D → P(CD) maps an interval (resp., an octagon, a polyhedron) that
represents a conjunction of constraints to a finite set of interval (resp., octag-
onal, polyhedral) constraints. We have γCD(>D) = ∅ and γCD(⊥D) = {⊥CD},
where ⊥CD is an unsatisfiable constraint such as −1 ≥ 0.

The domain of decision nodes is CD. We impose a total order <CD on
CD to be the lexicographic order on the coefficients α1, . . . , αn and constant

16

αn+1 of the linear constraints [17], such that:

(α1 ·A1 + . . .+ αn ·An + αn+1≥0) <CD (α′1 ·A1 + . . .+ α′n ·An + α′n+1≥0)
⇐⇒ ∃j > 0.∀i < j.(αi = α′i) ∧ (αj < α′j)

The negation of linear constraints is formed as: ¬(α1A1 + . . . αnAn +β ≥
0) = −α1A1− . . .−αnAn−β−1 ≥ 0. For example, the negation of A−3 ≥ 0
is the constraint −A+2 ≥ 0 (i.e., A ≤ 2). To ensure canonical representation
of decision trees, a linear constraint c and its negation ¬c cannot both appear
as nodes in a decision tree. Hence, we only keep the largest constraint with
respect to <CD between c and ¬c.

Lifted Domain for Decision Trees. A decision tree t ∈ T(CD,A) over the sets
CD of linear constraints defined over features F and the leaf abstract domain
A defined over program variables Var is either a leaf node 〈|a|〉with a ∈ A,
or [[c : tl, tr]], where c ∈ CD (denoted by t.c) is the smallest constraint with
respect to <CD appearing in the tree t, tl (denoted by t.l) is the left subtree
of t representing its true branch, and tr (denoted by t.r) is the right subtree
of t representing its false branch. The path along a decision tree establishes
the set of configurations (those that satisfy the encountered constraints),
and the leaf nodes represent the analysis properties for the corresponding
configurations.

Example 4 The following two decision trees t1 and t2 have decision nodes
labelled with Interval linear constraints over the numerical feature SIZE with
domain {1, 2, 3, 4}, whereas leaf nodes are Interval linear constraints over the
integer program variable y:

t1 = [[SIZE ≥ 4 : 〈|[y ≥ 2]|〉, 〈|[y = 0]|〉]], t2 = [[SIZE ≥ 2 : 〈|[y ≥ 0]|〉, 〈|[y ≤ 0]|〉]]

Lifted Operations. The concretization function γT of a decision tree t ∈
T(CD,A) returns γA(a) for k ∈ K, where k satisfies the set C ∈ P(CD)
of constraints accumulated along the top-down path to the leaf node a ∈ A.
Formally, γT(t) = γT[K](t). The function γT accumulates into a set C (ini-
tially equal to K=∨k∈Kk) constraints along the paths up to a leaf node:

γT[C](〈|a|〉)=
∏

k|=CγA(a),

γT[C]([[c : tl, tr]])=γT[C ∪ {c}](tl)× γT[C ∪ {¬c}](tr)

Note that k |= C is equivalent with αCD({k}) vD αCD(C), where αCD(C)
represents a conjunction of linear constraints from the set C. Therefore, we
can check k |= C using the operation vD of the numerical domain D.

17

Other binary operations of T(CD,A) are based on Algorithm 1 for tree
unification [17], which finds a common refinement (labelling) of two trees t1
and t2 by calling function UNIFICATION(t1, t2,K). It possibly adds new con-
straints as decision nodes (Lines 5–7, Lines 11–13), or removes constraints
that are redundant (Lines 3,4,9,10,15,16). The function UNIFICATION accu-
mulates into the set C ∈ P(CD) (initialized to K), constraints encountered
along the paths of the decision tree. We use the function isRedundant(c, C)
to check whether a linear constraint c ∈ CD is redundant with respect to a
set C by testing αCD(C) vD αCD({c}). Note that the tree unification does
not lose any information.

Algorithm 1: UNIFICATION(t1, t2, C)

1 if isLeaf(t1) ∧ isLeaf(t2) then return (t1, t2);
2 if isLeaf(t1) ∨ (isNode(t1) ∧ isNode(t2) ∧ t2.c <CD t1.c) then
3 if isRedundant(t2.c, C) then return UNIFICATION(t1, t2.l, C);
4 if isRedundant(¬t2.c, C) then return UNIFICATION(t1, t2.r, C);
5 (l1, l2) = UNIFICATION(t1, t2.l, C ∪ {t2.c});
6 (r1, r2) = UNIFICATION(t1, t2.r, C ∪ {¬t2.c});
7 return ([[t2.c : l1, r1]], [[t2.c : l2, r2]]);

8 if isLeaf(t2) ∨ (isNode(t1) ∧ isNode(t2) ∧ t1.c <CD t2.c) then
9 if isRedundant(t1.c, C) then return UNIFICATION(t1.l, t2, C);

10 if isRedundant(¬t1.c, C) then return UNIFICATION(t1.r, t2, C);
11 (l1, l2) = UNIFICATION(t1.l, t2, C ∪ {t1.c});
12 (r1, r2) = UNIFICATION(t1.r, t2, C ∪ {¬t1.c});
13 return ([[t1.c : l1, r1]], [[t1.c : l2, r2]]);

14 else
15 if isRedundant(t1.c, C) then return UNIFICATION(t1.l, t2.l, C);
16 if isRedundant(¬t1.c,C) then return UNIFICATION(t1.r, t2.r, C);
17 (l1, l2) = UNIFICATION(t1.l, t2.l, C ∪ {t1.c});
18 (r1, r2) = UNIFICATION(t1.r, t2.r, C ∪ {¬t1.c});
19 return ([[t1.c : l1, r1]], [[t1.c : l2, r2]]);

Example 5 Consider decision trees t1 and t2 from Example 4. After tree
unification UNIFICATION(t1, t2,K), the resulting decision trees are:

t1 = [[SIZE ≥ 4 : 〈|[y ≥ 2]|〉, [[SIZE ≥ 2 : 〈|[y = 0]|〉, 〈|[y = 0]|〉]]]],
t2 = [[SIZE ≥ 4 : 〈|[y ≥ 0]|〉, [[SIZE ≥ 2 : 〈|[y ≥ 0]|〉, 〈|[y ≤ 0]|〉]]]]

18

Note that UNIFICATION adds a decision node for SIZE ≥ 2 to the right subtree
of t1, whereas it adds a decision node for SIZE ≥ 4 to t2 and removes the
redundant constraint SIZE ≥ 2 from the resulting left subtree of t2. �

All binary operations are performed leaf-wise on the unified decision trees.
Given two unified decision trees t1 and t2, their ordering t1 vT t2 is:

〈|a1|〉 vT 〈|a2|〉 = a1 vA a2,
[[c : tl1, tr1]] vT [[c : tl2, tr2]] = (tl1 vT tl2) ∧ (tr1 vT tr2)

while their join t1 tT t2 is defined as:

〈|a1|〉tT 〈|a2|〉 = 〈|a1 tA a2|〉
[[c : tl1, tr1]] tT [[c : tl2, tr2]] = [[c : tl1 tT tl2, tr1 tT tr2]]

Similarly to t1tTt2, we compute meet (resp., widening and narrowing) t1uTt2
(resp., t1∇Tt2 and t14Tt2) of two unified decision trees t1 and t2, in such a
way that instead of the join operator tA we use the meet operator uA (resp.,
widening ∇A and narrowing 4A) of the abstract domain A. The top element
is a tree with a single >A leaf: >T = 〈|>A|〉, while the bottom element is a
tree with a single ⊥A leaf: ⊥T = 〈|⊥A|〉.

Example 6 Consider the unified decision trees t1 and t2 from Example 5.
We can see that t1 vT t2 holds, and

t1 tT t2 = [[SIZE ≥ 4 : 〈|[y ≥ 0]|〉, [[SIZE ≥ 2 : 〈|[y ≥ 0]|〉, 〈|[y ≤ 0]|〉]]]]
t1 uT t2 = [[SIZE ≥ 4 : 〈|[y ≥ 2]|〉, [[SIZE ≥ 2 : 〈|[y = 0]|〉, 〈|[y = 0]|〉]]]]

Lifted Transfer Functions. Transfer functions for assignments (ASSIGNT) and
expression-based tests (FILTERT) modify only leaf nodes of a decision tree. In
contrast, transfer functions for variability-specific constructs, such as feature-
based tests (FEAT-FILTERT) and #if-s (IFDEFT) add, modify, or delete de-
cision nodes of a decision tree. This is due to the fact that the analysis
information about program variables is located only in leaf nodes, while the
analysis information about features is located in decision nodes.

Transfer function ASSIGNT for handling an assignment x:=e in the input
tree t is described by Algorithm 2. Note that x is a program variable, and
e may contain only program variables. We apply to each leaf node a of t
transfer function ASSIGNA, which substitutes expression e for x in a. Simi-
larly, transfer function FILTERT for handling expression-based tests e ∈ Exp
is implemented by applying FILTERA leaf-wise as described by Algorithm 3.

19

Algorithm 2: ASSIGNT(t, x:=e)

1 if isLeaf(t) then return 〈|ASSIGNA(t, x:=e)|〉;
2 return [[t.c : ASSIGNT(t.l, x:=e),ASSIGNT(t.r, x:=e)]];

Algorithm 3: FILTERT(t, e)

1 if isLeaf(t) then return 〈|FILTERA(t, e)|〉;
2 return [[t.c : FILTERT(t.l, e), FILTERT(t.r, e)]];

Transfer function FEAT-FILTERT for feature-based tests θ is described
by Algorithm 4. It reasons by induction on the structure of θ (we assume
negation is applied to atomic propositions). When θ is an atomic constraint
over numerical features (Lines 2,3), we use FILTERD to approximate θ, thus
producing a set of constraints J , which are then added to the tree t, possibly
discarding all paths of t that do not satisfy θ. This is done by calling function
RESTRICT(t,K, J), which adds linear constraints from J to t in ascending
order with respect to <CD as shown in Algorithm 5. Note that θ may not be
representable exactly in CD (e.g., in the case of non-linear constraints over
F), so FILTERD may produce a set of constraints approximating it. When
θ is a conjunction (resp., disjunction) of two feature expressions (Lines 4,5)
(resp., (Lines 6,7)), the resulting decision trees are merged by operation meet
uT (resp., join tT). Function RESTRICT(t, C, J), described in Algorithm 5,
takes as input a decision tree t, a set C of linear constraints accumulated
along paths up to a node, and a set J of linear constraints in canonical form
that need to be added to t. For each constraint j ∈ J , there exists a boolean
bj that shows whether the tree should be constrained with respect to j (bj is
set to true) or with respect to ¬j (bj is set to false). When J is not empty,
the linear constraints from J are added to t in ascending order with respect
to <CD . At each iteration, the smallest linear constraint j is extracted from
J (Line 9), and is handled appropriately based on whether j is smaller (Line
11–15), or greater or equal (Line 17–21) to the constraint at the node of t we
currently consider.

Finally, transfer function IFDEFT is defined as:

IFDEFT(t, #if (θ) s) = [[s]]T(FEAT-FILTERT(t, θ)) tT FEAT-FILTERT(t,¬θ)

where [[s]]T(t) denotes transfer function in T(CD,A) for statement s.

20

Algorithm 4: FEAT-FILTERT(t, θ)

1 switch θ do
2 case (eFZ ./ eFZ) || (¬(eFZ ./ eFZ)) do
3 J = FILTERD(>D, θ); return RESTRICT(t,K, J)

4 case θ1 ∧ θ2 do
5 return FEAT-FILTERT(t, θ1) uT FEAT-FILTERT(t, θ2)

6 case θ1 ∨ θ2 do
7 return FEAT-FILTERT(t, θ1) tT FEAT-FILTERT(t, θ2)

Note that after applying a transfer function to analyze a statement, the
obtained decision tree must be normalized (sorted) to remove possible mul-
tiple occurrences of a constraint c and possible occurrences of both c and ¬c.
Decision trees also may contain some redundancy that can be exploited to
further compress them [17]. Function COMPRESST(t, C), described by Algo-
rithm 6, is applied to decision trees t that satisfy a set of constraints C in
order to compress (reduce) their representation. We use five different opti-
mizations. First, if constraints on a path to some leaf are unsatisfiable, we
eliminate that leaf node (Lines 10–12). Second, if a decision node contains
two same leaves, then we keep only one leaf and we also eliminate the de-
cision node (Lines 8,9). Third, we generalize the previous optimization. If
a decision node contains two same subtrees, then we keep only one subtree
and we also eliminate the decision node (Lines 13,14). Fourth, if a decision
node contains a left leaf and a right subtree, such that its left leaf is the same
with the left leaf of its right subtree and the constraint in the decision node
is less or equal to the constraint in the root of its right subtree, then we can
eliminate the decision node and its left leaf (Lines 15,16). Finally, we have an
analogous rule when a decision node contains a left subtree and a right leaf
(Lines 17,18). When we want to compress a decision tree t obtained using
lifted operations and transfer functions, we call the function COMPRESST(t,K).
The set of constraints is initialized to K, i.e. we initially include only those
constraints that represent domains of numerical features.

Lifted Analysis. Lifted operations and transfer functions of T(CD,A) can
now be used to analyze numerical program families. For each statement
s, we define function L-ANALYSET(t : T, s : Stm) that takes as input a

21

Algorithm 5: RESTRICT(t, C, J)

1 if isEmpty(J) then
2 if isLeaf(t) then return t;
3 if isRedundant(t.c, C) then return RESTRICT(t.l, C, J);
4 if isRedundant(¬t.c, C) then return RESTRICT(t.r, C, J);
5 l = RESTRICT(t.l, C ∪ {t.c}, J) ;
6 r = RESTRICT(t.r, C ∪ {¬t.c}, J) ;
7 return ([[t.c : l, r]]);

8 else
9 j = min<CD

(J) ;

10 if isLeaf(t) ∨ (isNode(t) ∧ j <CD t.c) then
11 if isRedundant(j, C) then return RESTRICT(t, C, J\{j});
12 if isRedundant(¬j, C) then return 〈|⊥A|〉;
13 if j =CD t.c then (if bj then t = t.l; else t = t.r) ;
14 if bj then return ([[j : RESTRICT(t, C ∪ {j}, J\{j}), 〈|⊥A|〉]]) ;
15 else return ([[j : 〈|⊥A|〉, RESTRICT(t, C ∪ {j}, J\{j})]]) ;

16 else
17 if isRedundant(t.c, C) then return RESTRICT(t.l, C, J);
18 if isRedundant(¬t.c, C) then return RESTRICT(t.r, C, J);
19 l = RESTRICT(t.l, C ∪ {t.c}, J) ;
20 r = RESTRICT(t.r, C ∪ {¬t.c}, J) ;
21 return ([[t.c : l, r]]);

22

Algorithm 6: COMPRESST(t, C)

1 switch t do
2 case 〈|n|〉do
3 return 〈|n|〉;
4 case [[t.c : l, r]] do
5 l′ = COMPRESST(t.l, C ∪ {t.c}) ;
6 r′ = COMPRESST(t.r, C ∪ {¬t.c}) ;
7 switch l′, r′ do
8 case 〈|n′l|〉, 〈|n′r|〉when n′l = n′r do
9 return 〈|n′l|〉;

10 case 〈|n′l|〉, 〈|n′r|〉do
11 if UNSAT(C ∪ {t.c}) then return 〈|n′r|〉;
12 if UNSAT(C ∪ {¬t.c}) then return 〈|n′l|〉;
13 case [[c1 : l1, r1]], [[c2 : l2, r2]] when c1 =c2 ∧ l1 = l2 ∧ r1 =r2 do
14 return [[c1 : l1, r1]];

15 case 〈|n′l|〉, [[c2 : l2, r2]] when 〈|n′l|〉= l2 ∧ c ≤ c2 do
16 return [[c2 : l2, r2]];

17 case [[c1 : l1, r1]], 〈|n′r|〉when 〈|n′r|〉= r1 ∧ c1 ≤ c do
18 return [[c1 : l1, r1]];

19 case default: do
20 return [[t.c : l′, r′]];

decision tree t corresponding to the initial location of statement s, and
outputs a decision tree corresponding to the final location of s. Function
L-ANALYSET(t, s) is described by Algorithm 7. For a while loop, φ∇T (x) =
t tT L-ANALYSET(FILTERT(x, e), s) and lfpφ∇T is the limit of the following
increasing chain defined by delayed widening:

y0 = ⊥T; yn+1 = φ∇T (yn), if n < N ; yn+1 = yn∇T φ
∇
T (yn), if n ≥ N (1)

for some fixed number N denoting the widening delay. The lifted analysis
of a program s is defined as L-ANALYSET(tin, s), where tin is taken as input
tree in the initial location of s. The tree tin has only one leaf node >A, and
decision nodes define the set K. Note that if there are no constraints on K

23

so that ∨k∈Kk ≡ true, then tin = >T. In this way, we collect the possible
invariants in the form of decision trees at all locations.

We establish correctness of the lifted analysis based on T(CD,A) by show-
ing that it produces identical results with the product lifted domain AK. Let
[[s]]T and [[s]] denote transfer functions of statement s in T(CD,A) and AK.
Note that [[s]]T(t) = L-ANALYSET(t, s). Given t ∈ T(CD,A) and a ∈ AK, we
denote by t ≡ a iff the tree t represents a compact decision tree representa-
tion of the tuple a, where all analysis equivalent results in a are shared by
the same leaf nodes in t. Note that tin ≡ ain. Moreover, γT(t) = γ(a) when
t ≡ a. We first show the following auxiliary result.

Lemma 7 Let t1 ≡ a1 and t2 ≡ a2. Then, t1∇Tt2 ≡ a1∇̇a2.

Proof The operator ∇̇ on AK, defined as a1 ∇̇ a2 =
∏

k∈K(πk(a1)∇Aπk(a2)),
is a widening operator [26]. Let t1 and t2 represent decision tree representa-
tions of a1 and a2. By definition of ∇T, t1 and t2 are first unified, and then
∇A is performed leaf-wise on unified trees. Recall that the tree unification does
not lose any information. It can only replicate some leaf nodes in original t1
and t2, so that the structure (decision nodes) of t1 and t2 are unified. Let C
be a set of constraints collected along the path to leaf nodes a1 and a2 of t1 and
t2, respectively. Then, t1∇Tt2 will have a leaf node a1∇Aa2 and constraints
from C are in decision nodes on the path from the root to that node. On the
other hand, we will obtain the same result a1∇Aa2 for those components of
a1 ∇̇ a2 that satisfy constraints C. Therefore, t1∇Tt2 ≡ a1∇̇a2.

Remark The widening operator of the decision tree termination domain [17]
first performs left unification of t1 and t2, which forces the structure of t1 on
t2, and then applies leaf-wise the widening operator of the leaf domain. There
may be information loss by applying the left unification. However, decision
nodes of the termination domain [17] are constraints defined over program
variables that split the (potentially infinite) memory space, whereas decision
nodes of our lifted domain are constraints defined over feature variables that
split the (finite) configuration space K. Feature variable do not exhibit infinite
behaviour in our language, since they are statically bound at compile-time and
so their static values can be only read at run-time. Therefore, our widening
operator can use the more precise tree unification algorithm.

Lemma 8 (Termination) The increasing chain {yi}i≥0 defined in Eqn. 1
stabilizes after a finite number of times: ∃k ≥ 0.yk = yk+1.

24

Proof Each element yn+1, n ≥ N is obtained by applying the widening oper-
ator ∇T on yn that describes the result after n loop iterations and the result
obtained after applying one more loop iteration φ∇T (yn). The widening op-
erator first applies UNIFICATION(yn, φ

∇
T (yn),K) that will produce two unified

trees with the same labelling of decision nodes. This operation will (poten-
tially) add new paths in the unified trees, thus refining the partitions of the
configuration set K. Since K is a finite set, there is no possibility to generate
an infinite sequence of partition refinements of K. In the extreme case, there
will be one path corresponding to each configuration from K in the unified
trees. Subsequently, on the unified trees yn and φ∇T (yn), we apply the widen-
ing operator of the leaf domain ∇A leaf-wise. Basically, the leaves of unified
trees yn will stabilize first, and then their decision nodes will stabilize as well.
First, no infinite sequences of partition refinements of K will be possible,
since K is finite. Second, new paths (potentially) added to the left unified
tree yn with stabilized leaves will duplicate some existing leaves, which will be
redundant and reduced using the COMPRESS function.

Theorem 9 Let t ≡ a. Then, [[s]]T(t) ≡ [[s]](a).

Proof The proof is by induction on the structure of s. We consider the two
most interesting cases.

Case x:=e. ASSIGN(a, x:=e) applies ASSIGNA(a, x:=e) to each component
a = πk(a) of a. ASSIGNT(t, x:=e) applies ASSIGNA(a, x:=e) to each leaf
a in the tree t. The proof follows by correctness of t ≡ a.

Case #if (θ) s #endif. Transfer functions for #if are identical in both lifted
domains. We only need to show that functions FEAT-FILTER(a, θ) and
FEAT-FILTERT(t, θ) are identical. This can be shown by induction on
θ. Assume that θ is an atomic constraint. FEAT-FILTER(a, θ) keeps
only those components πk(a) of a such that k |= θ. On the other hand,
FEAT-FILTERT(t, θ) first produces all linear constraints in D that satisfy
θ, and then adds them in the tree t. Thus, it keeps only those leaf nodes
that satisfy the newly generated constraints from θ.

Case while (e) do s. Transfer functions for while are identical in both lifted
domains (see Eqn 1). The proof follows by Lemma 7, Lemma 8, and
structural induction.

25

Algorithm 7: L-ANALYSET(t, s)

1 switch s do
2 case skip do
3 return t;

4 case x:=e do
5 return ASSIGNT(t, x:=e);

6 case if (e) then s1 else s2 do
7 return L-ANALYSET(FILTERT(t, e), s1) tT

L-ANALYSET(FILTERT(t,¬e), s2);

8 case s1; s2 do
9 return L-ANALYSET(L-ANALYSET(t, s1), s2);

10 case while (e) do s do
11 return FILTERT(lfpφ∇T ,¬e);
12 case #if (θ) s #endif do
13 return IFDEFT(t, #if (θ) s #endif);

Example 10 Let us consider the code base of a program family P given in
Fig. 5a. It contains only one numerical feature A with domain [0, 99]. The
decision tree inferred at the final program location 4O is depicted in Fig. 5b.
It uses the interval domain for both decision and leaf nodes. Note that the
constraint (A < 3) does not explicitly appear in the code base, but we obtain
it in the decision tree representation as a result of applying the functions
IFDEFT and COMPRESST. This shows that partitioning of the configuration
space K induced by decision trees is semantics-based rather than syntactic-
based. That is, linear constraints labelling decision nodes are automatically
inferred by the analysis and do not necessarily appear in the code. �

Example 11 Let us consider the code base of a program family P ′ given in
Fig. 6a. It contains one numerical feature A with domain [1, 4] and a non-
linear feature expression A∗A < 9. At location 2O, FEAT-FILTERT(〈|x = 0|〉, A∗
A < 9) returns an over-approximating tree 〈|x = 0|〉, while FEAT-FILTERT(〈|x =
0|〉,¬(A ∗ A < 9)) returns [[A≥3, 〈|x = 0|〉, 〈|⊥I |〉]]. In effect, we obtain an over-
approximating result at the final program location 3O as shown in Fig. 6b.
Note that when (A≥3) the leaf is a join of ASSIGNI(〈|x = 0|〉, x := x+1) and

26

1O int x := 0;

2O #if (A ≤ 4) x := x+1; #else x := x-1; #endif

3O #if (A==3 || A==4) x := x-2; #endif 4O

(a) Code base for program family P .

A<3

[x=1] [x=-1]

(b) Decision tree representing the result at
location 4O of P .

Figure 5: Lifted analysis of an example program family P .

1O int x := 0;

2O #if (A ∗ A < 9) x := x+1;

#else x := x-1; #endif 3O

(a) Code base for P ′.

A≤2

[x=1] [−1≤x≤1]

(b) Over-approximating decision
tree at location 3O of P ′.

A≤2

[x=1] [x=-1]

(c) Precise decision tree at location
3O of P ′.

Figure 6: Lifted analysis of an example program family P ′.

ASSIGNI(〈|x = 0|〉, x := x-1), while when (A ≤ 2) the leaf is ASSIGNI(〈|x =
0|〉, x := x+1). The precise result at the program location 3O, which can be
obtained in case we have numerical domains that can handle non-linear con-
straints, is given in Fig. 6c. We observe that when ¬(A ≤ 2), i.e. when
(A≥3), we obtain an over-approximating analysis result (−1≤x≤1 instead
of x = −1) due to the over-approximation of the non-linear feature expression
A ∗ A < 9 in the numerical domains we use. �

Example 12 In Fig. 7 we depict decision trees inferred by performing lifted
analysis based on the domain T(CI, I) of SIMPLE from Section 2, where
the ordering of features is ON < SIZE and so ON <CI

(SIZE ≤ 3). We can
see that the number of interval properties needed at locations from 1O to 7O
is significantly less than 8 properties we need when the product lifted domain
is used (see Example 3). In particular, only one interval property is needed
at locations 1O and 2O, four interval properties are used at location 5O, while
three interval properties are needed at all other locations. �

6. Lifted Analysis based on Binary Decision Diagrams

In this section, we describe another way to analyze numerical program
families. First, we describe a syntactic transformation that encodes numerical

27

[y=>I,x=>I]

(a)
Loc. 1O

[y=0,x=10]

(b)
Loc. 2O

ON

SIZE≤3 [y=0,x≤10]

[y≥0,x≤10] [y≤0,x≤10]

(c) Loc. 3O

ON

SIZE≤3 [y=0,x≤9]

[y≥0,x≤9] [y≤0,x≤9]

(d) Loc. 4O

ON

SIZE≤3 SIZE≤3

[y≥1,x≤9] [y≤-1,x≤9] [y=1,x≤9] [y=-1,x≤9]

(e) Loc. 5O

ON

SIZE≤3 [y=0,x≤9]

[y≥1,x≤9] [y≤−1,x≤9]

(f) Loc. 6O

ON

SIZE≤3 [y=0,x=0]

[y≥1,x=0] [y≤−1,x=0]

(g) Loc. 7O

Figure 7: Decision tree invariants at program locations from 1O to 7O of SIMPLE.

features as a set of Boolean features, that is, it converts a numerical program
family into a Boolean program family that contains only Boolean features.
Then, we briefly recall the BDD lifted domain introduced by [15] to analyze
the transformed Boolean program families.

6.1. Boolean encoding

Our aim is to transform an input program family s with a set of numerical
features F = {A1, . . . , Am} into an output program family s′ with a set
of Boolean features F′ = {B1, . . . , Bn}. The set of configurations K′ in s′

includes all possible combinations of feature values (in total 2|F
′|).

Let σ : FeatExp(F) → F′ be an environment function that maps atomic
feature expressions (constraints) over F into Boolean features from F’. We
now define rewrite rules for eliminating atomic constraints of the form ef ./
ef ′ from a numerical program family. The rewrite rules are:

ef ./ ef ′ B, when ef ./ ef ′,¬(ef ./ ef ′) /∈ dom(σ) (R-1)

where B is a fresh Boolean feature. The set F′ and the function σ are
updated to F′∪{B} and σ[ef ./ ef ′ 7→ B], respectively. The rule (R-1) states

28

that, if the current numerical program family being transformed matches the
abstract syntax tree node of the shape ef ./ ef ′, and the atomic constraint
ef ./ ef ′ or its negation are not in the domain of σ, then replace ef ./ ef ′ by
a fresh Boolean feature B. The rules (R-2) and (R-3) handle the cases when
atomic constraint ef ./ ef ′ or its negation are already in the domain of σ.

ef ./ ef ′ σ(ef ./ ef ′), when ef ./ ef ′ ∈ dom(σ) (R-2)

ef ./ ef ′ ¬σ(ef ./ ef ′), when ¬(ef ./ ef ′) ∈ dom(σ) (R-3)

We write Rewrite(s) to be the final transformed Boolean program family
s′ obtained by repeatedly applying rules (R-1)–(R-3) on s and on its trans-
formed versions until we reach a point at which no rule can be applied, i.e.
when all atomic constraints fe ./ fe′ are eliminated. Initially, F′ = ∅ and
σ = [] are the empty set and environment, respectively. Note that the set of
configurations K′ is 2F′ for the resulting Boolean program family Rewrite(s).

The following result shows that for any configuration of s, there exists a
configuration of Rewrite(s), such that the same variants are derived.

Theorem 13 Let s be a numerical program family and let s′ = Rewrite(s).
Let σ be the resulting environment function, s.t. atomic constraints fe1 ./
fe′1, . . . , fen ./ fe

′
n correspond to Boolean features B1, . . . , Bn. For ∀k ∈ K,

∃k′ ∈ K′, such that k′(Bi) ⇐⇒ (k |= fei ./ fe
′
i) for all 1 ≤ i ≤ n and

Pk(s) = Pk′(s
′).

Proof The proof is by structural induction on statements. The only inter-
esting case is #if (θ) s1 #endif, since in all other cases we have identity
transformations. θ is a feature expression in which may occur the atomic
constraints fe1 ./ fe

′
1, . . . , fen ./ fe

′
n, so it holds that k |= θ iff k′ |= θ σ.

Here, θ σ represents a feature expression over Boolean features B1, . . . , Bn ob-
tained by replacing atomic constraints from θ according to the environment
function σ. Then, Pk(#if (θ) s1 #endif) = Pk′(Rewrite(#if (θ) s1 #endif))
follows immediately.

Example 14 The numerical program family SIMPLE from Section 2 is
encoded as the Boolean program family SIMPLEbool shown in Fig. 8, where
σ(SIZE ≤ 3) = SIZE3. The sets of features and configurations are Fbool =
{ON, SIZE3} and Kbool = {ON ∧ SIZE3, ON ∧ ¬SIZE3,¬ON ∧ SIZE3,¬ON ∧
¬SIZE3}. Note that, PON∧(SIZE=1)(SIMPLE) = PON∧SIZE3(SIMPLEbool) and
P¬ON∧(SIZE=4)(SIMPLE) = P¬ON∧¬SIZE3(SIMPLEbool).

29

1O int x := 10, y := 0;

2O while (x 6= 0) {
3O x := x-1;

4O #if (SIZE3) y := y+1; #else y := y-1; #endif

5O #if (¬ON) y := 0; #else skip; #endif 6O}
7O assert (y > 1);

Figure 8: The Boolean program family
SIMPLEbool.

ON

SIZE3 [y=0∧x=0]

[y=10∧x=0] [y=−10∧x=0]

Figure 9: BDD-based (polyhedra) result
at location 7O of SIMPLEbool.

Remark The opposite of the result in Theorem 13 does not hold. That is,
there may exists a configuration of Rewrite(s) for which no corresponding
configuration of s exists with the same derived variant.

Example 15 Consider the following numerical program family s:

int x := 0;
#if (A > 5) x := x+2; #else x := x-2; #endif

#if (A > 7) x := x+1; #else x := x-1; #endif

It has one numerical feature A with domain [0, 99], and the configuration set
is K = {(A = i) | i ∈ [0, 99]}. The Boolean program family Rewrite(s) is:

int x := 0;
#if (B1) x := x+2; #else x := x-2; #endif

#if (B2) x := x+1; #else x := x-1; #endif

It has two Boolean features B1 and B2, the configuration set is K′ = {(B1∧
B2), (B1∧¬B2), (¬B1∧B2), (¬B1∧¬B2)}, and the environment function is σ =
[(A > 5) 7→ B1, (A > 7) 7→ B2]. For each configuration k ∈ K, there exists
k′ ∈ K′, s.t. Pk(s) = Pk′(Rewrite(s)). However, for k′ = (¬B1∧B2) ∈ K′,
there is no k ∈ K, s.t. Pk(s) = Pk′(Rewrite(s)). Note that the derived
variant P¬B1∧B2(Rewrite(s)) is: int x := 0; x := x-2; x := x+1. �

6.2. A BDD Lifted Domain

We now show how to analyze a Boolean program family [15]. Let F′ =
{B1, . . . , Bk} be a finite and totaly ordered set of Boolean features available
in the program family, such that the ordering is B1 < . . . < Bk. Each
configuration k ∈ K′ can be represented either by a subset of features: k ⊆ F′;

30

or by a formula: (k(B1) ∧ . . . ∧ k(Bk)), where k(Bi) = Bi if Bi ∈ k, and
k(Bi) = ¬Bi if Bi /∈ k for 1 ≤ i ≤ n. The set of feature expressions
FeatExp(F′) is: θ ::= true |B ∈ F′ | ¬θ | θ1 ∧ θ2 | θ1 ∨ θ2.

Lifted Domain. We first consider a simpler form of binary decision dia-
grams called binary decision trees (BDTs). A binary decision tree (BDT)
t ∈ T(F′,A) over the set F′ of Boolean features and the leaf abstract domain
A is either a leaf node 〈|a|〉, with a an element of A and F′ = ∅, or [[B : tl, tr]],
where B is the smallest element of F′ with respect to its ordering, tl is the
left subtree of t representing its true branch, and tr is the right subtree of t
representing its false branch, such that tl, tr ∈ T(F′\{B},A). The left and
right subtrees are either both leaf nodes or both rooted at decision nodes
labeled with the same feature.

However, BDTs contain some redundancy. There are three optimizations
we can apply to BDTs in order to reduce their representation [27, 28]:

(1) Removal of duplicate leaves. If a tree contains more than one same
leaf, we redirect all edges that point to such leaves to just one of them.

(2) Removal of redundant tests. If both outgoing edges of a node Ai point
to the same Aj, remove Ai by sending all its incoming edges to Aj.

(3) Removal of duplicate non-leaves. If nodes Ai and Aj are the roots of
identical subtrees, remove Ai by sending all its incoming edges to Aj.

If we apply reductions (1)-(3) to a binary decision tree t ∈ T(F′,A) until no
further reductions are possible, then the result is a reduced binary decision
diagram d ∈ D(F′,A). Thanks to the sharing of information enabled by the
reductions (1)-(3), BDDs are quite compact representation of disjunctive
analysis properties. Moreover, if the ordering on the Boolean variables from
F occurring on any path is fixed, the resulting BDDs have a canonical form.

Lifted Operations. The operations on D(F′,A) are implemented by recursive
traversal of the operand BDDs and by using hashtables to store and reuse
already computed subtrees [27]. The basic operations are:

� apply2(op, d1, d2) which lifts any binary operation op from domain A
to BDDs d1 and d2, thus computing the reduced BDD of “d1op d2”.

� apply1(op, d) which applies any unary operation op from A to the leaf
nodes of the BDD d, thus computing the reduced BDD of “op d”.

31

� meet condition(d, b) which restricts the top-down paths (Boolean part)
of the BDD d to those paths that satisfy the condition b.

With the help of apply2, apply1, and meet condition, operations and trans-
fer functions from A are lifted to D(F′,A).

The concretization function γD of a binary decision diagram d ∈ D(F′,A)
returns γA(a) for k ∈ K′, where k satisfies the constraints accumulated along
the top-down path to the leaf node a ∈ A. Formally, γD(d) = γD[∨k∈K′k](d),
where the function γD is defined recursively as:

γD[θ](〈|a|〉)=
∏

k|=θγA(a),

γD[θ]([[B : tl, tr]])=γD[θ ∧B](tl)× γD[θ ∧ ¬B](tr)

Given two BDDs d1, d2 ∈ D(F′,A), their ordering vD and join tD are:

d1 vD d2 ≡def apply2(λ(a1, a2).a1 vA a2, d1, d2) ≡ true
d1 tD d2 = apply2(λ(a1, a2).a1 tA a2, d1, d2)

Similarly, we compute the other binary operations. The BDDs >D and ⊥D
have only one leaf node >A and ⊥A, respectively.

Lifted Transfer Functions. We proceed by defining transfer functions for
expression-based and feature-based tests as well as for assignments and #if-s.

Transfer function FILTERD for expression tests e is implemented by han-
dling e at each leaf node a of the input BDD d using apply1. That is,

FILTERD(d :D(F′,A), e :Exp) = apply1(λa.FILTERA(a, e),d)

Transfer function FEAT-FILTERD for feature expression tests θ in #if-s is
implemented using the meet condition operation:

FEAT-FILTERD(d :D(F′,A), θ :FeatExp(F′)) = meet condition(d, θ)

Transfer functions ASSIGND for assignment x:=e are implemented by apply-
ing ASSIGNA leaf-wise using apply1.

ASSIGND(d :D(F′,A), x:=e :Stm) = apply1(λa.ASSIGNA(a, x:=e),d)

Given the (lifted) transfer function
−→
[[s]] for statement s, IFDEFD is:

IFDEFD(d : D(F′,A), #if (θ) s #endif : Stm) =
−→
[[s]](FEAT-FILTERD(d, θ)) tD FEAT-FILTERD(d,¬θ)

32

Lifted Analysis. In the first iteration, we build a BDD with only one leaf node
>A for the first program location. Thus, din = meet condition(>D,∨k∈K′k).
Note that, in the case of Rewrite(s), K′ = 2F′ and ∨k∈K′k ≡ true, so the
initial BDD is din = >D. The operators and transfer functions of the lifted
domain D(F′,A) are combined together to analyze Boolean program families.

Once the BDD-based lifted analysis infers invariants in all locations of
the Boolean program family Rewrite(s), we want to find the corresponding
invariants of the numerical program family s. Given a BDD d ∈ D(F′,A), we
define encode(d) to be a decision tree from T(CD,A) obtained by replacing
the Boolean features B ∈ F′ occurring in decision nodes of d with constraints
fe ./ fe′ such that σ(fe ./ fe′) = B. The obtained decision tree is then
normalized and compressed using COMPRESST (see Algorithm 6).s

Let [[s]]T and [[s]]D denote transfer functions of statement s in T(CD,A)
and D(F′,A), respectively. Note that tin = encode(din).

Theorem 16 [[s]]T(encode(d)) = encode
(
[[Rewrite(s)]]D(d)

)
.

Proof It follows from the correctness of Rewrite (see Theorem 13), the
definitions of T(CD,A) and D(F′,A) domains, and the definition of encode.

Example 17 If we perform polyhedra lifted analysis of SIMPLEbool in Fig. 8
using the lifted domain D(F′,P), where the ordering of features is ON < SIZE3,
the obtained BDD at location 7O is shown in Fig. 9. By applying the function
encode on it, we obtain the decision tree in Fig. 2b. �

Example 18 Reconsider program families s and Rewrite(s) from Exam-
ple 15. The polyhedra lifted analysis of s using T(CP , P) domain and of
Rewrite(s) using D(F′, P) domain infer invariants given in Figs. 10 and 11
in the final location, respectively. By applying encode function on the BDD
in Fig. 11 we obtain the decision tree in Fig. 10, since the constraint leading
to the leaf node (x = −1), that is (¬(A > 5)∧(A > 7)), is unsatisfiable, so it
will be eliminated by COMPRESST. �

7. Implementation and Evaluation

We evaluate our approaches for lifted analysis phrased in the abstract
interpretation framework. It consists of running the proposed tuple-based,
tree-based, and BDD-based lifted analyses on a dozen of #if-annotated C

33

A> 5

A> 7 [x=−3]

[x=3] [x=1]

Figure 10: Decision tree-based invariant at fi-
nal location of s.

B1

B2 B2

[x=3] [x=1] [x=−1] [x=−3]

Figure 11: BDD-based invariant at final
location of Rewrite(s).

case studies. The evaluation aims to show that we can use our lifted analyses
with improved representation to efficiently analyze various program families.
To do that, we ask the following research questions:

RQ1: How efficient are the new decision tree-based and BDD-based lifted
analyses compared to the standard tuple-based lifted analysis?

RQ2: Can the decision tree-based and BDD-based lifted analyses turn some
previously infeasible lifted analysis tasks into feasible ones?

RQ3: What are the time and precision performances of our lifted analyses
compared to the single-program analysis of variability simulator?

RQ4: Can we find practical application scenarios of using our lifted analyses
to efficient verification and program synthesis?

Implementation. We have developed a prototype lifted static analyzer, called
SPLNum2Analyzer, which uses lifted domains of tuples AK, decision trees
T(CD,A), and BDDs D(F′,A). The abstract domain A for encoding proper-
ties of tuple components and leaf nodes as well as the abstract domain D for
encoding linear constraints over numerical features are based on intervals,
octagons, and polyhedra numerical domains. Their abstract operations and
transfer functions are provided by the APRON library [21]. The operations
and transfer functions for BDD lifted domain that combines Boolean formu-
lae and APRON domains are provided by the BDDAPRON library [22].
Our proof-of-concept implementation is written in OCaml and consists of
around 7K lines of code. The current front-end of the tool accepts programs
written in a (subset of) C with #if directives, but without struct and union

types. It currently provides only a limited support for arrays and pointers,

34

though an extension is possible. The only basic data type is mathematical
integers. SPLNum2Analyzer automatically infers numerical invariants in
all program locations corresponding to all variants in the given family. The
analysis proceeds by structural induction on the program syntax, iterating
while-s until a fixed point is reached. It computes the unique least solution
that assigns an element from the lifted domain to every program location. It
is possible to tune the precision of the analysis by choosing the underlying
numerical domain (intervals, octagons, polyhedra).

Experimental setup and Benchmarks. All experiments are executed on a 64-
bit IntelrCoreTM i7-8700 CPU@3.20GHz × 12, Ubuntu 18.04.5 LTS, with 8
GB memory. All times are reported as average over five independent execu-
tions. The implementation, benchmarks, and all results obtained from our
experiments are available from [29]: https://github.com/aleksdimovski/
SPLNUM2Analyzer. In our experiments, we use two instances of our lifted
analyses via tuples: AΠ(I) and AΠ(P), via decision trees: AT(I) and AT(P),
and via BDDs: AD(I) andAD(P), which use intervals and polyhedra domains
as parameters, respectively.

SPLNum2Analyzer was evaluated on a dozen of C numerical pro-
grams collected from several categories of the 9th International Competi-
tion on Software Verification (SV-COMP 2020) 3 as well as from the real-
world BusyBox project 4 . The categories from SV-COMP are: product

lines, loops, loop-invgen (invgen for short), loop-lit (lit for short),
termination-crafted (craft), and termination-restricted (restr). Due
to the limitations in the current front-end of the tool we were not able to an-
alyze those programs that heavily use pointers, struct and union types. In
the case of SV-COMP, we have first selected some numerical programs with
integer variables that our tool can handle, and then we have manually added
variability (features and #if directives) in each of them. We have generated
program families with small and moderate configuration sizes, since they are
very common in practice. We have generated presence conditions with dif-
ferent complexities, from only atomic constraints to more complex feature
expressions, and #if directives are inserted in various locations of the code.
In the case of BusyBox, we have first selected some program families with
numerical features, and then we have simplified them so that can be handled

3https://sv-comp.sosy-lab.org/2020/
4https://busybox.net

35

https://github.com/aleksdimovski/SPLNUM2Analyzer
https://github.com/aleksdimovski/SPLNUM2Analyzer
https://sv-comp.sosy-lab.org/2020/
https://busybox.net

by our tool. For example, any reference to a pointer or a library function is
replaced with ? = [−∞,+∞]. In the case of the product lines category,
we have selected several specifications from the e-mail and elevator systems.
Tables 1 and 3 presents characteristics of the selected benchmarks in our
empirical study. We list: the file name (Benchmark), the category where it
is located (folder), number of features (|F|), number of valid configurations
(|K|), and number of lines of code (LOC).

Performance Results. We now present the performance results of our empiri-
cal study and discuss the implications. Table 1 shows the results of analyzing
our benchmark files by using different versions of our lifted static analyses
based on tuples, decision trees, and BDDs. For each numerical domain (In-
tervals and Polyhedra), there are four columns. In the first column, AΠ(−),
we report the running time in seconds to analyze the given benchmark us-
ing the lifted analysis based on tuples. In the second (resp., third) column,
AT(−) (resp., AD(−)), we report the speed up factor for the lifted analysis
based on decision trees (resp., on BDDs) relative to the corresponding base-
line lifted analysis based on tuples, that is, AT(−) vs. AΠ(−) (resp., AD(−)
vs. AΠ(−). In the fourth column, Res, we show whether the results inferred
by AD(−) are identical (denoted by X) or approximate (denoted by ≈) with
respect to the results of AT(−) and AΠ(−). The approximation occurs due to
the possibility that AD(−) reports results for variants that are not valid (see
Section 6). The performance results confirm that sharing is indeed effective
and especially so for large values of |K|. On our benchmarks, it translates
to speed ups (i.e., AT(−) vs. AΠ(−)) that range from 1.5 to 5.2 times when
|K|< 100, and from 4.6 to 22 times when |K|> 100 (addresses RQ1). We
observe even bigger speed ups in case of BDDs (i.e., AD(−) vs. AΠ(−)) that
range from 5.7 to 23 times when |K|< 100, and from 20 to 84 times when
|K|> 100 (addresses RQ1). Of course, the performance and speed up also
depend on how much variability sharing is possible for a given benchmark as
well as from the form of feature expressions present in it. In summary, we
conclude that the analysis that combines BDDs and intervals, AD(I), is the
fastest version. Moreover, the decision tree-based AT(−) and the BDD-based
lifted analyses AD(−) outperform the tuple-based lifted analysis AΠ(−) on
all benchmarks. Of course, all versions that use polyhedra are slower than
intervals, but they produce more precise invariants. Furthermore, the BDD-
based domain AD(I) may infer approximate results in some cases.

36

Table 1: Performance results for lifted analyses based on tuples (which are used as baseline)
vs. lifted analyses based on decision trees vs. lifted analyses based on Boolean encoding
and BDDs performed on selected benchmarks from SV-COMP 2020 and BusyBox. All
times are in seconds.

Bench. folder |K| LOC
Intervals Polyhedra

AΠ AT AD Res AΠ AT AD Res

half 2.c invgen 36 60 0.03 2.1× 12× ≈ 0.12 5.1× 23× ≈

heapsort.c invgen 36 60 0.12 2.5× 19× X 0.55 2.3× 17× X

seq.c invgen 125 40 0.51 12× 54× ≈ 2.17 15× 72× ≈

eq1.c loops 36 20 0.07 4.1× 15× X 0.24 5.2× 24× X

eq2.c loops 25 20 0.03 1.7× 8.8× X 0.10 2.2× 14× X

sum01*.c loops 25 20 0.04 1.8× 8× X 0.16 2.4× 9.7× X

count up do*.c loops 49 30 0.02 1.9× 7× ≈ 0.07 2.4× 17× ≈

hhk2008.c lit 216 30 0.34 13× 62× X 1.18 16× 59× X

gsv2008.c lit 25 25 0.02 1.5× 5.7× X 0.10 2.2× 11× X

gcnr2008.c lit 25 30 0.05 2.2× 8.5× ≈ 0.32 3.4× 12× X

GCD4.c restr 125 30 0.51 12× 84× ≈ 2.10 15× 74× ≈

UpAndDown.c restr 25 30 0.06 2× 15× ≈ 0.23 3.1× 13× ≈

java Sequen.c restr 25 25 0.02 1.9× 6.5× ≈ 0.07 2.6× 9× X

Toulouse*.c craft 125 75 0.38 7.7× 27× X 1.66 11× 54× X

Mysore.c craft 125 35 0.12 4.6× 26× ≈ 0.40 6.4× 31× X

copyfd.c BusyBox 16 84 0.07 4.2× 8.5× X 0.36 5.2× 9.2× X

real path.c BusyBox 128 45 3.03 12× 20× X 12.5 22× 31× X

e-mail spec6 product 4 2660 42.3 1.2× 10× X infeasible

e-mail spec8 product 4 2665 40.3 1.1× 12× X infeasible

elevator spec1 product 4 3035 45.9 3× 39× X infeasible

elevator spec2 product 8 3055 0.40 7× 20× X 6.75 7× 38× X

37

Computational tractability. The tuple-based lifted analysis AΠ(−) may be-
come very slow or even infeasible for very large configuration spaces |K|.
In that case, the decision tree-based AT(−) and BDD-based AD(−) lifted
analyses can be used to obtain feasible lifted analyses.

In order to confirm the above statement, we have tested the limits of
AΠ(P), AT(−), and AD(−) lifted analyses. We took a method, testkn(),
which contains n numerical features A1, . . . , An, such that each numerical
feature has domain of k elements, that is, dom(Ai) = [0, k−1] = {0, . . . , k−1}.
The body of testkn() consists of n sequentially composed #if-s of the form
#if (Ai = 0) i := i+1 #else i := 0 #endif. For example, the method test3

2()
with two features A1 and A2, whose domain is [0, 2], is:

1O int i := 0;
2O #if (A1 = 0) i := i+1 #else i := 0 #endif
3O #if (A2 = 0) i := i+1 #else i := 0 #endif 4O

Subject to the chosen configuration and the values assigned to the available
features, variable i in location 4O can have a value in the range from value
2 when A1 and A2 are assigned to 0, to value 0 when A2 ≥ 1. The analysis
results in program location 4O of test3

2() obtained using AΠ(P), AT(P), and
AD(P) are shown in Fig. 12, Fig. 13, and Fig. 14, respectively. The tuple-
based AΠ(P) uses tuples with 9 interval properties (components), while the
decision tree AT(P) and BDD-based AD(P) use only 3 interval properties
(leaf nodes) which are shared between all 9 configurations. Notice that for
the decision tree representation, the ordering of features is A2 < A1 and the
constraints that represent domains of numerical features (inferred from K)
are implicitly included in the tree. For example, the leaf node i=0 is reachable
for variants satisfying ¬(A2 = 0) ∧ (0 ≤ A1 ≤ 2) ∧ (0 ≤ A2 ≤ 2). Notice that
for the BDD representation, Boolean features B1 and B2 are used for atomic
constraints (A1 = 0) and (A2 = 0), and the ordering of features is B2 < B1.

We have generated methods testkn() by gradually increasing variability.
The method testkn() contains n numerical features A1, . . . An, each of them
with domain {0, . . . , k−1}, and it has n sequentially composed #if-s guarded
by all existing features. In general, the size of tuples used by AΠ(P) (i.e., the
number of interval properties) is kn, whereas the number of leaf nodes used
by AT(P) and AD(P) (i.e., the number of interval properties) in the final
program location is n + 1 (so it does not depend on k). The performance
results of analyzing testkn, for different values of n and k, using AΠ(P),
AT(P), and AD(P) are shown in Table 2. We observe that AT(P) and AD(P)

38

(A1=0∧A2=0︷ ︸︸ ︷
[i = 2] ,

A1=0∧A2=1︷ ︸︸ ︷
[i = 0] ,

A1=0∧A2=2︷ ︸︸ ︷
[i = 0] ,

A1=1∧A2=0︷ ︸︸ ︷
[i = 1] ,

A1=1∧A2=1︷ ︸︸ ︷
[i = 0] ,

A1=1∧A2=2︷ ︸︸ ︷
[i = 0] ,

A1=2∧A2=0︷ ︸︸ ︷
[i = 1] ,

A1=2∧A2=1︷ ︸︸ ︷
[i = 0] ,

A1=2∧A2=2︷ ︸︸ ︷
[i = 0]

)
Figure 12: AΠ(P) result at location 4O of test3

2().

A2=0

A1=0 [i=0]

[i=2] [i=1]

Figure 13: AT(P) result at location 4O of
test3

2().

B2

B1 [i=0]

[i=2] [i=1]

Figure 14: AD(P) result at location 4O of
test3

2(). Feature B2 corresponds to con-
straint A2 = 0, and B1 corresponds to A1 = 0.

Table 2: The performance results of analyzing testkn (infeasible = analysis fails to
terminate within a timeout limit of 30 minutes). All times are in seconds.

n
k = 3 k = 5 k = 7

AΠ(P) AT(P) AD(P) AΠ(P) AT(P) AD(P) AΠ(P) AT(P) AD(P)

5 0.212 0.138 0.003 3.538 0.139 0.003 22.37 0.139 0.003

6 0.939 0.301 0.004 26.29 0.301 0.004 infeasible 0.309 0.004

7 3.882 0.610 0.006 infeasible 0.610 0.006 infeasible 0.610 0.006

10 292.2 5.37 0.011 infeasible 5.39 0.011 infeasible 5.47 0.011

11 infeasible 13.81 0.012 infeasible 13.86 0.012 infeasible 13.85 0.012

14 infeasible 323.1 0.028 infeasible 442.2 0.029 infeasible 454.2 0.029

yield trees that provide quite compact and symbolic representation of lifted
analysis results. Since the configurations with equivalent analysis results are
nicely encoded using decision nodes, the performances of AT(P) and AD(P)
do not depend on the domain size of features k, but only depend on the
number of features n. On the other hand, the performance of AΠ(P) heavily
depends on k. Thus, within a timeout limit of 15 minutes, the analysisAΠ(P)
terminates for test3

10, test5
6, and test7

5, whereas it fails to terminate for the
corresponding methods with higher number of n.

For k = 3 and n = 10 (thus, |K| = 310 =59,049) configurations, the anal-
ysis AT(P) (resp., AD(P)) gives speed up of 54 times (resp., 105 times) com-

39

pared to AΠ(P), whereas for k = 3 and n = 11 (thus, |K| = 311 =177,147),
AΠ(P) crashes with an out-of-memory error, but AT(P) terminates in less
than 13.8 seconds while AD(P) in 0.01 seconds. For k = 5 and n = 6 (thus,
|K| = 56 =15,625) configurations, the analysis AT(P) (resp., AD(P)) gives
speed up of 89 times (resp., 6500 times) compared to AΠ(P), whereas for
k = 5 and n = 7 (thus, |K| = 57 =78,125), AΠ(P) crashes with an out-of-
memory error, but AT(P) terminates in less than 0.61 seconds while AD(P)
in 0.006 seconds. For k = 7 and n = 5 (thus, |K| = 75 =16,807) con-
figurations, the analysis AT(P) (resp., AD(P)) gives speed up of 161 times
(resp., 7000 times) compared to AΠ(P), whereas for k = 7 and n = 6 (thus,
|K| = 76 =117,649), AΠ(P) crashes with an out-of-memory error, but AT(P)
terminates in less than 0.3 seconds while AD(P) in 0.004 seconds. Notice
that the BDD approach is particularly well suited for analyzing this exam-
ple. In summary, we can conclude that decision trees and BDDs can not only
greatly speed up lifted analyses, but also turn previously infeasible analyses
into feasible by giving very compact representation of lifted analysis results,
thus effectively eliminating the exponential blowup (addresses RQ2).

Lifted vs. single-program analysis. The e-mail system has eight features: en-
cryption, decryption, automatic forwarding, e-mail signatures, auto respon-
der, keys, verify, and address book. There are forty valid configurations that
can be derived. A variant simulator (single-program) generated with vari-
ability encoding from the e-mail system, where all features are considered as
program variables, is analyzed using the interval domain A(I). We use our
decision tree lifted analysis AT(I) to analyze program families where some
of the features are considered as real ones. For effectiveness, we consider
as real only those features that influence directly the specification. In par-
ticular, we consider program families with one and two separate features,
and four specifications: spec6, spec8, spec11, and spec27. For each spec-
ification, many assertions appear in the main function after inlining. To
assess the precision of A(I) and AT(I), we evaluate the outcomes of the
assertions. Let d ∈ D be a numerical invariant found before the assertion
assert(be). An analysis can establish that the assertion is: (1) ‘unreachable’,
if d = ⊥D; (2) ‘correct ’ (valid), if dvD FILTERD(d, be), meaning that the as-
sertion is indeed valid regardless of approximations; (3) ‘erroneous ’ (invalid),
if dvD FILTERD(d,¬be), meaning that the assertion is indeed invalid; and
(4) ‘I don’t know ’, otherwise, meaning that the approximations introduced
due to abstraction prevent the analyzer from giving a definite answer. We

40

say that an assertion is reachable if one of the answers (2), (3), or (4) is ob-
tained. In the case of lifted analysis AT(I), we may obtain mixed assertions
when different leaves of the resulting decision trees yield different answers.

Table 3 shows the results of analyzing the e-mail system using A(I) and
AT(I) with one and two features. In the case ofA(I), we report the number of
assertions that are found ‘unreachable’, denoted by Unr, and reachable (‘cor-
rect’/‘erroneous’/‘I don’t know’), denoted by Rea. In the case of AT(I), we
report the number of ‘unreachable’ assertions, denoted by Unr, and mixed
assertions, denoted by Mix. When a reachable (‘correct’/‘erroneous’/‘I don’t
know’) assertion is reported by A(I), the lifted analysis AT(I) may give more
precise answer by providing the information for which variants that assertion
is reachable and for which is unreachable. We denote by (n : m) the fact
that one assertion is unreachable in n variants and reachable in m variants.
We can see in Table 3 that, for all reachable assertions found by A(I), we
obtain more precise answers using the lifted analysis AT(I). For example,
A(I) finds 6 unreachable and 26 reachable (‘correct’) assertions for spec6,
while AT(I) with one feature Encrypt (i.e. two variants) finds 16 unreach-
able assertions and 16 (1:1) mixed assertions such that each mixed assertion
is ‘unreachable’ when Encrypt=0 and ‘correct’ when Encrypt=1. By using
AT(I) with two features Encrypt and Decrypt (i.e. four variants), we obtain
16 unreachable assertions and 16 (2:2) mixed assertions. Similar analysis
results are obtained for the other specifications. For all specifications, the
analysis time increases by considering more features. In particular, we find
that AT(I) with one feature is in average 1.6 times slower than A(I), and
AT(I) with two features is in average 2.5 times slower than A(I). However,
we also obtain more precise information when using AT(I) with respect to
the reachability of assertions in various variants (addresses RQ3 and RQ4).

Practical applications. To illustrate the effectiveness of SPLNum2Analyzer,
we consider some practical applications to program synthesis, and we present
the results produced by our analyzer (addresses RQ4).

A sketch [30] is a partial program with missing integer expressions called
holes to be discovered by the synthesizer. The integer hole is a placeholder
that the program synthesizer must replace with a suitable integer constant.
The synthesizer ensures that the resulting code will avoid any assertion fail-

41

Table 3: Performance results for single analysis A(I) vs. lifted analysis AT(I) with one
and two features on the e-mail system from product lines category. All times are in
seconds.

Benchmark LOC
A(I), 0 feat AT(I), 1 feat AT(I), 2 feat

Time Unr. Rea. Time Unr. Mix Time Unr. Mix

e-mail spec6 2660 22.7 6 26 32.5 16 16(1:1) 42.3 16 16(2:2)

e-mail spec8 2665 19.8 0 32 27.6 0 32(1:1) 40.3 0 32(2:2)

e-mail spec11 2660 20.6 160 96 38.8 160 96(1:1) 60.1 160 96(3:1)

e-mail spec27 2630 19.6 384 128 35.1 384 128(1:1) 59.4 384 128(2:2)

ures under all possible inputs. Consider the following sketch:

1O int x := 10, y := 0;

2O while (x > ??) {
3O x := x-1; y := y+1; }
4O assert (y > 2);

which contains one integer hole denoted by ??. The synthesizer should re-
place the hole ?? with a constant from Z, such that the synthesized program
satisfies the given assertion. A sketch can be represented as a program fam-
ily, such that all possible realisations of holes in the sketch correspond to
possible variants in the program family. For example, the above sketch can
be encoded as a program family that contains one numerical feature A with
domain [0,max] 5 by replacing the hole ?? with feature A. Note that the
expression x > A is abbreviation for:

#if (A=0) (x>0) #elif . . . #elif (A=max) (x>max) #endif . . . #endif

However, instead of performing the above syntactic transformation, we can
extend our tool so that it can directly handle statements and expressions
that only read the values of numerical features.

By performing lifted analysis AT(P) of the resulting program family, at
location 4O we obtain the decision tree [[A ≤ 9 : 〈|A+y=10∧A=x|〉, 〈|y=0∧x=10|〉]].
We can check that the assertion (y > 2) is valid only for (0≤A≤7). Hence,

5Note that max represents some maximal representable integer.

42

we can correctly replace the hole ?? in the original sketch with an integer
from [0,7], so that the assertion will always be valid. This way, we have
shown that our lifted analyzer can be used to synthesize the hole ?? in the
above sketch (addresses RQ4). The decision tree-based representation is
the most suitable for resolving program sketches due to the fact that linear
constraints labelling decision nodes are automatically inferred during the
analysis. Since our lifted analyzer is based on numerical domains D, it can
be used mainly for synthesizing numerical programs. The existing sketching
approach [30], which uses SAT-based inductive synthesis, is more general,
though it is mainly used for synthesizing bit-manipulating programs. For
more detailed explanation, we refer to [31].

Discussion. Our experiments demonstrate that the decision tree-basedAT(−)
and the BDD-based lifted analyses AD(−) outperform the tuple-based lifted
analysisAΠ(−). Moreover, the BDD-basedAD(−) is often faster than the de-
cision tree-based AT(−). However, there are examples when AT(−) is faster.
Recall that the partitioning of the configuration space induced by our deci-
sion trees is semantics-based rather than syntactic-based. For instance, if we
consider Example 10, our decision tree-based approach constructs a decision
tree with only one decision node such that the linear constraint in that node
is automatically inferred by the analysis and does not appear syntactically
in the code. On the other hand, if we use Boolean encoding, we would need
three Boolean features and a more complex BDD, thus resulting in a slower
BDD-based analysis. Furthermore, note that the BDD domain (implemented
via the BDDAPRON library [22]) is very optimized and efficiently imple-
mented, whereas the decision tree domain is still a prototype. Many abstract
operations and transfer functions of the decision tree domain can be further
optimized, thus making its performance to improve. Finally, we have seen
that the decision tree domain can be successfully applied to resolving pro-
gram sketches, whereas the BDD domain is not suitable for this application.
Moreover, the BDD-based analysis infers approximate results in some cases.
This way, we conclude that both newly proposed lifted domains (decision
trees and BDDs) are useful in practice for different application scenarios.

We have seen that there is a whole spectrum of possible techniques for
analyzing program families. At one end of the spectrum are lifted analyses,
which are fully-disjunctive with respect to features variables. They are based
on single-program domains with full partitioning of the configuration space
K. At the other end of the spectrum is a single-program analysis of variability

43

simulators. It represents a non-disjunctive analysis with no partitioning of
the configuration space K. We can also construct a range of hybrid techniques
between fully-disjunctive lifted analysis and non-disjunctive single-program
analysis. They represent disjunctive analyses only with respect to some (but
not all) feature variables with partitioning of some subset of K.

Threats to validity. Our current tool supports a non-trivial subset of C, and
the missing constructs (e.g. pointers, struct and union types) are largely
orthogonal to the solution (lifted domains). In particular, these features com-
plicate the abstract semantics of single-programs and implementation of the
domains for leaf nodes, but have no impact on the semantics of variability-
specific constructs and the lifted domains we introduce in this work. There-
fore, supporting these constructs would not provide any new insights to our
evaluation.

Another threat to validity is the synthetic variability that has been manu-
ally added to the SV-COMP benchmarks. We have generated benchmarks
with moderate feature use (from 1 to 3 features, and from 16 to 216 config-
urations), due to the fact that they are very common in practice and any
speed ups of lifted analysis should be visible for them. For benchmarks with
intensive feature use (more than 4 features and thousand configurations), the
tuple-based lifted analysis is very likely to become infeasible, as demonstrated
by the simple testkn method. We have also inserted presence conditions with
different complexities, from atomic to more complex feature expressions, and
#if-s are placed in different locations of the code (e.g., initialization part,
inside loops, etc.). However, the experiments are also performed on more re-
alistic program families from BusyBox project and product-line category
of SV-COMP.

8. Related Work

Decision-tree abstract domains have been used in the abstract interpre-
tation community recently [32, 33, 34, 16]. Decision trees have been applied
for the disjunctive refinement of interval (boxes) domain [32]. That is, each
element of the new domain is a propositional formula over interval linear
constraints. Segmented decision tree abstract domains has also been defined
in the literature [33, 34] to enable path dependent static analysis. Their
elements contain decision nodes that are determined either by values of pro-
gram variables [33] or by the branch (if) conditions [34], whereas the leaf

44

nodes are numerical properties. Urban and Mine [16, 17] use decision tree-
based abstract domains to prove program termination. Decision nodes are
labelled with linear constraints that split the memory space and leaf nodes
contain affine ranking functions for proving program termination. The de-
cision tree lifted domain proposed here extends this termination domain by
adapting it in the context of product-lines analysis. Logico-numerical ab-
stract domains implemented using BDDAPRON and specifically designed
acceleration methods are used in [35] to verify synchronous data-flow pro-
grams with Boolean and numerical variables, such as LUSTRE programs.
Both termination and logico-numerical domains can be considered as single-
program domains that use partitioning techniques with respect to the total
memory space and the Boolean state subspace, respectively. Similarly, the
lifted domains proposed here can be considered as single-program domains
that use partitioning with respect to the feature variables in order to parti-
tion the configuration space K. The APRON library has been developed by
Jeannet and Mine [21] to support the application of numerical abstract do-
mains in static analysis, while the BDDAPRON library has been developed
by Jeannet [22] to implement a relational inter-procedural analysis of con-
current programs. The ELINA library [36] represents an another efficient
implementation of numerical abstract domains.

There are two styles of static analysis: a dataflow analysis from the mono-
tone framework developed by Kildall [37] that is algorithmically defined on
syntactic CFGs, and an abstract interpretation-based static analysis devel-
oped by Cousot and Cousot [6] that is more general and semantically defined.
A central limitation of the monotone framework approach is the requirement
that domains have finite height, which is overcame by the abstract interpre-
tation approach using widening and narrowing techniques [6, 26]. Brabrand
et al. [9] lift a dataflow analysis from the monotone framework, resulting
in a tuple-based lifted dataflow analysis that works on the level of families.
The obtained lifted dataflow analyses are much faster than ones based on
the “brute force” strategy, which generates and analyzes all variants one by
one. Another efficient implementation of the lifted dataflow analysis from the
monotone framework is based on using variational data structures [10] (e.g.,
variational CFGs, variational data-flow facts) for achieving efficient dataflow
computation. Several dataflow and control flow analysis (e.g., case termi-
nation, dangling switch, dead store, double free, freeing of static memory)
are implemented and evaluated on some real-world systems. SPLLIFT [14]
is an implementation of the lifted dataflow analysis formulated within the

45

IFDS framework. It has been shown that the running time of analyzing all
variants in a family is close to the analysis of a single program. However,
this technique is limited to work only for analyses phrased within the IFDS
framework, a subset of dataflow analyses with certain properties, such as dis-
tributivity of transfer functions. Many dataflow analyses, including analyses
considered here, are not distributive and cannot be encoded in IFDS.

Midtgaard et al. [11] have proposed a formal methodology for systematic
derivation of tuple-based lifted static analyses from existing single-program
analyses phrased in the abstract interpretation framework. The method uses
the calculational approach to abstract interpretation of Cousot [38] in order
to derive a lifted analysis which is correct by construction. This approach
improves over the “brute force” strategy since a lot of caching effects and im-
provements are possible for it. For example, it compiles and executes the fixed
point iterative algorithm once per whole family, configuration satisfiability
tests k |= θ can be memoized, many transfer functions that act identically for
all configurations can be executed more efficiently, and some simple forms of
sharing analysis equivalent information can be implemented via bit vectors or
formulae. Moreover, so-called variability abstractions [39, 40] can be applied
as another way to speed up lifted analysis by deriving abstract lifted analy-
sis. They tame the combinatorial explosion of the number of configurations
and reduce it to something more tractable by manipulating the configuration
space. A more efficient implementation of lifted static analysis by abstract
interpretation is obtained by improving representation via sharing by using
binary decision diagram (BDD) domains [15, 41]. BDDs consist of decision
nodes that are labelled with Boolean features, and leaf nodes that belong to
an existing single-program analysis domain. However, the above lifted static
analyses based on abstract interpretation are applied to classical program
families with only Boolean features. On the other hand, in this work we
consider #if-enriched C program families with both Boolean and numerical
features, which represent the majority of industrial embedded code. Other
applications of decision tree lifted domain are for resolving program sketches
[31] and for analyzing dynamic program families [42].

Several other successful lifted techniques for analyzing classical SPLs that
contain only Boolean features are based on sharing through binary decision
diagrams (BDDs). SPLverifier [12, 13] performs software model checking of
program families based on variability encoding (to transform compile-time
to run-time variability) and BDDs (to represent variability information in
states). VarexJ [43] performs dynamic analysis of program families based on

46

variability-aware execution, while SuperC [44] is a variability-aware parser,
which can parse languages with preprocessor annotations thus producing
ASTs with variability nodes. Both use BDDs to represent feature expressions.

Compared to classical SPLs with only Boolean features, SPLs with nu-
merical features have larger and more complex configuration spaces due to
increased variability. One of the earliest attempts to analyze SPLs with
non-Boolean features was in the context of lifted model checking by Cordy
et al. [25]. They generalize the classical lifted model checking algorithms
[45, 46, 47] to support numerical features and multi-features. To handle
arithmetic constraints they use SMT solvers. However, that approach [25]
works on the level of models (i.e. high-level designs of SPLs), while our ap-
proach being based on abstract interpretation works directly on the level of
source code.

9. Conclusion

In this work, we employ decision trees, BDDs, and widely-known nu-
merical abstract domains for automatic inference of invariants in all program
locations of C program families that contain both Boolean and numerical fea-
tures. In this way, we obtain several lifted domains for handling numerical
features. Using experimental evidence, we have shown that our lifted analyses
are effective and perform well on a wide variety of benchmarks. BDD-based
lifted analysis has the best time performance. Decision tree-based analysis
outperforms the tuple-based lifted analysis and has some interesting practical
applications, like in program sketching.

In the future, we would like to extend the lifted domain to also sup-
port non-linear constraints, such as congruences and non-linear functions
(e.g. polynomials, exponentials) [48], and to handle more complex heap-
manipulating program families [49]. We also want to try other libraries that
support numerical abstract domains, such as ELINA [36], and estimate their
performance in the context of lifted analysis. We can also define a backward
lifted analysis in combination with a preliminary forward lifted analysis to
infer the necessary preconditions in order a given assertion to be satisfied or
violated. The obtained preconditions in the form of linear constraints can be
analyzed using model counting techniques to quantify how likely is an input
or a variant to satisfy them [50, 51].

47

References

[1] P. Clements, L. Northrop, Software Product Lines: Practices and Pat-
terns, Addison-Wesley, 2001.

[2] C. Kästner, Virtual separation of concerns: Toward preprocessors 2.0,
Ph.D. thesis, University of Magdeburg, Germany (May 2010).

[3] C. Henard, M. Papadakis, M. Harman, Y. L. Traon, Combining multi-
objective search and constraint solving for configuring large software
product lines, in: 37th IEEE/ACM International Conference on Soft-
ware Engineering, ICSE 2015, Volume 1, IEEE Computer Society, 2015,
pp. 517–528. doi:10.1109/ICSE.2015.69.
URL https://doi.org/10.1109/ICSE.2015.69

[4] D. Munoz, J. Oh, M. Pinto, L. Fuentes, D. S. Batory, Uniform random
sampling product configurations of feature models that have numerical
features, in: Proceedings of the 23rd International Systems and Software
Product Line Conference, SPLC 2019, Volume A, ACM, 2019, pp. 39:1–
39:13. doi:10.1145/3336294.3336297.
URL https://doi.org/10.1145/3336294.3336297

[5] T. Thüm, S. Apel, C. Kästner, I. Schaefer, G. Saake, A classification
and survey of analysis strategies for spls, ACM Comput. Surv. 47 (1)
(2014) 6.

[6] P. Cousot, R. Cousot, Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of
fixpoints, in: Conference Record of the Fourth ACM Symposium on
Principles of Programming Languages, ACM, 1977, pp. 238–252. doi:

10.1145/512950.512973.
URL http://doi.acm.org/10.1145/512950.512973

[7] A. Miné, Tutorial on static inference of numeric invariants by abstract
interpretation, Foundations and Trends in Programming Languages 4 (3-
4) (2017) 120–372. doi:10.1561/2500000034.
URL https://doi.org/10.1561/2500000034

[8] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, X. Rival, Why
does astrée scale up?, Formal Methods in System Design 35 (3) (2009)

48

https://doi.org/10.1109/ICSE.2015.69
https://doi.org/10.1109/ICSE.2015.69
https://doi.org/10.1109/ICSE.2015.69
https://doi.org/10.1109/ICSE.2015.69
https://doi.org/10.1109/ICSE.2015.69
https://doi.org/10.1145/3336294.3336297
https://doi.org/10.1145/3336294.3336297
https://doi.org/10.1145/3336294.3336297
https://doi.org/10.1145/3336294.3336297
https://doi.org/10.1145/3336294.3336297
http://doi.acm.org/10.1145/512950.512973
http://doi.acm.org/10.1145/512950.512973
http://doi.acm.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
http://doi.acm.org/10.1145/512950.512973
https://doi.org/10.1561/2500000034
https://doi.org/10.1561/2500000034
https://doi.org/10.1561/2500000034
https://doi.org/10.1561/2500000034
https://doi.org/10.1007/s10703-009-0089-6
https://doi.org/10.1007/s10703-009-0089-6

229–264. doi:10.1007/s10703-009-0089-6.
URL https://doi.org/10.1007/s10703-009-0089-6

[9] C. Brabrand, M. Ribeiro, T. Tolêdo, J. Winther, P. Borba, Intraproce-
dural dataflow analysis for software product lines, T. Aspect-Oriented
Software Development 10 (2013) 73–108.

[10] A. von Rhein, J. Liebig, A. Janker, C. Kästner, S. Apel, Variability-
aware static analysis at scale: An empirical study, ACM Trans. Softw.
Eng. Methodol. 27 (4) (2018) 18:1–18:33. doi:10.1145/3280986.
URL https://doi.org/10.1145/3280986

[11] J. Midtgaard, A. S. Dimovski, C. Brabrand, A. Wasowski, Systematic
derivation of correct variability-aware program analyses, Sci. Comput.
Program. 105 (2015) 145–170. doi:10.1016/j.scico.2015.04.005.
URL http://dx.doi.org/10.1016/j.scico.2015.04.005

[12] S. Apel, H. Speidel, P. Wendler, A. von Rhein, D. Beyer, Detec-
tion of feature interactions using feature-aware verification, in: 26th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE 2011), 2011, pp. 372–375. doi:10.1109/ASE.2011.6100075.
URL http://dx.doi.org/10.1109/ASE.2011.6100075

[13] S. Apel, A. von Rhein, P. Wendler, A. Größlinger, D. Beyer, Strategies
for product-line verification: case studies and experiments, in: 35th Int.
Conference on Software Engineering, ICSE ’13, 2013, pp. 482–491.

[14] E. Bodden, T. Tolêdo, M. Ribeiro, C. Brabrand, P. Borba, M. Mezini,

Spllift: statically analyzing software product lines in minutes instead of
years, in: ACM SIGPLAN Conference on PLDI ’13, 2013, pp. 355–364.

[15] A. S. Dimovski, Lifted static analysis using a binary decision diagram
abstract domain, in: Proceedings of the 18th ACM SIGPLAN Interna-
tional Conference on Generative Programming: Concepts and Experi-
ences, GPCE 2019, ACM, 2019, pp. 102–114. doi:10.1145/3357765.

3359518.
URL https://doi.org/10.1145/3357765.3359518

[16] C. Urban, A. Miné, A decision tree abstract domain for proving condi-
tional termination, in: Static Analysis - 21st International Symposium,

49

https://doi.org/10.1007/s10703-009-0089-6
https://doi.org/10.1007/s10703-009-0089-6
https://doi.org/10.1145/3280986
https://doi.org/10.1145/3280986
https://doi.org/10.1145/3280986
https://doi.org/10.1145/3280986
http://dx.doi.org/10.1016/j.scico.2015.04.005
http://dx.doi.org/10.1016/j.scico.2015.04.005
https://doi.org/10.1016/j.scico.2015.04.005
http://dx.doi.org/10.1016/j.scico.2015.04.005
http://dx.doi.org/10.1109/ASE.2011.6100075
http://dx.doi.org/10.1109/ASE.2011.6100075
https://doi.org/10.1109/ASE.2011.6100075
http://dx.doi.org/10.1109/ASE.2011.6100075
https://doi.org/10.1145/3357765.3359518
https://doi.org/10.1145/3357765.3359518
https://doi.org/10.1145/3357765.3359518
https://doi.org/10.1145/3357765.3359518
https://doi.org/10.1145/3357765.3359518
https://doi.org/10.1007/978-3-319-10936-7_19
https://doi.org/10.1007/978-3-319-10936-7_19

SAS 2014. Proceedings, Vol. 8723 of LNCS, Springer, 2014, pp. 302–318.
doi:10.1007/978-3-319-10936-7_19.
URL https://doi.org/10.1007/978-3-319-10936-7_19

[17] C. Urban, Static analysis by abstract interpretation of functional tem-
poral properties of programs, Ph.D. thesis, École Normale Supérieure,
Paris, France (2015).
URL https://tel.archives-ouvertes.fr/tel-01176641

[18] C. Urban, Function: An abstract domain functor for termination -
(competition contribution), in: Tools and Algorithms for the Construc-
tion and Analysis of Systems - 21st International Conference, TACAS
2015. Proceedings, Vol. 9035 of LNCS, Springer, 2015, pp. 464–466.
doi:10.1007/978-3-662-46681-0_46.
URL https://doi.org/10.1007/978-3-662-46681-0_46

[19] A. Miné, The octagon abstract domain, Higher-Order and Symbolic
Computation 19 (1) (2006) 31–100. doi:10.1007/s10990-006-8609-1.
URL https://doi.org/10.1007/s10990-006-8609-1

[20] P. Cousot, N. Halbwachs, Automatic discovery of linear restraints among
variables of a program, in: Conference Record of the Fifth Annual ACM
Symposium on Principles of Programming Languages (POPL’78), ACM
Press, 1978, pp. 84–96. doi:10.1145/512760.512770.
URL https://doi.org/10.1145/512760.512770

[21] B. Jeannet, A. Miné, Apron: A library of numerical abstract domains
for static analysis, in: Computer Aided Verification, 21st International
Conference, CAV 2009. Proceedings, Vol. 5643 of LNCS, Springer, 2009,
pp. 661–667. doi:10.1007/978-3-642-02658-4_52.
URL https://doi.org/10.1007/978-3-642-02658-4_52

[22] B. Jeannet, Relational interprocedural verification of concurrent pro-
grams, in: Seventh IEEE Inter. Conf. on Software Engineering and
Formal Methods, SEFM’09, IEEE Computer Society, 2009, pp. 83–92.
doi:10.1109/SEFM.2009.29.
URL https://doi.org/10.1109/SEFM.2009.29

[23] A. von Rhein, T. Thüm, I. Schaefer, J. Liebig, S. Apel, Variability encod-
ing: From compile-time to load-time variability, J. Log. Algebraic Meth-
ods Program. 85 (1) (2016) 125–145. doi:10.1016/j.jlamp.2015.06.

50

https://doi.org/10.1007/978-3-319-10936-7_19
https://doi.org/10.1007/978-3-319-10936-7_19
https://tel.archives-ouvertes.fr/tel-01176641
https://tel.archives-ouvertes.fr/tel-01176641
https://tel.archives-ouvertes.fr/tel-01176641
https://doi.org/10.1007/978-3-662-46681-0_46
https://doi.org/10.1007/978-3-662-46681-0_46
https://doi.org/10.1007/978-3-662-46681-0_46
https://doi.org/10.1007/978-3-662-46681-0_46
https://doi.org/10.1007/s10990-006-8609-1
https://doi.org/10.1007/s10990-006-8609-1
https://doi.org/10.1007/s10990-006-8609-1
https://doi.org/10.1145/512760.512770
https://doi.org/10.1145/512760.512770
https://doi.org/10.1145/512760.512770
https://doi.org/10.1145/512760.512770
https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1109/SEFM.2009.29
https://doi.org/10.1109/SEFM.2009.29
https://doi.org/10.1109/SEFM.2009.29
https://doi.org/10.1109/SEFM.2009.29
https://doi.org/10.1016/j.jlamp.2015.06.007
https://doi.org/10.1016/j.jlamp.2015.06.007
https://doi.org/10.1016/j.jlamp.2015.06.007
https://doi.org/10.1016/j.jlamp.2015.06.007

007.
URL https://doi.org/10.1016/j.jlamp.2015.06.007

[24] A. S. Dimovski, S. Apel, A. Legay, A decision tree lifted domain for
analyzing program families with numerical features, in: Fundamental
Approaches to Software Engineering - 24th International Conference,
FASE 2021, Proceedings, Vol. 12649 of LNCS, Springer, 2021, pp. 67–
86.
URL https://arxiv.org/abs/2012.05863

[25] M. Cordy, P. Schobbens, P. Heymans, A. Legay, Beyond boolean
product-line model checking: dealing with feature attributes and multi-
features, in: 35th International Conference on Software Engineering,
ICSE ’13, IEEE Computer Society, 2013, pp. 472–481. doi:10.1109/

ICSE.2013.6606593.
URL https://doi.org/10.1109/ICSE.2013.6606593

[26] P. Cousot, R. Cousot, Comparing the galois connection and widening/-
narrowing approaches to abstract interpretation, in: Programming Lan-
guage Implementation and Logic Programming, 4th International Sym-
posium, PLILP’92, Proceedings, Vol. 631 of LNCS, Springer, 1992, pp.
269–295. doi:10.1007/3-540-55844-6_142.
URL https://doi.org/10.1007/3-540-55844-6_142

[27] R. E. Bryant, Graph-based algorithms for boolean function manipula-
tion, IEEE Trans. Computers 35 (8) (1986) 677–691. doi:10.1109/TC.
1986.1676819.
URL https://doi.org/10.1109/TC.1986.1676819

[28] M. Huth, M. D. Ryan, Logic in computer science - modelling and rea-
soning about systems (2. ed.), Cambridge University Press, 2004.

[29] A. S. Dimovski, S. Apel, A. Legay, Tool artifact
“SPLNum2Analyzer”, Zenodo (2021). doi:10.5281/zenodo.

4796015.
URL https://zenodo.org/record/4796015#.YK1pAqgzbIU

[30] A. Solar-Lezama, Program sketching, STTT 15 (5-6) (2013) 475–495.
doi:10.1007/s10009-012-0249-7.
URL https://doi.org/10.1007/s10009-012-0249-7

51

https://doi.org/10.1016/j.jlamp.2015.06.007
https://doi.org/10.1016/j.jlamp.2015.06.007
https://doi.org/10.1016/j.jlamp.2015.06.007
https://doi.org/10.1016/j.jlamp.2015.06.007
https://arxiv.org/abs/2012.05863
https://arxiv.org/abs/2012.05863
https://arxiv.org/abs/2012.05863
https://doi.org/10.1109/ICSE.2013.6606593
https://doi.org/10.1109/ICSE.2013.6606593
https://doi.org/10.1109/ICSE.2013.6606593
https://doi.org/10.1109/ICSE.2013.6606593
https://doi.org/10.1109/ICSE.2013.6606593
https://doi.org/10.1109/ICSE.2013.6606593
https://doi.org/10.1007/3-540-55844-6_142
https://doi.org/10.1007/3-540-55844-6_142
https://doi.org/10.1007/3-540-55844-6_142
https://doi.org/10.1007/3-540-55844-6_142
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1109/TC.1986.1676819
https://zenodo.org/record/4796015#.YK1pAqgzbIU
https://zenodo.org/record/4796015#.YK1pAqgzbIU
https://doi.org/10.5281/zenodo.4796015
https://doi.org/10.5281/zenodo.4796015
https://zenodo.org/record/4796015#.YK1pAqgzbIU
https://doi.org/10.1007/s10009-012-0249-7
https://doi.org/10.1007/s10009-012-0249-7
https://doi.org/10.1007/s10009-012-0249-7

[31] A. S. Dimovski, S. Apel, A. Legay, Program sketching using lifted anal-
ysis for numerical program families, in: NASA Formal Methods - 13th
International Symposium, NFM 2021, Proceedings, Vol. 12673 of LNCS,
Springer, 2021, pp. 95–112. doi:10.1007/978-3-030-76384-8_7.
URL https://doi.org/10.1007/978-3-030-76384-8_7

[32] A. Gurfinkel, S. Chaki, Boxes: A symbolic abstract domain of boxes,
in: Static Analysis - 17th International Symposium, SAS 2010. Pro-
ceedings, Vol. 6337 of LNCS, Springer, 2010, pp. 287–303. doi:

10.1007/978-3-642-15769-1_18.
URL https://doi.org/10.1007/978-3-642-15769-1_18

[33] P. Cousot, R. Cousot, L. Mauborgne, A scalable segmented decision tree
abstract domain, in: Time for Verification, Essays in Memory of Amir
Pnueli, Vol. 6200 of LNCS, Springer, 2010, pp. 72–95. doi:10.1007/

978-3-642-13754-9_5.
URL https://doi.org/10.1007/978-3-642-13754-9_5

[34] J. Chen, P. Cousot, A binary decision tree abstract domain func-
tor, in: Static Analysis - 22nd International Symposium, SAS 2015,
Proceedings, Vol. 9291 of LNCS, Springer, 2015, pp. 36–53. doi:

10.1007/978-3-662-48288-9_3.
URL https://doi.org/10.1007/978-3-662-48288-9_3

[35] P. Schrammel, B. Jeannet, Logico-numerical abstract acceleration and
application to the verification of data-flow programs, in: Static Analy-
sis - 18th International Symposium, SAS 2011. Proceedings, Vol. 6887,
Springer, 2011, pp. 233–248. doi:10.1007/978-3-642-23702-7_19.
URL https://doi.org/10.1007/978-3-642-23702-7_19

[36] G. Singh, M. Püschel, M. T. Vechev, Making numerical program anal-
ysis fast, in: Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2015, ACM, 2015,
pp. 303–313. doi:10.1145/2737924.2738000.
URL https://doi.org/10.1145/2737924.2738000

[37] G. A. Kildall, A unified approach to global program optimization, in:
Conf. Record of the ACM Symp. on Principles of Programming Lan-
guages, (POPL’73), 1973, pp. 194–206. doi:10.1145/512927.512945.
URL https://doi.org/10.1145/512927.512945

52

https://doi.org/10.1007/978-3-030-76384-8_7
https://doi.org/10.1007/978-3-030-76384-8_7
https://doi.org/10.1007/978-3-030-76384-8_7
https://doi.org/10.1007/978-3-030-76384-8_7
https://doi.org/10.1007/978-3-642-15769-1_18
https://doi.org/10.1007/978-3-642-15769-1_18
https://doi.org/10.1007/978-3-642-15769-1_18
https://doi.org/10.1007/978-3-642-15769-1_18
https://doi.org/10.1007/978-3-642-13754-9_5
https://doi.org/10.1007/978-3-642-13754-9_5
https://doi.org/10.1007/978-3-642-13754-9_5
https://doi.org/10.1007/978-3-642-13754-9_5
https://doi.org/10.1007/978-3-642-13754-9_5
https://doi.org/10.1007/978-3-662-48288-9_3
https://doi.org/10.1007/978-3-662-48288-9_3
https://doi.org/10.1007/978-3-662-48288-9_3
https://doi.org/10.1007/978-3-662-48288-9_3
https://doi.org/10.1007/978-3-662-48288-9_3
https://doi.org/10.1007/978-3-642-23702-7_19
https://doi.org/10.1007/978-3-642-23702-7_19
https://doi.org/10.1007/978-3-642-23702-7_19
https://doi.org/10.1007/978-3-642-23702-7_19
https://doi.org/10.1145/2737924.2738000
https://doi.org/10.1145/2737924.2738000
https://doi.org/10.1145/2737924.2738000
https://doi.org/10.1145/2737924.2738000
https://doi.org/10.1145/512927.512945
https://doi.org/10.1145/512927.512945
https://doi.org/10.1145/512927.512945

[38] P. Cousot, The calculational design of a generic abstract interpreter, in:
M. Broy, R. Steinbrüggen (Eds.), Calculational System Design, NATO
ASI Series F. IOS Press, Amsterdam, 1999, pp. 1–88.

[39] A. S. Dimovski, C. Brabrand, A. Wasowski, Variability abstractions:
Trading precision for speed in family-based analyses, in: 29th European
Conference on Object-Oriented Programming, ECOOP 2015, Vol. 37 of
LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015, pp.
247–270. doi:10.4230/LIPIcs.ECOOP.2015.247.
URL http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.247

[40] A. S. Dimovski, C. Brabrand, A. Wasowski, Finding suitable variability
abstractions for lifted analysis, Formal Asp. Comput. 31 (2) (2019) 231–
259. doi:10.1007/s00165-019-00479-y.
URL https://doi.org/10.1007/s00165-019-00479-y

[41] A. S. Dimovski, A binary decision diagram lifted domain for analyzing
program families, Journal of Computer Languages 63 (2021) 101032.
doi:https://doi.org/10.1016/j.cola.2021.101032.
URL https://www.sciencedirect.com/science/article/pii/

S2590118421000113

[42] A. S. Dimovski, S. Apel, Lifted static analysis of dynamic program fami-
lies by abstract interpretation, in: 35th European Conference on Object-
Oriented Programming, ECOOP 2021, Vol. 194 of LIPIcs, Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2021, pp. 14:1–14:28.
URL http://dx.doi.org/10.4230/LIPIcs.ECOOP.2021.xxx

[43] J. Meinicke, C. Wong, C. Kästner, T. Thüm, G. Saake, On essential con-
figuration complexity: measuring interactions in highly-configurable sys-
tems, in: Proceedings of the 31st IEEE/ACM International Conference
on Automated Software Engineering, ASE 2016, Singapore, September
3-7, 2016, ACM, 2016, pp. 483–494. doi:10.1145/2970276.2970322.
URL http://doi.acm.org/10.1145/2970276.2970322

[44] P. Gazzillo, R. Grimm, Superc: parsing all of C by taming the pre-
processor, in: ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’12, 2012, pp. 323–334. doi:10.

1145/2254064.2254103.
URL http://doi.acm.org/10.1145/2254064.2254103

53

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.247
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.247
https://doi.org/10.4230/LIPIcs.ECOOP.2015.247
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.247
https://doi.org/10.1007/s00165-019-00479-y
https://doi.org/10.1007/s00165-019-00479-y
https://doi.org/10.1007/s00165-019-00479-y
https://doi.org/10.1007/s00165-019-00479-y
https://www.sciencedirect.com/science/article/pii/S2590118421000113
https://www.sciencedirect.com/science/article/pii/S2590118421000113
https://doi.org/https://doi.org/10.1016/j.cola.2021.101032
https://www.sciencedirect.com/science/article/pii/S2590118421000113
https://www.sciencedirect.com/science/article/pii/S2590118421000113
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2021.xxx
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2021.xxx
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2021.xxx
http://doi.acm.org/10.1145/2970276.2970322
http://doi.acm.org/10.1145/2970276.2970322
http://doi.acm.org/10.1145/2970276.2970322
https://doi.org/10.1145/2970276.2970322
http://doi.acm.org/10.1145/2970276.2970322
http://doi.acm.org/10.1145/2254064.2254103
http://doi.acm.org/10.1145/2254064.2254103
https://doi.org/10.1145/2254064.2254103
https://doi.org/10.1145/2254064.2254103
http://doi.acm.org/10.1145/2254064.2254103

[45] A. S. Dimovski, A. S. Al-Sibahi, C. Brabrand, A. Wasowski, Effi-
cient family-based model checking via variability abstractions, Int. J.
Softw. Tools Technol. Transf. 19 (5) (2017) 585–603. doi:10.1007/

s10009-016-0425-2.
URL https://doi.org/10.1007/s10009-016-0425-2

[46] A. S. Dimovski, A. Legay, A. Wasowski, Generalized abstraction-
refinement for game-based CTL lifted model checking, Theor. Comput.
Sci. 837 (2020) 181–206. doi:10.1016/j.tcs.2020.06.011.
URL https://doi.org/10.1016/j.tcs.2020.06.011

[47] A. S. Dimovski, Ctl? family-based model checking using variability ab-
stractions and modal transition systems, Int. J. Softw. Tools Technol.
Transf. 22 (1) (2020) 35–55. doi:10.1007/s10009-019-00528-0.
URL https://doi.org/10.1007/s10009-019-00528-0

[48] A. R. Bradley, Z. Manna, H. B. Sipma, The polyranking principle,
in: Automata, Languages and Programming, 32nd International Col-
loquium, ICALP 2005, Proceedings, Vol. 3580 of LNCS, Springer, 2005,
pp. 1349–1361. doi:10.1007/11523468_109.
URL https://doi.org/10.1007/11523468_109

[49] B. E. Chang, X. Rival, Modular construction of shape-numeric ana-
lyzers, in: Semantics, Abstract Interpretation, and Reasoning about
Programs: Essays Dedicated to David A. Schmidt on the Occasion of
his Sixtieth Birthday, 2013., Vol. 129 of EPTCS, 2013, pp. 161–185.
doi:10.4204/EPTCS.129.11.
URL https://doi.org/10.4204/EPTCS.129.11

[50] A. S. Dimovski, A. Legay, Computing program reliability using forward-
backward precondition analysis and model counting, in: Fundamental
Approaches to Software Engineering - 23rd International Conference,
FASE 2020, Proceedings, Vol. 12076 of LNCS, Springer, 2020, pp. 182–
202. doi:10.1007/978-3-030-45234-6_9.
URL https://doi.org/10.1007/978-3-030-45234-6_9

[51] A. S. Dimovski, On calculating assertion probabilities for program fam-
ilies, Prilozi Contributions, Sec. Nat. Math. Biotech. Sci, MASA 41 (1)
(2020) 13–23. doi:10.20903/csnmbs.masa.2020.41.1.153.

54

https://doi.org/10.1007/s10009-016-0425-2
https://doi.org/10.1007/s10009-016-0425-2
https://doi.org/10.1007/s10009-016-0425-2
https://doi.org/10.1007/s10009-016-0425-2
https://doi.org/10.1007/s10009-016-0425-2
https://doi.org/10.1016/j.tcs.2020.06.011
https://doi.org/10.1016/j.tcs.2020.06.011
https://doi.org/10.1016/j.tcs.2020.06.011
https://doi.org/10.1016/j.tcs.2020.06.011
https://doi.org/10.1007/s10009-019-00528-0
https://doi.org/10.1007/s10009-019-00528-0
https://doi.org/10.1007/s10009-019-00528-0
https://doi.org/10.1007/s10009-019-00528-0
https://doi.org/10.1007/11523468_109
https://doi.org/10.1007/11523468_109
https://doi.org/10.1007/11523468_109
https://doi.org/10.4204/EPTCS.129.11
https://doi.org/10.4204/EPTCS.129.11
https://doi.org/10.4204/EPTCS.129.11
https://doi.org/10.4204/EPTCS.129.11
https://doi.org/10.1007/978-3-030-45234-6_9
https://doi.org/10.1007/978-3-030-45234-6_9
https://doi.org/10.1007/978-3-030-45234-6_9
https://doi.org/10.1007/978-3-030-45234-6_9
https://doi.org/10.20903/csnmbs.masa.2020.41.1.153

	Introduction
	Motivating Example
	A Language for Program Families
	Lifted Analysis based on Tuples
	Lifted Analysis with Tuples

	Lifted Analysis based on Decision Trees
	Lifted Analysis based on Binary Decision Diagrams
	Boolean encoding
	A BDD Lifted Domain

	Implementation and Evaluation
	Related Work
	Conclusion

