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Abstract. This work presents a novel approach for synthesizing numeri-
cal program sketches using lifted (family-based) static program analysis.
In particular, our approach leverages a lifted static analysis based on
abstract interpretation, which is used for analyzing program families
with numerical features. It takes as input the common code base, which
encodes all variants of a program family, and produces precise results for
all variants in a single analysis run. The elements of the underlying lifted
analysis domain are decision trees, in which decision nodes are labeled
with linear constraints defined over numerical features and leaf nodes
belong to a given single-program analysis domain.
We encode a program sketch as a program family such that holes corre-
spond to numerical features and all possible sketch realizations correspond
to variants in the program family. Then, we preform a lifted analysis of
the family, so that only those variants that satisfy all assertions under all
possible inputs represent correct realizations of holes in the sketch.
We have implemented an experimental program synthesizer for resolving
C sketches. It is based on a lifted static analyzer for #if-based C program
families, which uses the numerical domains from the APRON library.
An evaluation yields promising results. Moreover, our approach provides
speedups in some cases against the popular sketching tool Sketch and
can solve some numerical benchmarks that Sketch cannot handle.

1 Introduction

Sketching [23,24] is one of the earliest and successful forms of program synthesis [1].
A sketch is a partial program that expresses the high-level structure of an
implementation but leaves holes in place of low-level details. An integer hole
is a placeholder that the synthesizer must replace with one of finitely many
constant values. More specifically, the user provides the specification of the
required program in the form of assertions, as well as a partial program with
holes that needs to be completed. The goal of synthesizer is to automatically
find integer values for the holes so that the resulting complete program satisfies
the assertions under all possible inputs. To solve the sketching problem, we need
algorithms that can efficiently search to fill in holes without any user support.
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In this paper, we rely on the notion of program families (a.k.a. software
product lines) [2,7] with numerical features to formalize this problem. We apply
specifically designed lifted static analysis algorithms, which operate directly on
program families rather than on individual programs, to solve the sketching
problem. A program family is a set of similar, tailor-made programs, called
variants, that is built from a common code base [21]. The variants of a program
family are specified in terms of features (configuration options) that are statically
selected for that particular variant at compile-time. In particular, we consider
program families implemented using #if directives from the C preprocessor CPP
[7,17]. An #if directive specifies under which conditions parts of code should be
included or excluded from a variant. At compile-time, a variant is derived by
assigning concrete values to features, and only then is this variant compiled.

A key idea is that all possible program sketch realizations constitute a program
family, where each integer hole is represented as a numerical feature. This way,
program sketching is all about selecting correct variants (family members) from
the corresponding program family. However, the automated analysis of program
families for finding a correct variant is challenging since the family size (i.e.,
number of variants) typically grows exponentially in the number of features
(i.e., holes). This is particulary apparent in the case of program families that
contain numerical features with big domains, thus admitting astronomic family
sizes (configuration spaces). Program sketching is also affected by this problem,
since the family size corresponds to the space of sketch realizations. A naive
enumerative (brute-force) solution, which analyzes each individual variant of the
program family by an existing off-the-shelf single-program analyzer, has been
shown to be very inefficient for large families [3,20].

To address the program sketching problem, we use a lifted (a.k.a. family-
based or variability-aware) static program analysis [3,28,20,11,13,18,12], which
analyzes all variants of the family simultaneously, without generating any of
them explicitly. Lifted analysis processes the common code base of a program
family directly, exploiting the similarities among individual variants to reduce
analysis effort. It reports analysis results for all variants that are equivalent
to what a brute force approach would report. In particular, here we use an
efficient, abstract interpretation-based lifted analysis of program families with
numerical features [13], where sharing is explicitly possible between analysis
elements corresponding to different variants. Inspired by the decision tree abstract
domain proposed by Urban and Mine [27,26,25] for proving program termination,
this is achieved by defining a specialized decision tree lifted domain [13] that
provides a symbolic and compact representation of the lifted analysis elements.
More precisely, the elements of the lifted domain are decision trees, in which
decision nodes are labelled with linear constraints over numerical features, while
leaf nodes belong to a given single-program analysis domain. The decision trees
recursively partition the space of variants (i.e., the space of possible combinations
of feature values), whereas the program properties at the leaves provide analysis
information corresponding to each partition (i.e., to those variants that satisfy the
constraints along the path to the given leaf node). This way, the lifted analysis
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void main(unsigned int x){
1© int y;
2© y := x*??;
3© assert (y ≤ x+x); 4© }

Fig. 1: HelloWorld sketch.

void main() {
1© int x := ??, y := 0;
2© while (x > ??) {
3© x := x-1;
4© y := y+1; }
5© assert (y > 2); 6© }

Fig. 2: Loop sketch.

partitions the given family into: “good” (correct), “bad” (incorrect), and “I don’t
know” (inconclusive) variants, i.e., sketch completions, with respect to a given
set of assertions. Because of its special structure and possibilities for sharing
of equivalent analysis results, the decision tree-based lifted analysis is able to
converge to a solution very fast even for program families with astronomical search
spaces. This is particularly so for sketches in which holes appear in expressions
that can be exactly represented in the underlying domains for decision and leaf
nodes (e.g., polyhedra). In those cases, we can design efficient lifted analysis with
extended transfer functions for assignments and tests. Our approach is sound
but incomplete: whatever correct sketch completions are inferred they can be
trusted to hold, but we can miss some correct sketch completions.

Contributions. In summary, we make several contributions: (1) We propose a
new, efficient technique for solving numerical program sketches by using lifted
static analysis; (2) We implement a prototype program sketcher, called Fam-
ilySketcher, that uses numerical domains (e.g., polyhedra) from the APRON
library as parameters; (3) We evaluate our approach on several C numerical
sketches and compare its performances with the popular sketching tool Sketch
and the brute-force enumeration approach.

Motivating examples. The code snippet HelloWorld in Fig. 1 is regarded as
the “Hello World” example of sketching [23]. This sketch contains one integer
hole, denoted by ??. Note that x is an input variable that can take non-negative
integer values. As observed before in the literature [5], a sketch can be represented
as a program family, such that all possible realizations of holes in the sketch
correspond to possible variants in the program family. The HelloWorld sketch
can be encoded as a program family that contains one numerical feature A with
domain [Min, Max] ⊆ Z, such that the hole ?? is replaced with A 4. There are
Max− Min+1 variants that can be derived from the HelloWorld program family.
To find a correct variant that satisfies the given assertion, we perform a lifted
analysis based on decision trees [13] of the corresponding HelloWorld program
family. The decision tree (invariant) inferred at the final location 3© when A has
domain [0, 3] is shown in Fig. 3. Notice that the inner nodes of the decision tree
in Fig. 3 are labeled with polyhedral linear constraints over the numerical feature
A, while the leaves are labeled with polyhedral linear constraints over program

4 This is only high-level description of the encoding. For the precise definition, we refer
to Section 3.3. See the HelloWorld program family in Fig. 5a
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A=3
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y=x y=0

Fig. 3: Tree at loc. 3© of HelloWorld.

A-B≥1

A-B≥3

y=0 ∧ A=xB=-x ∧ y ≥ 3 B=-x ∧ y ≤ 2

Fig. 4: Tree at loc. 5© of Loop.

variables x and y. The edges of decision trees are labeled with the truth value of
the decision on the parent node: we use solid edges for true (i.e., the constraint
in the parent node is satisfied) and dashed edges for false (i.e., the negation of
the constraint in the parent node is satisfied). As decision nodes partition the
space of all possible feature’s values, we implicitly assume that linear constraints
in decision nodes take domains of numerical features into account. For example,
the decision node (A=3) is satisfied when (A=3) ∧ (Min≤A≤Max), whereas its
negation is satisfied when (A 6=3) ∧ (Min≤A≤Max). The final assertion is valid at
leaf nodes when (A≤2). Hence, we can replace the hole ?? in the sketch with an
integer less or equal than 2, so that the assertion is always valid.

Consider the Loop sketch in Fig. 2 taken from Syntax-Guided Synthesis
Competition (https://sygus.org/) [1]. It contains two integer holes, which are
replaced with two numerical features A and B in the Loop program family. Since
the domain of each numerical feature is [Min, Max], the total number of variants
is (Max− Min+1)2. If we analyze the Loop program family using a lifted analysis
based on decision trees as before, we obtain the invariant shown in Fig. 4 at the
location 5©. We can see that the given assertion is valid for (A-B ≥ 3). Thus, the
synthesizer can choose one of the variants that satisfy the above constraint (e.g.,
A=4, B=1) as a solution to the Loop sketch.

2 From Sketches to Program Families

Now we introduce the languages for writing sketches and program families. Then,
we define the encoding of sketches as program families and show its correctness.

2.1 Sketches

We use a simple sequential imperative language to illustrate our work. The
program variables Var are statically allocated, and the only data type is the set
Z of mathematical integers. To encode sketches, a single sketching construct is
included: a basic integer hole denoted by ??. The integer hole ?? is a placeholder
that the synthesizer must replace with a suitable integer constant, such that the
resulting program will avoid any assertion failures. The syntax is:

s ::= skip | x:=e | s; s | if (e) then s else s | while (e) do s | assert(e)
e ::= n | x | ?? | e⊕e

https://sygus.org/
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where n ranges over integers, x over program variables Var, and ⊕ over binary
arithmetic-logic operators. Each hole occurrence is assumed to be uniquely
labelled as ??i and has a bounded integer domain [n, n′]. We will sometimes write

??
[n,n′]
i to make explicit the domain of a given hole. Our aim is to replace each

??
[n,n′]
i with a suitable constant from [n, n′]. By Stm and Exp we denote the set

of statements s and expressions e generated by the above grammar. W.l.o.g., a
program is a sequence of statements (without assert) followed by an assertion.

Semantics. Let H be a set of holes in a program sketch. We define a control
function φ : Φ = H → Z to describe the value of each hole in the sketch.
Thus, φ fully describes a candidate solution to the sketch. A program state
σ : Σ = Var → Z is a mapping from variables to values. The meaning of
expressions [[e]] : Σ → Φ→ Z is defined by induction on e:

[[n]]σφ = n, [[x]]σφ = σ(x), [[??i]]σφ = φ(??i), [[e0 ⊕ e1]]σφ = [[e0]]σφ⊕ [[e1]]σφ

The inference rules for a small-step operational semantics of statements are
standard [20]. We write [[s]]σφ for the final state σ′ that can be derived from
〈s, σφ〉 (if the derivation terminates successfully), that is 〈s, σφ〉 →∗ σ′, by using
the inference rules. The meaning of statements is: [[s]]φ =

⋃
σ∈Σinit [[s]]σφ, where

Σinit denotes the set of initial input states on which s is executed.

2.2 Program Families

Let F = {A1, . . . , Ak} be a finite and totaly ordered set of numerical features
available in a program family. For each feature A ∈ F, dom(A) ⊆ Z denotes the
set of possible values that can be assigned to A. A valid combination of feature
values represents a configuration k, which specifies one variant of a program
family. It is given as a valuation function k : F → Z, which is a mapping that
assigns a value from dom(A) to each feature A, that is, k(A) ∈ dom(A) for
any A ∈ F. We assume that only a subset K of all possible configurations are
valid. An alternative representation of configurations is based upon propositional
formulae. Each configuration k ∈ K can be represented by a formula: (A1 =
k(A1)) ∧ . . . ∧ (Ak = k(Ak)). The set of valid configurations K can be also
represented as a formula: ∨k∈Kk.

We define feature expressions, denoted FeatExp(F), as the set of propositional
logic formulas over constraints of F generated by the grammar:

θ ::= true | eF ./ eF | ¬θ | θ ∧ θ | θ ∨ θ, eF ::= n | A | eF�eF

where A ∈ F, n ∈ Z, � ∈ {+,−, ∗}, and ./∈ {=, <}. When a configuration
k ∈ K satisfies a feature expression θ ∈ FeatExp(F), we write k |= θ, where
|= is the standard satisfaction relation of logic. We write [[θ]] to denote the
set of configurations from K that satisfy θ, that is, k ∈ [[θ]] iff k |= θ. For
example, for the HelloWorld program family in Fig. 5a we have F = {A} and
K = {(A = Min), . . . , (A = Max)}. For the feature expression (A > 2), we have
[[(A>2)]] = {(A=3), . . . (A=Max)}. Thus, (A=5) |= (A>2) and (A=0) 6|= (A>2).
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int y;

#if (A=Min) y := x*Min

#elif . . .

#elif (A=Max-1)y :=x*(Max-1)

#else y := x*Max . . . #endif

assert (y≤x+x);

(a) HelloWorld

int y;

y := x*0;

assert(y≤x+x);

(b) PA=0(HelloW.)

int y;

y := x*1;

assert(y≤x+x);

(c) PA=1(HelloW.)

int x := A, y := 0;

while (x > B) {
x := x-1;

y := y+1; }
assert (y > 2); }

(d) Loop

Fig. 5: The program families HelloWorld and Loop and some their variants.

The language includes the same expression and statement productions as the
language for sketches, except that the hole expression ?? is not allowed. To encode
multiple variants, a new compile-time conditional statement is included. The new
statement “#if (θ) s #endif” contains a feature expression θ ∈ FeatExp(F) as a
presence condition, such that only if θ is satisfied by a configuration k ∈ K the
statement s will be included in the variant corresponding to k. The syntax is:

s ::= . . . | #if (θ) s #endif, e ::= n | x | e⊕e

The set of all statements s is Stm; the set of all expressions e is Exp. Any other
preprocessor conditional constructs can be desugared and represented only by
#if construct. For example, #if (θ) s0 #elif (θ′) s1 #endif is translated into
#if (θ) s0 #endif ; #if (¬θ ∧ θ′) s1 #endif.

Semantics. A program family is evaluated in two stages. First, the preprocessor
CPP takes a program family s and a configuration k ∈ K as inputs, and produces a
variant (that is, a single program without #if-s) corresponding to k as the output.
Second, the obtained variant is evaluated using the standard single-program
semantics [20]. The first stage is specified by the projection function πk, which is
an identity for all basic statements and recursively pre-processes all sub-statements
of compound statements. Hence, πk(skip) = skip and πk(s;s′) = πk(s);πk(s′).
For “#if (θ) s #endif”, statement s is included in the variant if k |= θ, otherwise,

if k 6|= θ statement s is removed 5: πk(#if (θ) s #endif)=

{
πk(s) if k |= θ

skip if k 6|= θ
. For

example, Figure 5a shows the code of the program family HelloWorld (only
the function body) that contains one numerical feature A with domain [Min, Max].
Two valid variants PA=0(HelloWorld) and PA=1(HelloWorld) shown in Fig. 5b and
Fig. 5c, respectively, can be derived from the HelloWorld family in Fig. 5a.

We define the semantics of variants πk(s), i.e. single programs without #if-s.
A program state is σ : Σ = Var→ Z. The meaning of expressions [[e]] : Σ → Z is:

[[n]]σ = n, [[x]]σ = σ(x), [[e1 ⊕ e2]]σ = [[e1]]σ ⊕ [[e2]]σ

The set of statements is the same for sketches and variants, so the meaning of
statements [[πk(s)]] for variants coincides with the meaning for sketches.

5 Since any k ∈ K is a valuation function, we have that either k |= θ holds or k 6|= θ
(which is equivalent to k |= ¬θ) holds, for any θ ∈ FeatExp(F).
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2.3 Encoding of Sketches as Program Families

Our aim is to transform an input program sketch ŝ with a set of m holes

??
[n1,n

′
1]

1 , . . . , ??
[nm,n

′
m]

m into an output program family s with a set of numerical
features A1, . . . , Am with domains [n1, n

′
1], . . . , [nm, n

′
m], respectively. The set of

configurations K includes all possible combinations of feature values.
We now define a rewrite rule for eliminating holes ?? from a program sketch.

Let s[??[n,n
′]] be a basic (non-compound) statement in which the hole ??[n,n

′]

occurs. The rewrite rule is of the form:

s[??[n,n
′]]  #if (A=n) s[n] #elif . . . #elif (A=n′-1) s[n′-1]

#else s[n′] #endif . . . #endif
(R-1)

The meaning of rule (R-1) is that, if the current program sketch being transformed
matches the abstract syntax tree node of the shape s[??[n,n

′]], then replace
s[??[n,n

′]] with the right-hand side of rule (R-1). The set of features F is also
updated with the fresh feature A with domain [n, n′].

We write Rewrite(ŝ) to be the final transformed program family s obtained
by repeatedly applying rule (R-1) on a program sketch ŝ and on its transformed
versions until we reach a point at which this rule can not be applied, i.e. when
all occurrences of holes ?? in ŝ are eliminated. For example, the program sketch
HelloWorld in Fig. 1 is encoded as the program family HelloWorld in Fig. 5a.

Theorem 1. Let ŝ be a sketch and φ be a control function, s.t. features A1, . . . , An
correspond to holes ??1, . . . , ??n. We define a configuration k ∈ K, s.t. k(Ai) =
φ(??i) for 1≤ i ≤ n. Let s = Rewrite(ŝ). We have: [[ŝ]]φ = [[πk(s)]].

3 Synthesis by Lifted Analysis

Lifted analyses are designed by lifting existing single-program analyses to work on
program families, rather than on individual programs. Lifted analysis by abstract
interpretation introduced in [13] relies on a lifted domain in the form of decision
trees [27,26]. The leaf nodes of decision trees belong to an existing single-program
analysis domain, and are separated by linear constraints over numerical features,
organized in decision nodes. We first define the basic decision tree lifted domain
in Section 3.1. Then in Section 3.2, we show how we can optimize the encoding of
sketches as program families and extend the decision tree lifted domain to obtain
more efficient program sketcher. Finally, in Section 3.3, we present a synthesis
algorithm for resolving sketches based on lifted analysis.

3.1 Basic Lifted Analysis

Abstract domain for leaf nodes. We assume that a single-program domain A
defined over program variables Var is equipped with sound operators for con-
cretization γA, ordering vA, join tA, meet uA, bottom ⊥A, top >A, widening
∇A, and narrowing 4A, as well as sound transfer functions for tests FILTERA



8 A. S. Dimovski et al.

and forward assignments ASSIGNA. More specifically, FILTERA(a : A, e : Exp)
returns an abstract element from A obtained by restricting a to satisfy the test
e, whereas ASSIGNA(a : A, x:=e : Stm) returns an updated version of a by
abstractly evaluating x:=e in it. In practice, the domain A will be instantiated
with some of the known numerical domains 〈D,vD〉, such as Intervals 〈I,vI〉
[8], Octagons 〈O,vO〉 [27], and Polyhedra 〈P,vP 〉 [10], defined over Var. For
example, the elements of P are conjunctions of polyhedral constraints of the form
α1x1 + . . .+ αkxk + β ≥ 0, where x1, . . . xk ∈ Var, α1, . . . , αk, β ∈ Z.

Abstract domain for decision nodes. We introduce a family of abstract domains
for linear constraints CD defined over features F, which are parameterized by any
of the numerical property domains D (intervals I, octagons O, polyhedra P). For
example, the set of polyhedral constraints is CP = {α1A1 + . . .+ αkAk + β ≥ 0 |
A1, . . . Ak ∈ F, α1, . . . , αk, β ∈ Z, gcd(|α1|, . . . , |αk|, |β|) = 1}. The set CD of lin-
ear constraints over features F is constructed by the underlying numerical property

domain 〈D,vD〉 using the Galois connection 〈P(CD),vD〉 −−−−→←−−−−
αCD

γCD 〈D,vD〉, where

P(CD) is the power set of CD [13]. The concretization function γCD : D→ P(CD)
maps a conjunction of constraints from D to a set of constraints in P(CD).

The domain of decision nodes is CD. We assume the set of features F =
{A1, . . . , Ak} to be totally ordered, such that the ordering is A1 > . . . > Ak. We
impose a total order <CD on CD to be the lexicographic order on the coefficients
α1, . . . , αk and constant αk+1 of the linear constraints, such that:

(α1 ·A1 + . . .+ αk ·Ak + αk+1≥0) <CD (α′1 ·A1 + . . .+ α′k ·Ak + α′k+1≥0)
⇐⇒ ∃j > 0.∀i < j.(αi = α′i) ∧ (αj < α′j)

The negation of linear constraints is formed as: ¬(α1A1+. . . αkAk+β≥0) =
−α1A1 − . . . − αkAk − β − 1 ≥ 0. For example, the negation of A − 3 ≥ 0
is −A + 2 ≥ 0. To ensure canonical representation of decision trees, a linear
constraint c and its negation ¬c cannot both appear as decision nodes. Thus, we
only keep the largest constraint with respect to <CD between c and ¬c.

Abstract domain for decision trees. A decision tree t ∈ T(CD,A) over the sets CD
of linear constraints defined over F and the leaf abstract domain A defined over
Var is either a leaf node �a�with a ∈ A, or [[c : tl, tr]], where c ∈ CD (denoted
by t.c) is the smallest constraint with respect to <CD appearing in the tree t,
tl (denoted by t.l) is the left subtree of t representing its true branch, and tr
(denoted by t.r) is the right subtree of t representing its false branch. The path
along a decision tree establishes the set of configurations (those that satisfy the
encountered constraints), and the leaf nodes represent the analysis properties for
the corresponding configurations.

Example 1. The following two decision trees t1 and t2 have decision and leaf
nodes labelled with polyhedral linear constraints defined over numerical feature
A with domain Z and over integer program variable y, respectively:

t1 = [[A≥4 :�[y≥2]�,�[y=0]�]], t2 = [[A≥2 :�[y≥0]�,�[y≤0]�]] ut
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Algorithm 1: ASSIGNT(t, x:=e)

1 if isLeaf(t) then return �ASSIGNA(t, x:=e)�;
2 return [[t.c : ASSIGNT(t.l, x:=e),ASSIGNT(t.r, x:=e)]];

Abstract Operations. The concretization function γT of a decision tree t ∈
T(CD,A) returns γA(a) for k ∈ K, where k satisfies the set C ∈ P(CD) of
constraints accumulated along the top-down path to the leaf node a ∈ A. More
formally, γT(t) = γT[K](t), where K=∨k∈Kk is the set of implicit constraints
over F taking into account the domains of features. Function γT is defined as:

γT[C](�a�)=
∏
k|=CγA(a), γT[C]([[c : tl, tr]])=γT[C∪{c}](tl)×γT[C∪{¬c}](tr)

Other binary operations rely on the algorithm for tree unification [13,26],
which finds a common labelling of two trees t1 and t2. Note that the tree
unification does not lose any information.

Example 2. After tree unification of t1 and t2 from Example 1, we obtain:

t1 = [[A ≥ 4 :�[y ≥ 2]�, [[A ≥ 2 :�[y = 0]�,�[y = 0]�]]]],
t2 = [[A ≥ 4 :�[y ≥ 0]�, [[A ≥ 2 :�[y ≥ 0]�,�[y ≤ 0]�]]]]

Note that the tree unification adds a decision node for A ≥ 2 to the right subtree
of t1, whereas it adds a decision node for A ≥ 4 to t2 and removes the redundant
constraint A ≥ 2 from the resulting left subtree of t2. ut

All binary operations are performed leaf-wise on the unified decision trees.
Given two unified trees t1 and t2, their ordering t1 vT t2 and join t1 tT t2 are:

�a1�vT�a2�= a1vA a2, [[c : tl1, tr1]]vT [[c : tl2, tr2]]=(tl1vT tl2) ∧ (tr1vT tr2)
�a1�tT�a2�=�a1tAa2�, [[c : tl1, tr1]]tT [[c : tl2, tr2]]=[[c : tl1tTtl2, tr1tTtr2]]

Similarly, we compute meet t1 uT t2, widening t1∇Tt2, and narrowing t14Tt2 of
two unified trees t1 and t2. The top is a tree with a single >A leaf: >T =�>A�,
while the bottom is a tree with a single ⊥A leaf: ⊥T =�⊥A�.

Transfer functions. We define lifted transfer functions for tests, forward as-
signments (ASSIGNT), and #if-s (IFDEFT) [13]. There are two types of tests:
expression-based tests, denoted by FILTERT, that occur in while and if-s, and
feature-based tests, denoted by FEAT-FILTERT, that occur in #if-s. Transfer
functions ASSIGNT and FILTERT modify only leaf nodes, while FEAT-FILTERT
and IFDEFT add, modify, or delete decision nodes of a decision tree. This is due
to the fact that the analysis information about program variables is located in
leaf nodes, while the information about features is located in decision nodes.

Transfer function ASSIGNT for handling an assignment x:=e in the input tree
t is described by Algorithm 1. Note that x is a program variable, and e ∈ Exp
may contain only program variables. ASSIGNT descends along the paths of the
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Algorithm 2: FEAT-FILTERT(t, θ)

1 switch θ do
2 case (eF ./ eF) || (¬(eF ./ eF)) do
3 J = FILTERD(>D, θ); return RESTRICT(t,K, J)

4 case θ1 ∧ θ2 do
5 return FEAT-FILTERT(t, θ1) uT FEAT-FILTERT(t, θ2)

6 case θ1 ∨ θ2 do
7 return FEAT-FILTERT(t, θ1) tT FEAT-FILTERT(t, θ2)

decision tree t up to a leaf node a, where ASSIGNA is invoked to substitute
expression e for variable x in a. Similarly, transfer function FILTERT for handling
expression-based tests e ∈ Exp is implemented by applying FILTERA leaf-wise,
so that the test e is satisfied by all leaves.

Transfer function FEAT-FILTERT for feature-based tests θ is described by
Algorithm 2. It reasons by induction on the structure of θ (we assume negation is
applied to atomic propositions). When θ is an atomic constraint over numerical
features (Lines 2,3), we use FILTERD to approximate θ, thus producing a set
of constraints J ∈ P(CD) defined over F, which are then added to the tree t,
possibly discarding all paths of t that do not satisfy θ. This is done by calling
function RESTRICT(t,K, J) that adds linear constraints from J to t in ascending
order with respect to <CD (see [13, Sect. 5]). Note that θ may not be representable
exactly in CD (e.g., in the case of non-linear constraints over F), so FILTERD
may produce a set of constraints approximating it. When θ is a conjunction
(resp., disjunction) of two feature expressions (Lines 4,5) (resp., (Lines 6,7)), the
resulting decision trees are merged by operation meet uT (resp., join tT).

Finally, transfer function IFDEFT is defined as:

IFDEFT(t, #if (θ) s #end) = [[s]]T(FEAT-FILTERT(t, θ)) tT FEAT-FILTERT(t,¬θ)

where [[s]]T(t) is transfer function for s. Transfer function ASSERTT(t, assert(e))
analyzes all constraints in leaf nodes �a� of a tree t and replaces a with: (1) >,
if test e is always valid in a (i.e., avA FILTERA(a, e)); (2) ⊥ if test ¬e is always
valid in a (i.e., avA FILTERA(a,¬e)); and (3) ×, otherwise.

Lifted analysis. The abstract operations and transfer functions of T(CD,A) can
be used to define the lifted analysis for program families. Tree tin at the initial
location has only one leaf node >A and decision nodes that define the set K.
Analysis properties are propagated forward from the first program location
towards the final location taking assignments, #if-s, and tests into account with
widening and narrowing around while-s. We apply delayed widening [8]. The
soundness of the lifted analysis based on T(CD,A) follows immediately from the
soundness of all operators and transfer functions of D and A (shown in [13]).



Program Sketching using Lifted Analysis 11

3.2 Extended Lifted Analysis

If holes in a program sketch occur in expressions that can be exactly represented
in the underlying numerical domain D, then we can handle those holes in a more
efficient symbolic way by an extended lifted analysis. Given Polyhedra domain P,
we say that a hole ?? can be exactly represented in P, if it occurs in an expression
of the form: α1x1 + . . . αi??+ . . . αkxk+β, where α1, . . . , αk, β ∈ Z and x1, . . . xk
are program variables or other hole occurrences. Similarly, we define when a hole
can be exactly represented in Interval and Octagon domains.

When a hole ??
[n,n′]
i in a program sketch ŝ occurs in an expression that can

be represented exactly in domain D, we eliminate ?? by using the rewrite rule:

s[??[n,n
′]]  s[A] (R-2)

where s[??[n,n
′]] is a basic statement and A is a fresh feature with domain [n, n′].

Example 3. The hole ?? in the HelloWorld sketch in Fig. 1 cannot be exactly
represented in Polyhedra domain P, since it occurs in expression x*??. However,
both holes in the Loop sketch in Fig. 2 can be exactly represented in P, since
they occur in expressions 1*?? and 1*x-1*?? > 0. The HelloWorld family is
obtained using (R-1) rule as shown in Fig. 5a, while the Loop family is given in
Fig. 5d where holes are replaced with features A and B using (R-2) rule. ut

After applying (R-2) rule, features can occur in arbitrary expressions in
Rewrite(ŝ), not only in presence conditions of #if-s as before. Therefore, variable
assignments and tests in Rewrite(ŝ), which may contain reads of features now,
might also impact some linear constraints within decision nodes as well as
some invariants within leaf nodes. Thus, we define new, extended versions of
ASSIGNT and FILTERT that take into account possibility of features occurring
in expressions. Note that ASSIGNT and FILTERT can now modify both leaf
and decision nodes, and the analysis information about features can be located
in both leaf and decision nodes. The definition of decision tree lifted domain
T(CD,A) is slightly refined, such that the leaf abstract domain A is now defined
over both program and feature variables Var∪F, while the decision node abstract
domain CD remains to be defined over F.

Assignments. Transfer function ASSIGNT calls ASSIGNT(t, x:=e,K) given in
Algorithm 3. It accumulates into the set C ∈ P(CD) (initialized to K), constraints
encountered along the paths of the decision tree (Lines 5,6), up to the leaf nodes
where assignment is performed by ASSIGNA (Line 2) and the obtained result
is then restricted to satisfy the accumulated constraints C by using FILTERA
(Line 3). This is possible due to the fact that A is now defined over Var ∪ F.

Tests. Transfer function FILTERT for handling tests e calls FILTERT(t, e,K)
described by Algorithm 4. When t is a leaf node, test e is handled using FILTERA
applied on an abstract element from A, which is obtained by merging constraints
from the leaf node and decision nodes along the path to that leaf (Line 2). The
obtained result a is projected on feature variables using �F to generate a new set
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Algorithm 3: ASSIGNT(t, x:=e, C)

1 if isLeaf(t) then
2 a = ASSIGNA(t, x:=e);
3 return �FILTERA(a,C)�
4 if isNode(t) then
5 l = ASSIGNT(t.l, x:=e, C ∪ {t.c});
6 r = ASSIGNT(t.r, x:=e, C ∪ {¬t.c});
7 return [[t.c : l, c]]

Algorithm 4: FILTERT(t, e, C)

1 if isLeaf(t) then
2 a = FILTERA(t ] αCD(C), e);
3 J = γCD(a �F);
4 if isRedundant(J,C) then return �a�;
5 else return RESTRICT(�a�, C, J\C);

6 if isNode(t) then
7 l = FILTERT(t.l, be, C ∪ {t.c});
8 r = FILTERT(t.r, be, C ∪ {¬t.c});
9 return [[t.c : l, r]]

of constraints over features J ∈ P(CD) (Line 3). If the constraints from J are
not redundant with respect to C (this is done by checking αCD(C) vD αCD(J)),
they are added to the given path by calling RESTRICT(�a�, C, J\C) (Line 5).

Example 4. Consider program families HelloWorld and Loop in Fig. 5a and
Fig. 5d. The HelloWorld family is analyzed using algorithms from the basic
lifted analysis, while the Loop family using the extended lifted analysis. Figures 3
and 4 show the inferred invariants at the locations before assertions. ut

3.3 Synthesis Algorithm

We can now frame the sketch synthesis problem as an lifted analysis problem. In
particular, we delegate the effort of conducting an effective search of all possible
hole realisations to an efficient lifted static analyzer. Once the lifted analysis of
the corresponding program family is performed, we can see from the inferred
decision trees in the final location for which variants the assertion is valid. Those
variants that satisfy the encountered linear constraints along the valid top-down
paths, represent the correct hole realisations that satisfy the final assertion.

The synthesis algorithm SYNTHESIZE(ŝ : Stm) for solving a sketch ŝ consists
of the following steps: (1) Program sketch ŝ is first encoded as a program family
s = Rewrite(ŝ). (2) We call function LIFT ANALYZE(tin, s), which takes as
input the decision tree tin and the program family s and returns a decision tree
t in the final location of s obtained after performing the lifted analysis of s. (3)
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void main(int x){
int z:=??1*x+??2;

assert
(
z≥2*x &&

z≤2*x+2
)
;

}

Fig. 6: LinExp.

void main(unsigned int x){
int y:=x;

if (x+5>??) y := y+1;

else y := y-1;

assert (y≤x);

}

Fig. 7: Conditional.

void main(int x){
int y := 0;

while (x ≥ 0) {
x := x-1;

if (y<??) y := y+1;

else y := y-1; }
assert (y ≤ 1);

}

Fig. 8: LoopCond.

void main(unsigned int x){
int s := 0, y := ??1;

int x0 := x, y0 := y;

while (x ≥ 0) {
x := x-1;

while (y ≥??2) {
y := y-1; s := s+1; }

} assert (s ≥ x0+y0);

}

Fig. 9: NestedLoop.

The inferred decision tree t is analyzed, and the variants K′ ⊆ K for which >
(’correct’) leaf nodes are found, are returned as solutions.

Theorem 2. SYNTHESIZE(ŝ) is correct and terminates.

4 Evaluation

Implementation We have developed a prototype program synthesizer, called
FamilySketcher, which is based on the tools SPLNum2Analyzer [13] for
analyzing #if-enriched C programs with numerical features and Function [25]
for proving program termination. It uses the lifted decision tree domain T(CD,A),
where both D and A represent numerical abstract domains (polyhedra, in our
case). The abstract operations and transfer functions of the numerical polyhedra
domain are provided by the APRON library [19]. The tool is written in OCaml
and consists of around 7K LOC. The current front-end of the tool provides a
limited support for arrays, pointers, recursion, struct and union types.

Experiment setup and Benchmarks All experiments are executed on a 64-bit
IntelrCoreTM i7-8700 CPU@3.20GHz × 12, Ubuntu 18.04.5 LTS, with 8 GB
memory, and we use a timeout value of 200 sec. All times are reported as average
over five independent executions. We report times needed for the actual static
analysis task to be performed. The implementation, benchmarks, and all obtained
results are available from: https://github.com/aleksdimovski/Family sketcher
(and https://zenodo.org/record/4118540#.X7aFUWVKjIU). We compare our
approach with program sketching tool Sketch version 1.7.6 that uses SAT-
based inductive synthesis [24,23] as well as with the Brute-Force enumeration
approach that analyzes all variants, one by one, using a single-program analysis.
The evaluation is performed on several C numerical sketches collected from
the Sketch project [24,23] and from the Syntax-Guided Synthesis Competition
(https://sygus.org/) [1]. We use the following benchmarks: HelloWorld (Fig. 1),
Loop (Fig. 2), LinExp (Fig. 6), Conditional (Fig. 7), LoopCond (Fig. 8), and
NestedLoop (Fig. 9).

https://github.com/aleksdimovski/Family_sketcher
https://zenodo.org/record/4118540#.X7aFUWVKjIU
https://sygus.org/
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Performance Results Table 1 shows the results of synthesizing our benchmarks.
Note that Sketch reports only one solution for each sketch.

The Loop sketch is analyzed using the extended lifted analysis, so both holes
are handled symbolically by (R-2) rule. Thus, our approach does not depend on
sizes of hole domains. FamilySketcher terminates in (around) 0.007 sec for
5, 8, and 16-bits sizes of holes. In contrast, Sketch does depend on the sizes of
holes. It terminates in 33.74 sec for 16-bits sizes, and times out for bigger sizes.
Consider a variant of Loop (see Fig. 2), denoted Loop’, where the assertion
in location 7© is changed to assert (y < 8). The performance of our tool is
the same as for Loop. In contrast, Sketch cannot resolve Loop’ and fails to
report a solution, since it uses only 8 unrollments of the loop by default. If the
loop is unrolled 9 times, Sketch terminates in 0.20 sec for 5, and 2.29 sec for
16-bits sizes. FamilySketcher reports all solutions A-B ≥ 3 for Loop (resp.,
1 ≤ A-B ≤ 7 for Loop’), while Sketch reports only one solution.

The LinExp sketch contains two holes. The first one ??1 is handled explicitly by
(R-1) rule while the second one ??2 symbolically by (R-2) rule. The performance
of FamilySketcher depends on the size of ??1. The decision tree inferred in
the location before the assertion contains one leaf node for each possible value of
feature A (dom(A) = [0, 3] in this case), where features A and B represent ??1 and
??2. We obtain all solutions: A = 2 ∧ 0 ≤ B ≤ 2. Sketch scales better in this case
reporting one solution. Similar results we obtain for HelloWorld sketch.

The Conditional sketch contains one hole that can be handled symbolically
by (R-2) rule. FamilySketcher has similar running times for all domain sizes
of the hole, and reports all solutions 0 ≤ ?? ≤ 4. Sketch’s performance declines
with the size of domains, and times out for sizes greater than 19-bits.

The LoopCond sketch contains one hole that can be handled symbolically by
(R-2) rule. FamilySketcher has similar running times for all domain sizes, and
reports two solutions ?? ∈ {0, 1}. In contrast, Sketch resolves this example only
if the loop is unrolled as many times as is the size of the hole and inputs (e.g.,
32 times for 5-bits). So, Sketch’s performance declines with the growth of size of
the hole, and times out for 16-bits. Consider a variant of LoopCond (see Fig. 8),
denoted LoopCond’, where one additional hole exists in while-guard (x ≥??1)
and the assertion is changed to assert (y ≥ 1). FamilySketcher reports all
solutions: ??1 ≥ 0∧??2 ≥ 2. Sketch performs similarly for both variants.

Finally, NestedLoop sketch contains two holes that can be handled symboli-
cally by (R-2) rule. FamilySketcher terminates in (around) 0.05 sec for all
sizes of holes. In contrast, Brute-Force takes 4.18 sec for 5-bit size of holes and
times out for larger sizes, while Sketch cannot resolve this benchmark.

Discussion In summary, we can conclude that FamilySketcher often outper-
forms Sketch, especially in case of numerical sketches in which holes occur in
expressions that can be exactly represented in the underlying numerical domain.
But in case of sketches with holes that need to be handled by (R-1) rule the
performances of our tool decline. However, even in this case our tool scales better
than the Brute-Force approach.
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Table 1: Performance results of FamilySketcher vs. Sketch vs. Brute-Force.

Bench.

5 bits 8 bits 16 bits

Family Sketch Brute Family Sketch Brute Family Sketch Brute

Sketcher Force Sketcher Force Sketcher Force

Loop 0.007 0.215 0.628 0.007 0.218 67.79 0.007 33.74 timeout

Loop’ 0.007 0.205 0.627 0.007 0.206 60.59 0.007 2.292 timeout

LinExp 0.165 0.222 0.479 26.99 0.238 36.80 timeout timeout timeout

Conditional 0.002 0.210 0.019 0.002 0.210 0.155 0.004 3.856 54.68

LoopCond 0.011 0.225 0.065 0.013 0.262 0.404 0.013 timeout 191.43

LoopCond’ 0.022 0.221 1.615 0.022 0.267 199.95 0.023 timeout timeout

NestedLoop 0.053 timeout 4.186 0.054 timeout timeout 0.054 timeout timeout

The performances of FamilySketcher can be improved in several ways. First,
many abstract operations and transfer functions can be further optimized. Second,
instead of APRON we can use other efficient libraries that support numerical
domains, such as ELINA [22]. Finally, by using libraries that support more
expressive domains, such as non-linear constraints (e.g., polynomials, exponentials
[4]), our tool will benefit and more sketches will be handled by (R-2) rule.

5 Related Work and Conclusion

The existing sketching approach Sketch [23,24], which uses SAT-based inductive
synthesis, is more general than our approach although it is most successful for
synthesizing bit-manipulating programs. Sketch reasons about loops by unrolling
them, so is very sensitive to the degree of unrolling. Our approach does not have
this constraint, as we use widening instead of fully unrolling loops, so that we
can handle directly unbounded loops and an infinite number of execution paths
in a sound way. This is stronger than fixing a priori a bound on the number of
iterations of loops. Sketch iteratively generates a finite set of inputs and performs
SAT queries to identify values for the holes. Hence, Sketch may need several
iterations to converge reporting only one solution. In contrast, our approach
needs only one iteration reporting several, and often all, solutions.

Decision-tree abstract domains have been used in abstract interpretation
community recently [9,6,27]. Segmented decision tree abstract domains have been
used [9,6] to enable path dependent static analysis, while Urban and Mine [27]
use decision tree-based abstract domains to prove program termination.

Another way to speed up lifted analysis is via so-called variability abstractions
[14,15,16], which aim tame the combinatorial explosion of the number of variants
and reduce it to something more tractable. It would be interesting to apply the
obtained abstract lifted analysis for resolving program sketches.

To conclude, in this work we employ techniques from abstract interpretation
and product-line analysis for automatic resolving of program sketches.
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