
A development platform for embedded
domain-specific languages

Shigeru Chiba, YungYu Zhuang, Thanh-Chung Dao

Abstract The use of domain-specific languages (DSL) is a promising approach to
helping programmers write an efficient program for high-performance computing.
The programmers would feel difficulties in writing such a program by hand with
only low-level abstractions, such as arrays and loops, provided by a general-purpose
language. This chapter presents our new implementation technique for domain-
specific languages. Since existing techniques are not satisfactory, we developed our
technique called deep reification. This chapter also presents Bytespresso, which is
our prototype system to use deep reification. Several Java-embedded DSLs imple-
mented with Bytespresso are presented to assess the effectiveness of deep reification
and Bytespresso. Program fragments written in these DSLs are embedded in Java
but they are dynamically offloaded to native hardware to obtain good execution per-
formance. Since they are embedded in Java, the syntax of Java is reused by those
DSLs and hence the development costs of these DSLs are reduced.

1 Embedded Domain-Specific Languages

The usefulness and necessity of domain-specific languages (DSLs) is getting widely
recognized in the high-performance computing (HPC) area. DSLs provide higher-
level abstractions for a specific domain than general-purpose languages. These ab-
stractions consist of domain-specific data types and operators and they hide various
techniques for their efficient implementation from the programmers’ views. We first

Shigeru Chiba, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan,
e-mail: chiba@acm.org. YungYu Zhuang, National Central University, No. 300, Zhongda Rd.,
Zhongli District, Taoyuan City 32001, Taiwan (R.O.C.), e-mail: yungyu@acm.org. Thanh-Chung
Dao, School of Information and Communication Technology, Hanoi University of Science and
Technology, No 1 Dai Co Viet, Hanoi, Vietnam, e-mail: chungdt@soict.hust.edu.vn. This is a
preprint of the book chapter 8 of “Advanced Software Technologies for Post-Peta Scale Comput-
ing: The Japanese Post-Peta CREST Research Project,” Mitsuhisa Sato ed., Springer Singapore,
pp.139–161, 2019.

1

2 Shigeru Chiba, YungYu Zhuang, Thanh-Chung Dao

briefly overview the motivation of this approach by presenting several well-known
implementation techniques for it.

1.1 Domain-specific data types and operators

Providing useful data types and operators for a particular application domain is a
promising approach to reduce programming costs in high performance computing.
Since the underlying hardware and software stack is getting complicated, writing a
raw Fortran or C/C++ program with built-in data types for simple arrays is getting a
tedious task. During writing such a program, programmers have to consider various
non-functional concerns such as how to exploit parallel computation provided by
hardware, how to improve a cache hit ratio, and how to replicate data among dis-
tributed nodes. If domain-specific data types and operators are provided to abstract
these non-functional concerns away, programmers can more focus on application-
specific concerns. They would not be bothered about parallelism or distribution and
hence reduce programming costs.

Such data types and operators can be implemented as a library in object-oriented
languages. Since objects encapsulate implementation details of data manipulation
and they provide methods as operators for processing the data, objects and meth-
ods are appropriate vehicles for implementing data types and operators for high-
performance computing. We do not have to modify a programming language to pro-
vide data types and operators. Suppose that we have a library providing Matrix
and Vector objects. Then we would be able to write the following code:

d = (a * p) * q

Here, a is a Matrix object, p and q are Vector objects, and d is a variable of
double. The first * is a multiply method in the Matrix class and the second is a
method in Vector. If the language does not support operator overloading, the code
above would be like this:

d = (a.multiply(p)).multiply(q)

In either case, implementation details will be hidden from the programmer. a might
be a sparse matrix and uses the compressed sparse row format. It might be a large
matrix and the data are allocated on multiple distributed nodes where data are
exchanged through a MPI library. Since the implementation of the Matrix and
Vector is provided by our library, the programmer only has to select an appropri-
ate implementation, for example, by selecting a subclass SparseMatrixByMPI
of Matrix when creating the object that the variable a refers to.

A development platform for embedded domain-specific languages 3

1 Func f = (Vec4Array pos, int i, Vec3 pi, float wi) -> {
2 Vec3 a = pos.sum((Vec4Array p, int j, Vec3 pj, float wj)->{
3 Vec3 r = pi.sub(pj);
4 float ra = reciprocalSqrt(r.mult(r) + soft);
5 return r.scale(wj * (ra * ra * ra));
6 });
7 Vec3 v2 = vel.get(i).add(a.scale(delta)).scale(damping);
8 vel.set(i, v2);
9 return pi.add(v2.scale(delta));

10 };

Listing 1 N-body simulation in Java

1.2 C++ template libraries

A challenge of the approach to providing domain-specific data types and operators
by object orientation is efficient implementation. Despite vigorous research activi-
ties for a long time, object-oriented mechanisms such as method calls tend to involve
runtime penalties.

Let us see the example taken from our paper [2]. Listing 1 written in Java defines
the kernel computation of the all-pairs approach to N-body simulation [9]. Func,
Vec4Array, and Vec3 are data types provided by a library. Func is a type of
lambda expression. Vec4Array is an array of four-dimensional vectors. Vec3 is
a three-dimensional vector. reciprocalSqrt is an operator provided by the li-
brary as well as methods in the library classes, such as add and sub (subtraction).
Since the programmer does not have to implement these classes, Listing 1 is a nat-
ural program derived from the following formula:

ai = ∑ j w j(r · r+ ε2)−
3
2 r where r = p j− pi (1)

v′i = δ (vi +∆ t ·ai) (2)
p′i = pi +∆ t · v′i (3)

Here, ai corresponds to the variable a. vi corresponds to vel.get(i) and v′i cor-
responds to the variable v2. pi is the value returned by the lambda expression f.
Note that ∑ is represented by the sum method on pos, which is an array of posi-
tions p. The sum method takes a lambda expression to compute w j(r · r+ ε2)−

3
2 r

and hides how to iterate over array elements.
Although the program is straightforward translation into Java except that domain-

specific operators are not simple symbols but methods, the runtime performance is
not satisfactory when compared with the equivalent C code optimized by hand with-
out using higher-level abstraction such as objects and a lambda expression. Fig-
ure 1 shows the execution performance of the N-body program written in several
languages. We used OpenJDK (version 1.8.0 151), the Intel C compiler (version
17.0.1) with -fast, GCC 5.4.0 with -Ofast, and Clang 5.0.0 with -Ofast. All the

4 Shigeru Chiba, YungYu Zhuang, Thanh-Chung Dao

0 5 10 15 20 25

Java

C++

C++
templates

C++
templates 2

C

OpenJDK Clang GCC Intel C Gflops

100 sec.

105 sec.
75 sec.

94 sec.

64 sec.

17 sec.
17 sec.

8 sec.

17 sec.
17 sec.

8 sec.

Fig. 1 The execution performance of N-body programs

1 static const auto func
2 = [vel](Vec4Array* pos, int i, Vec3 pi, float wi) -> Vec3 {
3 Vec3 a = pos->sum([&pi](Vec4Array* pos, int j, Vec3 pj,
4 float wj) -> Vec3 {
5 Vec3 r = pi.sub(pj);
6 float ra = 1.0f / sqrtf(r.mult(r) + 0.01f);
7 return r.scale(wj * (ra * ra * ra));
8 });
9 Vec3 v2 = (vel->get(i)).add(a.scale(0.016f)).scale(1.0f);

10 vel->set(i, v2);
11 return pi.add(v2.scale(0.016f));
12 };

Listing 2 N-body simulation in C++

programs were run on a machine with dual Intel Xeon E5-2637v3. The hardware
and compilers that we used for this experiment were slightly upgraded from those
in our paper [2]. Although the execution performance depends on the optimization
by a compiler and even minor differences of library design, the performance of
Listing 1 in Java is not comparable with the equivalent C code. Furthermore, a C++
program naively translated from Listing 1 was also slow. As presented in Listing 2,
this C++ program also uses lambda expressions and several objects such as Vec3
and Vec4Array.

To avoid runtime penalties due to object orientation, domain-specific data types
and operators in C++ tend to be implemented by a template library. In the case
of our N-body program, the implementation using templates did not significantly
improve the performance. “C++ templates” in Figure 1 indicates the performance
of our implementation effort using templates. Since in C++ 17 a lambda expres-
sion can be passed as a template argument in only a restricted manner, our template

A development platform for embedded domain-specific languages 5

library for the N-body program could be compiled only by Clang and the perfor-
mance improvement was not satisfactory. “C++ templates 2” in Figure 1 indicates
the performance of another implementation, in which the users do not describe ker-
nel computation in the form of lambda expression. They instead write it in the form
of a class. Although its performance is comparable to hand-optimized C code as
shown in Figure 1, its programming interface is not satisfactory since the users have
to write a new template class.

A main trick of performance optimization by templates is to pass compile-time
constant values to a template as template arguments so that the resulting code of
instantiating the template will be specialized for those template arguments. Hence
when a library designer designs her template library, she has to carefully separate
constant part of data types and operators from the rest that are dynamically given at
runtime. For our example in Listing 1, the sum method on pos should be special-
ized for the given lambda expression the value of the variable vel might be given at
runtime. Furthermore, a library designer has to consider the constraints on template
arguments. For example, a string literal cannot be a template argument. We cannot
specialize two objects that refer to each other:

template <typename T> class A {
T b;

};
template <typename T> class B {

T a;
};

If the member variable b refers to an instance of B and a refers to an instance of
A, then we would want to specialize the type of b into B and the type of a into A.
However, such specialization would be obtained only by A<B<A<B<...>>> and
B<A<B<...>>>, which are not feasible.

Furthermore, we cannot predict with confidence that such specialization is prop-
erly performed by a C++ compiler and it actually improves execution performance.
This depends on the compiler implementation and a library designer has to struggle
it in a try-and-error fashion. Limitations of C++ template libraries would be that this
trade-off between a user-friendly programming interface and execution performance
is not predictable.

Finally, this approach using a C++ template is only applicable when a program
is written in C++. Although most programs for high-performance computing could
be written in C++, some programs might be written in other languages such as
Go. When we want to use OpenCL, this approach is not effective. Since a kernel
function in OpenCL is described in the form of string literals (or character strings),
the specialization by C++ templates is not naively applicable to an OpenCL kernel
function.

6 Shigeru Chiba, YungYu Zhuang, Thanh-Chung Dao

1.3 Pragmas

Since a C++ library with templates has some limitations, there have been other
approaches proposed. The most extreme approach is to develop an external domain-
specific language (DSL). It is a new language designed for data types and operators
for a particular application-domain. Although it can provide the most natural syntax
and potentially the best optimizing compiler, a drawback of this approach is its
development cost. Not only a compiler but also a development environment such as
an editor have to be developed.

Another approach with lower development costs is to add pragmas to an existing
language. Pragmas customize a compilation process, in particular, how target native
code is generated, although it does not change syntax. OpenMP is one of the most
successful pragma-based systems. A for statement with the parallel pragma
of OpenMP can be regarded as a domain-specific operator for parallel looping al-
though the syntactic expression of the for statement is still a normal one. In other
words, pragmas implement domain-specific data types and operators by changing
the semantics of existing language constructs while keeping the original presenta-
tion. In practice, the semantic changes are restricted to be compatible to the original
semantics. The programs including pragmas should run even when all the pragmas
are ignored. For example, a for statement with the OpenMP pragma should be a
valid for statement even when the pragma is removed.

For development of pragmas, we can use various compiler frameworks such as
Eclipse [14], ROSE [10], and Roslyn [8]. GCC and LLVM compilers can be also
used as a compiler framework. They mitigate relatively high development costs of
pragmas. Most pragmas can be implemented by a translator of abstract syntax trees
(ASTs) from original trees into transformed trees according to pragmas.

A drawback of this pragma approach is that syntactic presentation is restricted. A
pragma can only add extra semantics to an existing language construct such as a for
statement. The syntax or presentation of that language construct cannot be changed.
This restriction on syntax may also complicate the behavior of domain-specific data
types and operators by pragmas. For example, since OpenMP pragmas cannot con-
trol what programmers write in the body of a for statement, the programmers may
write an arbitrary body. Hence they may be surprised at unexpected behavior of the
statement when the computation in the body has forward or backward dependency.
For example,

#pragma omp parallel for
for (int i = 0; i < N; i++)
array[i] += array[i - 1];

The result of this for statement might be different from the result of the for state-
ment without the pragma since OpenMP does not guarantee that array[i] is
updated after updating array[i-1]. If custom syntax can be provided for paral-
lel for statements, providing such syntax would be preferable so that programmers
could not write a body including forward or backward dependence:

parallel_for (array, N) {

A development platform for embedded domain-specific languages 7

return self + 1.0;
}

Here, parallel for is a custom for statement with new syntax. It updates ev-
ery element of array with size N. The new value is obtained by executing the
body self + 1.0. The built-in variable self refers to the old value of each el-
ement. Although it enables only a limited kind of computation, the programmers
cannot write an expression with forward or backward dependence. Restricting the
expressiveness of data types and operators is sometime useful to avoid unexpected
behavior.

1.4 Deep Embedding

Deep embedding is a technique for implementing an embedded domain-specific
language (DSL). An embedded DSL is a library providing domain-specific data
types and operators through an application programming interface (API) regarded
as a DSL. Deep embedding is a variant of the technique called fluent API [3]. The
functionality of a library with a fluent API is invoked by a chain of methods.

Matrix m;
Vector v, p, q;

...
q = m.mult(v).add(p);

The variables m refers to a Matrix object and v, p, and q refer to Vector objects.
The last line above expresses q = m∗ p+v, matrix-vector multiplication and vector
addition. The mult method executes multiplication and the add method executes
addition. These methods return the resulting vector.

A deep-embedding library, however, provides methods returning an abstract syn-
tax tree (AST). For the example above, both mult and add return an AST corre-
sponding to an expression for multiplication or addition. Hence, the type of q has
to be changed from Vector to VectorExpr (vector expression). To obtain the
value of vector type, a method for materialization, for example, eval, has to be
called on the AST.

Matrix m;
Vector v, p, r;
VectorExpr q;

...
q = m.mult(v).add(p);
r = q.eval();

The result of m ∗ v+ p is stored in r. A unique feature of deep embedding is that
programmers explicitly specify when an AST is materialized (by calling eval)
into a value. Hence, a deep-embedding library can generate an optimized program
for executing an AST to be materialized when the materialization method such as
eval is called. Then, it can execute the program generated on demand so that it

8 Shigeru Chiba, YungYu Zhuang, Thanh-Chung Dao

can get better execution performance. The generated program does not have to be
written in the host language. When a deep-embedding library is for Java, it may
generate a C++ or assembly program. It may directly generate native machine code
[13].

Since a deep-embedding library generates a program, it is similar to an external-
DSL compiler but it is a library embedded in its host programming language. The
program generation is performed at runtime as a just-in-time (JIT) compiler does.
A deep-embedding library is more portable than external DSLs or the pragma ap-
proach; it does not require a custom compiler or language processor.

Although the syntactic presentation of the code above is somewhat ugly, it could
be improved, for example, if the host language supports operator overloading:

q = (m * v) + p;
r = q.eval();

In Scala, dots and parentheses can be omitted when a method takes a single param-
eter. Hence programmers can write the following code:

q = m mult v add p

It can be also possible to implement a precedence rule among mult and add by
exploiting types [7]. However, in either cases, the eval method is still necessary
for explicit materialization.

Explicit materialization is a drawback of deep embedding since programmers
are aware of AST construction. They also have to distinguish AST types and
value types such as VectorExpr and Vector. This drawback is mitigated in
Lightweight Modular Staging (LMS) [12] by relying on Scala’s powerful type
system and advanced features such as user-defined implicit conversion (and often
Scala-Virtualized compiler extension [11]). Yin-Yang [5] uses Scala’s macro sys-
tem to further mitigate this drawback. These techniques for mitigation, however, are
not available in other main-stream programming languages, which do not provide
as powerful programming capabilities as Scala’s.

2 Deep reification

In our paper [2], we proposed an alternate approach called deep reification. Like
deep embedding, deep reification enables a library providing domain-specific data
types and operators through a language-like API.

The idea of deep reification is simple. Deep reification is a language mechanism
for obtaining the AST of the source code of a given lambda expression (or a function
closure) at runtime. Deep reification obtains not only the AST of the given lambda
expression but also the ASTs of all the methods directly or indirectly invoked from
that lambda expression. It can be regarded as a mechanism for obtaining an ab-
stract syntax forest. The obtained ASTs also come with runtime values captured by
the given lambda expression, and accessed from the directly or indirectly invoked
methods. All the types appearing in the obtained ASTs are also collected.

A development platform for embedded domain-specific languages 9

1 dsl.run(() -> {
2 pos1.tabulate(i -> new Vec4(i, i, i, 2));
3 vel.tabulate(i -> new Vec4(i, i, i, 2));
4 dsl.repeat(R, () -> {
5 pos2.map(f, pos1);
6 pos1.map(f, pos2);
7 });
8 Vec3 g = pos1.sum((Vec4Array pos, int i, Vec3 v, float w)
9 -> new Vec3(v.x / w, v.y / w, v.z / w));

10 Util.print(g.x / N).println();
11 });

Listing 3 Deep reification for N-body simulation

Listing 3 shows an example. It performs the N-body simulation using the lambda
expression f shown in Listing 1. The runmethod on dsl performs deep reification.
It takes a lambda expression and obtains the AST of its source code. Since this
lambda expression refers to f, which is another lambda expression in Listing 1,
the AST of f is also obtained. Likewise, other methods such as repeat and map
invoked in Listing 1 and 3 are also reified and their ASTs are obtained.

Domain-specific data types and operators are implemented by deep reification
as follows. Its approach is similar to deep embedding. A code snippet including
domain-specific data types and operators is an embedded-DSL program. It is written
in the form of lambda expression such as one passed to run in Listing 3. This
lambda expression is passed to some method provided by the DSL library and the
method extracts the ASTs of that lambda expression and the methods invoked from
that lambda expression. The runmethod in Listing 3 is such a a method provided by
a DSL library. Then, the extracted ASTs are translated into an optimized program,
which will be executed to get the result of the DSL program written by the user.
If a host language is Java, the optimized program translated from the ASTs may
be a C++ program. It will be compiled dynamically by an external C++ compiler
and run while the host program in Java is running. The compiled binary would
communicate to the Java virtual machine through Java Native Interface (JNI) or
inter-process communication such as a socket and a pipe. The latter means allows us
to run the compiled binary on a remote machine with rich computational resources.
Otherwise, the compiled binary can be run as a stand-alone program without any
communication to the host program while it is running. In this case, the host program
can be regarded as a program generator where the specification of the generated
program is embedded. The generated and compiled binary will run after the host
program completely finishes.

Any practical implementation of deep reification needs a means for delimiting
acquisition of ASTs for methods directly/indirectly invoked by the root lambda ex-
pression. One simple means is to use naming conventions. In Java, the methods
contained in system packages such as java.lang.* can be eliminated from the
acquisition. Another approach is to let application programmers annotate methods

10 Shigeru Chiba, YungYu Zhuang, Thanh-Chung Dao

to delimit further acquisition of ASTs. When extracted ASTs as a DSL program
are translated into an efficient C++ program, some methods will be native methods
and their ASTs will not be translated into C++ code as is. They will be translated,
independently of their ASTs, into predefined code supplied by DSL implementa-
tion; further traversal to obtain ASTs will not be necessary. Hence, the annotation
to specify such a native method can be used to delimit AST acquisition.

A difference from deep embedding is that a DSL program is written by borrow-
ing the syntax of the host language while it is written in the form of method chaining
in deep embedding. Deep reification also borrows parts of the semantics of a host
language. In the deep embedding approach, borrowing host language features such
as function calls is difficult in a DSL program. The syntax for a function call has
to be explicitly implemented by the DSL. The DSL cannot reuse a host-language
mechanism similar to a function call. Since deep reification traces a method-call
chain and variable accesses referring to the outside of a given closure, DSL imple-
mentation can exploit that tracing functionality when implementing its equivalent
language constructs such as a function call. Deep reification provides for DSL im-
plementation a smoother connection to its host language.

The approach based on deep reification is similar to a JIT compiler but the
dynamic compilation in this approach would be heavier than typical JIT compil-
ers. Hence, a DSL program in this approach is appropriate for offloading high-
performance computation when executing that computation takes a long time rel-
atively to the compilation time. On the other hand, like the deep-embedding ap-
proach, the deep-reification approach is portable since it does not need a custom
virtual machine or compiler.

Deep reification is also similar to syntactic macros such as ones found in Lisp.
Syntactic macros allow programmers to extract an AST of the expression given as
a macro argument. The resulting AST returned by a macro function lexically sub-
stitutes the original macro-call expression. Although a syntactic macro can extract
only the AST of the expression written as the argument to the macro, deep reifi-
caiton can extract the AST of an expression written in a different place from the
place where the execution of deep reification. In Listing 3, the map method in line
5 and 6 gets a lambda expression referred to by the variable f and extracts its AST.
The lambda expression does not have to necessarily be directly written in line 5 and
6. If map is a macro function, the lambda expression has to be written in line 5 and
6. Furthermore, deep reification allows programmers to write the following method
and use it:

void mapmap(Func f, Vec4Array pos1, Vec4Array pos2) {
pos2.map(f, pos1);
pos1.map(f, pos2);

}

Then line 5 and 6 in Listing 3 can be replaced with the following single call:

mapmap(f, pos1, pos2);

Defining a convenience method such as mapmap is not possible if map is a macro
function.

A development platform for embedded domain-specific languages 11

3 Bytespresso

To show our idea of deep reification, we implemented a Java library that provides
deep reification in Java [2]. Our Java library named Bytespresso extracts an AST
by bytecode decompilation. It needs to launch the Java virtual machine with the
option jdk.internal.lambda.dumpProxyClasses. This option generates
the bytecode of a dynamically generated lambda expression. For deep reification,
Bytespresso reads the bytecode of a given lambda expression and decompiles it to
construct an AST. It does not need source code; it only needs Java bytecode.

To support the implementation of an embedded DSL by deep reification, Byte-
spresso also provides a translator from ASTs to C or CUDA code. The code gener-
ated by the translation is normally compiled by an external C (or CUDA) compiler
and executed in a separate process from the Java virtual machine. The generated
code and the host Java code communicate with each other through a socket for
portability.

Delimiting AST acquisition by deep reification, Bytespresso provides the @Native
annotation. When a method has this annotation, the AST of the method body is not
extracted by deep reification. The ASTs for the methods invoked by that method
are not extracted either. Although a @Native method is translated into a C func-
tion by Bytespresso, the body of that C function is the argument to @Native. The
following method is an example of @Native method:

@Native("struct timeval time; gettimeofday(&time, NULL); "
+ "return time.tv_sec * 1000000 + time.tv_usec;")

public static long time() {
return System.nanoTime() / 1000;

}

The body of the C function is given as a string literal. Furthermore, Bytespresso also
provides the @Foreign annotation for delimiting. Unlike @Native, the translator
provided by Bytespresso does not generate a C function for a @Foreign method.
A call to this method is translated into a call to the existing C function with the same
name. For example,

@Foreign public static float sqrtf(float f) {
return (float)Math.sqrt(f);

}

A call to this method is translated into a call to the C function sqrt in the standard
library. The body of the method is ignored.

The translator provided by Bytespresso does not preserve the original semantics
of Java. For example, the generated code does not perform array boundary check-
ing although DSL designers, who implement their DSL compilers, can modify the
translator from ASTs to C so that array boundary checking will be done. Garbage
collection is optional for the generated code. If it is required, a conservative garbage
collector [1] is used. Note that a program processed by Bytespresso is a DSL pro-
gram. It should be a different language from Java and can provide different seman-
tics although it has to use the same syntax as Java. The choice of which part of Java’s

12 Shigeru Chiba, YungYu Zhuang, Thanh-Chung Dao

semantics is reused by the DSL is the responsibility of the DSL designer. It should
be decided to fit the aim of the DSL.

3.1 N-body simulation

We first show our small array library built with Bytespresso. It provides several
classes used in Section 1.2 such as Vec4Array (an array of vectors in four dimen-
sions) and Vec3 (a vector in three dimensions). Vec4Array provides a method
for computing sums:

@Inline public Vec3 sum(Func f) {
Vec3 v = new Vec3(0, 0, 0);
for (int i = 0; i < size; i++) {
Vec3 vi = get(i);
Vec3 v2 = f.apply(this, i, vi, getW(i));
v = v.add(v2);

}
return v;

}

This is a natural Java program that can be also executed by the Java virtual ma-
chine. get(i) obtains the i-th element (with only three components) of the vec-
tor. getW(i) obtains the forth dimension of the i-th element. f.apply runs the
lambda expression f with the arguments.

However, this array library is an embedded DSL. Although a program written in
this DSL lexically looks like a lambda expression in Java, it is extracted from a host
Java program, translated into efficient C++ code, compiled, and executed out of the
Java virtual machine. The execution semantics of the DSL code is slightly different
from Java’s, for example, with respect to array boundary checking.

The vector elements of a Vec4Array object are stored in a FloatArray2D
object. FloatArray2D is a class provided by Bytespresso for a two-dimensional
array of float. The AST-to-C translation of the code related to this object is
specially treated and hence every instance of FloatArray2D is translated into
a static global variable in C. An instance of FloatArray2D has to be created
with its fixed size before deep reification is executed. For example, if the size is 128
by 128, then the instance is translated into:

static double gvar[128][128];

This is a statically allocated array with a fixed size. It will help the back-end C
compiler generate efficient binary.

Note that a DSL program extracted from its host Java program by Bytespresso
is compiled into C and executed by a separate process. Therefore, the host Java
program and the DSL program run in separate execution environments and they
do not share objects or any type of variables. All the Java objects referred to by a
DSL program are also extracted by Bytespresso. Then their copies are made and
embedded into a generated C program as a statically allocated variable. When data

A development platform for embedded domain-specific languages 13

0.0 5.0 10.0 15.0 20.0 25.0

C

Bytespresso

Clang GCC Intel C Gflops

17 sec.
17 sec.

8 sec.

17 sec.
17 sec.

13 sec.

Fig. 2 The execution performance of N-body programs by Bytespresso

have to be exchanged between a host Java program and a DSL program, they have
to be explicitly passed by remote method invocation. The AST-to-C translator of
Bytespresso supports remote method invocation between host and DSL programs. A
method annotated with @Remote is treated as a method that can be remotely called.
Bytespresso currently supports only primitive data types and arrays as a parameter
of remote method invocation.

Figure 2 shows the execution performance of our array library with Bytespresso.
We ran the simple N-body simulation shown in Listing 3 on the same hardware and
software as in Figure 1 in Section 1.2. The performance of Bytespresso is compa-
rable to the C program written by hand except when the back-end C compiler is
the Intel C compiler. It seems that the Intel compiler was able to effectively apply
SIMD vectorization when the source code was written by hand and had a simpler
structure.

The performance of Bytespresso shown in Figure 2 was achieved by aggressive
inlining specified by the annotation @Inline for the sum method. Our array li-
brary supports not only single-thread execution but also OpenMP and CUDA. It
provides several subclasses of Vec4Array and, by switching them, programmers
can change which kind of program is generated from a DSL program written as a
lambda expression in Java. When a subclass of Vec4Array for CUDA is selected,
the AST-to-C translator of Bytespresso generates a CUDA program that computes
the sum method by using a GPGPU. Therefore, a call to the sum method may cause
dynamic method dispatch. Bytespresso aggressively inlines a method and attempts
to statically resolve such dynamic dispatch. The call to the sum method in List-
ing 1 and all other calls that might have been dynamic calls were statically resolved
by Bytespresso and translated into normal calls to C functions specialized for the
call sites. Some calls to the specialized functions are further inlined. To help this
optimization, the final modifier should be added to object fields if possible. Fur-
thermore, Bytespresso provides @Final annotation to specify that the value of a
field never changes while a DSL program is running. Since it can be updated while
a host Java program is running before deep reification is performed, @Final is
different from the final modifier.

14 Shigeru Chiba, YungYu Zhuang, Thanh-Chung Dao

Boundary b = new FixedEndBoundary();
b.initializer(new Initializer() { ... });
GridFloat2D grid = new CpuGridFloat2D(xsize, ysize, b);
Initializer init = new Initializer() {
public float value(int i, int j) { return 273.15f; }

};
Kernel k = new Kernel() {

public float newValue(Float2Array oldValue, Cursor cur,
int t, Reduction r) {

float v = c0 * (cur.north(oldValue) + cur.south(oldValue))
+ c1 * (cur.east(oldValue) + cur.west(oldValue))
+ c2 * cur.self(oldValue);

return v;
}

};
grid.initialize(init)

.each(Reduction.NO, 1, Predicate.FOREVER, k)

.repeat(N, new MPIDriver(nodes));

Listing 4 2-dimensional 5-point stencil

3.2 Auto-parallelization

Another example is a simple framework for stencil computation. It is an embedded
DSL and a program written in this DSL is translated into an efficient C program to
be run. The abstraction provided by the framework hides all the details of efficient
implementation. The framework users do not have to care about the implementation
details.

Stencil computation is a well-known programming model useful for, for exam-
ple, solving a partial differential equation. Listing 4 is a program using our frame-
work for stencil computing. It performs five-point stencil computation in single pre-
cision. It first constructs a two-dimensional grid with a concrete boundary condition.
In Listing 4, we constructs two-dimensional grid, which is a CpuGridFloat2D
object with a FixedEndBoundary object. Then the initialize method on a
grid object registers an initializer that sets each grid point to an initial value, and
the each method registers a kernel function for stencil computation. Finally, the
repeat method performs deep reification and generates a C program. Since a
MPIDriver object is given to the repeat method in Listing 4, the generated
program is an MPI program in C. It is supposed to be compiled and submitted to a
job queue of supercomputer after the Java program in Listing 4 finishes.

The kernel function receives the old values of a grid (oldValue), and the cur-
rent position (cur). It has to return a new value at the current position of the grid.
cur.north obtains the old value at the upper position and cur.self obtains the
old value at the current position. The other parameters t and r are the current time
and an object for computing reduction, which is not specified in Listing 4.

A development platform for embedded domain-specific languages 15

grid.initialize(cInitPressure)
.each(Reduction.SUM, 1, Predicate.FOREVER, new Kernel() {

public float newValue(FloatArray3D p, Cursor cur, int t,
Reduction r) {

float s0 = cur.self(a0) * cur.east(p)
+ cur.self(a1) * cur.south(p)
+ cur.self(a2) * cur.down(p)
+ cur.self(b0)

* (cur.southeast(p) - cur.northeast(p)
- cur.southwest(p) + cur.northwest(p))

+ cur.self(b1)

* (cur.downsouth(p) - cur.downnorth(p)
- cur.upsouth(p) + cur.upnorth(p))

+ cur.self(b2)

* (cur.downeast(p) - cur.downwest(p)
- cur.upeast(p) + cur.upwest(p))

+ cur.self(c0) * cur.west(p)
+ cur.self(c1) * cur.north(p)
+ cur.self(c2) * cur.up(p)
+ cur.self(wrk1);

float ss = (s0 * cur.self(a3) - cur.self(p))

* cur.self(bnd);
r.apply(ss * ss);
return cur.self(p) + omega * ss;

}
}).repeat(N, drv);

Listing 5 The Himeno benchmark using our framework

This framework for stencil computation provides several components and the
users can write their application program by selecting appropriate components.
They can choose boundary conditions and how their program is executed, by CPU,
GPGPU, or MPI. Then the framework generates a program for the given configura-
tions.

An interesting research question is whether this framework using Bytespresso
can generate a program appropriate for the given configuration, in particular, a back-
end compiler. To reduce development costs, existing software tools should be reused
if they are appropriate to use, and a generated program should be optimizable easily
by such a back-end compiler. For example, there are automatic parallelizing com-
pilers available.

To examine whether our framework can generate a program that such a compiler
can parallelize, we rewrote the Himeno benchmark [4] to use our framework and
ran it on the Fujitsu FX10 supercomputer. The back-end compiler was the Fujitsu
C compiler. To exploit its automatic parallelization, a compiled program has to be
a good one that the compiler can easily analyze and parallelize. To generate a good
program, our framework applies function inlining to the whole kernel loop in the
framework implementation. It also transforms an object used for reduction into a
set of local variables. This technique is often known as object inlining. Without this

16 Shigeru Chiba, YungYu Zhuang, Thanh-Chung Dao

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0 100 200 300 400 500 600

M
ea

su
re

d
pe

rf
or

m
an

ce
 in

 T
Fl

op
s

The number of processes

Bytespresso

Fujitsu C

8x8x8

8x8x4

8x4x4

4x4x4

Fig. 3 Strong scale performance of the Jacobi kernel of Himeno on FX10

transformation, the back-end compiler could not parallelize the code. The frame-
work also allocates global variables in a generated C program, which holds grid
data, in a specified order on memory. Since all these optimization techniques are
specific to the Fujitsu C compiler, we developed framework components for that
compiler so that the framework users can choose when their target machine is the
Fujitsu FX10 supercomputer.

The Himeno benchmark runs a single three-dimensional Jacobi kernel. The prob-
lem size was XL (512× 512× 1024). The original benchmark is written in C with
MPI and each MPI process is single-threaded in single precision. The benchmark
score mainly reflects the memory bandwidth. Listing 5 shows the kernel of the
benchmark program. The variables a0, a1, and so forth refer to coefficient ma-
trices, which are FloatArray3D objects created in the benchmark program.

Figure 3 shows the result. Bytespresso could successfully achieve compara-
ble performance with the hand-optimized C code. Every node of the machine
had 32 GByte memory and one SPARC64 IXfx (1.848 GHz) processor with 16
cores. The back-end compiler was Fujitsu C compiler 1.2.1. The compiler option
-Kfast,parallel,noprefetch,ocl was given. The page size was set to 256MB.

3.3 NAS Parallel Benchmarks

We also wrote a vector matrix library built with Bytespresso. It runs on the MPI
environment and hence it can process large vector and matrices. Like our small
array library used for the N-body simulation in Section 3.1, it is an embedded DSL.

A development platform for embedded domain-specific languages 17

public double conj_grad(Vector x, Vector z, Matrix.Sparse a,
Vector p, Vector q, Vector r, double rnorm) {

q.set(0.0);
z.set(0.0);
r.set(x);
p.set(r);
double rho = r.norm();
for (int cgit = 1; cgit <= cgitmax; cgit++) {
q.setToMult(a, p); // q = A * p
double d = inner(p, q); // d = p * q
double alpha = rho / d;
z.setToAdd(z, alpha, p); // z = z + alpha * p
r.setToAdd(r, -alpha, q); // r = r - alpha * q
double rho0 = rho;
rho = r.norm(); // rho = r * r
double beta = rho / rho0;
p.setToAdd(r, beta, p); // p = r + beta * p

}
r.setToMult(a, z); // r = A * z
r.setToSub(x, r); // r = x - r
double sum = r.norm(); // sum = r * r
return Util.sqrt(sum);

}

Listing 6 The CG benchmark using our framework

A program written in this DSL looks like a normal Java program but it is executed
after being translated into a C program using MPI. The library users do not have to
care about data distribution or exchanges through MPI. Such details are hidden by
the library.

To evaluate the performance of this vector matrix library, we rewrote the CG
benchmark from the NAS Parallel benchmarks 3.0 so that it will use our library.
Since the library provides high-level abstraction, vectors and matrices, the CG
benchmark became a largely simplified program than the original one containing
a large number of do loops. The original program cg-omp.f contains 1156 lines
while ours corresponding one contains only 751 lines including comments but ex-
cluding the library code. Listing 6 shows a main part of the program, the conjugate
gradient routine. Since the generated program by our library runs using MPI, for
example, the setToMult method for computing matrix-vector multiplication syn-
chronously runs with other MPI processes. It first computes the multiplication of
a sub-matrix and a sub-vector stored on local memory and then it exchanges the
results among the other nodes through MPI Irecv, MPI Send, and MPI Wait.
These MPI primitives are implemented by @Native methods of Bytespresso.

Besides the CG benchmark, we also wrote a program equivalent to the LU bench-
mark of NAS parallel benchmark suites. This program does not use high-level ab-
straction such as a matrix; it directly uses four-dimensional double-precision ar-
rays as the original benchmark program does. We wrote this benchmark program to

18 Shigeru Chiba, YungYu Zhuang, Thanh-Chung Dao

0 200 400 600 800 1000 1200 1400

4 x 8

8 x 8

16 x 8

32 x 8

64 x 8

CG-C/Bytespresso CG-C/Fortran LU-C/Bytespresso

LU-C/Fortran LU-D/Bytespresso LU-D/Fortran

of MPI processes

Gflops

Fig. 4 NAS Parallel Benchmarks on TSUBAME 3.0

examine the basic execution performance of programs generated by the AST-to-C
translator that Bytespresso provides.

The execution performance of the CG and LU benchmark programs in Figure 4.
We ran them on the TSUBAME 3.0 supercomputer at Tokyo Tech. Each node of
the machine has dual Intel Xeon E5-2680v4 processors with 256 Gb memory. For
compilation, we used GCC 4.8.5 with the OpenMPI library. The optimization option
-Ofast was given to the compiler. We created eight MPI processes per node and
the maximum number of nodes we used was 64. The CG benchmark using Byte-
spresso achieved comparable performance to the original Fortran program although
the slow down due to Bytespresso was not negligible for the LU benchmark.

3.4 ExaStencil

Our last example is an embedded version of the ExaSlang 4 DSL [6]. ExaSlang
is an external DSL for stencil computation. It is being developed by the SPPEXA
ExaStencil project. It provides stencil operators and data grids. It also provides a
loop-over statement, which abstracts a (sequential or parallel) iteration over a grid.

Since ExaSlang supports multigrid methods, a set of multi-level data grids is
called a field. A data grid at a particular level is specified by @. For example,
GradientX@finest represents a data grid at the finest level of the GradientX
field. A stencil operator consists of stencil coefficients.

Stencil SmootherStencil_u@all {

A development platform for embedded domain-specific languages 19

[1, 0] => -1.0
[-1, 0] => -1.0
[0, 1] => -1.0
[0,-1] => -1.0
[0, 0] => 4.0*alpha + GradientX@current * GradientX@current

}

This declares a stencil operator named SmootherStencil u available at all lev-
els. The right operand of => is a coefficient at the position specified by the left
operand of =>. The declaration above defines the following stencil: −1

−1 4α + I2
x −1

−1

Here, Ix is the element of GradientX at the current position. The stencil can be
used in a function:

Function Smoother@all () : Unit {
// omitted
loop over Flow_u@current {

Flow_u[next]@current = Flow_u[active]@current
+ ((1.0 / diag(SmootherStencil_u@current))

* (RHS_u@current
- SmootherStencil_u@current * Flow_u[active]@current
- GradientX@current * GradientY@current * Flow_v[

active]@current))
}
// omitted

}

This Smoother function is available at all levels and it iterates the loop body over
the current level of the Flow u field. In the body, the SmootherStencil u for
the current level is applied to the current level of (the active slot of) the Flow u
field.

We implemented an embedded version of this DSL by using Bytespresso. In
the embedded version, stencil operators and fields are defined as Java objects. For
example, the SmootherStencil u shown above is written as follows:

final Stencil smootherStencil_u
= new StencilBuilder()
.add(1, 0, -1.0)
.add(-1, 0, -1.0)
.add(0, 1, -1.0)
.add(0, -1, -1.0)
.add(0, 0, (current, x, y) ->

4.0 * alpha + gradientX.at(current).get(x, y)

* gradientX.at(current).get(x, y))
.build();

To obtain better performance, an instance of CustomStencil should be used:

final CustomStencil smootherStencil_u = new CustomStencil() {
public double calc(final LayeredNodeField layeredField,

20 Shigeru Chiba, YungYu Zhuang, Thanh-Chung Dao

0

5000

10000

15000

20000

25000

30000

35000

9 10 11 12
of Layer

ExaSlang/GNU

Bytespresso/GNU

ExaSlang/CLANG

Bytespresso/CLANG

ExaSlang/Intel

Bytespresso/Intel

msec.

Fig. 5 Execution time of ExaSlang programs (msec.)

final int current, final NormalIndex x,
final NormalIndex y) {

return -1.0 * (layeredField.get(current, x, 1, y, 0)
+ layeredField.get(current, x, -1, y, 0)
+ layeredField.get(current, x, 0, y, 1)
+ layeredField.get(current, x, 0, y, -1))
+ (4.0 * alpha + gradientX.get(current, x, y)

* gradientX.get(current, x, y))

* layeredField.get(current, x, 0, y, 0);
}

};

This object directly represents the expression computed by a stencil operator. Like-
wise, the Smoother function is written in our DSL as follows:

@Inline public void smoother(int current) {
// omitted
flow_u.next(current).loopOver(current, (c, x, y) ->
flow_u.active(c).get(c, x, y)
+ smootherStencilDiagInv_u.calc(

((rhs_u.get(c, x, y)
- smootherStencil_u.calc(flow_u.active(c), c, x, y))
- gradientX.get(c, x, y) * gradientY.get(c, x, y)

* flow_v.active(c).get(c, x, y)),
c, x, y));

// omitted
}

This function takes a parameter specifying a level. Its expression is more verbose
than ExaSlang but keeps the same abstractions.

We compared the execution performance of programs that compute two-dimensional
optical flow by the multigrid method. One program was written in the original Ex-
aSlang language while the other was written in our embedded DSL. Both are single-
threaded. We compiled the two programs by GCC 5.4.0, Intel C compiler 17.0.1, and
Clang 5.0.0 with -O3, and ran them on the machine with Intel Xeon E5-2637v3. We
examined with different numbers of layers for the multigrid method. Figure 5 shows
the execution time of the kernel part of the two programs. The program written in

A development platform for embedded domain-specific languages 21

0

100

200

300

400

500

600

700

800

9 10 11 12
of Layer

ExaSlang/GNU

Bytespresso/GNU

ExaSlang/CLANG

Bytespresso/CLANG

ExaSlang/Intel

Bytespresso/Intel

sec.

Fig. 6 Compile and execution time of ExaSlang programs (sec.)

our embedded DSL was only three times slower than the program in the original Ex-
aSlang language. Figure 6 shows the sum of the compilation time and the execution
time of the two programs. Since the compilation by the current ExaSlang compiler
is slow, our embedded DSL was rather faster.

4 Summary

This chapter presented Bytespresso, a prototype system to use our deep-reification
technique, in Java. Bytespresso allows DSL developers to easily implement efficient
DSLs embedded in Java. The embedded DSL code is dynamically extracted and of-
floaded from the Java virtual machine onto native hardware. The DSL developers
can exploit an existing tool chain, including an external optimizing compiler, when
offloading DSL code. Since the syntax of the DSLs are borrowed from Java’s and a
few language mechanisms in Java, such as a method call, are reused, the develop-
ment costs of the DSLs can be reduced.

Acknowledgements I would like to thank Maximilian Scherr and Toshiyuki Takahashi for their
various contributions to this work. This is partly supported by JST/DFG SPPEXA ExaStencil
project. We deeply thank Christian Lengauer, Sebastian Kuckuk, Christian Schmitt, Matthias
Bolten, Frank Hannig, and Harald Köstler. We also thank Shuichi Chiba at Fujitsu Ltd. for the
experiment on FX10.

References

1. Boehm, H.J., Weiser, M.: Garbage collection in an uncooperative environment. Software
Practice and Experience 18(9), 807–820 (1988)

2. Chiba, S., Zhuang, Y., Scherr, M.: Deeply reifying running code for constructing a domain-
specific language. In: Proc. of the 13th Int’l Conf. on Principles and Practices of Programming
on the Java Platform: Virtual Machines, Languages, and Tools, PPPJ ’16, pp. 1:1–1:12. ACM
(2016)

22 Shigeru Chiba, YungYu Zhuang, Thanh-Chung Dao

3. Fowler, M.: Fluentinterface. https://www.martinfowler.com/bliki/FluentInterface.html (2005)
4. Himeno, R.: Himeno benchmark. http://accc.riken.jp/2444.htm (2001)
5. Jovanovic, V., Shaikhha, A., Stucki, S., Nikolaev, V., Koch, C., Odersky, M.: Yin-yang: Con-

cealing the deep embedding of dsls. In: Proc. of the 2014 Int’l Conf. on Generative Program-
ming: Concepts and Experiences, GPCE 2014, pp. 73–82. ACM (2014)

6. Kuckuk, S., Haase, G., Vasco, D.A., Köstler, H.: Towards generating efficient flow solvers with
the ExaStencils approach. Concurrency and Computation: Practice and Experience 29(17),
4062:1–4062:17 (2017)

7. Nakamaru, T., Ichikawa, K., Yamazaki, T., Chiba, S.: Silverchain: A fluent api generator. In:
Proc. of the 16th ACM SIGPLAN Int’l Conf. on Generative Programming: Concepts and
Experiences, GPCE 2017, pp. 199–211. ACM (2017)

8. .NET Foundation: The .net compiler platform “roslyn”. https://github.com/dotnet/roslyn
(2014)

9. Nyland, L., Harris, M., Prins, J.: Fast n-body simulation with CUDA. In: H. Nguyen (ed.)
GPU Gems 3, chap. 31, pp. 677–695. Addison-Wesley (2007)

10. Quinlan, D., Schordan, M., Miller, B., Kowarschik, M.: Parallel object-oriented framework op-
timization. Concurrency and Computation: Practice and Experience 16(2-3), 293–302 (2004)

11. Rompf, T., Amin, N., Moors, A., Haller, P., Odersky, M.: Scala-Virtualized: linguistic reuse
for deep embeddings. Higher-Order and Symbolic Computation 25(1), 165–207 (2012)

12. Rompf, T., Odersky, M.: Lightweight Modular Staging: A pragmatic approach to runtime code
generation and compiled DSLs. In: Proc. of the Ninth Int’l Conf. on Generative Programming
and Component Engineering, GPCE ’10, pp. 127–136. ACM (2010)

13. Rompf, T., Sujeeth, A.K., Brown, K.J., Lee, H., Chafi, H., Olukotun, K.: Surgical precision
JIT compilers. In: Proc. of the 35th ACM SIGPLAN Conf. on Programming Language Design
and Implementation, PLDI ’14, pp. 41–52. ACM (2014)

14. The Eclipse Foundation: Eclipse IDE. http://www.eclipse.org (2001)

