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Abstract

Software product line engineering is a means to systematically manage vari-
ability and commonality in software systems, enabling the automated synthesis
of related programs (products) from a set of reusable assets. However, the
number of products in a software product line may grow exponentially with
the number of features, so it is practically infeasible to quality-check each of
these products in isolation. There is a number of variability-aware approaches
to product-line analysis that adapt single-product analysis techniques to cope
with variability in an e�cient way. Such approaches can be classi�ed along three
analysis dimensions (product-based, family-based, and feature-based), but, par-
ticularly in the context of reliability analysis, there is no theory comprising
both (a) a formal speci�cation of the three dimensions and resulting analysis
strategies and (b) proof that such analyses are equivalent to one another. The
lack of such a theory hinders formal reasoning on the relationship between the
analysis dimensions and derived analysis techniques. We formalize seven ap-
proaches to reliability analysis of product lines, including the �rst instance of
a feature-family-product-based analysis in the literature. We prove the formal-
ized analysis strategies to be sound with respect to the probabilistic approach to
reliability analysis of a single product. Furthermore, we present a commuting
diagram of intermediate analysis steps, which relates di�erent strategies and
enables the reuse of soundness proofs between them.
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1. Introduction

Software product line engineering is a means to systematically manage vari-
ability and commonality in software systems, enabling the automated synthesis
of related programs (known as variants or simply products) from a set of reusable
assets (known as domain artifacts) [15, 42, 1]. In a product line, variability is
modeled in terms of features, which are distinguishable characteristics that are
relevant to stakeholders of the system [16]. This methodology improves produc-
tivity and time-to-market, and it eases mass customization of software [42].

In recent years, product lines have been widely applied in both industry [50,
36] and academia [1, 15, 28, 42], in particular to safety- and mission-critical
systems [50, 20, 19, 34, 46]. Model checking is of particular interest to quality
assurance of such systems. It is a veri�cation technique that explores all possible
system states in a systematic manner, e�ectively checking that a given system
model satis�es a certain property [5].

The number of products in a product line may grow exponentially with the
number of features, giving rise to an exponential blowup of the con�guration
space [1, 6, 14, 13]. So, it is often infeasible to quality-check each of these prod-
ucts in isolation. Nonetheless, software veri�cation techniques for the single-
product case are widely used by the industry, and it is bene�cial to exploit their
maturity to increase quality while reducing cost and risk [5].

There is a number of approaches to product-line analysis that adapt estab-
lished analysis techniques to cope with variability [47]. In particular, several
model checking techniques have been successfully lifted to operate on product
lines [47, 11, 12, 13, 21, 9, 22, 32, 46, 40]. Among these techniques, we fo-
cus on reliability analysis, which is the veri�cation of a probabilistic existence
property [23] and can be seen as the probability that a system does not fail.

Product-line analyses can be classi�ed along three dimensions: product-
based (the analysis is performed on generated products or models thereof),
family-based (only domain artifacts and valid combinations thereof are checked),
and feature-based (domain artifacts implementing a given feature are analyzed
in isolation, regardless of their valid combinations) [47]. More than one dimen-
sion can be exploited in a given technique, giving rise to feature-family-based
and family-product-based analyses, for instance. However, existing approaches
to the problem of lifting standard analysis techniques to product lines often
focus on the family-based dimension [39, 45, 21, 9, 7] and relate it only to the
product-based dimension to ensure soundness. In the context of reliability anal-
ysis, particularly, there is no theory comprising both (a) a formal speci�cation
of the three dimensions and resulting analysis strategies and (b) proof that such
analyses are equivalent to one another (i.e., they compute the same reliability).

The lack of such a theory hinders formal reasoning on the relationship be-
tween the dimensions and derived analyses. Indeed, proving that an analysis
method yields a correct result is a fundamental issue, especially for critical sys-
tems. Furthermore, a practitioner needs to be able to choose among existing
analysis strategies according to the problem at hand, based on their trade-o�s
in terms of space and time [47]. As long as there is no evidence that di�erent
strategies are mutually equivalent, empirical studies comparing them will have
limited results.

Based on the product-line analysis taxonomy proposed by Thüm et al.
[47], we formalize seven approaches to reliability analysis of product lines: two
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product-based, a family-based, a family-product-based, a feature-family-based,
a feature-product-based, and a feature-family-product-based. In particular, the
latter of these is a novel approach, according to a recent survey [47].

We prove the formalized analysis strategies to be sound with respect to the
probabilistic approach to reliability analysis of individual products. Further-
more, we present a commuting diagram of intermediate analysis steps, which
relates di�erent strategies and enables the reuse of soundness proofs between
them. In this sense, all strategy choices are guaranteed to yield the same result.

The main contributions of this work are the following:

• The formalization of seven strategies for reliability analysis of software
product lines, conforming to the classi�cation by Thüm et al. [47] (Sec-
tion 4).

• A novel feature-family-product-based strategy for model checking of prod-
uct lines (Section 4.5). To the best of our knowledge, and according to
the survey by Thüm et al. [47], this is the �rst strategy in its category.

• Proofs of commutativity between di�erent strategies (Section 4). This
improves the current understanding on how analysis strategies for product
lines relate to one another and establishes their soundness.

• A commuting diagram of intermediate analysis steps (Figure 10), which
relates di�erent strategies and enables the reuse of soundness proofs be-
tween them.

• A general principle for lifting analyses to product lines using algebraic
decision diagrams (Section 4.2.2, Theorem 2).

This work �rst provides fundamental concepts necessary for the discussion
of product-line analyses (Section 2), followed by an explanation of stochastic
models of product-line behavior and corresponding model checking techniques
(Section 3). We proceed with formal de�nitions of strategies and proofs of their
commutativity (Section 4), ending with a discussion of related work (Section 5)
and ideas for further research regarding commonality of product line analysis
strategies (Section 6).

2. Background

In this section, we lay the foundations for the upcoming discussion. The
reader is expected to have some familiarity with discrete-time Markov chains
(DTMC), in particular from a state-based perspective (as presented, for in-
stance, in the book by Baier and Katoen [5]).

2.1. Software Product Lines

A software product line is a set of software-intensive systems sharing a com-
mon, managed set of features that satisfy speci�c needs of a particular market
or mission, and that are developed from a common set of core assets in a pre-
scribed way [15]. A feature model documents the features of a product line and
their relationships [1]. For a feature model FM , we denote its set of features
by F . Each feature in this set has a name; feature names are used as atomic
propositions to express feature relationships as propositional logic formulae.
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A given product is speci�ed by a con�guration. A con�guration is a selection
of features and, as such, is represented by a set of atoms: a negated atom denotes
feature absence, while a positive one denotes presence. We denote the set of
con�gurations over a feature set F as C. This set contains all 2|F | combinations
of feature atoms, each of which must appear in either positive or negative form,
but never both. Valid con�gurations, that is, con�gurations that satisfy the
constraints expressed by the feature model FM , are denoted by JFM K ⊆ C.
Each c ∈ JFM K speci�es the features of a product of the product line.

Product derivation is the process by which reusable assets are combined
to form a product, according to a speci�ed con�guration. Actual behavior is
included or excluded from a generated product by means of presence conditions,
which are propositional formulae over features [17].

To operationalize satisfaction of presence conditions, we need to de�ne
Boolean functions over feature selections. Therefore, we de�ne an arbitrary
(but �xed) total order of features by turning the set F of features into a list.
This way, we can unambiguously denote a con�guration c ∈ JFM K as a Boolean
tuple in B|F |, where B = {0, 1} is the set of Boolean values (where 0 and 1
denote the Boolean values FALSE and TRUE, respectively). Such Boolean tuples
have a �xed position for each feature, with the i-th position denoting presence
or absence of the i-th feature1 by the values 1 and 0, respectively. In the
upcoming discussion, whenever we refer to k-ary Boolean functions, we assume
that Boolean k-tuples can be used as arguments.

2.2. Reliability Analysis

Reliability analysis can be de�ned as a probabilistic existence property [23].
This means the reliability of a system is the probability that, starting from
an initial state, the system reaches a set of target (also success) states. This
value is called reachability probability. To analyze this property, we �rst model
the system's behavior as a DTMC�a tuple (S, s0,P, T ), where S is a set of
states, s0 ∈ S is the initial state, P is the transition probability matrix P :
S × S → [0, 1], and T ⊆ S is the set of target states.2 Moreover, each row of
the transition probability matrix sums to 1, that is, ∀s∈S · P(s, S) = 1, where
P(s, S) =

∑
s′∈S P(s, s′).

For every state s ∈ S, we say that a state s′ is a successor of s i� P(s, s′) > 0.
Accordingly, the set of successor states of s, Succ(s), is de�ned as Succ(s) =
{s′ ∈ S |P(s, s′) > 0}. A DTMC induces an underlying digraph where states
act as vertices and edges link states to their successors. This way, we say that
a state s′ of a DTMC is reachable from a state s, denoted by s  s′, i� s′ is
reachable from s in the DTMC's underlying digraph. Likewise, we write s 6 s′

to denote that s′ is unreachable from s. This notation is also used with respect
to a set T of states: s T i� there is at least one state s′ ∈ T such that s s′,
and s 6 T otherwise.

1The actual order of features does not a�ect our results, since its only purpose is to con-
sistently refer to values in Boolean tuples.

2This de�nition departs from the one by Baier and Katoen [5] in two ways: (a) we abstract
the possibility of multiple initial states and the computation of other temporal properties (to
focus on reliability analysis) and (b) we incorporate target states in the model (to abbreviate
model checking notation).
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The reachability probability for a DTMC can be computed using probabilis-
tic model checking algorithms, implemented by o�-the-shelf tools [5, 33]. An
intuitive and correct view of reachability probability, although not well-suited
for e�cient implementation, is that a target state is reached either directly or
by �rst transitioning to a state that is able to recursively reach it. We present
a formalization of this property, adapted from Baier and Katoen [5], that suits
the purpose of this work.

Property 1 (Reachability probability for DTMCs). Given a DTMC D = (S,
s0,P, T ), a state s ∈ S, and a set T ⊆ S of target states, the probability of
reaching a state t ∈ T from s satis�es the following property:

PrD(s, T ) =


1 if s ∈ T
0 if s 6 T∑
s′∈S\T P(s, s′) · PrD(s′, T ) +

∑
t∈T P(s, t) if s /∈ T ∧ s T

Whenever T is a singleton {t}, we write PrD(s, t) to denote PrD(s, T ).

In a product line, di�erent products give rise to distinct behavioral models.
To handle the behavioral variability that is inherent to product lines, we resort
to Parametric Markov Chains [18].

2.2.1. Parametric Markov Chains

Parametric Markov Chains (PMC) extend DTMCs with the ability to rep-
resent variable transition probabilities. Whereas probabilistic choices are �xed
at modeling time and represent possible behavior that is unknown until run
time, variable transitions represent behavior that is unknown already at mod-
eling time. These variable transition probabilities can be leveraged to represent
product-line variability [46, 22, 9].

De�nition 1 (Parametric Markov Chain). A Parametric Markov Chain is de-
�ned by Hahn et al. [26] as a tuple P = (S, s0, X,P, T ), where S is a set of
states, s0 is the initial state, X = {x1, . . . , xn} is a �nite set of parameters,
P is the transition probability matrix P : S × S → FX , and T ⊆ S is the
set of target (or success) states. The set FX comprises the rational expres-
sions over R with variables in X, that is, fractions of polynomials with Real
coe�cients. This way, the semantics of a rational expression ε is a rational

function fε(x1, . . . , xn) = p1(x1,...,xn)
p2(x1,...,xn) from Rn to R, where p1 and p2 are Real

polynomials. For brevity, we hereafter refer to rational expressions simply as
expressions.

By attributing values to the variables, it is possible to obtain an ordinary
(non-parametric) DTMC. Parameters are given values by means of an evalu-
ation, which is a total function3 u : X → R for a set X of variables. For an
expression ε ∈ FX and an evaluation u : X ′ → R (where X ′ is a set of variables),
we de�ne ε[X/u] to denote the expression obtained by replacing every occur-
rence of x ∈ X ∩X ′ in ε by u(x), also denoted by ε[x1/u(x1), . . . , xn/u(xn)].

For instance, suppose we have sets of variables X = {x, y} and X ′ =
{x, y, z}, and an evaluation u = {x 7→ 2, y 7→ 5, z 7→ 3}. If ε ∈ FX is the
rational expression x − 2y, then ε[X/u] = ε[x/2, y/5] = 2 − 2 · 5 = −8. Note
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that, if u's domain, X ′, is di�erent from the set X of variables in ε, then
ε[X/u] = ε[(X ∩X ′)/u].

This de�nition can be extended to substitutions by other expressions. Given
two variable sets X and X ′, their respective induced sets of expressions FX and
FX′ , and an expression ε ∈ FX , a generalized evaluation function u : X →
FX′ substitutes each variable in X for an expression in FX′ . The generalized
evaluation ε[X/u] then yields an expression ε′ ∈ FX′ . Moreover, successive
expression evaluations can be thought of as rational function compositions: for
u : X → FX′ and u′ : X ′ → R,

ε[X/u][X ′/u′] = ε[x1/u(x1)[X ′/u′], . . . , xk/u(xk)[X ′/u′]] (1)

for x1, . . . , xk ∈ X (since u is a total function, we do not need to consider
non-evaluated variables).

The PMC induced by an evaluation u is denoted by Pu = (S, s0, ∅,Pu, T )
(alternatively, P[X/u]), where Pu(s, s′) = P(s, s′)[X/u] for all s, s′ ∈ S. To
ensure the resulting chain after evaluation is indeed a valid DTMC, one must
use a well-de�ned evaluation.

De�nition 2 (Well-de�ned evaluation). An evaluation u : X → R is well-
de�ned for a PMC P = (S, s0, X,P, T ) i�, for all s, s′ ∈ S, it holds that
• Pu(s, s′) ∈ [0, 1] (all transitions evaluate to valid probabilities)

• Pu(s, S) = 1 (stochastic property�the probability of disjoint events must
add up to 1)

Hereafter, we drop explicit mentions to well-de�nedness whenever we con-
sider an evaluation or a DTMC induced by one, because we are only interested
in this class of evaluations. Nonetheless, we still need to prove that speci�c
evaluations are indeed well-de�ned.

2.2.2. Parametric Probabilistic Reachability

To compute the reachability probability in a model with variable transitions,
we use a parametric probabilistic reachability algorithm. A parametric model
checking algorithm for probabilistic reachability takes a PMC P as input and
outputs a corresponding expression ε representing the probability of reaching
its set T of target states. Hahn et al. [26] present such an algorithm and prove
that evaluating ε with an evaluation u yields the reachability probability for the
DTMC induced in P by the same evaluation u.

Figure 1 [26] illustrates a single step of this parametric probabilistic reach-
ability algorithm. The main idea is that, for a given state s, the probability of
one of its predecessors (s1) reaching one of its successors (s2) is given by the sum
of the probability of transitioning through s and the probability of bypassing it.
In this example, other states and respective transitions are omitted. Note that,
since there is a self-loop with probability pc, there are in�nite possible paths
going through s, each corresponding to a number of times the loop transition is
taken before transitioning to s2. Hence, the sum of probabilities for these paths
correspond to the in�nite sum

∑∞
i=0 pa(pc)

ipb = pa(
∑∞
i=0 p

i
c)pb = pa

1
1−pc pb.

4

3Hahn et al. [26] actually de�ne it in a more general way as a partial function. However,
for our purpose, it su�ces to consider total functions.

4Whenever 0 < x < 1, we have the following convergent sum:
∑∞

i=0 x
i = 1

1−x
.
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De�nition 3 (State elimination step). Given a PMC P = (S, s0, X,P, T ) and
an arbitrary state s ∈ S, a state elimination step of the algorithm by Hahn
et al. [26] updates the transition matrix P to P′, such that, for all states s1, s2 ∈
S \ {s},

P′(s1, s2) = P(s1, s2) + P(s1, s) ·
1

1−P(s, s)
·P(s, s2)

s1 s s2

s1 s2

pa pb
pc

pd

pa
1

1−pc pb + pd

Figure 1: Elimination of state s in the algorithm by Hahn et al. [26]

The soundness of the parametric probabilistic reachability algorithm by
Hahn et al. [26] is expressed by the following lemma and summarized by the
commuting diagram in Figure 2.

Lemma 1 (Parametric probabilistic reachability soundness). Let P = (S, s0,
X,P, T ) be a PMC, u be a well-de�ned evaluation for P, and ε be the output of
the parametric probabilistic reachability algorithm by Hahn et al. [26] for P and
T . Then, PrPu(s0, T ) = ε[X/u].

Proof. The algorithm by Hahn et al. [26] is based on eliminating states until
only the initial and the target ones remain. Its proof consists of showing that
each elimination step preserves the reachability probability. We refer the reader
to the work by Hahn et al. [26] for more details on the algorithm itself and the
proof mechanics.

DTMC

PMC

Probability

Expression

[X/u]

Hahn's algorithm

PrPu(s0, T )

[X/u]Lemma 1

Figure 2: Statement of Lemma 1

2.3. Algebraic Decision Diagrams

An Algebraic Decision Diagram (ADD) [4] is a data structure that encodes
k-ary Boolean functions Bk → R. As an example, Figure 3 depicts an ADD
representing a binary function f . Each internal node in the ADD (one of the
circular nodes) marks a decision over a single parameter. Function application
is achieved by walking the ADD along a path that denotes this decision over
the values of actual parameters: if the parameter represented by the node at
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f(x, y) =


0.9 if x ∧ y
0.8 if x ∧ ¬y
0 otherwise

x

y

0.80.9 0

Figure 3: ADD Af representing the Boolean function f on the left

hand is 1 (true), we take the solid edge; otherwise, if the actual parameter is 0
(false), we take the dashed edge. The evaluation ends when we reach a terminal
node (one of the square nodes at the bottom).

In the example, to evaluate f(1, 0), we start in the x node, take the solid
edge to node y (since the actual parameter x is 1), then take the dashed edge
to the terminal 0.8. Thus, f(1, 0) = 0.8. Henceforth, we will use a function
application notation for ADDs, meaning that, if A is an ADD that encodes
function f , then A(b1, . . . , bk) denotes f(b1, . . . , bk). For brevity, we also denote
indexed parameters b1, . . . , bk as b̄, and the application A(b̄) by JAKb̄.

ADDs have several applications, two of which are of direct interest to this
work. The �rst one is the e�cient application of arithmetics over Boolean func-
tions. We employ Boolean functions to represent mappings from product-line
con�gurations (Boolean tuples) to their respective reliabilities. An important
aspect that motivated the use of ADDs for this variability-aware arithmetics
is that the enumeration of all con�gurations to perform Real arithmetics on
the corresponding reliabilities is usually subject to exponential blowup. ADD
arithmetic operations are linear in the input size, which, in turn, can also be
exponential in the number of Boolean parameters (i.e., ADD variables), in the
worst case. However, given a suitable variable ordering, ADD sizes are often
polynomial, or even linear [4]. Thus, for most practical cases, ADD operations
are more e�cient than enumeration.

An arithmetic operation over ADDs is equivalent to performing the same
operation on corresponding terminals of the operands. Thus, we denote ADD
arithmetics by corresponding real arithmetics operators. Formally, given a val-
uation for Boolean parameters b̄ = b1, . . . , bk ∈ Bk, it holds that:

1. ∀�∈{+,−,×,÷} · (A1 �A2)(b̄) = A1(b̄)�A2(b̄)

2. ∀i∈N ·Ai1(b̄) = A1(b̄)i

The second application of interest is the algorithmic encoding of the result
of an if-then-else operation over ADDs again as another ADD. For the ADDs
Acond , Atrue , and Afalse , we de�ne the ternary operator ITE (if-then-else) as

ITE(Acond , Atrue , Afalse)(c) =

{
Atrue(c) if Acond(c) 6= 0

Afalse(c) if Acond(c) = 0

More details on the algorithms for ADD operations are outside the scope of
this work and can be found elsewhere [4].

3. Markov-chain Models of Product Lines

Reliability analysis, in our setting, is the application of probabilistic model
checking to a probabilistic model of a software system. However, for a product
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line, it may not be feasible to manually model each product (i.e., its probabilis-
tic model) and then analyze it, due to exponential blowup. Hence, we model
the product line as a whole in terms of its common and variable behavior, to
enable the automatic derivation of probabilistic models corresponding to the
behavior of each product of the product line. Such variable behavioral models
have properties that allow them to be used with di�erent analysis strategies,
as we will show in Section 4. Although we show and use precise de�nitions of
the resulting models, it is outside the scope of this work to present modeling
techniques to create them. Models can be produced, for example, by using
behavioral UML diagrams annotated with component reliabilities [22, 41] or
feature-oriented formalisms [9].

Since single-product analysis relies on DTMCs to model software behavior,
we use PMCs to represent DTMC variability in product-line analysis. To il-
lustrate our approaches to variability representation and product-line analysis,
yet without loss of generality, we rely on an example product line of beverage
vending machines (Figure 4), slightly modi�ed from the examples in the work
by Ghezzi and Molzam Shari�oo [22] and Classen et al. [14]. This product line
consists of models of vending machines that are able to deliver tea or soda (but
never both) and, for each case, there is a beverage-speci�c optional behavior of
adding a certain quantity of lemon juice.

The feature model for this product line is depicted in Figure 4a, where Soda
and Tea are alternative features (i.e., they cannot be simultaneously present in
a feature selection) representing the behaviors of serving soda and tea, respec-
tively. Since adding lemon to a beverage is an optional behavior, it is modeled
by the optional feature Lemon. If a product is generated with the feature se-
lection {Soda} (i.e., Lemon is not selected), a possible model of its probabilistic
behavior is depicted in Figure 4b. If the feature selection is {Tea, Lemon}, the
derived product has a probabilistic behavioral model as in Figure 4c.

(a) Feature model

c0 s0 s1 s2

serr

csuc

cerr

1 0.9 0.9 0.9

0.1
0.1

1

0.1

1

1

(b) Behavior for {Soda}

c0 t0 t1 t2 tl0 tl1

tlerr

t3

terr

csuc

cerr

1 0.9 0.9 0.9 0.9 0.9 0.9

0.1
0.1

0.1

0.1 0.1

1 1

0.1

1

1

(c) Behavior for {Tea, Lemon}

Figure 4: Vending machine product line example

In both example DTMCs, transitions indicate a change in the machine's exe-
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cution state, with probabilities representing the reliabilities of the corresponding
execution steps. These reliabilities are usually taken to be the probabilities that
the software components responsible for each step will successfully produce the
expected outcome. In this sense, one can notice most states have two outgo-
ing transitions: one representing success and another representing failure. The
states with only one outgoing transition may be seen as execution control hand-
o�s. Also, to help us identify variation points, states are labeled according to the
behavior they model and are correspondingly colored. Label c denotes common
behavior (present in all products), while s and t denote behaviors introduced
by features Soda, and Tea, respectively. States labeled tl correspond to the
behavior of adding lemon to tea, that is, they only exist in products derived by
a feature selection with both features Tea and Lemon.

As with source code, the way variability is represented as PMCs and the
way products (i.e., DTMCs) are generated from the resulting variable assets
can be classi�ed in two main categories: annotation-based (or annotative) and
composition-based (or compositional) [29, 1]. We now discuss both kinds of
models, since each will play a role in the analysis strategies presented in Sec-
tion 4. We also present a correspondence between compositional and annotative
models in Section 4.4.

3.1. Annotative Models

To represent the variable behavior of a product line in an annotative way, we
use a PMC in which variables are interpreted as con�guration-speci�c behavior
selectors. Such a PMC for the vending machine product line is shown in Fig-
ure 5, where we introduce blue dashed states to represent con�guration-speci�c
behavior selection. For instance, to represent the variability for Tea-related be-
havior, we introduce a state labeled selt , which transitions to t0 (not shown)
with probability 1, if it is present, or transitions to the point right after the
same behavior (a state correspondingly labeled aftt) with probability 1, if it is
absent5. This mutually exclusive selection is represented by labeling transitions
with the expressions t and 1− t, such that evaluating t as 1 yields the expected
�present� behavior, while evaluating it with 0 yields the �absent� behavior. The
same approach is also applied to the behavior corresponding to adding lemon
to tea. Some states of the model for serving tea, as well as the behaviors cor-
responding to Soda and its lemon-adding variant, are omitted for brevity. The
whole model can be seen in Figure A.1.

We generalize and formally de�ne this annotative approach of variability
representation as follows.

De�nition 4 (Annotative PMC). An annotative PMC is a PMC (S, s0, X,P,
T ) such that for all states s ∈ S, either:

1. ∀s′∈S ·P(s, s′) ∈ [0, 1] ∧P(s, S) = 1 (the probabilities of all outgoing tran-
sitions are constants that add up to 1); or

2. ∃s0,afts∈S ∃x∈X · Succ(s) = {s0, afts} ∧P(s, s0) = x ∧P(s, afts) = 1− x
(there are exactly two outgoing transitions, whose probabilities are ex-
pressed as a single variable and its complement).

5The states selt and aftt are analogous to the #ifdef and #endif macros of the C prepro-
cessor, usually seen in preprocessor-based product lines.
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c0 sel t . . . t2 sel tl tl0 tl1

tlerr

aft tl t3

terr

aft t . . . csuc

cerr

t

1− t
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1− tl

1 1 110.9 0.9 0.9 0.9 0.9

0.1
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1

1

0.1

1

1

Figure 5: Annotative PMC for the vending machine

The states in Figure 5 that fall in the second case are sel t and sel tl (as well
as sels and selsl , which are not shown), while all others fall in the �rst case.
Each variable of an annotative PMC denotes the presence of a given behavior
in a product. The intended semantics is that the sets of states and transitions
giving rise to the denoted behavior will be reachable within the model if, and
only if, its corresponding variable evaluates to 1.

For such an annotative PMC to represent the variable behavior of a product
line with feature model FM , we must be able to use it to derive the behavioral
model of any product generated by a con�guration c ∈ FM . However, the use
of a PMC by itself does not help with restricting the possible evaluations to
achieve that. Evaluating the introduced variables with values other than 0 and
1 may yield ill-formed DTMCs (e.g., violating the stochastic property). Also, a
variable should evaluate to 1 if, and only if, the presence condition of the sub-
system whose behavior is controlled by this variable is satis�ed. Hence, we need
to constrain evaluations of this annotative PMC to re�ect the corresponding
feature model and presence conditions.

The �rst step towards this goal is to formalize what presence conditions
mean in the context of variable behavioral models. Thus, let px be the presence
condition for the behavior identi�ed by x. In our vending machine example, we
would have pt = Tea, ptl = Tea ∧ Lemon, ps = Soda, and psl = Soda ∧ Lemon.
To precisely associate a variable to a presence condition, we de�ne a higher-
order function that maps a variable to a Boolean function over the features (see
Section 2.1), which we call presence function.

De�nition 5 (Presence function). Given a set X of variables and a feature
model FM , a presence function is a function p : X → JFM K→ B such that, for
all x ∈ X and all c ∈ JFM K,

p(x)(c) =

{
1 if c |= px (presence condition is satis�ed)

0 otherwise

where px is the presence condition associated with the variable x and c |= px
means that the con�guration c satis�es px.

Next, we must be able to use the feature model to de�ne evaluations. For
instance, the annotative PMC for the vending machine product line would allow
serving both tea and soda, if both t and s were evaluated to 1. However, this
behavior is forbidden by the feature model, which states that Tea and Soda

are alternative features. By incorporating knowledge of the feature model to
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evaluations, we can model all variant behavior as if it were optional and enforce
the constraints of alternative and OR features when evaluating the PMC. The
solution to this problem are higher-order functions complying to the following
de�nition of an evaluation factory.

De�nition 6 (Evaluation factory). Given a feature model FM and a set X of
variables, an evaluation factory w : JFM K → X → R is a function that, for a
given con�guration c ∈ JFM K, yields an evaluation w(c) ∈ X → R.

At this point we have de�ned what we mean by an annotative PMC as well
as an abstract means to constrain possible evaluations to the ones that make
sense in the context of a given product line. For the particular case of annotative
PMCs, an evaluation factory must generate evaluations that interpret variables
as presence values and according to the presence conditions. Thus, we need to
interpret the set {0, 1} of numbers as the set B of Boolean values and restrict the
generated evaluations to have this set as image. With this in mind, we de�ne
an annotative probabilistic model as follows:

De�nition 7 (Annotative probabilistic model). An annotative probabilistic
model is a tuple (P, p, w,FM ) such that:

• P = (S, s0, X,P, T ) is an annotative PMC (De�nition 4);

• FM is a feature model;

• p : X → JFM K→ B is a presence function (De�nition 5); and

• w is an evaluation factory (De�nition 6) such that, for all c ∈ JFM K and
x ∈ X,

w(c)(x) =

{
1 if p(x)(c) = 1

0 otherwise

Remark 1 (Pointwise de�nition of w). For practical purposes, it is worth not-
ing that the right-hand sides of the de�nitions of w (De�nition 7) and of the
presence function p (De�nition 5) are the same. That is, one can operationalize
w as w(c)(x) = p(x)(c), so the annotative evaluation factory could be uniquely
determined from an annotative PMC P, a presence function p, and a feature
model FM . Nonetheless, we keep w as part of the annotative model tuple for
uniformity, since it is the annotative counterpart of the composition factory w′

in a compositional probabilistic model (De�nition 17). The de�nitions of the
presence function and the annotative evaluation factory are only similar because
the set of Real values in the image of the possible evaluations (i.e., {0, 1}) in
the annotative case correspond to our Real encoding of Boolean values.

Starting with such an annotative model, the derivation of a speci�c behav-
ioral model of a product with con�guration c ∈ JFM K is then carried out by
applying the evaluation w(c) to the underlying PMC P. Since PMC evaluation
is not restricted to annotative PMCs, we de�ne this process of DTMC derivation
(which is the basis for product derivation) without resorting to the just de�ned
concept of annotative models.
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De�nition 8 (DTMC derivation). Given a PMC (S, s0, X,P, T ), a feature
model FM , and an evaluation factory w : JFM K→ X → R, the DTMC deriva-
tion function π : PMCX ×

(
JFM K → X → R

)
× JFM K → DTMC is such

that
π(P, w, c) = Pw(c)

where PMCX is the set of PMCs with variables set X. For brevity, we can also
note JPKwc to mean π(P, w, c).

Note that the analysis methods we exploit in this work rely on evaluations
being well-de�ned (De�nition 2). This is where the restrictions we imposed on
annotative models come into play: the evaluation factory of an annotative model
always yields well-de�ned evaluations for the underlying annotative PMC.

Lemma 2 (Evaluation well-de�nedness for annotative models). For every an-
notative model (P, p, w,FM ), w(c) is a well-de�ned evaluation for P, for all
c ∈ JFM K.

Proof. By de�nition of well-de�ned evaluation for a PMC P = (S, s0, X,P,
T ) (De�nition 2), an evaluation u is well-de�ned i� Pu obeys the stochastic
property and Pu assigns a valid probability value to each transition. That is,
∀s∈S ·Pu(s,Succ(s)) = 1 and ∀s,s′∈S ·Pu(s, s′) ∈ [0, 1].

From De�nition 7, P is an annotative PMC (De�nition 4), so states with no
variability (case 1) satisfy the needed properties by de�nition. For states s with
variability (case 2), it holds that

∃s1,s2∈S ∃x∈X · Succ(s) = {s1, s2} ∧P(s, s1) = x ∧P(s, s2) = 1− x

Let us consider each property whenever u = w(c):

Stochastic property. By de�nition,∑
s′∈Succ(s)

Pw(c)(s, s
′) = Pw(c)(s, s1) + Pw(c)(s, s2)

= P(s, s1)[X/w(c)] + P(s, s2)[X/w(c)]

= x[X/w(c)] + (1− x)[X/w(c)]

= w(c)(x) + (1− w(c)(x))

= 1

Valid probabilities. From De�nition 7, we have that for every c ∈ JFM K,
the image of w(c) is {0, 1} ⊆ [0, 1]. Hence, either Pw(c)(s, s1) = 1 ∧
Pw(c)(s, s2) = 0 or Pw(c)(s, s1) = 0∧Pw(c)(s, s2) = 1. That is, all possible
transition probabilities lie in the [0, 1] interval.

As there is no other case to consider, Pw(c) satis�es the required properties.
Thus, w(c) is well-de�ned for P.

In summary, an annotative probabilistic model represents all products of the
product line, relying on presence conditions to de�ne which parts have to be
removed to derive a concrete product model. Because of that, this type of model
is also known as 150% model [24], metaproduct [48], variant simulator [45], or
product simulator [2].
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3.2. Compositional Models

A compositional representation of variable con�guration-speci�c behavior
consists of a hierarchy of PMCs whose variables represent variation points, such
that they can be composed with one another at prede�ned locations. To model a
product line in this way, we start with a PMC comprising all common behavior,
while abstracting all variable con�guration-speci�c behavior. We then model
each abstracted behavior as a DTMC, if it presents no further variability, or as
another PMC, otherwise. In the latter case, we follow the same procedure to
abstract inner variation points, until all behavior is modeled.

Figure 6 illustrates this concept. For the vending machine example, the top-
level PMC P> would be as in Figure 6a. In this PMC, we introduce triples
of dashed states that act as placeholders for the abstracted behavior. We call
these states and corresponding transitions slots. For instance, the top-level
PMC in Figure 6a has two slots, abstracting the behaviors of serving tea and
soda. The tea slot consists of two elements: (a) the set of states ct0 , ctsuc ,
and cterr , representing the initial, success, and error states in the abstracted
behavior, respectively; and (b) two transitions, annotated with the expressions
t and 1 − t, denoting the probabilities of success and failure of this behavior,
respectively. This way, we not only use the variable t as a slot identi�er, but
give it the possibility to be interpreted as the reliability of the tea behavior.

c0 ct0 ctsuc

cterr

cs0 cssuc

cserr

csuc

cerr

1 t

1− t

s

1− s

1 1

1 1

1

1

Tea Soda

(a) Top-level compositional PMC P> for the vending machine (common behavior and
main variation points)

t0 t1 t2 ttl0
ttlsuc

ttlerr

t3 tsuc

terr

tl

1− tl

0.9

0.1

0.9

0.1

0.9

0.1

1

1

0.9

0.1

1

1

Lemon Tea

(b) Compositional PMC Pt for the behavior of serving tea

tl0 tl1 tlsuc

tlerr

0.9 0.9

0.1 0.1

1

1

Lemon

slots
interfaces

(c) Compositional PMC Ptl for the behavior of adding lemon to tea

Figure 6: Compositional PMCs for the vending machine

Note that, despite being alternatives, the behaviors of serving tea and soda
are both represented in this PMC. This parametric model, by itself, does not

14



prohibit the behavior of serving tea and soda subsequently. Like in the anno-
tative representation of the vending machine (Figure 5), we do not enforce the
rules of the feature model in the PMC itself. Instead, we ensure valid combina-
tions of features during the composition process, as we shall see later.

Figure 6b shows the PMC Pt for the tea behavior, in which we use a slot
to abstract the optional lemon-adding behavior, whose behavior is modeled by
the PMC Ptl in Figure 6c. Since this tea-lemon PMC has no variability, it
is in fact a regular DTMC. We omit the PMCs for serving soda (Ps) and for
adding lemon to soda (Psl), for brevity, but the complete example can be seen
in Figure A.2 (Appendix A).

Formally, we de�ne a compositional PMC as a PMC in which transition
probabilities depend on the value of some probabilistic reachability property of
other PMCs. For a PMC de�ned this way, possible evaluations map variables to
real numbers within the interval [0, 1], instead of the binary set {0, 1} used for
an annotative model (see De�nition 6). To compose PMCs modeled this way
with one another, we augment the de�nition of a PMC with explicit mentions
of success and error states.

De�nition 9 (Compositional PMC). A compositional PMC P is a tuple (S,
s0, ssuc , serr , X,P, T ), where:

• S is a set of states, s0 ∈ S is the initial state, X is a set of variables,
and P is a transition probability matrix, such that (S, s0, X,P, T ) is an
annotative PMC (see De�nition 4).

• States ssuc , serr ∈ S are called success and error states, respectively. To-
gether with the initial state, s0, they de�ne the interface of the compo-
sitional PMC: interface(P) = {s0, ssuc , serr} (solid box around PMCs in
Figure 6).

• T = {ssuc}. That is, ssuc is the only target state.

• The success and error states are the only bottom strongly connected com-
ponents [5] in P, that is:

� once one of them is reached, no other state is ever reachable; and

� they are the only states satisfying this property.

This restriction ensures that we model all executions as either successful
(if the success state is reached) or non-successful (if the error state is
reached).

De�nition 9 builds on De�nition 4 to de�ne the structure of compositional
PMCs, but the intended semantics of variables in this type of parametric Markov
chain is di�erent from the corresponding semantics in an annotative PMC. In
a compositional PMC, the condition that the outgoing transitions of a given
node are either all constant or all variable (inherited from De�nition 4) relates
to the concept of slots, whereas annotative PMCs treat variable transitions
as behavioral switches. Informally, a slot for the variable x (dashed boxes in
Figure 6) marks the part of a product's behavior where a con�guration-speci�c
behavior (identi�ed by x) takes place. Note that there can be more than one
slot for a given behavior.
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De�nition 10 (Compositional PMC slot). For a compositional PMC P = (S,
s0, ssuc , serr , X,P, T ), a slot for x ∈ X is a triple (sx0

, sxsuc
, sxerr

), where:

• sx0 , sxsuc , sxerr ∈ S;

• Succ(sx0
) = {sxsuc

, sxerr
};

• P(sx0
, sxsuc

) = x ∧P(sx0
, sxerr

) = 1− x.

The set of slots for x in P is denoted by slotsP(x), and the set of states belong-
ing to any slot in slotsP(x) is given by slotStatesP(x) = {s ∈ S | ∃ς∈slotsP(x) ·
s ∈ ς}. We extend these de�nitions for the set of all slots in P for any vari-
able in X (slotsP(X)) and the set of states belonging to any slot in that set
(slotStatesP(X)).

With compositional PMCs at hand, we need to be able to derive a DTMC,
modeling the behavior of a given product of the product line, as in Section 3.1.
Before we can handle the product-line aspect, we must de�ne the mechanics of
PMC composition. The intuition is that composition is achieved by connecting
the interface (solid outer box) of a compositional PMC P ′ to the slots (dashed
boxes) in a compositional PMC P that are meant to abstract the behavior in
P ′, that is, slotsP(x) (see Figure 7).

De�nition 11 (Partial PMC composition). Given a compositional PMC P =
(S, s0, ssuc , serr , X,P, T ) and a variable x ∈ X, assume that x occurs only once
in P, and let P ′ = (S′, s′0, s

′
suc , s

′
err , X

′,P′, T ′) be a compositional PMC to
be composed on that single slot marked by x. The partial PMC composition
P[x/P ′] is a compositional PMC P ′′ = (S′′, s′′0 , s

′′
suc , s

′′
err , X

′′,P′′, T ′′) such that:

• S′′ = S ] S′, where ] denotes the disjoint union operator (all states are
disjointly merged);

• s′′0 = s0, s
′′
suc = ssuc , and s

′′
err = serr (the interface of P is preserved);

• X ′′ = X \{x}∪X ′ (the occurrence of x is replaced by a copy of P ′, whose
variables are those of X ′);

• T ′′ = T (target states of the base PMC are preserved);

• P′′ is such that

� P′′(sx0
, s′0) = 1 (new transition from a slot's initial state to the initial

state of the corresponding composed PMC)

� P′′(s′suc , sxsuc ) = 1 (new transition from the success state of a com-
posed PMC to the success state of the corresponding slot)

� P′′(s′err , sxerr
) = 1 (new transition from the error state of a composed

PMC to the error state of the corresponding slot)

� P′′(sx0 , sxsuc ) = 0 (slot's success transition is removed)

� P′′(sx0 , sxerr ) = 0 (slot's error transition is removed)

� P′′(s′suc , s
′
suc) = 0 (success loops from composed PMCs are removed)

� P′′(s′err , s
′
err ) = 0 (error loops from composed PMCs are removed)
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� For all remaining combinations of s1, s2 ∈ S′′:

P′′(s1, s2) =


P(s1, s2) if s1, s2 ∈ S \ slotStatesP(x)

P′(s1, s2) if s1, s2 ∈ S′

0 otherwise

s0 ... sx0

sxsuc

sxerr

...

...

ssuc

serr

x

1− x

1

1

slot

(a) P

s′0 ...

s′suc

s′err

1

1

(b) P ′

s0 ... sx0 s′0 ...

s′suc

s′err

sxsuc

sxerr

...

...

ssuc

serr

1

1

1

1

1

x

1− x

1

1

(c) P[x/P ′]

Figure 7: Example of a partial composition of two PMCs

In summary, transitions among slot states of P are removed as well as the
looping transitions from success and error absorbing states of P ′. Then, slot
states are connected to respective interface states, yielding a partially composed
PMC. This process is illustrated in Figure 7c, which depicts the partial com-
position of the compositional PMC P ′ (Figure 7b) into P (Figure 7a) from the
perspective of a single slot. New transitions are green bold, while red dashed
transitions are the ones suppressed during composition. We say this transfor-
mation is partial because slots for variables other than x are not subject to
composition.

Since there might be more than one slot for a given variable, we extend the
concept of partial composition to mean the composition of n renamings of a
given compositional PMC P ′ into each of the n slots for a single variable x in
another compositional PMC P. A full (total) composition is then obtained by
composing PMCs over all slots in a given base compositional PMC at once. Such
a composition relies on a composition function�a function u′ : X → P that
yields a compositional PMC P ∈ P to compose in the corresponding slots for
any given variable. The detailed de�nitions of PMC renaming (De�nition 32)
and total PMC composition (De�nition 33) are presented in Appendix B.3.

In a composition, slots mark locations where behavioral model fragments
(i.e., other compositional PMCs) can be inserted to expand the base behavior.
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However, nothing so far prevents composition to happen at arbitrary slots (e.g.,
composing the behavior of adding lemon to soda in the slot for t, which was
meant to represent the behavior of serving tea). Thus, we need a way to relate
slots and the intended abstracted con�guration-speci�c behaviors. We do so by
naming compositional PMCs with the same variables that are used in the slots
that mark their places, by means of an identifying function.

De�nition 12 (Identifying function). Let P = {P1, . . . ,Pn} be a �nite set of
compositional PMCs Pi, each with a set Xi of variables, where i ∈ {1, . . . , n}.
An identifying function is a bijection idt : P → I, where I ⊃

⋃
Pi
Xi is a set of

variables that contains all variables in the compositional PMCs Pi.

Since idt is a bijection, the set I of identi�ers must have the same cardinality
as P. In practical terms, we arbitrarily identify PMCs that do not directly
correspond to an abstracted behavior (i.e., those that are not directly referred
by variables in other PMCs). This is the case of top-level PMCs, which are
mainly composed of states that are shared between the behaviors of all products.
For the vending machine product line (Figure A.2, summarized in Figure 6),
for which P = {P>,Pt,Ptl ,Ps,Psl}, we can de�ne I = {>, t, tl, s, sl} and,
correspondingly, idt = {P> 7→ >,Pt 7→ t,Ptl 7→ tl,Ps 7→ s,Psl 7→ sl}.

An identifying function induces a dependency relation over PMCs, based on
their names and the variables they employ to abstract behavior in slots. If we
denote this relation by≺, in the vending machine example, we can say that Ptl ≺
Pt ≺ P>, meaning P> depends on Pt, which, in turn, depends on Ptl . Also,
Psl ≺ Ps ≺ P>. Figure 8a illustrates this dependency relation as a dependency
graph, in which edges are labeled according to the variables identifying the
respective dependencies. There should be no in�nite descending chain under
this relation, because otherwise one would in�nitely compose PMCs and never
get a DTMC as a result. This could happen as a modeling error, for instance,
as introduced by the hypothetical dashed red cyclic dependency in Figure 8b.
Hence, we require the dependency relation among compositional PMCs to be
well-founded, meaning there can be no in�nite sequence P1,P2,P3, . . . such that
∀i≥1 ·Pi+1 ≺ Pi. This also prohibits cyclic dependencies, since they would allow
in�nite chains.

P>

Pt

Ptl

Ps

Psl

t

tl

s

sl

(a) Dependency relation ≺

P>

Pt

Ptl

Ps

Psl

t

tl

s

slt

(b) Hypothetical cyclic dependency in ≺

Figure 8: Dependency relation induced in the vending machine

De�nition 13 (Dependency relation induced in compositional PMCs). Given
a �nite set P = {P1, . . . ,Pn} of compositional PMCs Pi, each with a set Xi

of variables, and a corresponding identifying function idt : P → I, the binary
relation ≺: P ×P is the well-founded dependency relation induced by idt and
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by the use of variables in the Pi. That is,

∀Pi,Pj∈P · idt(Pj) ∈ Xi ⇔ Pj ≺ Pi

We read Pj ≺ Pi as �Pi depends on Pj�.

A consequence of this de�nition is that, in a �nite set of compositional PMCs
with an identifying function, there must be, at least, one PMC that depends on
no other and has no variability whatsoever (a minimal PMC), and, at least, one
PMC on which no other depends (a maximal PMC). In the vending machine
(Figure A.2), the minimal PMCs are Ptl and Psl , while P> is the single maximal
PMC.

De�nition 14 (Minimal and maximal compositional PMCs). Given a set P of
compositional PMCs, an identifying function idt , and the corresponding induced
well-founded relation ≺, a compositional PMC P ∈P is called minimal i�

@P′∈P · P ′ ≺ P

Conversely, P ∈P is called maximal i�

@P′∈P · P ≺ P ′

Maximal PMCs can be seen as models of top-level behavior in a system,
such as the main tasks usually represented by UML activity diagrams. In an
automation software charged with managing di�erent work�ows, for instance,
one could model each of the work�ows as a separate behavior with internal vari-
ability, thus yielding as many maximal PMCs as there are tasks to accomplish.
The number of maximal PMCs in a compositional model is mainly a modeling
decision, and analyzing the whole product line amounts to analyzing each of
these top-level behaviors. Thus, without loss of generality, we consider models
that have only one maximal PMC6, which we denote by P>.

After composition, the variability in a compositional PMC is replaced by the
variabilities of the PMCs composed into it. That is to say, the set of variables of
the resulting compositional PMC is given by

⋃k
i=1Xi, the set of variables in all

composed PMCs. In the vending machine (Figure 6), for instance, if we compose
the tea PMC Pt (Figure 6b) into the top-level PMC P> (Figure 6a) using the slot
(ct0 , ctsuc , cterr ), the resulting compositional PMC P>[t/Pt] will no longer have
variable t, but will have a new variable tl, stemming from Pt. Consequently,
to derive a product, one has to recursively perform the composition operation
until a plain DTMC is returned.

This recursive approach to derive a product by composition relies on an iden-
tifying function idt to assign PMCs to slots corresponding to their identi�ers.
This composition depends upon satisfaction of a presence condition. Thus, be-
fore we can properly de�ne this approach of derivation by composition, we must
de�ne how to proceed with composition in the case that the presence condition
of a model to be composed is not satis�ed. We achieve this result by composing
the feature disabler compositional PMC, depicted in Figure 9. This composi-
tional PMC models an always successful behavior, so composing it would not
a�ect the overall reliability of the base model.

6The existence of minimal and maximal PMCs follows from the well-foundedness of ≺.
More details are available at Appendix B.1.
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De�nition 15 (Feature disabler compositional PMC). The feature disabler
compositional PMC, P⊥ = (S, s0, ssuc , serr , X,P, T ), is a compositional PMC
such that:

• S = {s0, ssuc , serr}

• X = ∅

• P(s0, ssuc) = 1, P(ssuc , ssuc) = 1, and P(serr , serr ) = 1. Otherwise, for
s, s′ ∈ S, P(s, s′) = 0.

• T = {ssuc}

s0

ssuc

serr

1

0

1

1

Figure 9: Feature disabler compositional PMC P⊥

Similar to what we have achieved with evaluation factories (De�nition 6), we
need to constrain the possible compositions to ones that respect both: (a) sat-
isfying presence conditions and (b) matching of slots and compositional PMCs
via an identifying function. To enable this, we de�ne a composition factory as
a higher-order function that constrains compositions based on possible con�gu-
rations of the modeled product line. This is the basis of product derivation.

De�nition 16 (Composition factory). Given a set P of compositional PMCs,
a set I of identi�ers that is a superset of the variables used in slots, and a
feature model JFM K, a composition factory w′ : JFM K → I → DTMC is a
function that, for a given con�guration c ∈ JFM K, yields a composition function
w′(c) : I → DTMC.

To populate this de�nition with concrete composition factories, we �x the
set I of identi�ers as well as an identifying function, thus inducing a dependency
relation that establishes which models should be composed to get a probabilistic
model for a desired product. This way, a compositional model of a product line
is a set of compositional PMCs closed under this dependency relation.

De�nition 17 (Compositional probabilistic model). A compositional proba-
bilistic model for a product line with feature model FM is a tuple (P,≺, I, idt,
p, w′,FM ), where:

• P = {P1, . . . ,Pn} is a �nite set of compositional PMCs Pi = (Si, si0 ,
sisuc , sierr , Xi,Pi, Ti) (De�nition 9).

• I is a set of variables, such that I ⊃
⋃
Pi
Xi and |I| = |P|. These variables

are a superset of all variables in the compositional PMCs in P.

• idt : P → I is an identifying function for P (De�nition 12).
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• ≺: P ×P is the well-founded dependency relation induced by idt and by
the use of variables in the compositional PMCs Pi (De�nition 13).

• FM is a feature model.

• p : I → JFM K→ B is a presence function (De�nition 5) denoting presence
conditions satisfaction.

• w′ is a composition factory (De�nition 16) recursively de�ned as

w′(c)(x) =

{
Pi[x1/w

′(c)(x1), . . . , xk/w
′(c)(xk)] if p(x)(c) = 1

P⊥ otherwise

where Pi ∈P, idt(Pi) = x ∈ I, and Xi = {x1, . . . , xk}.

This de�nition allows us to model the behavior of a product line in a compo-
sitional way. To leverage this model for product-line analysis, we de�ne a way
to derive a DTMC that is consistent with the behavior of a product generated
using the same con�guration.

De�nition 18 (Derivation by composition). Given a compositional model (P,
≺, I, idt, p, w′,FM ) and a compositional PMC P ∈P with a set X of variables,
the DTMC derivation by composition π′(P, w′, c) is de�ned as

π′(P, w′, c) = P[X/w′(c)]

The notation is overloaded from PMC evaluation, since both are model trans-
formations that operate on variables. Since w′ is de�ned recursively, we need
to guarantee its execution terminates, which is why we require ≺ to be well-
founded. The termination proof (Lemma 11) is presented in Appendix B.2.

4. Reliability Analysis Strategies

The scenario on which we focus is analyzing the reliability of all products of
a product line using model checking of a probabilistic reachability property of
Markov-chain models. For this task, one can choose a number of product-line
analysis strategies [47]. Following the taxonomy of Thüm et al. [47], we discussed
possible strategies for each of the variability representations (annotative and
compositional) presented in Section 3.

Figure 10 depicts these choices. Starting with a compositional (upper left
corner) or an annotative model (upper right corner), one can follow any of the
outgoing arrows while performing the respective analysis steps (abstracted as
functions), until reliabilities are computed (either real-valued reliabilities or an
ADD representing all possible values). These analysis steps can be feature-based
(green solid arrows), product-based (blue dotted arrows), or family-based (red
dashed arrows). Thus, the arrows form an �analysis path� (a function compo-
sition), which de�nes the employed analysis strategy. Furthermore, Figure 10
is a commuting diagram (as we will demonstrate later in this section), meaning
that di�erent analysis paths are equivalent (i.e., they yield equal results) if they
share the start and end points.

After choosing a variability representation, the analysis of any of the result-
ing models presents another choice: either variability-free models (i.e., DTMC)

21



are derived for each con�guration (function π) and then analyzed (function α),
or variability-aware analysis is applied, using some form of parametric model
checking (function α̂). The �rst choice yields a product-based strategy (Sec-
tion 4.1), whereby each variant is independently analyzed. The second one
leverages parametric model checking to produce expressions denoting the re-
liability of PMCs in terms of their variables (Section 2.2.2). These variables
carry the semantics they had in the model-checked PMC, so we correspondingly
classify the resulting expressions as annotative or compositional.

Evaluating these expressions provides another choice: to evaluate the expres-
sions for each valid con�guration (function σ), yielding feature-product-based
(Section 4.3.1) and family-product-based (Section 4.2.1) strategies; or to in-
terpret the expressions in terms of ADDs (function lift), e�ectively evaluating
them for the whole family of models at once (function σ̂)�a step we call ex-
pression lifting. The latter represents feature-family-based (Section 4.3.2) and
family-based (Section 4.2.2) strategies.

As an example of walking through the choices of Figure 10, suppose we
start with a compositional model (upper-left corner), perform parametric model
checking (move down), and then lift the resulting expressions (move down one
more step) and evaluate them (move right), reaching a reliability ADD for the
family as a whole. The arrows in this path are, respectively, green solid, red
dashed, and red dashed, meaning the analysis strategy is feature-family-based.

DTMC
Compositional

model
Annotative

model

Theorem 5 Theorem 1

Theorem 8

Reliability
Compositional
expressions

Annotative
expression

Theorem 9

Theorem 6 Theorem 3

Reliability
ADD

Compositional
lifted expressions

Annotative
lifted expression

π′ π

γ

α̂ α̂α

σ σ

γ

lift lift
J_Kc

σ̂ σ̂

π derivation γ variability encoding
σ evaluation σ̂ evaluation with ADDs
α model checking α̂ parametric model

checkingJ_Kc ADD application

feature-based
family-based
product-based

Figure 10: Commutative diagram of product-line reliability analysis strategies

In the remaining sections, we detail each of these strategies and analysis
steps with the goal of making statements about their commuting relations.
Section 4.1 presents product-based analysis strategies for both annotative and
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compositional models, with the goal of establishing a baseline for the remaining
soundness proofs. Section 4.2 discusses family-product-based and family-based
analyses of annotative models. Feature-product-based and feature-family-based
analysis strategies are the subject of Section 4.3, which focuses on compositional
models. Then, Section 4.4 bridges the gap between analyses of annotative and
compositional models (function γ in Figure 10), establishing their commuta-
tivity. Finally, we leverage these results to present the novel feature-family-
product-based strategy in Section 4.5.

4.1. Product-based Strategies

Product-based analysis strategies are based on the analysis of generated
products or models thereof [47]. In Section 3, we have discussed how to represent
probabilistic behavioral models of product lines as PMCs, using both annotative
and compositional approaches. There, we also described how to derive models of
individual products, both for the annotative and the compositional approaches.
The generated models are plain DTMCs, that is, their variability has been
resolved at derivation time. Thus, to analyze the generated models, one only
needs to model-check the non-parametric probabilistic reachability for every
such model. We hereafter denote this non-parametric model checking analysis
step by the following function α.

De�nition 19 (Non-parametric model checking). The non-parametric model
checking step α : DTMC → [0, 1] consists of applying the algorithm by Hahn
et al. [26]. For a DTMC D = (S, s0,P, T ),

α(D) = PrD(s0, T )

Since a DTMC has no parameters, α yields constant functions, which we inter-
pret as plain Real numbers.

Although there are more e�cient algorithms for reliability model checking of
regular (non-parametric) DTMCs, we use the algorithm by Hahn et al. [26] in the
above de�nition for uniformity, which eases understanding. Since this algorithm
is sound (Lemma 1), a working implementation of the presented theory is free
to exploit another sound probabilistic reachability algorithm for performance
reasons.

Now we are able to de�ne product-based analysis for annotative and com-
positional models.

Strategy 1 (Product-based analysis of annotative models). Given an annota-
tive model (P, p, w,FM ), a product-based analysis yields, for all c ∈ JFM K,

α(π(P, w, c))

or, alternatively,
α(JPKwc )

Strategy 2 (Product-based analysis of compositional models). Given a com-
positional model (P,≺, I, idt, p, w′,FM ), a product-based analysis yields, for
all c ∈ JFM K,

α(π′(P>, w′, c))

where P> is the maximal PMC in P under ≺.
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So, a product-based analysis results in a mapping from con�gurations to re-
spective reliability values, such as {c 7→ α(π(P, w, c)) | c ∈ JFM K} for annotative
models, for instance.

Both analysis strategies presented in this section derive models for in-
dividual products of a given product line and then apply a single-product
analysis technique as is. Since single-product analyses represent the base
case upon which product-line analyses are built, the product-based strate-
gies establish a baseline for proving the soundness of other strategies.

4.2. Family-based Strategies

According to Thüm et al. [47], a family-based analysis strategy is one that (a)
operates only on domain artifacts and that (b) incorporates the knowledge about
valid feature combinations. In this section, we explore this kind of strategy in
the context of annotative probabilistic models, because they encode the behavior
of all products of a product line in a single PMC. It is also possible to perform
family-based analyses on a compositional model by �rst transforming it into an
annotative one, but this is discussed later in Section 4.4.

First, we show how to perform an analysis that yields a reliability expres-
sion, which can in turn be evaluated for each valid con�guration of the product
line. This characterizes a family-product-based strategy (Section 4.2.1). Then,
the aforementioned analysis is leveraged to build a pure family-based (i.e., non-
enumerative) strategy (Section 4.2.2). At �rst, it may seem counterintuitive to
present the family-product-based approach before the family-based one. How-
ever, we shall see that our pure family-based approach builds upon concepts
of the hybrid family-product-based approach, and that performing one or the
other is a matter of choosing product-based or family-based analysis steps after
a preliminary family-based step.

4.2.1. Family-product-based Strategy

A family-product-based strategy is a family-based strategy followed by a
product-based strategy over intermediate results [47]. The preliminary family-
based step of our family-product-based analysis consists of applying parametric
model checking of probabilistic reachability (Section 2.2.2) of the underlying
PMC of the annotative model. This step is abstracted as a function α̂, where
the � symbol denotes that it is a variability-aware version of the non-parametric
model checking function α (De�nition 19).

De�nition 20 (Parametric model checking). The parametric model checking
analysis step α̂ : PMCX → FX consists of applying the algorithm by Hahn et al.
[26] for probabilistic reachability, which yields a rational expression ε ∈ FX for
a PMC with variables set X. For a PMC P = (S, s0, X,P, T ), the input target
states of the algorithm are the ones in T .

After performing parametric model checking, the result of reachability anal-
ysis is an expression over the same variables as the annotative input PMC,
denoting the PMC's reliability as a function of these variables. Hence, we ex-
pect this annotative reliability expression to be evaluated using the same eval-
uation functions that restricted the possible behaviors in the original model.
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This expression evaluation, which can be seen as model derivation applied to
expressions, is captured in function σ.

De�nition 21 (Expression evaluation). Given an expression ε over a set X of
variables, an evaluation factory w, and a con�guration c ∈ JFM K, we de�ne the
expression evaluation function in a similar fashion as DTMC derivation:

σ(ε, w, c) = ε[X/w(c)]

Likewise, we can use JεKwc to denote σ(ε, w, c).

The function σ is applied to the reliability expression for all valid con�gu-
rations of the product line, yielding the �nal product-based step. The resulting
family-product-based approach for the analysis of annotative models is then
de�ned as follows.

Strategy 3 (Family-product-based analysis). Given an annotative model (P,
p, w,FM ), the family-product-based analysis yields, for all c ∈ JFM K,

σ(α̂(P), w, c)

or, alternatively,
Jα̂(P)Kwc

Figure 11 illustrates the family-product-based strategy in contrast with the
product-based one (Section 4.1), providing an intuition for why they commute.
DTMC derivation π and expression evaluation σ are both performed for a con-
�guration c such that c |= px. This way, w(c)(x) = 1 and the reliability is
0.9801. If x was absent (i.e., c 6|= px), then the reliability would be 0.99.

s0 s1 s2 ssuc

serr

0.99

0.01

x

1− x

0.99

0.01

1

1

s0 s1 s2 ssuc

serr

0.99

0.01

1

0

0.99

0.01

1

1

0.9801 · x+ 0.99 · (1− x)

0.9801

π

α̂

α

σ

Figure 11: Example of family-product-based analysis (α̂ followed by σ) in contrast to a
product-based analysis (π followed by α) of an annotative PMC, for a con�guration satis-
fying x's presence condition

To be considered sound, a family-product-based analysis must be equiva-
lent7 to performing a product-based analysis of all products. This means that
performing a parametric model checking step and then evaluating the resulting
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expression for each valid product must yield the same result as �rst deriving the
original annotative model for each product and then performing non-parametric
model checking on each resulting DTMC. To prove that this equivalence holds,
we can leverage a more general result about PMCs and well-de�ned evaluations.

Lemma 3 (Commutativity of PMC and expression evaluations). Given any
PMC P = (S, s0, X,P, T ) and a well-de�ned evaluation u, it holds that

α(P[X/u]) = α̂(P)[X/u]

Proof.

α(P[X/u]) = α(Pu) (syntax change)

= PrPu(s0, T ) (De�nition 19)

and, since u is well-de�ned,

= α̂(P)[X/u] (Lemma 1 and De�nition 20)

Using this result, we are able to express the soundness of the family-product-
based approach in the following theorem.

Theorem 1 (Soundness of family-product-based analysis). Given an annotative
model (P, p, w,FM ), for all c ∈ JFM K

α(JPKwc ) = Jα̂(P)Kwc

Alternatively, α(π(P, w, c)) = σ(α̂(P), w, c).

Proof. Since w(c) is a well-de�ned evaluation (Lemma 2), we can use it to
instantiate u in Lemma 3. Thus, let P = (S, s0, X,P, T ).

α(JPKwc ) = α(P[X/w(c)]) (De�nition 8)

= α̂(P)[X/w(c)] (Lemmas 2 and 3)

= Jα̂(P)Kwc (De�nition 21)

As a major result, Theorem 1 states that the diagram in Figure 12 com-
mutes. This diagram corresponds to the upper right quadrant in Figure 10.

7Whenever two analysis strategies yield equal reliability values, we say they are r-equiva-
lent.
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Figure 12: Statement of Theorem 1

4.2.2. Family-based Strategy

The pure family-based strategy starts by applying parametric model check-
ing to the given annotative model, as in the family-based step of the family-
product-based strategy. However, instead of evaluating the resulting expression
for each variant, we lift it to an ADD-based reliability expression, which can be
evaluated for all variants at once. While an expression is evaluated with real
values, a lifted expression is evaluated using ADDs, which represent Boolean
functions from features to real values. Each of these ADDs encode the values
that a variable can assume according to each possible con�guration, also known
as variational data [49]. Since this approach incorporates the knowledge of valid
feature combinations, it is a family-based strategy.

Let us take the vending machine product line (Figure A.1) as an example.
Its reliability expression after parametric model checking has 8 terms, one of
which is 0.124659 · t · tl. Starting from the evaluation factory w, we can derive
functions ψx that, for each variable x, take a con�guration c ∈ JFM K as input
and output the corresponding value w(c)(x). For t and tl, for instance, these
functions would be as follows:

ψt(Tea,¬Soda,¬Lemon) = 1 ψtl(Tea,¬Soda,¬Lemon) = 0

ψt(Tea,¬Soda, Lemon) = 1 ψtl(Tea,¬Soda, Lemon) = 1

ψt(¬Tea, Soda,¬Lemon) = 0 ψtl(¬Tea, Soda,¬Lemon) = 0

ψt(¬Tea, Soda, Lemon) = 0 ψtl(¬Tea, Soda, Lemon) = 0

Having each of these functions represented by an ADD enables the e�cient com-
putation of the reliability expression as another ADD r̂, representing a Boolean
function that could be de�ned pointwise as r̂(c) = 0.124659 · ψt(c) · ψtl(c) (we
omit the remaining terms for simplicity).

We now formally de�ne expression lifting, as well as the mechanics of gen-
erating ADD-based evaluations and evaluating lifted expressions.

De�nition 22 (Expression lifting). For a given rational expression ε ∈ FX ,
whose semantics is a rational function R|X| → R, and a product line with k
features, we de�ne the lifted expression lift(ε) = ε̂ as an expression which is
syntactically equal to ε, but whose semantics is lifted to a rational function
(Bk → R)|X| → (Bk → R), such that:

• The function's inputs are k-ary ADDs.

• Polynomial coe�cients are interpreted as constant ADDs (e.g., the number
5 becomes c ∈ Bk 7→ 5). We denote a constant a lifted to a constant ADD
as â, so that â(b̄) = a (where b̄ is a Boolean tuple).
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• Arithmetic operators are lifted to their ADD-based counterparts.

Hence, the admitted evaluations for ε̂ are of type u : X → (Bk → R), so that
variables are properly replaced by k-ary ADDs.

By the above de�nition, lifted expressions are syntactically equal to their
original (non-lifted) counterparts. However, instead of using Real arithmetics,
we interpret operators, constants, and variables using ADDs and ADD arith-
metics (Section 2.3). These semantically lifted expressions are sound in the
sense that they denote functions that, when evaluated with a given con�gura-
tion, yield the same results as if the variables of the original expressions would
have been individually evaluated for the same con�guration.

Lemma 4 (Soundness of expression lifting). If ε is a rational expression over
Real constants and variables xi ∈ X, |X| = n, A1, . . . , An are ADDs, and
ε̂ = lift(ε), then

ε̂[x1/A1, . . . , xn/An](b̄) = ε[x1/A1(b̄), . . . , xn/An(b̄)]

where b̄ is a vector of k Booleans, corresponding to a selection of the k features
in a given product line.

Proof. The proof is by induction on the structure of the rational expression
ε. The base cases are constant expressions and single variables, for which the
lemma holds. We then use induction and algebraic manipulation to prove for
the arithmetic case (i.e., ε = ε1� ε2, where � ∈ {+,−,×,÷}) and for exponen-
tiation. Proof details can be found in Appendix B.4.

Note how a lifted expression demands a di�erent type of evaluation, namely
one that replaces variables with ADDs. To handle this interdependency, we
correspondingly lift the evaluation factory.

De�nition 23 (Lifted evaluation factory). Given an evaluation factory w de-
�ned over a feature model FM and a set X of variables, the factory's lifted
counterpart is a function ŵ : X → (B|FM | → R) that yields an ADD for a given
variable. This function is such that, for every variable x ∈ X and all c ∈ JFM K,

ŵ(x)(c) = w(c)(x)

With a lifted evaluation factory, one can evaluate a lifted expression over
the same set X in a variability-aware fashion. The intuition is that we valuate
each variable with an ADD that encodes all the real values it may assume for
any con�guration of the product line.

De�nition 24 (Variability-aware expression evaluation). Let ŵ be a lifted eval-
uation factory and ε̂ be a lifted expression. The variability-aware expression
evaluation function, σ̂, is de�ned as

σ̂(ε̂, ŵ) = ε̂[X/ŵ]

Remark 2. This de�nition of variability-aware evaluation is not restricted to re-
liability analysis or to the speci�c de�nitions of probabilistic models presented
in this text. Indeed, one can notice that it relies on the de�nitions of an expres-
sion with rational function semantics and of an evaluation factory with respect
to a given feature model.

28



Thus, we are able to prove the following theorem, which applies to product
line analysis strategies that are based on expression evaluation.

Theorem 2 (Soundness of variability-aware expression evaluation). If ε is an
expression and w is an evaluation factory with respect to a feature model FM ,
let ε̂ and ŵ be their respective lifted counterparts. Then, for all c ∈ JFM K,

σ̂(ε̂, ŵ)(c) = σ(ε, w, c)

In other words, ε̂[X/ŵ](c) = ε[X/w(c)].

Proof. Using ŵ as a substitution,

ε̂[X/ŵ] = ε̂[x1/ŵ(x1), . . . , xn/ŵ(xn)]

Thus, for all c ∈ JFM K,

σ̂(ε̂, ŵ)(c) = ε̂[X/ŵ](c) (De�nition 24)

= ε̂[x1/ŵ(x1), . . . , xn/ŵ(xn)](c)

= ε[x1/ŵ(x1)(c), . . . , xn/ŵ(xn)(c)] (Lemma 4)

= ε[x1/w(c)(x1), . . . , xn/w(c)(xn)] (De�nition 23)

= ε[X/w(c)]

= σ(ε, w, c) (De�nition 21)

We have seen that, in a product line with feature model FM , the presence
function p denotes a presence condition px as a Boolean function p(x) : JFM K→
B. Since this can be alternatively expressed as p(x) : B|FM | → B, the presence
function can also be encoded by ADDs, denoted by p̂(x). We now resort to the
pointwise de�nition of w as w(c)(x) = p(x)(c) (Remark 1), to de�ne a lifted
evaluation factory ŵ, for evaluating the lifted version of expressions resulting
from parametric model checking of an annotative model.

Lemma 5 (Soundness of lifted annotative evaluation factory). Given an anno-
tative model (P, p, w,FM ) and a function p̂ : X → (B|FM | → B) that encodes
presence conditions for variables as ADDs, then ŵ = p̂ is a lifted evaluation
factory for w.

Proof. From De�nition 7, we have that

w(c)(x) =

{
1 if p(x)(c) = 1

0 otherwise

Thus, from Remark 1, w(c)(x) = p(x)(c). Also, p(x)(c) = p̂(x)(c) by de�nition,
so w(c)(x) = p̂(x)(c).

Recalling the vending machine example, the presence conditions for the vari-
ables t and tl are, respectively, Tea and Tea∧ Lemon. Then, the ADDs p̂(t) and
p̂(tl) are given by the Figures 13a and 13b, where we use the notation pre-
sented in Section 2.3. If we evaluate a lifted version of the example expression
ε = 0.124659 · t · tl + 0.3439 · t (2 terms from the actual reliability expression for
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the vending machine annotative model in Figure A.1) with p̂, the resulting ADD
will be r̂ = 0.124659 · p̂(t) · p̂(tl)+0.3439 · p̂(t), as depicted in Figure 13c. Hence,
for a given con�guration c ∈ JFM K, if both Tea and Lemon are present (i.e.,
p̂(t)(c) = 1 and p̂(tl)(c) = 1), then r̂(c) = 0.124659 · 1 · 1 + 0.3439 · 1 = 0.468559;
if only Tea is present, then r̂(c) = 0.124659 · 1 · 0 + 0.3439 · 1 = 0.3439; and if
both Tea and Lemon are absent, then r̂(c) = 0.

Tea

01

(a) p̂(t)

Tea

Lemon

01

(b) p̂(tl)

Tea

Lemon

0.34390.468559 0

(c) lift(0.124659 · t · tl + 0.3439 · t)[t/p̂(t), tl/p̂(tl)]

Figure 13: Example of lifted expression evaluation using p̂

Using the result from Lemma 5, we can now express the soundness of this
family-based analysis step of evaluating lifted expressions.

Theorem 3 (Soundness of expression evaluation using p̂). Given an annotative
model (P, p, w,FM ), ε = α̂(P), and ε̂ = lift(ε), let p̂ be the encoding of the
presence condition function p to yield ADDs. If we use p̂ as a lifted evaluation
factory, then for all c ∈ JFM K

Jσ̂(ε̂, p̂)Kc = JεKwc

Alternatively, σ̂(lift(ε), p̂)(c) = σ(ε, w, c).

Proof. For a given annotative model, Lemma 5 states that p̂ is a sound lifted
counterpart of w. Hence, by Theorem 2, ε[X/w(c)] = ε̂[X/p̂](c). In other words,
Jσ̂(ε̂, p̂)Kc = JεKwc .

Figure 14 illustrates the main result from Theorem 3. The depicted
diagram, which corresponds to the lower right quadrant in Figure 10, is
commutative because of this theorem.

Annotative
expression

Reliability

Reliability
ADD

Annotative
lifted expression

Theorem 3

σ

liftJ_Kc

σ̂

Figure 14: Statement of Theorem 3

Now that we have all analysis steps needed, we can formally de�ne the
family-based strategy.

Strategy 4 (Family-based analysis). Given an annotative model (P, p, w,FM ),
a family-based analysis yields

σ̂
(
lift(α̂(P)), p̂

)
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The result of a family-based analysis is a Boolean function encoded as an
ADD. Such an analysis is sound if, and only if, it yields an ADD for which
every valid con�guration c ∈ JFM K results in the same probability as if the
original annotative model had been subject to product-based analysis for the
same con�guration c.

Theorem 4 (Soundness of family-based analysis). Given an annotative model
(P, p, w,FM ), for all c ∈ JFM K it holds that

Jσ̂
(
lift(α̂(P)), p̂

)
Kc = α(JPKwc )

Proof. Follows from the successive application of Theorems 3 and 1:

Jσ̂
(
lift(α̂(P)), p̂

)
Kc = Jα̂(P)Kwc (Theorem 3)

= α(JPKwc ) (Theorem 1)

As a key result, Theorem 4 states that the diagrams in Figure 15 com-
mute. Both diagrams correspond to the right half of the one in Figure 10.
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Figure 15: Alternative views of the statement of Theorem 4

4.3. Feature-based Strategies

A feature-based analysis strategy is one that (a) operates only on domain
artifacts and that (b) analyzes the artifacts belonging to each feature in iso-
lation [47]. Compositional models describe modular behaviors that represent
units of variability. A given PMC within a compositional model may repre-
sent the behavior associated with one or more features, or even model part
of a given feature's behavior (in case of behavior scattering). In this sense,
analyzing individual PMCs of a compositional model can be seen as analyz-
ing features in isolation, which is why we use this kind of probabilistic model
to discuss feature-based strategies. Moreover, since our focus is on reliabil-
ity, which is highly in�uenced by feature interactions, we cannot use a pure
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feature-based strategy [47]. Thus, we concentrate on feature-product-based and
feature-family-based analysis strategies.

Similar to what happens with family-based strategies (Section 4.2), the
feature-family-based approach builds upon concepts used by the feature-prod-
uct-based strategy, and performing one or the other is a matter of choosing
product-based or family-based analysis steps after a preliminary feature-based
step. Because of that, we �rst discuss the feature-product-based strategy (Sec-
tion 4.3.1), focusing on the feature-based step of applying parametric model
checking to each compositional PMC to generate corresponding compositional
expressions. These reliability expressions can be evaluated for every possible
con�guration, yielding a product-based step and giving rise to a feature-product-
based strategy. Alternatively, we can lift each expression and evaluate them
using ADDs, in a similar fashion to what we did for the family-based strategy
(Section 4.2.2). This leads to an overall feature-family-based strategy, which we
discuss in Section 4.3.2.

4.3.1. Feature-product-based Strategy

A product-line analysis strategy is feature-product-based (a) if it consists
of a feature-based analysis followed by a product-based analysis and (b) if the
analysis results of the feature-based analysis are used in the product-based anal-
ysis [47]. The preliminary feature-based analysis step consists of applying the
parametric model checking function α̂ to each PMC in a compositional model,
yielding corresponding reliability expressions. These resulting expressions pre-
serve the dependency relation, since each of them is de�ned in terms of the same
variables as its originating PMC and can be assigned the same identi�er.

As an example, the compositional model of the vending machine product line
(Figure 6) yields the following expressions after the feature-based analysis step:
α̂(P>) = 1 · t · s, α̂(Pt) = 0.6561 · tl, and α̂(Ptl) = 0.81. Also, α̂(Ps) = 0.729 · sl
and α̂(Psl) = 0.81 for the remaining PMCs in Figure A.2.

A bottom-up evaluation of variables can be applied for each valid con�gu-
ration, giving rise to the product-based analysis step. This procedure consists
of compositional expression evaluation, that is, expression evaluation using a
compositional evaluation factory derived from the composition factory used for
the corresponding PMCs.

De�nition 25 (Compositional evaluation factory). Given a compositional mod-
el (P,≺, I, idt, p, w′,FM ), a compositional evaluation factory is de�ned as an
evaluation factory (De�nition 6) w : JFM K→ I → R, such that for all c ∈ JFM K
and x ∈ I,

w(c)(x) =

{
σ(α̂(P), w, c) if p(x)(c) = 1

1 otherwise

where idt(P) = x. Alternatively, we can write

w(c)(x) =

{
Jα̂(P)Kwc if p(x)(c) = 1

1 otherwise

In other words, whereas a composition factory composes a recursively derived
version of PMC P ′ into slots identi�ed by a variable x of a PMC P, a compo-
sitional evaluation factory composes a recursively evaluated version of α̂(P ′) in
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every occurrence of the variable x in α̂(P). This recursion always terminates,
because ≺ is a well-founded relation (see Lemma 12, in Appendix B.2).

We de�ne the feature-product-based analysis of compositional models as a
recursive evaluation of the expressions obtained from the feature-based step,
using the compositional evaluation factory shown above. This recursion starts
from the maximal PMC in the compositional model, traversing the dependency
graph induced by ≺ (Figure 8a) in a depth-�rst fashion.

For the vending machine product line (Figure 6), for instance, the compu-
tation for con�guration c = {Tea, Lemon} would be as follows: Starting with
α̂(P>), we evaluate the presence conditions for its variables, t and s. Since
ps = Soda is not satis�ed, s is evaluated to 1, ending the computation for this
branch. On the other hand, pt = Tea is satis�ed, so we step into this branch to
compute α̂(Pt) under c. The only variable in this expression, tl, has its presence
condition satis�ed by c, so we step further into this branch to compute α̂(Ptl)
under c. Since this expression denotes a constant value, we return this value
and the recursion terminates, yielding the following constant expression:

Jα̂(P>)Kc = 1 ·
(
0.6561 ·

Jα̂(Ptl
)Kc︷ ︸︸ ︷

(0.81)
)︸ ︷︷ ︸

Jα̂(Pt)Kc

· (1)︸︷︷︸
Jα̂(Ps)Kc

We generalize and formalize this procedure as follows.

Strategy 5 (Feature-product-based analysis). Given a compositional model
(P,≺, I, idt, p, w′,FM ) and the compositional evaluation factory w, derived
from the composition factory w′, the feature-product-based analysis yields, for
all c ∈ JFM K,

σ(α̂(P>), w, c)

or, alternatively,
Jα̂(P>)Kwc

where P> is the maximal PMC in P under the dependency relation ≺.

To establish the soundness of the feature-product-based strategy, we need to
compare it to the product-based strategy for compositional models. We state
this result in the following theorem.

Theorem 5 (Soundness of feature-product-based analysis). Given a composi-
tional model (P,≺, I, idt, p, w′,FM ), for all con�gurations c ∈ JFM K, it holds
that

σ(α̂(P), w, c) = α(π′(P, w′, c))
or, alternatively,

Jα̂(P)Kwc = α(JPKw
′

c )

where P ∈ P and w is the compositional evaluation factory (De�nition 25)
derived from the composition factory w′.

Proof. We use well-founded induction. The base of the induction is when P is
minimal with respect to ≺. Since minimal PMCs have empty sets of variables,
π′(P, w′, c) = P and α̂(P) = α(P). Thus, the statement holds for the base case.

The general case is proved by expanding de�nitions in the proof goal and ap-
plying the induction hypothesis and Lemma 3. The complete proof is presented
in Appendix B.3.
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As a further major result, Theorem 5 states that the diagram in Fig-
ure 16 commutes. This diagram relates to the upper left quadrant in Fig-
ure 10.

DTMC
Compositional

model

Reliability
Compositional
expressions

π′

α̂ α

σ

Theorem 5

Figure 16: Statement of Theorem 5

4.3.2. Feature-family-based Strategy

Similar to the family-based strategy (Section 4.2.2), the feature-family-based
strategy leverages ADDs to store and reason about variational data. Since the
preceding feature-based analysis yields expressions over reliabilities, this vari-
ational data is made of Real values corresponding to the reliabilities of the
products of a product line. Again, lifting expressions involves lifting the corre-
sponding evaluation factory. In this process, the presence conditions are encoded
in ADDs to represent the variability under feature selection. This encoding is
achieved by the ADD operator ITE (if-then-else).

Let us revisit expression evaluation in the vending machine example (Fig-
ure 6). We have seen the expression for tl is the constant 0.81, so its lifted

version is the constant ADD 0̂.81 (according to the notation introduced in Def-
inition 22). The expression for t, α̂(Pt) = 0.6561 · tl, has the variable tl. Thus,
if the presence condition ptl = Tea ∧ Lemon is satis�ed, this variable must be
evaluated to the constant value 0.81, assuming the value 1 otherwise. Thus, the

lifted expression ̂̂α(Pt) is evaluated with an ADD encoding this choice, given

by ϕ(tl) = ITE(p̂(tl), 0̂.81, 1̂) and depicted in Figure 17a. The evaluated lifted

expression ̂̂α(Pt)[tl/ϕ(tl)] is the ADD product of the constant 0̂.6561 and ϕ(tl),
shown in Figure 17b. The procedure is repeated for every composition, so that

the variable t in the expression ̂̂α(P>) would be replaced by the ADD in Fig-
ure 17c, which already encodes the combined presence conditions for t and tl.

The function ϕ shown in the example is the lifted version of the compositional
evaluation factory w. We �rst present a formal de�nition of ϕ and then proceed
to proving its soundness. Soundness of the feature-family-based strategy follows
from this result and from the soundness of the feature-product-based strategy
(Section 4.3.1).

De�nition 26 (Lifted compositional evaluation factory). Given a composi-
tional probabilistic model (P,≺, I, idt, p, w′,FM ) and the compositional eval-
uation factory w, derived from the composition factory w′, the lifted evaluation
factory ϕ : I → (B|FM | → R) is a function that, for any x ∈ I, yields an ADD
ϕ(x) such that:

ϕ(x) = ITE(p̂(x), ̂̂α(P)[X/ϕ], 1̂)
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Tea

Lemon

0.81 1

(a) ϕ(tl) = ITE(p̂(tl), 0̂.81, 1̂)

Tea

Lemon

0.531441 0.6561

(b) ̂̂α(Pt)[tl/ϕ(tl)]

Tea

Lemon

0.65610.531441 1

(c) ϕ(t) = ITE(p̂(t),̂̂α(Pt), 1̂)

Figure 17: Example of lifted compositional expression evaluation

where P ∈ P, idt(P) = x, ̂̂α(P) = lift(α̂(P)) and 1̂ is the constant ADD
corresponding to the function (c ∈ JFM K) 7→ 1.

The next lemma, which is the compositional counterpart of Lemma 5, states
this function ϕ is indeed a lifted version of w.

Lemma 6 (Soundness of lifted compositional evaluation factory). Given a com-
positional model (P,≺, I, idt, p, w′,FM ) and the compositional evaluation fac-
tory w, derived from the composition factory w′ (De�nition 25), for all x ∈ I
and all c ∈ JFM K it holds that

ϕ(x)(c) = w(c)(x)

Proof. We �rst expand the de�nitions of ϕ (De�nition 26) and w (De�nition 25),
then proceed to compare corresponding cases. The cases in which the presence
condition is not satis�ed are trivially equal; for the complementary case, we use
well-founded induction on the dependency relation ≺, along with the soundness
result for expression lifting (Lemma 4). The reader is invited to follow the
complete proof in Appendix B.4.

This way, the ADDs yielded by function ϕ from De�nition 26 correctly en-
code the variation in values returned by the compositional evaluation factory w.
An immediate consequence is that the expressions resulting from the feature-
based analysis step can, indeed, be lifted and then evaluated using ϕ, and this
gives us the same results as the corresponding (i.e., for the same con�gurations)
product-based evaluations. This is expressed by the following theorem.

Theorem 6 (Soundness of expression evaluation using ϕ). Given a composi-
tional probabilistic model (P,≺, I, idt, p, w′,FM ), the compositional evaluation
factory w, derived from the composition factory w′, and x ∈ I, let P = (S, s0,
ssuc , serr , X,P, T ) be such that idt(P) = x, P ∈ P. If ε = α̂(P), ε̂ = lift(ε),
and ϕ is the lifted compositional evaluation factory obtained from w (De�ni-
tion 26), then, for all c ∈ JFM K, it holds that

ε̂[X/ϕ](c) = ε[X/w(c)]
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Proof. For the given compositional probabilistic model, Lemma 6 states ϕ is a
sound lifted counterpart of w. Hence, by Theorem 2, ε[X/w(c)] = ε̂[X/ϕ](c).
In other words, Jσ̂(ε̂, ϕ)Kc = JεKwc .

So, Theorem 6 states that the diagram in Figure 18 commutes. This
diagram corresponds to the lower left quadrant in Figure 10.

Compositional
expressions

Reliability

Reliability
ADD

Compositional
lifted expressions

Theorem 6

σ

lift J−Kc

σ̂

Figure 18: Statement of Theorem 6

The feature-family-based analysis strategy leverages the preceding results to
yield an ADD encoding all reliabilities for valid con�gurations of the product
line. This process is formally de�ned as follows.

Strategy 6 (Feature-family-based analysis). Given a compositional model (P,
≺, I, idt, p, w′,FM ) and the lifted compositional evaluation factory ϕ, derived
from w′, the feature-family-based strategy yields

σ̂
(
lift(α̂(P>)), ϕ

)
where P> is the maximal PMC in P under the dependency relation ≺.

Similar to the family-based strategy, the feature-family-based strategy is
sound if this ADD is such that applying it to every valid con�guration c ∈ JFM K
results in the same probability as if the original compositional model had been
derived for c and the resulting DTMC had been model-checked for probabilistic
reachability (product-based strategy). The di�erence is that, in the feature-
family-based case, this statement holds for every PMC in the compositional
model.

Theorem 7 (Soundness of feature-family-based analysis). Given a composi-
tional model (P,≺, I, idt, p, w′,FM ) and the lifted compositional evaluation fac-
tory ϕ, derived from w′, for every PMC P ∈ P and for all con�gurations
c ∈ JFM K it holds that

Jσ̂
(
lift(α̂(P>)), ϕ

)
Kc = α(JPKw

′

c )

Proof. Let w be the compositional evaluation factory derived from the compo-
sition factory w′. The proof follows from successive application of Theorems 5
and 6:

Jσ̂
(
lift(α̂(P)), ϕ

)
Kc = Jα̂(P)Kwc (Theorem 6)

= α(JPKw
′

c ) (Theorem 5)
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As a key result, Theorem 7 states that the diagrams in Figure 19 com-
mute. Both diagrams correspond to the left half of the one in Figure 10.
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Figure 19: Alternative views of the statement of Theorem 7

4.4. Bridging Compositional and Annotative Models

Thus far, we have discussed family-based analysis strategies applied to an-
notative models and feature-based analysis strategies applied to compositional
models. We now present a technique to transform any composition-based model
into an r-equivalent annotation-based model. This ability may be useful in the
case that the reliability analysis of a given product line is predictably more
e�cient if performed using a strategy suited for annotative models, such as
our family-product-based and family-based approaches. This transformation
of models resembles variability encoding techniques, that is, the rewriting of
compile-time variability as load-time or run-time variability [1, 43, 45, 2].

Although the concepts of compilation and execution are not de�ned for
Markov chains, variability encoding, as established in the literature, has the
main goal of creating artifacts that can be analyzed by o�-the-shelf tools. Cor-
respondingly, we are able to transform a compositional model, which cannot
be directly model-checked (because it is split into a number of PMCs), into
an annotative model, which can be immediately issued to a parametric model
checker. Thus, we address the transformation of compositional models into an-
notative ones in terms of two variability encoding functions: one operating on
PMCs (Section 4.4.1) and the other for handling expressions (Section 4.4.2).

4.4.1. Variability Encoding of PMCs

In terms of Markov chains, variability encoding can be realized by turning
compositional models into annotative ones. This means transforming both the
underlying compositional PMCs and the composition factory w′ into a single
annotative PMC with a corresponding evaluation factory. To accomplish this,
we propose an if-then-else operator for PMCs that switches between possible
states with a Boolean variable.

For brevity, the formal de�nition of this operator (De�nition 34) is available
in Appendix B.5.1. We rely on Figure 20 for intuition. Again, green bold arrows
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(c) ITE(x,P,P ′)

Figure 20: Example ITE operator for PMCs

represent new transitions, whereas red dashed ones are removed. Intuitively,
an evaluation that maps x to 1 yields a PMC with the same behavior as P
(consequent), while an evaluation that maps x to 0 yields a PMC with the same
behavior as P ′ (alternative). We formalize this behavioral switching in terms of
r-equivalence.

Lemma 7 (R-equivalence for ITE). Given two compositional PMCs, P = (S,
s0, ssuc , serr , X,P, T ) and P ′ = (S′, s′0, s

′
suc , s

′
err , X

′,P′, T ′), and a variable x /∈
X ∪X ′, let P ′′ = ITE(x,P,P ′). If (P ′′, p, w,FM ) is an annotative model with
P ′′ as its underlying PMC8, where p, w, and FM are arbitrarily chosen, then,
for every c ∈ JFM K,

α(JITE(x,P,P ′)Kwc ) =

{
α(JPKwc ) if p(x)(c) = 1

α(JP ′Kwc ) otherwise

Proof. We are interested in computing the probability of reaching s′′suc from s′′0
in P ′′ = ITE(x,P,P ′) under evaluation w(c). Using the formal de�nition of ITE
(De�nition 34) and Property 1, we are able to derive a reachability expression
with only two terms, each corresponding to the �activated� PMC (P or P ′). The
complete proof can be found in Appendix B.5.1.

The above lemma establishes the ITE operator has the e�ect of alternating
behaviors if the resulting PMC is evaluated by replacing the switching variable
x with 0 or 1. With this result, we de�ne the variability encoding of PMCs as a
composition of PMCs using the ITE operator in a recursive way, with minimal
PMCs as the base case. The alternative choice (second argument to ITE) is
always the feature disabler PMC P⊥ (De�nition 15), meaning no probabilistic
behavior is actually added if the presence condition is not satis�ed. This is co-
herent with the corresponding case in a composition factory (see De�nition 17).

8 By De�nition 9, any compositional PMC is also an annotative PMC (De�nition 4). Thus,
a compositional PMC can be the underlying PMC of an annotative model.
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De�nition 27 (Variability encoding function for PMCs). Given a composi-
tional model (P,≺, I, idt, p, w′,FM ) and P,P1, . . . ,Pk ∈P such that Pi ≺ P
and xi = idt(Pi) for i ∈ {1, . . . , k}, the variability encoding function γ is de�ned
as the following derivation by composition (De�nition 18):

γ(P) = P[x1/ITE(x1, γ(P1),P⊥), . . . , xk/ITE(xk, γ(Pk),P⊥)]

This recursion terminates, since the arguments to the recursive calls involved
are less than the input with respect to the well-founded relation ≺ (Lemma 11).
Nonetheless, each variable xi, which was meant as a slot marker, is replaced by
a variable with the same name, but di�erent meaning (i.e., intended to be eval-
uated with presence values). Since all variables in the PMC yielded by γ have
this issue, the composition factory from the original compositional model will no
longer be suitable. Thus, we must broaden the scope of variability encoding to
also transform the composition factory w′ into an annotative evaluation factory.

De�nition 28 (Variability encoding of PMCs). Given a compositional model
(P,≺, I, idt, p, w′,FM ), let P ∈ P be a PMC. Then, (γ(P), p, w,FM ) is an
annotative model that encodes P's variability, where w is an evaluation factory
as in De�nition 7.

The main goal of variability encoding is to transform a compositional model
into an annotative one, but this technique can only be exploited if the reliability
analysis of both the original and the transformed models yields the same results.
This fact is established by the following theorem.

Theorem 8 (R-equivalence of variability encoding and derivation by com-
position). Given a compositional model (P,≺, I, idt, p, w′,FM ) and P ∈ P,
let (γ(P), p, w,FM ) be its variability-encoded annotative model. Then, for all
c ∈ JFM K,

α(Jγ(P)Kwc ) = α(π′(P, w′, c))

Proof. We use well-founded induction. For minimal PMCs (base of induction),
γ(P) = P, so Jγ(P)Kwc = P. Likewise, π′(P, w′, c) = P, so the proposition holds
trivially.

As induction hypothesis, we have that α(Jγ(Pi)Kwc ) = α(π′(Pi, w′, c)) for
all Pi ∈ P such that Pi ≺ P. Expanding α(Jγ(P)Kwc ) and using previous
soundness and r-equivalence results, we leverage this induction hypothesis to
reach α(π′(P, w′, c)).

The detailed proof can be found in Appendix B.5.1.

In summary, Theorem 8 establishes the commuting diagram in Fig-
ure 21, which corresponds to the upper arc in Figure 10. Note that the
derived DTMCs are not necessarily equal�this theorem only states α com-
putes the same reliability for both models.

4.4.2. Variability Encoding of Expressions

Aside from encoding variability in Markov chains, we can also encode vari-
ability in reliability expressions (represented by the arc in the middle row of
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Figure 10). Expressions derived from a compositional model can be combined
to form a single larger expression (in terms of operands). Applying such a trans-
formation can be useful in cases where parsing and evaluating each composi-
tional expression is less e�cient than doing so for the single variability-encoded
expression. As with PMCs, variability encoding of expressions can be de�ned
in terms of a dedicated if-then-else operator for expressions.

De�nition 29 (ITE operator for expressions). Given two expressions ε and ε′

over the sets X and X ′ of variables, respectively, and a variable x, the if-then-
else operator for expressions is de�ned as

ITE(x, ε, ε′) = x · ε+ (1− x) · ε′

The set of variables of the resulting expression is X ′′ = X ∪ X ′ ∪ {x}. Addi-
tionally, x is expected to be evaluated with a Boolean value, that is, 0 or 1.
Procedures that do not a�ect the semantics of expressions, such as distributing
the terms over the switching variable x and simplifying the resulting expression,
can be leveraged in working implementations.

This if-then-else operator merges two expressions to form a third one that
uses a new variable to represent a choice and satis�es the following lemma.

Lemma 8 (Extensional equality for expression ITE). Given two expressions ε
and ε′ over the sets X and X ′ of variables, respectively, and a variable x, let
X ′′ = X ∪ X ′ ∪ {x} and u : X ′′ → [0, 1] be an evaluation function such that
u(x) ∈ B. Then,

ITE(x, ε, ε′)[X ′′/u] =

{
ε[X/u] if u(x) = 1

ε′[X ′/u] if u(x) = 0

Proof. We prove this by expanding the de�nition of ITE and performing alge-
braic manipulation. The complete proof can be found in Appendix B.5.2.

The above lemma establishes that the ITE operator has the e�ect of alternat-
ing the semantics of the resulting expression between the ones of its arguments,
but only if this resulting expression is evaluated with an evaluation that replaces
the switching variable x by 0 or 1. Similar to the ITE operator for PMCs, we
de�ne variability encoding of expressions as a composition of expressions using
the ITE operator in a recursive way, with constant expressions (i.e., reliabilities
of minimal PMCs) as the base case.
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De�nition 30 (Variability encoding function for expressions). Given a compo-
sitional model (P,≺, I, idt, p, w′,FM ) and P,P1, . . . ,Pk ∈P such that Pi ≺ P
and xi = idt(Pi) for i ∈ {1, . . . , k}, let ε = α̂(P) and εi = α̂(Pi). The variability
encoding function γ is overloaded for expressions as

γ(ε) = ε[x1/ITE(x1, γ(ε1),1), . . . , xk/ITE(xk, γ(εk),1)]

This recursion terminates, since the arguments to the recursive calls involved are
less than the input with respect to the well-founded relation ≺ (see Lemma 11).

Similar to variability encoding of PMCs, the new variables after encoding
have the same names as the previous ones, but di�erent meaning. Thus, we
also transform the compositional evaluation factory w (De�nition 25) into an
annotative evaluation factory (see De�nition 7). This way, we ensure variables,
which have all been transformed into conditionals, are evaluated as expected of
the ITE semantics.

De�nition 31 (Variability encoding of expressions). Given a compositional
model (P,≺, I, idt, p, w′,FM ), and the compositional evaluation factory w, de-
rived from the composition factory w′, let wp be an annotative evaluation fac-
tory (w in De�nition 7) with the same presence conditions as w. That is, for all
c ∈ JFM K,

wp(c)(x) =

{
1 if p(x)(c) = 1

0 otherwise

Then, for any P ∈ P and ε = α̂(P), γ(ε) encodes ε's variability under the
evaluation wp.

We state the soundness of variability encoding for expressions in terms of
r-equivalence. For any con�guration c ∈ JFM K, a variability-encoded expres-
sion and its corresponding evaluation factory must yield the same reliabilities
as the original compositional expressions and the corresponding compositional
evaluation factory.

Theorem 9 (Soundness of variability encoding for expressions). Given a com-
positional model (P,≺, I, idt, p, w′,FM ) and P,P1, . . . ,Pk ∈P such that Pi ≺
P and xi = idt(Pi) for i ∈ {1, . . . , k}, let ε = α̂(P). Let also w be the composi-
tional evaluation factory derived from w′ (De�nition 25) and wp be the annota-
tive evaluation factory obtained from w (De�nition 31). Then, for all c ∈ JFM K
it holds that

σ(γ(ε), wp, c) = σ(ε, w, c)

Proof. We use well-founded induction. For a minimal PMC P (base of induc-
tion), α̂(P) = ε has no variables. This way, γ(ε) = ε and σ(ε, u) = ε for any
evaluation u. Thus, both sides of the equality evaluate to ε and the proposition
holds trivially.

As induction hypothesis, we have that σ(γ(εi), wp, c) = σ(εi, w, c) for all
εi = α̂(Pi) such that Pi ≺ P. Expanding σ(γ(ε), wp, c) and using previous
soundness and extensional equality results, we leverage this induction hypothesis
to reach σ(ε, w, c).

The detailed proof can be found in Appendix B.5.2.
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As a further key result, Theorem 9 establishes the commuting diagram
in Figure 22. This diagram corresponds to the arc in the middle section of
Figure 10.

Compositional
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Theorem 9
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σ σ

Figure 22: Statement of Theorem 9

4.5. Feature-family-product-based Strategy

So far, we have proved that all compositions of analysis steps leading up to
reliabilities in Figure 10 are r-equivalent. That is, these analysis steps commute,
and, consequently, any path in this diagram can be equally taken to reach the
same reliability value. By re�ecting over the results condensed in this commut-
ing diagram, we noticed a possible path that had not yet been exploited. This
�unbeaten path�, presented in Figure 23 as an excerpt from Figure 10, led us to
derive a novel feature-family-product-based analysis strategy:

1. Starting from a compositional model (upper left corner), we apply para-
metric model checking (α̂) to obtain compositional expressions (feature-
based step);

2. The resulting compositional expressions (lower left corner) are variability-
encoded (γ) into a single annotative expression (family-based step); and

3. The annotative expression (lower right corner) is analyzed for each con-
�guration c ∈ JFM K of the product line (product-based step).

DTMC
Compositional

model

Theorem 5

Reliability
Compositional
expressions
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expression

Theorem 9

π′

α̂ α

σ σ

γ

Figure 23: Commuting diagram leading to the feature-family-product-based strategy

The existence of a feature-family-product-based class of analyses was fore-
shadowed in a recent survey, but no instance has been found in the literature [47].
Thus, to the best of our knowledge, this is the �rst feature-family-product-based
analysis to be presented, either formally or informally. The precise conditions
under which this approach outperforms the others still need to be characterized
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by empirical studies. However, we believe it is an alternative to the family-
product-based approach for cases in which (a) the model at hand is composi-
tional and (b) applying variability encoding to the PMCs themselves is infeasible
(e.g., the resulting annotative model is too big to be e�ciently analyzed).

The novel strategy can be formally described as follows:

Strategy 7 (Feature-family-product-based analysis). Given a compositional
model (P,≺, I, idt, p, w′,FM ) and the compositional evaluation factory w, de-
rived from the composition factory w′, the feature-family-product-based analysis
yields, for all c ∈ JFM K,

σ
(
γ(α̂(P>)), wp, c

)
or, alternatively,

J(γ ◦ α̂)(P>)Kwp
c

where P> is the maximal PMC in P under the dependency relation ≺, and
wp is the variability-encoded annotative evaluation factory obtained from w
(De�nition 31).

Since the diagram in Figure 10 commutes, this analysis is sound with respect
to the product-based analysis of the same compositional model (Strategy 2).
This soundness property is established by the following theorem:

Theorem 10 (Soundness of feature-family-product-based analysis). Given a
compositional model (P,≺, I, idt, p, w′,FM ) and a compositional evaluation
factory w, derived from the composition factory w′, for every PMC P ∈P and
for all con�gurations c ∈ JFM K it holds that

σ
(
γ(α̂(P)), wp, c

)
= α

(
π′(P, w′, c)

)
where wp is the variability-encoded annotative evaluation factory obtained from
w (De�nition 31).

Proof. The proof follows from successive application of other commutativity
theorems.

σ
(
γ(α̂(P)), wp, c

)
= σ

(
α̂(P), w, c

)
(Theorem 9)

= α
(
π′(P, w′, c)

)
(Theorem 5)

In summary, Theorem 10 states that the diagram in Figure 24 commutes.
This diagram corresponds to the upper left quadrant and the middle arc in
Figure 10.

Together, the theorems demonstrated in this section constitute the main con-
tribution of this work. Intermediate steps of the presented analysis techniques
commute, making the diagram in Figure 10 fully commutative. Thus, any path
constructed by following the arrows in that diagram yields an analysis that is
equivalent to the one yielded by any other path that shares the same starting
and ending points. This way, we guarantee all product-line reliability analysis
techniques presented in this work yield the same results if given the same input
models. Furthermore, we formally described the di�erent analysis strategies in
terms of reusable functions, making them comparable to one another.
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Figure 24: Statement of Theorem 10

5. Related Work

E�cient analysis of software product lines is a relevant problem that has been
tackled from many di�erent perspectives, as pointed out by a recent survey [47].
In particular, several model checking techniques have been successfully lifted to
work with product lines [11, 12, 13, 22, 21, 9, 32, 3, 40]. In contrast to existing
research, our work presents di�erent analysis techniques, covering all groups
identi�ed in the taxonomy by Thüm et al. [47], and relates these techniques to
one another. Moreover, we present what is�to the best of our knowledge�the
�rst feature-family-product-based analysis strategy in the literature. Hence, we
discuss the closest related work according to di�erent criteria.

PMC-based analysis of product lines: Ghezzi and Molzam Shari�oo
[22] propose a model-based approach to analyze non-functional properties of
product lines, illustrated by reliability and energy-consumption analysis. Their
technique models probabilistic behavior by organizing parametric Markov chains
in a hierarchical data structure, derived from nested UML sequence diagrams,
annotated with the reliability of individual operations. Then, they employ para-
metric model checking in a bottom-up fashion, yielding a hierarchy of reliability
expressions that are evaluated for each product con�guration of interest. Al-
though Ghezzi and Molzam Shari�oo also deal with modeling issues, their anal-
ysis technique can be seen as an instance of the feature-product-based reliability
analysis in our framework, where the PMCs obtained from the nested sequence
diagrams form the set P of compositional PMCs, and the decomposition tree
induces the dependency relation ≺. For that reason, our work provides formal
evidence of the soundness of their approach.

Rodrigues et al. [46] introduced Featured Discrete-Time Markov Chains
(FDTMC), an extension of DTMCs to cope with variability and to represent the
probabilistic behavior of product lines. This formalism, which is not restricted
to reliability, enables veri�cation of any probabilistic property that can be ex-
pressed using Probabilistic Computation Tree Logic (PCTL) [27]. The authors
present three family-based approaches to conduct such analyses, one of which
relies on an encoding of an FDTMC as a PMC to leverage o�-the-shelf model
checkers. Our work, in contrast, relies on models speci�cally tailored to relia-
bility analysis (a probabilistic reachability property), but incorporates di�erent
strategies to perform this analysis, covering the currently accepted product-line
analysis taxonomy [47] in its entirety. Furthermore, Rodrigues et al. do not
formally argue about the soundness of their approaches.

The framework we present can be leveraged to represent FDTMCs, provided
that the reliability-speci�c constraints to PMCs are relaxed. We can say that
any PMC (S, s0, X,P, T ), along with an evaluation factory w and a feature
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model FM , represents an FDTMC (S, ν,FM ,Π) such that, for all s, s′ ∈ S and
c ∈ JFM K:

• Π(s, s′)(c) = P(s, s′)[X/w(c)]; and

• ν(s) =

{
1 if s = s0

0 otherwise

Feature-based model checking: Li et al. [35] and Liu et al. [37] have
proposed feature-based approaches to the analysis of non-probabilistic temporal
properties of product lines. Using models of feature behavior based on transi-
tion systems and required properties expressed with Computation Tree Logic
(CTL) [10], they analyze each feature in isolation and generate partial results
that can be later reused. The composition of features in their proposed models
relies on interface states, a concept that we leveraged to de�ne PMC interfaces
and slots. However, the interfaces de�ned by Li et al. [35] can have an arbi-
trary number of outgoing states, and Liu et al. [37] extended them to support
inter-feature cycles. Our use of interfaces, in contrast, is focused on reliability
analysis (a probabilistic existence property expressed in PCTL), allowing us to
de�ne two outgoing states to abstract success and error conditions, while also
ruling out the existence of cycles. Moreover, both Li et al. [35] and Liu et al.
[37] treat feature modules as open systems, so they aggregate partial analysis
results and CTL obligations to the interfaces themselves. Since we focus on a
compositional model of a single product line, we use a separate model for inter-
mediate feature reliability expressions. Because of these di�erences in modeling
and in the nature of analyzed properties, we see their work and our own as
complementary.

Family-based model checking: Dubsla� et al. [21] created a framework
for modeling probabilistic and non-deterministic properties of dynamic product
lines. This framework consists of modeling the behaviors of features in isolation,
yielding models that are later composed into a family-based model. The models
and their compositions are established in terms of Markov Decision Processes
(MDP), enabling their representation in a way that allows the composed model
to be model-checked using o�-the-shelf tools [9]. The focus of their work is on
modeling probabilistic behavior of product lines in a way that existing model
checking techniques can be exploited. In contrast, our goal is to prove soundness
of alternative analysis strategies, leaving modeling issues out of scope. Although
their modeling and analysis technique is su�ciently general to enable reliability
analysis of static product lines, which are our focus, it enables only family-
based and product-based strategies (which the authors call, respectively, all-
in-one and one-by-one [21]), whereas our work also includes the feature-based
dimension. Nonetheless, their family-based technique is an alternative to ours,
since it encodes the feature model's constraints in the behavioral model itself.

Kowal et al. [31] presented a formalism to describe performance models of
product lines in a compositional fashion, based on performance-annotated activ-
ity diagrams described in a delta-oriented language. Similar to our work, they
provide formal de�nitions and provide theorems stating the soundness of their
approach (although proofs are not provided in the paper). However, similar to
Dubsla� et al. [21], they only address family-based analysis of a model derived
from the delta modules. Another di�erence to our work is that the semantics of

45



their diagrams is expressed by continuous-time Markov chains (CTMC), which
are more appropriate to performance analysis than DTMCs. Because of that,
the two pieces of work complement each other. Future work could investigate
the feasibility of de�ning alternative analysis strategies using their models and
an approach similar to ours.

Variability encoding: Previous research has exploited variability encod-
ing (also called con�guration lifting) as a technique to produce family-based
model checking of product lines [32, 2, 3, 43]. von Rhein et al. [45] formal-
ize variability encoding in the context of programming languages, that is, the
transformation of compile-time variability into load-time variability. This trans-
formation is realized using if-then-else operations and an encoding of features
as control variables in the resulting program, which the authors call a variant
simulator. They prove their transformation preserves the behavior of variants in
the variability-encoded program for corresponding con�gurations. The concept
of encoding variability in a simulator, as mentioned before, inspired our de�-
nitions of variability encoding for PMCs and expressions. Furthermore, their
overall proof strategy resembles the one used throughout our work (i.e., compar-
ison of results for corresponding con�gurations). However, whereas von Rhein
et al. [45] use trace semantics and a weak bisimulation relation to correlate
behaviors, we perform this task using structural analysis of the behavioral mod-
els. Despite being less general, structural analysis is su�ciently strong for the
purpose of proving that reliability is preserved, which is the main focus of our
work.

Formal approaches to variability-aware analysis: The de�nition of
product-line analysis techniques that are sound by construction has been inves-
tigated recently [39, 6, 8, 7], although not speci�cally in the context of model
checking. Midtgaard et al. [39] presented a methodology to derive family-based
static analyses from single-product analyses based on abstract interpretation.
This approach enables the lifting of existing analyses to work with product
lines, yielding variability-aware analyses that are correct by construction. Al-
though the authors only walked through a data-�ow analysis scenario, they claim
the methodology could be applied to other analyses, including model checking.
Similar to their work, we provide soundness proofs of product-line analyses, con-
ditioned on the soundness of a given single-product analysis. However, we do
not provide a framework for derivation of analysis strategies in general; instead,
we focus on providing formal evidence that a set of alternative strategies for
reliability analysis are sound, while also highlighting the relations between their
intermediate steps. Moreover, whereas Midtgaard et al. handle only the family-
based dimension of analysis, we also address the feature-based dimension. In
this sense, our work can also be seen as a preliminary investigation on deriving
alternative strategies to perform a given analysis.

Brabrand et al. [7] proposed a technique to automatically lift intraprocedural
data-�ow analyses to handle variability in product lines. Similar to our work, the
authors propose alternative analysis strategies, which are derived by gradually
introducing variability awareness in di�erent components of an existing analysis.
Brabrand et al. [7] also present a soundness proof for the proposed strategies,
whereby all of them are guaranteed to compute the same result as the base
analysis. The presented simultaneous and consecutive analysis strategies are
similar to our family-based and family-product-based ones, respectively, even
though di�erent properties are analyzed. However, Brabrand et al. [7] do not
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consider feature-based analyses. Furthermore, our work breaks down analysis
strategies in intermediate steps that can be composed in di�erent ways, enabling
reuse of proofs.

Comparison of analysis dimensions: Kolesnikov et al. [30] empirically
compared family-based, feature-based, and product-based type checking of Java-
based product lines. Their work was the �rst empirical study covering all
three dimensions of analysis, providing guidance to practitioners over which
type checking strategy to apply for a given product line. In a sense, their re-
search and our own are complementary, since each one deals with a di�erent
analysis type (type checking and model checking). However, in contrast with
their work, our focus is on the formal aspects of analysis�although we argue
our techniques can be implemented in a tool to perform empirical studies. Fur-
thermore, Kolesnikov et al. neither investigate combined strategies nor prove
the soundness of the implemented type checkers.

von Rhein et al. [44] proposed a model for classi�cation and comparison of
product-line analyses (the PLA model), whereby existing analyses are broken
down into intermediate steps. This model abstracts possible steps as four op-
erators for composing features, encoding variability, resolving variability, and
generic processing of artifacts. As stated by the authors themselves, the PLA
model is helpful when describing complex analyses and designing new ones.
Indeed, the PLA model was a source of inspiration for designing our analysis
techniques as reusable analysis steps. However, we found the proposed opera-
tors to be too generic to be useful in our formal setup. In this sense, our work
complements the work by von Rhein et al. [44] with a formally de�ned relation
among analyses and intermediate steps, albeit restricted to reliability analysis.

Conceptual models and taxonomy: Thüm et al. [47] established the
taxonomy for product-line analyses upon which we based our work, that is,
the classi�cation of analysis techniques in three basic strategies (product-based,
feature-based, and family-based) and combinations thereof. von Rhein et al. [44]
laid these strategies as dimensions in a cube, meaning analysis strategies can
be expressed as a combination of the number of analyzed products (sampling
dimension), the granularity of feature combinations (feature grouping dimen-
sion), and the extent to which variability is preserved or resolved during analy-
sis (variability encoding dimension). Since our soundness proofs for variability
encoding and feature composition apply to single features (not necessarily max-
imal PMCs), our techniques range over the PLA plane of feature grouping and
variability encoding dimensions. Furthermore, given that sampling is a matter
of restricting possible con�gurations and that we prove that our techniques are
sound con�guration-wise, our work also covers the sampling dimension.

Meinicke et al. [38] recently surveyed existing product-line analysis tools
and categorized them along four criteria: product-line implementation technique
(annotation-based versus composition-based approach), analysis technique (e.g.,
testing, type checking, model checking), strategies for product-line analysis (i.e.,
the analysis strategies taxonomy by Thüm et al. [47]), and strategy of the tool
(product-based, variability-aware, and variability-encoding). Using this taxon-
omy, an implementation of our techniques would cover all possibilities on the
dimensions of implementation technique, strategies for product-line analysis,
and strategy of the tool, while the dimension of analysis technique would be
�xed to reliability analysis.
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6. Conclusion

We formally presented seven approaches to reliability analysis of product
lines, covering all strategies in the taxonomy by Thüm et al. [47]. To the best of
our knowledge, this is the �rst work to address all three dimensions of product-
line analysis (product-based, family-based, and feature-based) in the context
of model checking, and also the �rst to present an instance of feature-family-
product-based analysis strategy. The soundness of our analysis techniques is
established by results on the commutativity of their intermediate steps, summa-
rized by the commuting diagram in Figure 10. This constitutes formal evidence
that, given a product line, each of the presented approaches yields the same
results as the others, enabling practitioners to choose among analysis strategies
based on their space and time trade-o�s. Future work can build on this formal
foundation to compare techniques in search for selection criteria.

The input models for our analysis approaches are based on the formalism
of parametric Markov chains, meaning they can be represented using the input
language of parametric model checkers such as PRISM [33] and PARAM [25].
Indeed, the parametric probabilistic reachability algorithm by Hahn et al. [26],
used throughout this work as an instance of variability-aware analysis function
(α̂), is implemented by these tools. Therefore, we argue that our analysis ap-
proaches are feasible, and that they can be implemented by a program that
coordinates calls to an o�-the-shelf parametric model checker according to vari-
ability information. The product-based techniques and variability encoding can
be implemented by manipulating the PMCs themselves.

Although our theory is focused on reliability analysis, we were able to prove
a general result on lifting rational functions over the Real numbers to work with
ADDs (Lemma 4), which can be leveraged to evaluate algebraic expressions
in the context of product lines. Future work may also extend our analysis
theory with product-line analyses other than reliability, seeking commonalities
in de�nitions and soundness proofs. As suggested by Figure 10, we also believe
that category theory can be leveraged to analyze and describe such extended
theories, as a means towards the broader goal of �nding a set of general principles
relating di�erent dimensions of product-line analysis.
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Appendices

Appendix A Probabilistic Models

This section presents the probabilistic models of the beverage machine prod-
uct line example (Section 3) in their entirety. Figure A.1 contains the annotative
model, and the compositional model is depicted by Figure A.2.
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Figure A.1: Complete annotative PMC for the vending machine
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(a) Top-level compositional PMC for the vending machine (common behavior and
main variation points)
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Figure A.2: Compositional PMCs for the vending machine
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Appendix B Additional Proofs

This section contains formal de�nitions and proofs that were omitted from
the main body of the paper to avoid digressions.

B.1 Existence of Minimal and Maximal PMCs

Lemma 9 (Existence of minimal PMCs). Given a set P of compositional
PMCs, an identifying function idt , and the corresponding induced well-founded
relation ≺, there exists, at least, one minimal PMC P = (S, s0, ssuc , serr , X,P,
T ). Furthermore, X = ∅, that is, minimal PMCs are, in fact, DTMCs with
de�ned interfaces and only two bottom strongly connected components (cf. Def-
inition 9).

Proof. The existence of minimal PMCs follows directly from the fact that the
induced relation ≺ is well-founded: otherwise, all descending chains would be
in�nite.

Now suppose X 6= ∅. Then, it has, at least, one element x. Since the set I
of identi�ers (image of idt) is a superset of all Xi, x ∈ I. By de�nition, function
idt is bijective, so there must be a compositional PMC P ′ ∈ P such that
idt(P ′) = x. But idt(P ′) ∈ X ⇒ P ′ ≺ P. Since P is minimal by hypothesis,
this is a contradiction.

Lemma 10 (Existence of maximal PMCs). Given a set P of compositional
PMCs, an identifying function idt , and the corresponding induced well-founded
relation ≺, there exists, at least, one maximal PMC P = (S, s0, ssuc , serr , X,P,
T ).

Proof. The proof is by contraposition. Nonexistence of such maximal PMC
means there are in�nite ascending chains P1 ≺ P2 ≺ P3 ≺ . . . for Pi ∈ P.
Since P is �nite, such in�nite chain implies the existence of cycles, that is, at
least, one Pi transitively depending on itself. But cycles imply both ascending
and descending in�nite chains, contradicting the well-foundedness of ≺. Hence,
there are no in�nite ascending chains under ≺ and, by contraposition, there is,
at least, one maximal PMC.

B.2 Termination Lemmas

The following lemma states the termination of the recursive de�nitions of
the composition factory w′ (De�nition 17).

Lemma 11 (Derivation by composition terminates). For a compositional model
(P,≺, I, idt, p, w′,FM ), for all con�gurations c ∈ JFM K, the composition func-
tion w′(c) terminates.

Proof. Let idt−1 : I →P be the inverse function of idt. To prove w′(c) termi-
nates, we note that the arguments in the recursive calls in the de�nition of w′

(De�nition 17) strictly decrease if we use idt−1 as a measure function into the
well-founded set P.

Without loss of generality, let x = idt(P) for some P ∈P with variables set
X = {x1, . . . , xk}. The right-hand side of w′(c)(x) evaluates to either P⊥ (the
feature disabler PMC) or P[x1/w

′(c)(x1), . . . , xk/w
′(c)(xk)]. In the �rst case,

it trivially terminates, since P⊥ have no slots; in the latter, the arguments to
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each recursive call are the variables xi ∈ X. By de�nition, xi = idt(Pi) for some
Pi ∈P such that Pi ≺ P. Thus, idt−1(xi) ≺ idt−1(x). Since ≺ is well-founded,
w′(c) terminates.

The following lemma states that the recursion in De�nition 25 terminates.

Lemma 12 (Compositional evaluation terminates). For a compositional model
(P,≺, I, idt, p, w′,FM ), for all con�gurations c ∈ JFM K, the compositional
evaluation w(c) terminates.

Proof. Let idt−1 : I → P be the inverse function of idt. To prove w(c) ter-
minates, we note that the arguments in recursive calls to w(c) (De�nition 25)
strictly decrease if we use idt−1 as a measure function into the well-founded set
P.

Indeed, without loss of generality, let x = idt(P) for some P ∈ P with
variables setX = {x1, . . . , xk}. By de�nition of σ, the right-hand side of w(c)(x)
evaluates to either 1 or α̂(P)[x1/w(c)(x1), . . . , xk/w(c)(xk)]. In the �rst case, it
trivially terminates; in the second, the arguments to each recursive call are the
variables xi ∈ X. By de�nition, xi = idt(Pi) for some Pi ∈P such that Pi ≺ P.
Thus, idt−1(xi) ≺ idt−1(x). Since ≺ is well-founded, w(c) terminates.

B.3 Soundness of Feature-product-based Analysis

We �rst state formally what we mean by PMC renaming, which is a key
concept in PMC composition.

De�nition 32 (Compositional PMC renaming). Given a compositional PMC
P = (S, s0, ssuc , serr , X,P, T ), the i-th renaming of P, Pi = (Si, si0, s

i
suc , s

i
err ,

Xi,Pi, T i), is an isomorphic compositional PMC with renamed states. That is,
Pi is such that:

• Si ∩ S = ∅.

• ∀i,j∈N · i 6= j =⇒ Si ∩ Sj = ∅.

• There exists a bijective mapping _i : S → Si from each state sj ∈ S to a
state sij ∈ Si.

• Xi = X.

• ∀s1,s2∈S ·Pi(si1, si2) = P(s1, s2).

• T i = {si | s ∈ T}.

With the formal de�nition of PMC renaming, we are able to present a precise
de�nition of a total composition, obtained by composing PMCs over all slots in
a given base compositional PMC at once.

De�nition 33 (Total PMC composition). Given a compositional PMC (S,
s0, ssuc , serr , X,P, T ) with k variables x1, . . . , xk, and a set P of k composi-
tional PMCs (Si, si0 , sisuc , sierr , Xi,Pi, Ti), i ∈ {1, . . . , k}, let u′ : X → P be
a function that yields a compositional PMC P ∈ P to compose in the corre-
sponding slots for any given variable. Let also ni = |slotsP(xi)| for i ∈ 1, . . . , k,
and Pji = (Sji , s

j
i0
, sjisuc , s

j
ierr
, Xj

i ,P
j
i , T

j
i ) for j ∈ 1, . . . , ni be the j-th renaming

of Pi (De�nition 32). The total PMC composition P[X/u′], also denoted by
P[x1/u

′(x1), . . . , xk/u
′(xk)], is a compositional PMC P ′ = (S′, s′0, s

′
suc , s

′
err , X

′,
P′, T ′) such that:
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• S′ = S ]
⊎n1

j=1 S
j
1 ] · · · ]

⊎nk

j=1 S
j
k, where ] denotes the disjoint union

operator (all states are disjointly merged);

• s′0 = s0, s
′
suc = ssuc , and s

′
err = serr (the interface of P is preserved);

• X ′ =
⋃k
i=1Xi (each occurrence of xi is replaced by a copy of Pi, whose

variables are those of Xi);

• T ′ = T (target states of the base PMC are preserved);

• P′ is such that, for all slots (sxj
i0

, sxj
isuc

, sxj
ierr

) of the base PMC P and

interfaces (sji0 , s
j
isuc
, sjierr ) of the renamed PMCs Pji (where i ∈ 1, . . . , k

and j ∈ 1, . . . , ni),

� P′(sxj
i0

, sji0) = 1 (new transition from a slot's initial state to the

initial state of the corresponding composed PMC)

� P′(sjisuc , sxj
isuc

) = 1 (new transition from the success state of a com-

posed PMC to the success state of the corresponding slot)

� P′(sjierr , sxj
ierr

) = 1 (new transition from the error state of a composed

PMC to the error state of the corresponding slot)

� P′(sxj
i0

, sxj
isuc

) = 0 (slot's success transition is removed)

� P′(sxj
i0

, sxj
ierr

) = 0 (slot's error transition is removed)

� P′(sjisuc , s
j
isuc

) = 0 (success loops from composed PMCs are removed)

� P′(sjierr , s
j
ierr

) = 0 (error loops from composed PMCs are removed)

� For all remaining combinations of s1, s2 ∈ S′:

P′(s1, s2) =


P(s1, s2) if s1, s2 ∈ S \ slotStatesP(X)

Pji (s1, s2) if s1, s2 ∈ Sji
0 otherwise

The function u′ is called a composition function.

To establish the soundness of the feature-product-based strategy, we need to
compare it to the product-based strategy for compositional models. However,
the latter relies on PMC composition, while the former is based on compositional
evaluation of expressions. To bridge this gap, we �rst note that, as far as
reliability analysis is concerned, composing a PMC P ′ into a slot of another
PMC P is equivalent to evaluating the corresponding variable in P with the
reliability expression of P ′ (i.e., α̂(P ′)).

Lemma 13 (R-equivalence of total composition and evaluation). Let P,P1,
. . . ,Pk be compositional parametric Markov chains, and X = {x1, . . . , xk} be
P's set of variables. Then,

α̂(P[x1/P1, . . . , xk/Pk]) = α̂(P[x1/α̂(P1), . . . , xk/α̂(Pk)])

where the equals sign denotes extensional equality. In other words, the two
expressions (i.e., syntactic objects) are not necessarily equal in a syntactical
sense, but their corresponding rational functions (i.e., semantic objects) always
yield equal values if given equal inputs.
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Proof. The main argument for this proof is the case where P has only one
variable, that is, X = {x}. This way, we start by proving that α̂(P[x/P ′]) =
α̂(P[x/α̂(P ′)]) for a given compositional PMC P ′ = (S′, s′0, s

′
suc , s

′
err , X

′,P′,
T ′). Then, we extend this to the general case where P has an arbitrary number
of variables.

A generic illustration of P and P ′ is given by Figures 7a and 7b, respec-
tively. Let Pe = P[x/α̂(P ′)] be the PMC resulting from evaluation, denoted
by (Se, se0 , sesuc , seerr , Xe,Pe, Te), and Pc = P[x/P ′] be the PMC obtained by
composition, denoted by the tuple (Sc, sc0 , scsuc , scerr , Xc,Pc, Tc). Figures B.3a
and B.3b represent these PMCs and serve as a visual aid to the proof.
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(d) Pc after eliminating all states s′ ∈ S′

Figure B.3: Generic PMCs in Lemma 13

Since α̂ computes the probabilistic reachability property, we base this proof
on the algorithm by Hahn et al. [26]. This algorithm consists of successive
eliminations of states, with the transition probability matrix being updated at
each step. A useful property, which Hahn et al. use to prove that the algorithm
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is sound, is that the probability of reaching the target states in the input PMC
is an invariant, that is, it remains the same throughout elimination steps.

Let us apply the algorithm by Hahn et al. [26] to Pc. For brevity, we show the
composition via a single slot. In the case where more slots exist, the following
argument can be applied sequentially to each slot and corresponding renaming
of P ′.

Since the order in which states are eliminated is not �xed, we �rst eliminate
states s′ ∈ S′ \ interface(P ′). The intermediate PMC at this point is given by
Figure B.3c. These eliminations are restricted to states in S′, because the only
transitions in Pc between states in S and states in S′ are the ones connecting
interface and slot (by construction�see De�nition 11).

Now, we eliminate the interface states. Performing a single step of the
algorithm by Hahn et al. (De�nition 3), we eliminate s′0 and update Pc so that

Pc(sx0
, s′suc) = Pc(sx0

, s′suc) + Pc(sx0
, s′0) · 1

1−Pc(s′0, s
′
0)
·Pc(s′0, s′suc)

= 0 + 1 · 1

1− 0
· PrP

′
(s′0, s

′
suc)

= PrP
′
(s′0, s

′
suc)

Similarly, Pc(sx0
, s′err ) = PrP

′
(s′0, s

′
err ). Repeating these steps for s′suc and

s′err , Pc is updated to have Pc(sx0
, sxsuc

) = PrP
′
(s′0, s

′
suc) and Pc(sx0

, sxerr
) =

PrP
′
(s′0, s

′
err ) (see Figure B.3d).

At this stage, all states s′ ∈ S′ have been eliminated, so that Sc = S = Se.
Furthermore, for all s1, s2 ∈ S \slotStatesP(x), the transition probability matri-
ces are such that Pc(s1, s2) = P(s1, s2) = Pe(s1, s2) (De�nition 11). Thus, the
only di�erence between Pc and Pe are the transitions for slot states: (sx0

, sxsuc
)

and (sx0 , sxerr ).

For the �success� slot, Pc(sx0
, sxsuc

) = PrP
′
(s′0, s

′
suc), which is syntacti-

cally equal to Pe(sx0
, sxsuc

). So, we must prove that the �error� transitions,
Pc(sx0 , sxerr ) and Pe(sx0 , sxerr ), are extensionally equal. But s′suc and s′err
are the only two bottom strongly connected components of the underlying di-
graph of P ′ (De�nition 9). Thus, by Theorem 10.27 of Baier and Katoen [5],

PrP
′
u(s′0, s

′
suc) + PrP

′
u(s′0, s

′
err ) = 1, where P ′u is the DTMC obtained by ap-

plying some well-de�ned evaluation u to P ′. Since the choice of u is arbitrary,
Pc(sx0

, sxerr
) is extensionally equal to Pe(sx0

, sxerr
).

This means that, at the current point of application of the probabilistic
reachability algorithm to Pc, Pc = Pe. Pe and the partially analyzed Pc have
the same probability of reaching the target state ssuc . Moreover, since the
algorithm preserves this probability at each step, the probabilistic reachability
in Pc is the same at this point as before the algorithm started, and will remain
the same until the algorithm stops. Hence, α̂(P[x/P ′]) = α̂(P[x/α̂(P ′)]).

To extend this proof to the case where P has an arbitrary number of vari-
ables, we repeat the argument that the choice of states for elimination is arbi-
trary. Let us assume, as induction hypothesis, that the lemma holds for a PMC
with n variables. If P has n+1 variables, we apply the same reasoning as in the
single-variable case for one of P's slots, (sxn+10

, sxn+1suc
, sxn+1err

). After elimi-
nating only the states corresponding to a composition at the given slot, we have
the following extensional equalities: Pc(sxn+10

, sxn+1suc
) = Pe(sxn+10

, sxn+1suc
)
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and Pc(sxn+10
, sxn+1err

) = Pe(sxn+10
, sxn+1err

). Also, the resulting PMC Pc
has n remaining slots, one for each variable. By the induction hypothesis, af-
ter eliminating the states corresponding to all compositions in Pc, we have
that Pc and Pe are extensionally equal. Hence, α̂(P[x1/P1, . . . , xn+1/Pn+1]) =
α̂(P[x1/α̂(P1), . . . , xn+1/α̂(Pn+1)]).

Furthermore, since a composition of only DTMCs into a PMC yields another
DTMC, both parametric and non-parametric model checking of this resulting
chain (which has no variability) produce the same result. Thus, we have the
following corollary of Lemma 13.

Corollary 1 (R-equivalence of total composition with DTMCs and evaluation).
Let P be a compositional PMC, D1, . . . ,Dk be DTMCs, and X = {x1, . . . , xk}
be P's variables set. Then,

α(P[x1/D1, . . . , xk/Dk]) = α(P[x1/α(D1), . . . , xk/α(Dk)])

Now we have the tools to prove that our feature-product-based analysis is
sound. We recall Theorem 5:

Theorem 5 (Soundness of feature-product-based analysis). Given a composi-
tional model (P,≺, I, idt, p, w′,FM ), for all con�gurations c ∈ JFM K, it holds
that

σ(α̂(P), w, c) = α(π′(P, w′, c))

or, alternatively,
Jα̂(P)Kwc = α(JPKw

′

c )

where P ∈ P and w is the compositional evaluation factory (De�nition 25)
derived from the composition factory w′.

Complete proof. We use well-founded induction. The base of the induction is
when P is minimal with respect to ≺. In this case, X = ∅, so π′(P, w′, c) = P,
that is, α(π′(P, w′, c)) = α(P). Likewise, α̂(P) = α(P), so that σ(α̂(P), w, c) =
σ(α(P), w, c) = α(P). Thus, for the base case, σ(α̂(P), w, c) = α(π′(P, w′, c)).

We now have to prove that σ(α̂(P), w, c) = α(π′(P, w′, c)) for an arbitrary
P ∈ P. Our induction hypothesis is that σ(α̂(Pi), w, c) = α(π′(Pi, w′, c)) for
all Pi ∈ P such that Pi ≺ P. Thus, let xi = idt(Pi), i ∈ {1, . . . , k}. By
De�nition 21, we have:

σ(α̂(P), w, c) = α̂(P)[x1/w(c)(x1), . . . , xk/w(c)(xk)]

For each xi, from the de�nition of the compositional evaluation factory w (Def-
inition 25),

w(c)(xi) =

{
σ(α̂(Pi), w, c) if p(xi)(c) = 1

1 otherwise

=

{
α(π′(Pi, w′, c)) if p(xi)(c) = 1 (by induction hypothesis)

1 otherwise
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But, from the de�nition of the composition factory w′ (De�nition 17),

w′(c)(xi) =

{
Pi[Xi/w

′(c)] if p(xi)(c) = 1

P⊥ otherwise

=

{
π′(Pi, w′, c)) if p(xi)(c) = 1 (De�nition 18)

P⊥ otherwise

Applying α to both sides,

α(w′(c)(xi)) =

{
α(π′(Pi, w′, c)) if p(xi)(c) = 1

α(P⊥) otherwise

and, since α(P⊥) = 1,

=

{
α(π′(Pi, w′, c)) if p(xi)(c) = 1

1 otherwise

= w(c)(xi)

Thus, w(c)(xi) = α(w′(c)(xi)) and we have the following:

σ(α̂(P), w, c) = α̂(P)[x1/w(c)(x1), . . . , xk/w(c)(xk)]

= α̂(P)[x1/α(w′(c)(x1)), . . . , xk/α(w′(c)(xk))]

= α(P[x1/α(w′(c)(x1)), . . . , xk/α(w′(c)(xk))]) (Lemma 3)

= α(P[x1/w
′(c)(x1), . . . , xk/w

′(c)(xk)]) (Corollary 1)

= α(π′(P, w′, c)) (De�nition 18)

B.4 Lifting Lemmas

This appendix covers details of lemmas related to lifting of expressions and
of compositional evaluation factories.

Lemma 4 (Soundness of expression lifting). If ε is a rational expression over
Real constants and variables xi ∈ X, |X| = n, A1, . . . , An are ADDs, and
ε̂ = lift(ε), then

ε̂[x1/A1, . . . , xn/An](b̄) = ε[x1/A1(b̄), . . . , xn/An(b̄)]

where b̄ is a vector of k Booleans, corresponding to a selection of the k features
in a given product line.

Complete proof. The proof is by structural induction on the expression ε. The
base cases are constant expressions and single variables:

• ε = c, where c ∈ R:
In this case, ε̂ = ĉ. Since ε has no variables (and neither has ε̂), we apply
the empty evaluation [ ]. Thus, ε̂[ ](b̄) = ĉ(b̄) = c = ε = ε[ ].

• ε = x:

In this case, ε̂ = x. If A is an arbitrary ADD, then: ε̂[x/A](b̄) = A(b̄) =
ε[x/A(b̄)].
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Now we have to prove the statement holds for ε = ε1 � ε2 (where � ∈
{+,−,×,÷}) and for ε = εi1 (where i ∈ N). As induction hypothesis, assume
that the following holds for the expressions ε1 and ε2:

ε̂[x1/A1, . . . , xn/An](b̄) = ε[x1/A1(b̄), . . . , xn/An(b̄)] (I.H.)

Let u : X → (Bk → R) be a lifted evaluation such that u(xi) = Ai is an ADD.
We then have the following:

• ε = ε1 � ε2, where � ∈ {+,−,×,÷}:
In this case, ε̂ = ε̂1 � ε̂2. Hence,

ε̂[X/u](b̄) =
(
ε̂1 � ε̂2

)
[X/u](b̄)

=
(
ε̂1[X/u]� ε̂2[X/u]

)
(b̄) (evaluation)

= ε̂1[X/u](b̄)� ε̂2[X/u](b̄) (ADD arithmetics)

= ε̂1[x1/A1, . . . , xn/An](b̄)

� ε̂2[x1/A1, . . . , xn/An](b̄) (expanding u)

= ε1[x1/A1(b̄), . . . , xn/An(b̄)]

� ε2[x1/A1(b̄), . . . , xn/An(b̄)] (induction hypothesis)

=
(
ε1 � ε2

)
[x1/A1(b̄), . . . , xn/An(b̄)] (evaluation)

= ε[x1/A1(b̄), . . . , xn/An(b̄)]

• ε = εi1, where i ∈ N:
In this case, ε̂ = ε̂1

i. Hence,

ε̂[X/u](b̄) = ε̂1
i[X/u](b̄)

= ε̂1[X/u]i(b̄) (evaluation)

= ε̂1[X/u](b̄)i (ADD arithmetics)

= ε̂1[x1/A1, . . . , xn/An](b̄)i (expanding u)

= ε1[x1/A1(b̄), . . . , xn/An(b̄)]i (induction hypothesis)

= εi1[x1/A1(b̄), . . . , xn/An(b̄)] (evaluation)

= ε[x1/A1(b̄), . . . , xn/An(b̄)]

The soundness of lifted compositional evaluation factories is now presented
in its complete form. First, we recall the corresponding lemma's statement.

Lemma 6 (Soundness of lifted compositional evaluation factory). Given a com-
positional model (P,≺, I, idt, p, w′,FM ) and the compositional evaluation fac-
tory w, derived from the composition factory w′ (De�nition 25), for all x ∈ I
and all c ∈ JFM K it holds that

ϕ(x)(c) = w(c)(x)
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Complete proof. If P ∈P is such that idt(P) = x, then

ϕ(x)(c) = ITE(p̂(x), ̂̂α(P)[X/ϕ], 1̂)(c)

=

{
̂̂α(P)[X/ϕ](c) if p̂(x)(c) 6= 0

1̂(c) if p̂(x)(c) = 0

By Lemma 4, ̂̂α(P)[X/ϕ](c) = α̂(P)[x1/ϕ(x1)(c), . . . , xk/ϕ(xk)(c)]. Also,
∀c∈JFM K · 1̂(c) = 1. Thus,

ϕ(x)(c) =

{
α̂(P)[x1/ϕ(x1)(c), . . . , xk/ϕ(xk)(c)] if p̂(x)(c) 6= 0

1 if p̂(x)(c) = 0
(2)

On the other hand, w is de�ned (De�nition 25) as

w(c)(x) =

{
Jα̂(P)Kwc if p(x)(c) 6= 0

1 if p(x)(c) = 0

Expanding the de�nition of Jα̂(P)Kwc , we have

w(c)(x) =

{
α̂(P)[x1/w(c)(x1), . . . , xk/w(c)(xk)] if p(x)(c) 6= 0

1 if p(x)(c) = 0
(3)

Since p̂(x)(c) = p(x)(c), we compare corresponding cases in the Equations (2)
and (3). The cases in which p(x)(c) = 0 are trivially equal. Otherwise, we use
well-founded induction.

The base of our induction are minimal PMCs. A minimal PMC P has no
variables (X = ∅), so α̂(P)[X/u] = α(P) for any evaluation u. Since w(c) is
an evaluation, and considering ϕ(x)(c) takes a variable x to a Real number

(thus, also being an evaluation), we have that ̂̂α(P)[X/ϕ](c) = α̂(P)[X/w(c)]
in this case. For non-minimal PMCs, assume, as induction hypothesis, that
̂̂α(Pj)[Xj/ϕ](c) = α̂(Pj)[Xj/w(c)] for all Pj ≺ P, where j ∈ {1, . . . , k}. Then,
for any xj ∈ X,

ϕ(xj)(c) =

{
̂̂α(Pj)[Xj/ϕ](c) if p̂(xj)(c) 6= 0

1 if p̂(xj)(c) = 0
(4)

w(c)(xj) =

{
α̂(Pj)[Xj/w(c)] if p(xj)(c) 6= 0

1 if p(xj)(c) = 0
(5)

However, the induction hypothesis implies the right-hand sides of the Equa-
tions (4) and (5) are equal. Thus, ϕ(xj)(c) = w(c)(xj) for all xj ∈ X, which
means

α̂(P)[x1/ϕ(x1)(c), . . . , xk/ϕ(xk)(c)] = α̂(P)[x1/w(c)(x1), . . . , xk/w(c)(xk)]

and, by well-founded induction, the cases where p(x)(c) = 1 in the Equations (2)
and (3) are also equal. Hence, ϕ(x)(c) = w(c)(x).

B.5 Variability Encoding

This appendix deals with formal de�nitions and complete proofs related to
variability encoding of PMCs and of rational expressions.
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B.5.1 Variability Encoding of PMCs

We start by formally de�ning the ITE operator for PMCs, which was only
presented as an intuition in the main body of the paper.

De�nition 34 (ITE operator for PMCs). Given two compositional PMCs, P =
(S, s0, ssuc , serr , X,P, T ) and P ′ = (S′, s′0, s

′
suc , s

′
err , X

′,P′, T ′), and a variable
x /∈ X ∪X ′, the if-then-else operator for PMCs is de�ned as

ITE(x,P,P ′) = P ′′

where P ′′ = (S′′, s′′0 , s
′′
suc , s

′′
err , X

′′,P′′, T ′′) is a compositional PMC such that:

• S′′ = S ∪ S′ ∪ {s′′0 , s′′suc , s′′err}

• The state s′′0 is the new initial one, s′′suc is the new success state, and s′′err
is the new error state.

• X ′′ = X ∪X ′ ∪ {x}

• T ′′ = {s′′suc}

• P′′ is such that:

� P′′(s′′0 , s0) = x

� P′′(s′′0 , s
′
0) = 1− x

� P′′(ssuc , s
′′
suc) = P′′(s′suc , s

′′
suc) = P′′(s′′suc , s

′′
suc) = 1

� P′′(ssuc , ssuc) = P′′(s′suc , s
′
suc) = 0

� P′′(serr , s
′′
err ) = P′′(s′err , s

′′
err ) = P′′(s′′err , s

′′
err ) = 1

� P′′(serr , serr ) = P′′(s′err , s
′
err ) = 0

� For all remaining combinations of s1, s2 ∈ S′′:

P′′(s1, s2) =


P(s1, s2) if s1, s2 ∈ S
P′(s1, s2) if s1, s2 ∈ S′

0 otherwise

This ITE operator is mainly useful because of its r-equivalence property. We
recall Lemma 7 and present its complete proof:

Lemma 7 (R-equivalence for ITE). Given two compositional PMCs, P = (S,
s0, ssuc , serr , X,P, T ) and P ′ = (S′, s′0, s

′
suc , s

′
err , X

′,P′, T ′), and a variable x /∈
X ∪X ′, let P ′′ = ITE(x,P,P ′). If (P ′′, p, w,FM ) is an annotative model with
P ′′ as its underlying PMC10, where p, w, and FM are arbitrarily chosen, then,
for every c ∈ JFM K,

α(JITE(x,P,P ′)Kwc ) =

{
α(JPKwc ) if p(x)(c) = 1

α(JP ′Kwc ) otherwise

10 By De�nition 9, any compositional PMC is also an annotative PMC (De�nition 4). Thus,
a compositional PMC can be the underlying PMC of an annotative model.
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Complete proof. We are interested in computing the probability of reaching s′′suc
from s′′0 in P ′′ = ITE(x,P,P ′) under evaluation w(c). In P ′′, s′′0 6= s′′suc and
s′′suc is reachable from s′′0 (since s′′suc is, by de�nition, reachable from ssuc and
s′suc). Hence, the reachability of s′′suc from s′′0 satis�es Property 1, by which the
probability of reaching state s2 from state s1 in a DTMC D = (S, s0,P, T ) is
given by

PrD(s1, s2) =
∑

s′∈S\{s2}

P(s1, s
′) · PrD(s′, s2) + P(s1, s2)

By De�nition 34, P′′(s′′0 , s0) = x, P′′(s′′0 , s
′
0) = 1− x, and P′′(s′′0 , s

′′) = 0 for
all other s′′ ∈ S′′. Thus,

α(JP ′′Kwc ) = PrP
′′
w(c)(s′′0 , s

′′
suc)

=
∑

s′′∈S′′\{s′′suc}

P′′w(c)(s
′′
0 , s
′′) · PrP

′′
w(c)(s′′, s′′suc) + P′′w(c)(s

′′
0 , s
′′
suc)

=
∑

s′′∈S′′\{s′′suc}

P′′w(c)(s
′′
0 , s
′′) · PrP

′′
w(c)(s′′, s′′suc) + 0

= P′′w(c)(s
′′
0 , s0) · PrP

′′
w(c)(s0, s

′′
suc) + P′′w(c)(s

′′
0 , s
′
0) · PrP

′′
w(c)(s′0, s

′′
suc)

= w(c)(x) · PrP
′′
w(c)(s0, s

′′
suc) + (1− w(c)(x)) · PrP

′′
w(c)(s′0, s

′′
suc)

Since w(c)(x) equals 1 if p(x)(c) = 1 and 0 otherwise (De�nition 7),

α(JP ′′Kwc ) =

{
PrP

′′
w(c)(s0, s

′′
suc) if p(x)(c) = 1

PrP
′′
w(c)(s′0, s

′′
suc) otherwise

But, since s0 ∈ S and the only state in S that can reach s′′suc is ssuc (De�ni-
tion 34), the probability of reaching s′′suc from s0 is the probability of reaching
ssuc from s0 multiplied by the transition probability from ssuc to s′′suc :

PrP
′′
w(c)(s0, s

′′
suc) = PrP

′′
w(c)(s0, ssuc) ·P′′w(c)(ssuc , s

′′
suc)

= PrPw(c)(s0, ssuc) · 1
= PrPw(c)(s0, ssuc)

= α(JPKwc )

Similar reasoning applied to S′ leads to PrP
′′
w(c)(s′0, s

′′
suc) = α(JP ′Kc). Hence,

α(JP ′′Kwc ) =

{
α(JPKwc ) if p(x)(c) = 1

α(JP ′Kwc ) otherwise

The above lemma establishes the ITE operator has the e�ect of alternating
behaviors if the resulting PMC is evaluated by replacing the switching variable
x with 0 or 1. However, the PMC operands of ITE are part of a compositional
model, so their own variables are interpreted as placeholders to be used during
composition, instead (see Section 3.2). To cope with this mismatch, we only
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use the ITE operator with PMCs that are either plain DTMCs or that result
themselves from variability encoding.

The resulting theorem stating the soundness of this variability encoding for
PMCs is recalled and proved next.

Theorem 8 (R-equivalence of variability encoding and derivation by com-
position). Given a compositional model (P,≺, I, idt, p, w′,FM ) and P ∈ P,
let (γ(P), p, w,FM ) be its variability-encoded annotative model. Then, for all
c ∈ JFM K,

α(Jγ(P)Kwc ) = α(π′(P, w′, c))

Complete proof. We use well-founded induction. For minimal PMCs (base of
induction), γ(P) = P, so Jγ(P)Kwc = P. Likewise, π′(P, w′, c) = P, so the
proposition holds trivially.

As induction hypothesis, we have that α(Jγ(Pi)Kwc ) = α(π′(Pi, w′, c)) for all
Pi ∈P such that Pi ≺ P. For brevity, in the following equations, we use Λi to
denote ITE(xi, γ(Pi),P⊥).

α(Jγ(P)Kwc ) = Jα̂(γ(P))Kwc (Theorem 1)

= Jα̂(P[x1/Λ1, . . . , xk/Λk])Kwc (De�nition 27)

= Jα̂(P[x1/α̂(Λ1), . . . , xk/α̂(Λk)])Kwc (Lemma 13)

= Jα̂(P)[x1/α̂(Λ1), . . . , xk/α̂(Λk)]Kwc (Lemma 3)

= α̂(P)[x1/α̂(Λ1), . . . , xk/α̂(Λk)][X/w(c)] (De�nition 21)

= α̂(P)[x1/α̂(Λ1)[X/w(c)], . . . ,

. . . , xk/α̂(Λk)[X/w(c)]] (Equation (1))

= α̂(P)[x1/Jα̂(Λ1)Kwc , . . . , xk/Jα̂(Λk)Kwc ] (De�nition 21)

= α̂(P)[x1/α(JΛ1Kwc ), . . . , xk/α(JΛkKwc )] (Theorem 1)

= α(P[x1/α(JΛ1Kwc ), . . . , xk/α(JΛkKwc )]) (Lemma 3)

leaving us with the following partial result:

α(Jγ(P)Kwc ) = α(P[x1/α(JΛ1Kwc ), . . . , xk/α(JΛkKwc )]) (6)

Each variable substitution expands to two di�erent cases, corresponding to
whether c satis�es the presence condition associated with xi or not. Let us
examine the substitution for a given xi:

α(JΛiKwc ) = α(JITE(xi, γ(Pi),P⊥)Kwc )

=

{
α(Jγ(Pi)Kwc ) if p(xi)(c) = 1

α(JP⊥Kwc ) otherwise
(Lemma 7)

=

{
α(π′(Pi, w′, c)) if p(xi)(c) = 1

α(JP⊥Kw
′

c ) otherwise
(by induction hypothesis)

= α(w′(c)(xi)) (De�nitions 17 and 18)

that is,

α(JΛiKwc ) = α(w′(c)(xi)) (7)
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Hence, we can substitute Equation (7) into Equation (6):

α(Jγ(P)Kwc ) = α(P[x1/α(JΛ1Kwc ), . . . , xk/α(JΛkKwc )]) (Equation (6))

= α(P[x1/α(w′(c)(x1)), . . . , xk/α(w′(c)(xk))]) (Equation (7))

= α(P[x1/w
′(c)(x1), . . . , xk/w

′(c)(xk)]) (Corollary 1)

= α(π′(P, w′, c)) (De�nition 18)

B.5.2 Variability Encoding of Expressions

We start by proving that the ITE operator for expressions has the intended
semantics. This result is expressed by Lemma 8, which we now recall.

Lemma 8 (Extensional equality for expression ITE). Given two expressions ε
and ε′ over the sets X and X ′ of variables, respectively, and a variable x, let
X ′′ = X ∪ X ′ ∪ {x} and u : X ′′ → [0, 1] be an evaluation function such that
u(x) ∈ B. Then,

ITE(x, ε, ε′)[X ′′/u] =

{
ε[X/u] if u(x) = 1

ε′[X ′/u] if u(x) = 0

Complete proof. The proof is mainly algebraic. Expanding the de�nition of ITE,
we have:

ITE(x, ε, ε′)[X ′′/u] = (x · ε+ (1− x) · ε′)[X ′′/u]

= (x · ε)[X ′′/u] + ((1− x) · ε′)[X ′′/u]

= x[X ′′/u] · ε[X ′′/u] + (1− x)[X ′′/u] · ε′[X ′′/u]

= u(x) · ε[X ′′/u] + (1− u(x)) · ε′[X ′′/u]

=

{
ε[X ′′/u] if u(x) = 1

ε′[X ′′/u] if u(x) = 0

which, considering that the sets of variables in ε and ε′ are X and X ′, respec-
tively, and that these sets are subsets of X ′′, leads to

ITE(x, ε, ε′)[X ′′/u] =

{
ε[X/u] if u(x) = 1

ε′[X ′/u] if u(x) = 0

Using this result and the de�nitions in the main body of the paper, we can
prove that variability encoding for expressions is sound.

Theorem 9 (Soundness of variability encoding for expressions). Given a com-
positional model (P,≺, I, idt, p, w′,FM ) and P,P1, . . . ,Pk ∈P such that Pi ≺
P and xi = idt(Pi) for i ∈ {1, . . . , k}, let ε = α̂(P). Let also w be the composi-
tional evaluation factory derived from w′ (De�nition 25) and wp be the annota-
tive evaluation factory obtained from w (De�nition 31). Then, for all c ∈ JFM K
it holds that

σ(γ(ε), wp, c) = σ(ε, w, c)
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Complete proof. We use well-founded induction. For a minimal PMC P (base
of induction), α̂(P) = ε has no variables. This way, γ(ε) = ε and σ(ε, u) = ε
for any evaluation u. Thus, both sides of the equality evaluate to ε and the
proposition holds trivially.

As induction hypothesis, we have that σ(γ(εi), wp, c) = σ(εi, w, c) for all
εi = α̂(Pi) such that Pi ≺ P. For brevity, we use Λi to denote ITE(xi, γ(εi),1)
in the following equations.

σ(γ(ε), wp, c) = σ(ε[x1/Λ1, . . . , xk/Λk], wp, c) (De�nition 30)

= ε[x1/Λ1, . . . , xk/Λk][X/wp(c)] (De�nition 21)

= ε[x1/Λ1[X/wp(c)], . . . , xk/Λk[X/wp(c)]] (Equation (1))

yielding the following equation:

σ(γ(ε), wp, c) = ε[x1/Λ1[X/wp(c)], . . . , xk/Λk[X/wp(c)]] (8)

Each variable substitution expands to two di�erent cases, corresponding to
whether c satis�es the presence condition associated with xi or not. Let us
examine the substitution for a given xi:

Λi[X/wp(c)] = ITE(xi, γ(εi),1)[X/wp(c)]

=

{
γ(εi)[X/wp(c)] if p(xi)(c) = 1 (wp(c)(xi) = 1) (Lemma 8)

1[X/wp(c)] otherwise (wp(c)(xi) = 0)

=

{
σ(γ(εi), wp, c) if p(xi)(c) = 1 (De�nition 21)

1 otherwise

=

{
σ(εi, w, c) if p(xi)(c) = 1 (by induction hypothesis)

1 otherwise

= w(c)(xi) (De�nition 25)

that is,

Λi[X/wp(c)] = w(c)(xi) (9)

Hence, substituting Equation (9) into Equation (8), we have

σ(γ(ε), wp, c) = ε[x1/Λ1[X/wp(c)], . . . , xk/Λk[X/wp(c)]] (Equation (8))

= ε[x1/w(c)(x1), . . . , xk/w(c)(xk)] (Equation (9))

= ε[X/w(c)]

= σ(ε, w, c) (De�nition 21)
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