
Empirical Software Engineering Journal manuscript No.
(will be inserted by the editor)

Evaluating refactorings for disciplining #ifdef
annotations: An eye tracking study with novices

José Aldo Silva da Costa · Rohit Gheyi ·
Márcio Ribeiro · Sven Apel · Vander
Alves · Baldoino Fonseca · Flávio
Medeiros · Alessandro Garcia

Abstract The C preprocessor is widely used in practice. Conditional compi-
lation with #ifdef annotations allows developers to flexibly introduce vari-
ability in their programs. Developers can use disciplined annotations, entirely
enclosing full statements with preprocessor directives, or undisciplined ones,
enclosing only parts of the statements. Despite some debate, there is no con-
sensus on whether a developer should use exclusively disciplined annotations.
While one prior study found undisciplined annotations more time-consuming
and error-prone, another study found no difference between disciplined and
undisciplined annotations regarding task completion time and accuracy. In
this article, we evaluate whether three fine-grained refactorings to discipline
#ifdef annotations correlate with improvements in code comprehension and
visual effort with an eye tracker. We conduct a controlled experiment with
64 human subjects who were majoritarily novices in the C programming lan-
guage. We observed statistically significant differences for two refactorings to

J.A. Silva da Costa and R. Gheyi
Federal University of Campina Grande
E-mail: josealdo@copin.ufcg.edu.br, rohit@dsc.ufcg.edu.br

M. Ribeiro and B. Fonseca
Federal University of Alagoas
E-mail: marcio@ic.ufal.br, baldoino@ic.ufal.br

S. Apel
Saarland University, Saarland Informatics Campus
E-mail: apel@cs.uni-saarland.de

V. Alves
University of Brasília
E-mail: valves@unb.br

F. Medeiros
Federal Institute of Alagoas
E-mail: flavio.medeiros@ifal.edu.br

A. Garcia
Pontifical Catholic University of Rio de Janeiro
E-mail: afgarcia@inf.puc-rio.br

2 José Aldo Silva da Costa et al.

discipline annotations with respect to the analyzed metrics (time, fixation du-
ration, fixation count, and regressions count) in the code regions changed by
each refactoring.

Keywords refactoring · #ifdefs · eye tracking · code comprehension ·
disciplined annotations · undisciplined annotations

1 Introduction

The C preprocessor is widely used in practice, such as in Linux [15]. It provides
mechanisms to implement variability through conditional compilation [15].
Conditional compilation allows developers to conditionally include selected
blocks of source code by annotating the code using directives, such as #ifdefs.
There are two types of annotations, undisciplined (or incomplete), and dis-
ciplined (or complete) [25]. Although both achieve the same purpose, they
differ in terms of whether they align with the syntactic structure of the code.
Disciplined annotations enclose only whole syntactical units while undisci-
plined annotations do not, for example, wrapping only an opening bracket of
a statement but not the closing one [18]. Even though no study has formally
specified undisciplined annotations, we aligned our definition with previous
studies [25,15,37]. Relying on this definition, Liebig et al. [25] analyzed 40
software projects with over 30 million lines of C code regarding the discipline
of their annotations. They found that 84% of all annotations are disciplined.

Despite the relevance and prevalence of conditional compilation in practice,
existing evidence confirms that comprehending code with #ifdef directives is
far from trivial [45,26,28,27]. Code with either disciplined or undisciplined an-
notations may affect program comprehension. However, empirical knowledge
on the influence of annotation discipline is still scarce. Medeiros et al. [28]
proposed a catalogue of refactorings to convert undisciplined annotations to
disciplined ones. The refactorings were evaluated with respect to the preference
of 246 developers regarding disciplined or undisciplined annotated code. For
certain refactorings, developers showed preference for the disciplined version,
while for others, both disciplined and undisciplined versions had similar rates
of preference. Although there are a few other studies in the literature, there is
no consensus yet on whether undisciplined annotations should be refactored
to become disciplined in practice [26,37]. For instance, Malaquias et al. [26]
conducted an experiment comparing undisciplined annotations and their refac-
tored version to make them disciplined. They found that undisciplined annota-
tions are more time-consuming and error-prone. In contrast, Schulze et al. [37]
found no differences between using disciplined and undisciplined annotations
regarding task completion time and accuracy. Fenske et al. [16] conducted a
survey study with 521 developers regarding annotations in the C language and
found that their perception and their performance are different.

Overall, in the research community there is no consensus on whether devel-
opers should use disciplined annotations. Previous studies are either strictly

Title Suppressed Due to Excessive Length 3

based on developers’ opinions or on a limited set of conventional metrics re-
lated to code comprehension, such as time and accuracy. There are not always
observable differences in applying fine-grained refactorings using conventional
metrics, and the use of #ifdef directives is often employed in a fine-grained
program context (i.e., it is attached to one or a few statements). Opinions and
conventional measures may not reveal important nuances on the comprehen-
sion of disciplined versus undisciplined annotated code, which may also help to
better explain the benefits and drawbacks of annotation discipline. As a conse-
quence, there is a need to perform additional controlled experiments that also
enable the analysis of complementary indicators about what the developer is
doing while trying to comprehend annotated code.

This article reports an eye tracking study that evaluates whether and how
three fine-grained refactorings to discipline #ifdef annotations affect code
comprehension. We conduct a controlled experiment with 64 human subjects
majoritarily novices. We consider all the participants who know how to pro-
gram but have little experience in C programming language “novices”. The aim
is to observe how disciplined annotations influence their performance on six
tasks involving code comprehension in terms of time, accuracy, fixation du-
ration, fixation count, and regressions count. Effects on code comprehension
have been previously studied based on time and accuracy [26,37]. Fixation
duration, fixation count, and regressions count have been associated before
with visual attention and effort in code comprehension scenario [8,4,39]. We
measure these metrics in the code region in which both code versions differ
after applying the refactorings, referred to as main Area of Interest (AOI).
For this study, we selected the three refactorings most preferred by developers
to discipline annotations according to Medeiros et al. [28]. The three refac-
torings differ in various ways: Refactoring 1 〈wrapping function call〉 (R1)
duplicates a token in a function call to wrap only entire statements with pre-
processor directives. Refactoring 2 〈undisciplined if conditions〉 (R2) resolves
undisciplined directives surrounding boolean expressions by defining a fresh
variable to maintain the statement’s conditions. Refactoring 3 〈alternative if
statements〉 (R3) uses an alternative if statement also defining a fresh variable
to keep the statement’s condition. We explain these differences with examples
in Section 4.5.

In our study, we found that after applying R1 or R3, the total time spent
in the AOI, fixation duration, fixation count, and regressions count were sta-
tistically significantly reduced. After applying R3, also the number of answers
submitted to solve the tasks statistically significantly reduced. Even though for
R2 we observed a statically significant increase in time in the AOI, it did not
result in statically significant differences in fixation duration, fixation count,
and regressions count, therefore, the same amount of visual effort has been
observed for this refactoring. Notably, our study setup reveals some nuances
otherwise undetected by conventional code metrics. For instance, one of the
refactorings adds one extra variable and two extra lines of code, which is only
a small impact on the metric Lines of Code (LOC), but it correlated with
reductions in AOI of 46.9% in the time, 44.7% in the fixation duration, 48.4%

4 José Aldo Silva da Costa et al.

in the fixation count, and 60.5% in the regressions count. Overall, our results
indicate that, when a novice applies R1 or R3, she solves the task faster and
with less visual effort. In addition, applying R3 correlated with improvements
in the accuracy of her answers.

In summary, this study makes the following key contributions:

– We present a controlled experiment using eye tracking with 64 novices in
the C programming language to evaluate three refactorings that discipline
#ifdef annotations in C programs.

– Moreover, we discuss methodological perspectives and findings not ob-
served in previous studies.

This article is organized as follows: Section 2 provides a motivating exam-
ple. Section 3 presents the study definition, then Section 4 presents the study
methodology. Section 5 presents the obtained results, and Section 6 discusses
a qualitative interview with the novices. Section 7 discusses the threats to va-
lidity, Section 8 relates our work to others, and finally, Section 9 concludes the
study.

2 Motivating Example

The C preprocessor is often used by developers to deal with code portability
and variability. Preprocessor directives such as #ifdef and #endif annota-
tions are used as a mechanism for conditional compilation so that a piece of
software can operate in different application scenarios [27]. Annotations with
preprocessor directives can be disciplined or undisciplined.

For instance, Figure 1(a) shows a code snippet containing an undisciplined
annotation. The annotation starts at Line 1 and wraps only the if statement in
Lines 2 and 4 without their opening and closing brackets. Figure 1(b) presents
the same code snippet but using a disciplined annotation. Liebig et al. [25] have
shown that both kinds of annotations are present in a number of configurable
systems. A number of refactorings has been proposed to change disciplined and
undisciplined annotations [28,18]. For instance, there is a refactoring [28] that
allows us to convert the code snippet presented in Figure 1(a) to Figure 1(b).

Despite studies and discussions, it is difficult to reliably tell whether disci-
plined or undisciplined annotations improve code comprehension. For instance,
both code snippets presented in Figure 1 have almost the same values for code
metrics such as LOCs. Malaquias et al. [26] recommend avoiding undisciplined
annotations because they are more time-consuming and error-prone. Schulze
et al. [37] conclude that there is no difference between disciplined and undis-
ciplined annotations regarding time and accuracy. Fenske et al. [16] conclude
that there is a difference between developers’ perception and performance re-
garding annotations in C language.

To shed light on this issue, we aim to use an eye tracking camera to analyze
how disciplining annotations impacts code comprehension using a different
perspective not considered in other studies [26,37,18]. An eye tracking camera

Title Suppressed Due to Excessive Length 5

1 #ifdef OPENSSL_SYS_VMS
2 if (access() != 0)
3 #else
4 if (outdir != 0)
5 #endif
6 {
7 // Lines of code here..
8 }

(a) With undisciplined annotation

1 int test;
2 #ifdef OPENSSL_SYS_VMS
3 test = access() != 0;
4 #else
5 test = outdir != 0;
6 #endif
7 if (test){
8 // Lines of code here..
9 }

(b) With disciplined annotation

Fig. 1: Code snippets adapted from OpenSSL with undisciplined and disci-
plined annotations.

consists of equipment tracking participants’ eyes movements while they are
performing a task [20]. It has been used in a variety of fields including source
code reading and comprehension [14,7,48]. The data captured by the camera
allow researchers to access where, when, and for how long a subject is looking
at a screen, thus, the most common metrics evaluate how much subjects fixate
and how they switch between distinct areas [32,7,39]. Researchers can then
infer how much visual attention is given to specific elements on a screen and
thus study the visual effort in code comprehension [14,13,4]. This way, in
addition to time and accuracy, in our study, we investigate the impact of these
annotations on the visual effort by measuring the fixation duration, fixation
count, and regressions count.

3 Study Definition

In this section, we present the study definition following the Goal-Question-
Metrics approach [2]. We analyze three refactorings for C programs that disci-
pline #ifdef annotations for the purpose of understanding whether disciplined
annotations correlate with improvements with respect to code comprehension
from the point of view of novices in the C programming language in the context
of tasks extracted from real projects.

With this goal in mind, we address the following research questions:

– RQ1: To what extent do disciplined annotations affect task com-
pletion time? To answer this question, we measure total time duration
novices need to solve a “specify the correct output” task with three evalu-
ated refactorings. In addition, we measure the time the participants spend
in specific regions in the task. Our null hypothesis (H1) is that there is
no difference between disciplined and undisciplined annotations regarding
time.

– RQ2: To what extent do disciplined annotations affect task accu-
racy? To answer this question, we measure the number of answers novices

6 José Aldo Silva da Costa et al.

submit until solving the task with three evaluated refactorings. Our null
hypothesis (H2) is that there is no difference between disciplined and undis-
ciplined annotations regarding number of answer submissions.

– RQ3: To what extent do disciplined annotations affect visual ef-
fort? In the code domain, longer fixations have been associated with sub-
stantial increase in demands of attentiveness [8]. Crosby et al. [13] have
shown that there is a correspondence between fixations and attention fo-
cus, suggesting validity of immediacy and eye mind theory, also in code do-
main. The results of those studies imply that longer fixations indicate more
attention and consequently more visual effort. Another fixation-based met-
ric, the fixation count ignores the fixation duration and considers only the
total number of fixations in a particular area. This metric associates with
cognitive and visual effort. For instance, higher number of fixation indi-
cates longer processing time to understand code phrases [4], more attention
to complex code [13], and more visual effort to recall the name of identi-
fiers [41]. Moreover, regarding eye tracking metrics, we may have backward
eye movements of any length over the stimuli called regressions [7]. Accord-
ing to Sharafi et al. [39], regressions can be used to measure visual effort.
The linearity of natural language and code reading have been measured
before using the regression rate in code domain [7].
– RQ3.1: To what extent do disciplined annotations affect fix-
ation duration? To answer this question, we measure the fixation
duration of the novices while solving the task with three evaluated
refactorings. Our null hypothesis (H3.1) is that there is no difference
between disciplined and undisciplined annotations regarding fixation
duration.

– RQ3.2: To what extent do disciplined annotations affect fixa-
tions count? To answer this question, we measure the fixation count
of the novices while solving the task with three evaluated refactorings.
Our null hypothesis (H3.2) is that there is no difference between disci-
plined and undisciplined annotations regarding fixation count.

– RQ3.3: To what extent do disciplined annotations affect re-
gressions count? To answer this question, we measure the total num-
ber of regressions. Considering that the code writing follows a writ-
ing system represented by a left-to-right and top-to-bottom pattern, to
measure regressions, we compute the number of gaze transitions with
direction opposed to the writing system, from right to left and bottom
to top. Our null hypothesis (H3.3) is that there is no difference between
disciplined and undisciplined annotations regarding regressions count.

4 Methodology

In this section, we present the methodology of our study. We present the
pilot study (Section 4.1), experiment phases (Section 4.2), participants (Sec-
tion 4.3), treatments (Section 4.4), evaluated refactorings (Section 4.5), tasks

Title Suppressed Due to Excessive Length 7

(Section 4.6), eye tracking instrumentation (Section 4.7), and finally the anal-
ysis (Section 4.8).

4.1 Pilot Study

Before conducting the actual experiment (see Section 4.2), we conducted a
pilot study with four participants aiming at evaluating the experiment design,
tasks to be used, and setup of the eye tracker. In the pilot study, we could
test, adjust, and validate the material used, such as background form, code
font size, font style, spaces between the lines of code, and indentation. We also
adjusted environment settings, lights, and chair. For instance, fixing the chair
allowed to improve data capturing, eliminate noise, and improve data quality.
We do not take the results of the pilot study into account in the analysis.

The pilot study allowed us to refine our experiment design, which consists
of five phases: (1) Questionnaire, (2) Tutorial, (3) Warm-up, (4) Tasks, and
(5) Interview. We then estimated an average of around 50 minutes for each
participant to complete all phases. Next, we describe these phases in detail.

4.2 Experiment Phases

First, we chose a quiet room to minimize distractions and with typical indoor
fluorescent bulbs for the experiment. As the participants entered the room, we
explained what data are captured by the camera. We then asked him/her to
fill out a consent form and another form with questions related to program-
ming background experience, experience with C language and implementing
variability with #ifdef annotations. We provided the participants with chairs
without wheels, leaning or swivel capability positioned 45–60 cm distant from
the screen. In the experiment environment, we stayed close to the participant,
but we did not encourage conversation while the participant was performing a
task. Second, we presented a tutorial on variability implementation explaining
how #ifdefs work and on basic concepts of conditional compilation. In addi-
tion, we explained basic concepts of the C programming language. We did not
mention the words “disciplined” or “undisciplined” to the participants.

Third, we illustrated the nature of the experiment through a simple warm-
up task in which we asked the participants to specify the output given the
input. This task was not considered in the analysis of the experiment. We
used the eye-tracking camera in the warm-up task so that the participants got
comfortable with the equipment and the study setup. We asked the participant
to close eyes for two seconds before and after solving the task. This allowed us
to know exactly when the task started and ended by observing the timestamp.
We asked the participants to verbally provide the output of the code, which is
an approach adopted by other studies as well [42,43,21]. We provided real-time
feedback by emitting a distinct sound corresponding to whether the answer
was correct. If the answer was incorrect, participants could choose to keep

8 José Aldo Silva da Costa et al.

U D

D U

1

2

ST1

Square 1

U D

D U

3

4

Square 2

…
U D

D U

31

32

Square 16

ST1 = Set of Tasks from Project 1 ST2 = Set of Tasks from Project 2

ST2
ST1 ST2 ST1 ST2

Fig. 2: Design of experiment with Latin Squares for first phase with 32 partici-
pants with projects P1 and P2. U and D refer to undisciplined and disciplined
annotation tasks, respectively. The second phase follows the same design with
other 32 participants and projects P3 and P4.

trying submitting more answers until getting the correct one, if they felt free
to do so. They also had the option of quitting at any time without having to
provide any reasons for that.

Fourth, we ran the actual experiment with six tasks. We used the Latin
Square approach [6] to ensure that every participant was exposed to each
treatment only once and to ensure that the same participant answered the
same task only once, avoiding learning effect. Thus, we randomly assigned
participants to treatments in the cells of each square as depicted in Figure 2.
The comparison in further analysis occurs across the squares by gathering all
participants who answered the same task.

Fifth, once a participant finished all the tasks, we conducted a semi-
structured interview to obtain qualitative feedback on how they approached
the tasks. We asked the participants three questions:

– How did you find the output? What strategy did you use?
– How difficult was it to find the output: very easy, easy, neuter, difficult, or

very difficult?
– What were the difficulties, if any?

When answering the third question, we asked the participants to point out
in the task the code locations where they had difficulties. This strategy helped
us to collect qualitative feedback, and we could observe whether their diffi-
culties matched the fixation duration, the fixation count, and the regressions
count.

In some cases, we had to calibrate the camera twice or thrice until we
gained confidence that the data captured by the camera could be reliable/use-
ful or that we were capable of getting the data corrected. Camera calibration
consists of an automatic procedure in which the participant is asked to look
at specific locations on the screen and, during that, the camera’s integrated
system customizes captured data according to each participant’s eye charac-
teristics. The camera indicates when calibration is successfully done.

Title Suppressed Due to Excessive Length 9

In addition, we were careful with environment aspects and the swivel func-
tion of the chair, so that participants’ eyes could remain calibrated and the
data could not suffer from external noise. Despite these measures, it was still
difficult to obtain perfect data given camera limitations and some participants’
aspects. Thus, we had to perform data correction by slightly shifting chunks
of fixations up or down. We discuss this strategy and their effects in the threat
to validity section (see Section 7.1). We provide a replication package with the
data collected, tasks, and other materials [1].

4.3 Participants

We performed the study with 64 participants divided in two phases of 32 par-
ticipants each. In total, we had 42 undergraduates, 11 MSc. students, 8 PhD.
students, and 3 postdocs. Regarding experience with programming languages,
40 participants reported having experience with C for less than six months. In
addition, 14 reported one year or less, 9 from one year to three years, and 1
with more than three years. Regarding their experience, we consider “novices”
all the participants who know how to program but have little experience specif-
ically with C programming language, which corresponds to all participants in
the study except for 10. All participants reported having experience with an-
other programming language, such as Java. On a scale from very inexperienced
(1) to very experienced (5), the median answer was experienced (4). We asked
about Java because it is a common practice to teach Java in computer science
courses where the study was conducted, however, it could be any other pro-
cedural language. Participants were invited mainly through e-mails and text
messages that suggested them to respond by communicating their availability.
In addition, we also met some participants in person and invited them.

4.4 Treatments

We expose each participant to three disciplined (D) and three undisciplined
(U) annotated tasks as seen in Figure 3, which results in six tasks (T1-T6)
for each participant. The same participant does not solve the same disciplined
and undisciplined annotated task to avoid learning effect. For that, we have
two projects (P1 and P2) which comprehend similar but distinct tasks with
the same refactorings instantiated or, in other words, a distinct version of the
same task with similar structure but involving distinct variables, arithmetic
operations, and outputs. Figure 3 depicts the first phase. The second phase
is similar with the same refactorings but two other projects. We consider this
study as between-subjects in the sense that the same participant does not
solve the same task in both disciplined and undisciplined annotations [10]. In
Figure 4, we present an example of the distribution of the participants, tasks,
and refactorings according to the projects.

In the first phase, 32 participants solve three tasks with disciplined annota-
tions from three distinct refactorings of P1, and three tasks with undisciplined

10 José Aldo Silva da Costa et al.

T1 R1 P1 Specify the Output

UT2 R2 P1 Specify the Output

T3 R3 P1 Specify the Output

T4 R1 P2 Specify the Output

DT5 R2 P2 Specify the Output

T6 R3 P2 Specify the Output

U D

D U

ST1 ST2

T1 R1 P1 Specify the Output

DT2 R2 P1 Specify the Output

T3 R3 P1 Specify the Output

T4 R1 P2 Specify the Output

UT5 R2 P2 Specify the Output

T6 R3 P2 Specify the Output

1

2

Fig. 3: Structure of the experiment in terms of experimental units for the
first phase of the study. There are six tasks (T1–T6) distributed in two sets
of tasks (ST1 and ST2), with R1 〈wrapping function call〉, R2 〈undisciplined
if conditions〉, and R3 〈alternative if statements〉, and two projects (P1 and
P2).

₢ʋ

int function(value_A, value_B)

{

 int total = 0;

 total = (value_A*value_B);

 total = total/2;

 return total;

}

#define MACRO

void main(void) {

 int value;

 value = function(2

 #ifdef MACRO

 , 10

 #else

 , 20

 #endif

);

 printf("%d", value);

}

int function(value_A, value_B)

{

 int result = 0;

 result = (value_B-value_A);

 result = result + 20;

 return result;

}

#define MACRO

void main(void) {

 int output;

 output = function(3

 #ifdef MACRO

 , 15

 #else

 , 11

 #endif

);

 printf("%d", output);

}

int function(value_A, value_B)

{

 int total = 0;

 total = (value_A*value_B);

 total = total/2;

 return total;

}

#define MACRO

void main(void) {

 int value;

 #ifdef MACRO

 value = function(2, 10);

 #else

 value = function(2, 20);

 #endif

 printf("%d", value);

}

#define MACRO

void main(void) {

 int status, total = 0;

 int extra = 0;

 total = 10;

 if(total > 9

 #ifdef MACRO

 && extra == 1

 #endif

)

 status = 1;

 else

 status = 0;

 printf("%d", status);

}

#define MACRO

void main(void) {

 int value, result = 0;

 int minimum = 1;

 result = (3 * 4)/2;

 if(result < 10

 #ifdef MACRO

 && minimum == 2

 #endif

)

 value = 0;

 else

 value = 1;

 printf("%d", value);

}

#define MACRO

void main(void) {

 int status, total = 0;

 int extra = 0;

 total = 10;

 int test = (total > 9);

 #ifdef MACRO
 test = (test == 1) && (extra ==

1);

 #endif

 if(test == 1)

 status = 1;

 else

 status = 0;

 printf("%d", status);

}

#define MACRO

void main(void) {

 int value, result = 0;

 int minimum = 1;

 result = (3 * 4)/2;

 int test = (result < 10);

 #ifdef MACRO
 test = (test == 1) && (minimum ==

2);

 #endif

 if(test == 1)

 value = 0;

 else

 value = 1;

 printf("%d", value);

}

void main(void) {

 int output;

 int value_A = 0;

 int value_B = 0;

 #ifdef MACRO

 if(value_A == 1)

 #else

 if(value_B == 0)

 #endif

 output = 1;

 else

 output = 0;

 printf("%d", output);

}

void main(void) {

 int status;

 int value_A = 0;

 int value_B = 0;

 #ifdef MACRO

 if(value_A != 0)

 #else

 if(value_B != 1)

 #endif

 status = 0;

 else

 status = 1;

 printf("%d", status);

}

void main(void) {

 int output;

 int value_A = 0;

 int value_B = 0;

 int test;

 #ifdef MACRO

 test = (value_A == 1);

 #else

 test = (value_B == 0);

 #endif

 if(test == 1)

 output = 1;

 else

 output = 0;

 printf("%d", output);

}

void main(void) {

 int status;

 int value_A = 0;

 int value_B = 0;

 int test;

 #ifdef MACRO

 test = (value_A != 0);

 #else

 test = (value_B != 1);

 #endif

 if(test == 1)

 status = 0;

 else

 status = 1;

 printf("%d", status);

}

int function(value_A, value_B)

{

 int result = 0;

 result = (value_B-value_A);

 result = result + 20;

 return result;

}

#define MACRO

void main(void) {

 int output;

 #ifdef MACRO

 output = function(3, 15);

 #else

 output = function(3, 11);

 #endif

 printf("%d", output);

}

U
T1 - R1 - P1 T2 - R2 - P1 T3 - R3 - P1

D
T1 - R1 - P1 T2 - R2 - P1 T3 - R3 - P1

D
T4 - R1 - P2 T5 - R2 - P2 T6 - R3 - P2

U
T4 - R1 - P2 T5 - R2 - P2 T6 - R3 - P2

1

2

ST1 ST2

U D

D U

ST1 ST2

1

2

Fig. 4: Distribution of participants, tasks, and refactorings in two projects in
the first phase of the study. The structure of the tasks in projects P1 and
P2, before and after applying the refactoring, is similar but involves distinct
elements.

annotations from P2. Thus, each participant solves two distinct tasks, one
without applying the refactoring (undisciplined version), and another with
the refactoring applied (disciplined version). In the second phase, other 32
participants solve six tasks with three refactorings, three with undisciplined
and three with disciplined annotations, but from P3 and P4. In all them, the
participants had the task of specifying the correct output. We present an open-
ended question so that the participant could read the entire code and find the

Title Suppressed Due to Excessive Length 11

(a) (b)

(c)

Fig. 5: Refactorings R1, R2, and R3 to discipline #ifdef annotations evaluated
in this study.

output for themselves. The undisciplined versions are our baseline group, and
the disciplined ones are the treatment group.

4.5 Evaluated Refactorings

In Figure 5, we present three refactorings to discipline annotations proposed
by Medeiros et al. [28] and evaluated in our study. Each refactoring is a unidi-
rectional transformation that consists of two templates of C code snippets: the
left-hand side and the right-hand side. The left-hand side defines a template
of C code that contains undisciplined preprocessor usage. The right-hand side
is a corresponding template for the refactored code removing undisciplined
preprocessor usage. We can apply a refactoring whenever the left-hand side
template is matched by a piece of C code and when it satisfies the precondi-
tions (→). A matching is an assignment of all meta-variables in the left-hand
side and right-hand side templates to concrete values from the source code.
We highlight meta-variables using capital letters, and we use the symbol ⊕ to
represent arbitrary binary operators. Any element not mentioned in both C
code snippets remains unchanged, so the refactoring templates only show the
differences among pieces of code.

Medeiros et al. [28] surveyed 246 developers to access their preference re-
garding disciplined or undisciplined annotated code. We selected the top three
refactorings which developers most preferred to discipline annotations. More-
over, Medeiros et al. [28] showed that there are more than 2,200 opportunities

12 José Aldo Silva da Costa et al.

to apply the three refactorings in 57 out of 63 code repositories and 27 out
of 63 projects contain possibilities of applying all three refactorings, reaching
up to 2,101 opportunities. Furthermore, the three selected refactorings show
a relevant acceptance in practice. For instance, Medeiros et al. [28] submitted
six patches using R1 and all patches were accepted; five patches were submit-
ted using R2 and 80% of them were accepted; five patches were submitted
using R3 and 80% of them were accepted. In addition, Malaquias et al. [26]
submitted 31 patches using R2 and 61.2% were accepted; 63 patches using
R3 and 63.4% were accepted. We preferred to focus on evaluating a limited,
well-studied set of three refactoring types to gain more confidence about the
results instead of evaluating more refactoring types.

4.6 Tasks

The code snippets were selected as a result of mining code repositories for
commits that showed an opportunity to apply the refactorings evaluated [28].
Thus, all tasks have a template associated with real projects. For instance, R1
was applied to a task with template associated with Vim’s source code, R2
was applied to a task with template associated with Libpng’s source code, and
R3 was applied to a task with template associated with OpenSSL. Malaquias
et al. [26] have also used similar tasks in their study. We decided to use sim-
ple constructions commonly occurring in many programming languages. The
difference in lines of code between both disciplined and undisciplined versions
is two lines for R1 and R3. R2 remains with same number of lines of code.
Even though R1 in Figure 5(a) involves undisciplined returns, according to
Medeiros et al. [28], the return statement is only an example. They handle
other statements with subexpressions in the same way, such as a function call
as we have used.

There are several types of maintenance tasks, such as applying refactorings,
fixing bugs, and adding functionality. Our study focused on a type of task that
focuses on code comprehension. We assume that, to add functionality, refactor
code, and fix bugs, developers will need to at least understand the code. For
this reason and for time constraints, we only focused on this type of task. The
tasks also involved answering open-ended questions, which participants could
answer by saying out loud the resulting output without any multiple choices.

Moreover, a systematic literature review on code comprehension conducted
by Oliveira et al. [33] revealed that the majority of the studies (70%) involve
asking subjects to provide information about a program, such as to specify
the output. In addition, 83% of the retrieved studies use correctness as a
response variable and 50% use time and correctness together. We then followed
a commonly adopted approach, being aligned with the literature. Following
Bloom’s taxonomy described in their work [33], “understanding” consists of
one level of the dimension of interpretation. Most activities such as code trace
and inspections performed by subjects occur in “understanding” level followed

Title Suppressed Due to Excessive Length 13

Refactoring 1: < wrapping function call >
Undisciplined Disciplined

`
`

AOI

AOI Activated

AOI Deactivated

AOI
AOI Activated

AOI Deactivated

int function(value_A, value_B) {
 int total = 0;
 total = (value_A*value_B);
 total = total/2;
 return total;
}
#define MACRO
void main(void) {
 int value;
 value = function(2
 #ifdef MACRO
 , 10
 #else
 , 20
 #endif
);
 printf("%d", value);
}

int function(value_A, value_B) {
 int total = 0;
 total = (value_A*value_B);
 total = total/2;
 return total;
}
#define MACRO
void main(void) {
 int value;
 #ifdef MACRO
 value = function(2, 10);
 #else
 value = function(2, 20);
 #endif
 printf("%d", value);
}

(a) R1 - P1 - Undisciplined to disciplined annotations

AOI

AOI Deactivated

AOI Activated

Refactoring 2: < undisciplined if conditions >
Undisciplined Disciplined

AOI

AOI Deactivated

AOI Activated

#define MACRO
void main(void) {
 int value, result = 0;
 int minimum = 1;
 result = (3 * 4)/2;
 if(result < 10
 #ifdef MACRO
 && minimum == 2
 #endif
)
 value = 0;
 else
 value = 1;
 printf("%d", value);
}

#define MACRO
void main(void) {
 int value, result = 0;
 int minimum = 1;
 result = (3 * 4)/2;
 int test = (result < 10);

 #ifdef MACRO

 test = (test == 1) && (minimum == 2);

 #endif

 if(test == 1)

 value = 0;

 else

 value = 1;

 printf("%d", value);

}

(b) R2 - P2 - Undisciplined to disciplined annotations

Undisciplined Disciplined

Refactoring 3: < alternative if statements >

AOI

AOI Deactivated

AOI Activated

AOI

AOI Deactivated

AOI Activated

AOI Activated
AOI Activated

AOI Deactivated

AOI Deactivated

void main(void) {
 int status;
 int value_A = 0;
 int value_B = 20;
 #ifdef MACRO
 if(value_A > 0)
 #else
 if(value_B > 10)
 #endif
 status = 0;
 else
 status = 1;
 printf("%d", status);
}

void main(void) {
 int status;
 int value_A = 0;
 int value_B = 20;
 int test;
 #ifdef MACRO
 test = (value_A > 0);
 #else
 test = (value_B > 10);
 #endif
 if(test == 1)
 status = 0;
 else
 status = 1;
 printf("%d", status);
}

(c) R3 - P4 - Undisciplined to disciplined annotations

Fig. 6: Examples of six tasks from projects P1, P2, and P4, before and after
applying R1, R2, and R3.

14 José Aldo Silva da Costa et al.

by “analysis” level. Therefore, we align with them in the sense that, to evaluate
code comprehension, we elaborated code tasks to be inspected and traced for
providing the correct output.

In general, we used tasks with less than 20 lines to fit size of the screen. All
the products of the configurable system could be compiled with no syntactic
errors. We had tasks with macro enabled and disabled, and they presented
distinct outputs depending on whether macro was enabled or disabled. How-
ever, we made sure that each task of the same refactoring and same project,
whether disciplined or undisciplined version, presented the same output. Pro-
gram style followed Consolas font style, font size 18, no spaces between lines,
and eight white spaces of indentation with four white spaces from y-axis.

In Figure 6, we present three undisciplined annotated tasks and their refac-
tored versions. For instance, in Figure 6(a), AOI defines the area in which both
code versions differ. It encompasses two sub-areas, namely, AOI Activated and
AOI Deactivated. The main distinction between these two sub-areas relies on
the fact that, when macro is enabled, only one sub-area of the AOI gets ex-
ercised, which is the AOI Activated, because it contains a statement that is
activated only when macro is enabled. When macro is disabled, only one sub-
area gets activated, which is the AOI Activated. This approach allows us to
measure time and fixations inside those areas. For instance, we can observe
how much time participants spend looking at the activated area when macro
is enabled, how many times they fixate on it and for how long. Accordingly,
we can do that for the deactivated area when participants are looking at the
opposite statement when macro is enabled.

4.7 Fixation Instrumentation

Fixations can be defined as the stabilization of the eye on part of a stimulus
for a period of time [36,22]. The duration threshold typically depends on the
tasks processing demands. According to Salvucci and Goldberg [36], the dura-
tion threshold can be between 100 and 200 ms, while according to Rayner [35],
our eyes remain relatively still during fixations for about 200–300 ms. Com-
monly applied in practice, we applied a Dispersion-Based algorithm to generate
the fixations. Particularly, we used the Dispersion-Threshold Identification (I-
DT) to classify gaze samples into fixations [36]. It classifies gaze samples as
belonging to a fixation if the samples are located within a spatially region of
approximately 0.5 degrees [31]. The I-DT algorithm requires two parameters:
the dispersion threshold and the duration threshold [31]. We used a dispersion
threshold of approximately 0.5 degrees, which corresponded to 25 pixels in
our screen. For the duration threshold, we used 200 ms based on the study of
Salvucci and Goldberg [36]. The classification of data points into relevant eye
movements reduces the amount of eye tracking data to process and allows the
researcher to focus on the measures relevant to the research question.

Title Suppressed Due to Excessive Length 15

4.8 Analysis

Of all 64 participants, resulting in 384 tasks, one participant opted for not
completing two out of six tasks and another opted for not completing one
out of six tasks, resulting in three tasks not completed, which corresponds to
less than 1% of the total of tasks. We included those two participants and we
used Multivariate Imputation by Chained Equations (MICE) implemented as
a mice package in R for a multiple imputation method namely Predictive Mean
Matching (PMM) for the three tasks. The PMM method imputes univariate
missing data using predictive mean matching [23]. This approach performs
better when the sample size is sufficiently large [24], which was our case.

After data collection, we performed a statistical analysis to test our null
hypotheses. In our analysis, when the p-value was inferior to 0.05, we rejected
the null hypothesis that there was no difference between the median of the
treatments and conclude that a significant difference did exist. We tested data
distribution for normality with Shapiro [38]. Whenever the data were normally
distributed or we could normalize it, we performed the parametric t test for
two independent samples. The t test consists of an analysis method to test two
groups to see if there is a statistically significant difference between them [44,
40]. Before performing the t test, we tested whether the data satisfied another
condition besides normality of distribution of the data, which is whether the
variances of the two groups were equal [44]. For the data that could not be
normalized, we used the non-parametric test Mann-Whitney, also known as
Wilcoxon test, which compares two independent groups of samples that do
not follow a normal distribution [44,40]. In addition, since the mean value
might not be appropriate to characterize values of fixation duration or count,
because the description of the central tendency might be dependent on some
very high values [17], we computed and based our analysis on the median.
Both the analysis of the individual and combined refactorings were analyzed
using the median as a measure of central tendency.

We also used Cliff’s Delta [11] to yield the effect size. Since in most cases
our data do not follow a normal distribution, Cohen’s effect size would not
be appropriate. So, we use Cliff’s Delta. Cohen has made widely accepted
suggestions on what constitutes small and large effects [12]. For instance, ac-
cording to Cohen’s description, the effect size of 0.2 suggests a small effect, 0.5
a medium effect, and 0.8 a large effect. The negative sign of the effects implies
that the values on the treatment group (disciplined annotations) are greater
than the control group (undisciplined annotations).

5 Results

In Sections 5.1–5.6, we present the results for our research questions. In each of
these sections, when we mention statistically significant differences, we mean
that we can reject the null hypothesis for the research question being analyzed.
In Section 5.7, we summarize the results for all research questions.

16 José Aldo Silva da Costa et al.

Table 1: Summarizing the results for time completion (RQ1). Bold font rep-
resents statistically significant differences. U = undisciplined annotations; D
= disciplined annotations; PD = percentage difference; PV = p-value; ES =
effect size. Columns U and D are based on the median as a measure of central
tendency.

Task In Code In AOI In Activated Areas In Deactivated Areas
U

(sec)
D

(sec)
PD
% PV ES

U
(sec)

D
(sec)

PD
% PV ES

U
(sec)

D
(sec)

PD
% PV ES

U
(sec)

D
(sec)

PD
% PV ES

R1 34.1 32.5 ↓5.2 0.14 n/a 12.7 9.7 ↓23.8 0.004 -0.29 1.9 2.7 ↑42.0 0.08 0.29 1.7 2.0 ↑11.8 0.24 n/a
R2 41.3 51.4 ↑24.6 0.01 0.23 25.2 36.9 ↑47.6 0.01 0.24 3.4 3.1 ↓8.4 0.65 n/a 1.7 1.4 ↓16.5 0.41 n/a
R3 39.4 22.5 ↓42.4 10-5 -0.44 29.1 15.4 ↓46.9 10-5 -0.44 6.3 3.1 ↓51.1 7x10-7 -0.49 3.1 1.2 ↓59.4 2x10-9 -0.60
All 38.1 33.7 ↓12.5 0.01 -0.14 20.6 16.9 ↓20.0 0.02 -0.13 3.4 3.0 ↓13.7 0.18 n/a 2.2 1.6 ↓23.4 0.001 -0.18

5.1 RQ1: To what extent do disciplined annotations affect task completion
time?

After applying R1 〈wrapping function call〉 or R3 〈alternative if statements〉,
novices exhibited faster task completion (see Table 1). We observed statisti-
cally significantly reductions by 23.8% and 46.9% in the time they spent in
AOI, respectively. Thus, they spend less time in AOI in Figure 6(a) and Fig-
ure 6(c) after applying R1 or R3. After applying R3, we observed a statistically
significant reduction by 42.4% in the time they spent in whole code. Applying
R3 correlated with a reduction in the time novices spent in both activated
and in deactivated areas by 51.1% and 59.4%, respectively. They spend less
time in AOI Activated and AOI Deactivated areas in Figure 6(b), both right
and left-hand sides. We observed a statistically significant increase by 47.6%
in time novices spent in AOI after applying R2 〈undisciplined if conditions〉,
which means that they spent more time in AOI in Figure 6(b), right-hand
side. It also correlated with a slowdown in their task completion by increasing
the time they spent on whole code by 24.6% with R2 applied. Thus, applying
R1 or R3 correlated with improvements in task completion time for novices.
However, after applying R2, we cannot observe the same effect.

Combined, after applying R1, R2, and R3, novices exhibited faster task
completion (see Table 1). We observed a statistically significant reduction by
20% in the time they spent in AOI after applying R1, R2, and R3 combined.
Combined, the application of refactorings also correlated with a reduction in
the time they spent in the whole code by 12.5%. Thus, applying R1, R2, and R3
combined correlated with improvements in task completion time for novices.

We also analyzed the time outside AOI and we found a statistically signif-
icant difference only after applying R3. Since R3 showed differences in time
both inside and outside AOI, we analyzed the whole code. After applying R3,
we observed a statistically significant reduction in time spent in the whole
code. Therefore, we focus on presenting first the analysis of the AOI followed
by the analysis of the whole code.

Title Suppressed Due to Excessive Length 17

Table 2: Summarizing the results for accuracy (RQ2). Bold font represents
statistically significant differences. U = undisciplined annotations; D = disci-
plined annotations; PD = percentage difference; PV = p-value; ES = effect
size. Columns U and D are based on the median as a measure of central ten-
dency.

Task Submissions

U D
PD
% PV ES

R1 1.0 1.0 n/a 0.37 n/a
R2 1.0 1.0 n/a 0.18 n/a
R3 1.0 1.0 n/a 0.03 -0.15
All 1.0 1.0 n/a 0.43 n/a

Finding 1: In our study, after applying R1 or R3 in isolation, the novices
exhibit faster task completion. Faster task completion is also exhibited by
the novices after applying R1, R2, and R3 in combination.

5.2 RQ2: To what extent do disciplined annotations affect task accuracy?

After applying R3, novices provide more correct answers. Although the median
number of submissions remained the same, we realize that, by observing the
box-plot in Figure 7(c), the data is less spread when R3 was applied, which
can explain the observed differences. While they both present the same median
number of submissions, after applying R3 (see Table 2), the mean number of
submissions decreased from 1.25 to 1.20. Thus, applying R3 correlated with
improvements in the accuracy of the answers submitted by the novices. Com-
bined, we did not find differences in accuracy after applying R1, R2, and R3.

Finding 2: In our study, after applying R3 in isolation, the novices pro-
vide more correct answers. No differences were observed after applying
R1, R2, and R3 in combination.

5.3 RQ3.1: To what extent do disciplined annotations affect fixation
duration?

After applying R1 or R3, novices exhibit a reduction in the fixation duration
in AOI (see Table 3). We observed statistically significant reductions by 25%
and 44.7% in the duration of the fixations in AOI after applying R1 and R3,
respectively. This correlation implies that novices make shorter fixations in
AOI in Figure 6(a) and Figure 6(c) after applying R1 or R3. In the whole
code, novices also exhibit a reduction in the fixation duration after applying
R3. We observed a statistically significant reduction by 37.2% in the duration
of the fixations. Thus, applying R1 or R3 correlated with a reduction in the
fixation duration in the AOI for novices.

18 José Aldo Silva da Costa et al.

Table 3: Summarizing the results for duration of fixations (RQ3.1). Bold font
represents statistically significant differences. U = undisciplined annotations;
D = disciplined annotations; PD = percentage difference; PV = p-value; ES =
effect size. Columns U and D are based on the median as a measure of central
tendency.

Task In Code In AOI In Activated Areas In Deactivated Areas
U

(sec)
D

(sec)
PD
% PV ES

U
(sec)

D
(sec)

PD
% PV ES

U
(sec)

D
(sec)

PD
% PV ES

U
(sec)

D
(sec)

PD
% PV ES

R1 15.8 14.8 ↓11.2 0.15 n/a 6.3 4.7 ↓25.0 4x10-3 -0.27 1.0 1.4 ↑39.8 0.17 n/a 0.8 0.9 ↑17.4 0.70 n/a
R2 23.6 28.6 ↑22.6 0.20 n/a 16.0 20.6 ↑28.2 0.20 n/a 1.9 1.7 ↓7.2 0.75 n/a 0.9 1.0 ↑8.4 0.29 n/a
R3 19.6 12.3 ↓37.2 10-4 -0.41 15.4 8.5 ↓44.7 6x10-5 -0.42 3.7 1.7 ↓53.2 6x10-6 -0.46 1.9 0.6 ↓65.6 10-8 -0.57
All 20.2 16.1 ↓20.8 0.01 -0.15 12.2 8.6 ↓28.5 10-3 -0.16 1.8 1.5 ↓16.4 0.02 -0.13 1.1 0.7 ↓31.5 10-3 -0.18

After applying R1, R2, and R3, novices also exhibit a reduction in the
fixation duration in AOI. We observed a statistically significant reduction by
28.5% in the duration of the fixations in AOI after applying R1, R2, and R3.
Combined, the application of refactorings also correlated with a reduction in
the duration of the fixations in the whole code by 20.8%. Thus, applying them
combined correlated with a reduction in the fixation duration both in the AOI
and in the whole code for novices.

Finding 3: In our study, after applying R1 or R3 in isolation, the novices
exhibit a reduction in the fixation duration in the AOI. A reduction in
the fixation duration in the AOI is also exhibited by the novices after
applying R1, R2, and R3 in combination.

5.4 RQ3.2: To what extent do disciplined annotations affect fixation count?

After applying R1 or R3, novices exhibit a reduction in the fixation count in
AOI (see Table 4). We observed statistically significant reductions by 17.5%
and 48.4% in the number of the fixations in AOI after applying R1 and R3,
respectively. This correlation implies that novices make fewer fixations in AOI
in Figure 6(a) and Figure 6(c) after applying R1 or R3. In the whole code,
novices also exhibit a reduction in the fixation count after applying R3. We
observed a statistically significant reduction by 39.1% in the number of the
fixations. Thus, applying R1 or R3 correlated with a reduction in the fixation
count in the AOI for novices.

After applying R1, R2, and R3, novices also exhibit a reduction in the fix-
ation count in AOI. We observed a statistically significant reduction by 26.7%
in the number of fixations in AOI after applying R1, R2, and R3. Combined,
the application of refactorings also correlated with a reduction in the number
of fixations in the whole code by 22.4%. Thus, applying them combined corre-
lated with a reduction in the fixation count both in the AOI and in the whole
code for novices.

Title Suppressed Due to Excessive Length 19

Table 4: Summarizing the results for fixation count (RQ3.2). Bold font rep-
resents statistically significant differences. U = undisciplined annotations; D
= disciplined annotations; PD = percentage difference; PV = p-value; ES =
effect size. Columns U and D are based on the median as a measure of central
tendency.

Task In Code In AOI In Activated Areas In Deactivated Areas

U D
PD
% PV ES U D

PD
% PV ES U D

PD
% PV ES U D

PD
% PV ES

R1 49.0 45.0 ↓11.2 0.12 n/a 20.0 16.5 ↓25.0 0.004 -0.28 3.0 4.0 ↑39.8 0.03 -0.14 3.0 3.5 ↑17.4 0.48 n/a
R2 68.5 85.0 ↑24.0 0.15 n/a 46.0 59.0 ↑28.2 0.12 n/a 5.5 4.5 ↓7.2 0.14 n/a 3.0 2.5 ↑8.42 0.83 n/a
R3 60.0 36.5 ↓37.2 5x10-5 -0.42 47.5 24.5 ↓44.7 10-5 -0.43 11.0 5.0 ↓53.2 6x10-7 0.24 6.0 2.0 ↓65.6 5x10-9 -0.09
All 61.5 48.0 ↓20.8 9x10-3 -0.15 34.5 25.5 ↓28.5 4x10-3 -0.16 6.0 5.0 ↓16.4 0.03 0.05 4.0 2.5 ↓31.5 10-3 -0.05

Finding 4: In our study, after applying R1 or R3 in isolation, the novices
exhibit a reduction in the fixation count in the AOI. A reduction in the
fixation count in the AOI is also exhibited by the novices after applying
R1, R2, and R3 in combination.

5.5 RQ3.3: To what extent do disciplined annotations affect regressions
count?

Since we are interested in transitions, we focused this analysis on the AOI,
which comprises a few lines of code together, and on the whole, comprising
all lines of code together, leaving out activated and deactivated areas. Notice
that our tasks follow the left-to-right and top-to-bottom writing system and
have no loops. Thus, a regression is a transition with an opposed direction
in this writing system. After applying R1 or R3, novices exhibit a reduction
in the regressions count in AOI (see Table 5). We observed statistically sig-
nificant reductions by 33.3% and 60.5% in the number of the regressions in
AOI after applying R1 and R3, respectively. It correlates with improvements
in the number of regressions in the AOI in Figure 6(a) after applying R1, and
in Figure 6(c) after applying R3. In other words, the novices read the code
33.3% and 60.5% more often against the writing system before R1 and R3 were
applied, respectively. In the whole code, novices also exhibit a reduction in the
regressions count after applying R3. We observed a statistically significant re-
duction by 50% in the number of regressions. Thus, applying R3 correlated
with alleviating the need of going back to the same or to previous lines of the
code in AOI for novices from the regressions count perspective.

After applying R1, R2, and R3, novices exhibit a reduction in the regres-
sions count in the AOI. We observed a statistically significant reduction by
36% in the number the regressions in the AOI after applying R1, R2, and R3.
Combined, the application of the refactorings also correlated with a reduction
in the number of regressions in the whole code by 24%. Thus, applying them
combined correlated with alleviating the need of going back to the same or to

20 José Aldo Silva da Costa et al.

Table 5: Summarizing the results for regressions count (RQ3.3). Bold font
represents statistically significant differences. U = undisciplined annotations;
D = disciplined annotations; PD = percentage difference; PV = p-value; ES =
effect size. Columns U and D are based on the median as a measure of central
tendency.

Task In Code In AOI

U D
PD
% PV ES U D

PD
% PV ES

R1 21.0 18.0 ↓14.2 0.09 n/a 6.0 4.0 ↓33.3 6x10-4 -0.34
R2 30.0 36.0 ↑20.0 0.25 n/a 18.0 20.0 ↑11.1 0.20 n/a
R3 26.0 13.0 ↓50.0 9x10-6 -0.46 19.0 7.5 ↓60.5 10-6 -0.49
All 25.0 19.0 ↓24.0 10-3 -0.18 12.5 8.0 ↓36.0 4x10-4 -0.20

previous lines of code in the whole code.

Finding 5: In our study, after applying R1 or R3 in isolation, the novices
exhibit a reduction in the regressions count in the AOI. A reduction in
the regressions count in the AOI is also exhibited by the novices after
applying R1, R2, and R3 in combination.

Table 6: Summary of the null-hypotheses’ statuses in isolated refactorings in
the AOIs. The effect sizes are an approximation based on Cohen’s descrip-
tion [12].

RQ Refact. Null-Hypothesis p-value Status Effect size
RQ1 R1 No difference in time between treatments < 0.05 Rejected Small
RQ2 R1 No difference in accuracy between treatments > 0.05 Not Rejected —
RQ3.1 R1 No difference in fixation duration between treatments < 0.05 Rejected Small
RQ3.2 R1 No difference in fixation count between treatments < 0.05 Rejected Small
RQ3.3 R1 No difference in regressions count between treatments < 0.05 Rejected Small
RQ1 R2 No difference in time between treatments < 0.05 Rejected Small
RQ2 R2 No difference in accuracy between treatments > 0.05 Not Rejected —
RQ3.1 R2 No difference in fixation duration between treatments > 0.05 Not Rejected —
RQ3.2 R2 No difference in fixation count between treatments > 0.05 Not Rejected —
RQ3.3 R2 No difference in regressions count between treatments > 0.05 Not Rejected —
RQ1 R3 No difference in time between treatments < 0.05 Rejected Medium
RQ2 R3 No difference in accuracy between treatments < 0.05 Rejected Small
RQ3.1 R3 No difference in fixation duration between treatments < 0.05 Rejected Medium
RQ3.2 R3 No difference in fixation count between treatments < 0.05 Rejected Medium
RQ3.3 R3 No difference in regressions count between treatments < 0.05 Rejected Medium

5.6 RQ3: To what extent do disciplined annotations affect visual effort?

In our study, the visual effort has been measured by three eye tracking based
metrics, namely, fixation duration, fixation count, and regressions count. Con-
sidering the results of the three research questions addressing each of them,

Title Suppressed Due to Excessive Length 21

Time in AOI Submissions Fixation duration in AOI Fixation count in AOI Regressions count in AOI

D U D U D U D U D U

0

20

40

0

50

100

150

0

10

20

30

40

50

1.0

1.5

2.0

2.5

3.0

0

20

40

60

80

Q
ua

nt
ity

(a) Comparing Statistics for R1

Time in AOI Submissions Fixation duration in AOI Fixation count in AOI Regressions count in AOI

D U D U D U D U D U

0

50

100

0

100

200

300

0

30

60

90

1.00

1.25

1.50

1.75

2.00

0

50

100

150

Q
ua

nt
ity

(b) Comparing Statistics for R2

Time in AOI Submissions Fixation duration in AOI Fixation count in AOI Regressions count in AOI

D U D U D U D U D U

0

25

50

75

0

50

100

150

200

0

20

40

60

80

1.0

1.5

2.0

2.5

3.0

0

50

100

Q
ua

nt
ity

(c) Comparing Statistics for R3

Time in AOI Submissions Fixation duration in AOI Fixation count in AOI Regressions count in AOI

D U D U D U D U D U

0

50

100

0

100

200

300

0

30

60

90

1.0

1.5

2.0

2.5

3.0

0

50

100

150

Q
ua

nt
ity

(d) Comparing Statistics for R1, R2, and R3 Combined

Fig. 7: Comparison between: Disciplined (D) and Undisciplined (U) annota-
tions for R1, R2, and R3 from an isolated and combined perspective involving
P1–P4 together.

22 José Aldo Silva da Costa et al.

we conclude that after applying R1 or R3, the novices exhibit less visual effort
in AOI. Less visual effort in AOI is also exhibited by novices after applying
R1, R2, and R3 in combination. Thus, applying R1 or R3 correlated with al-
leviating the visual effort in the AOI for novices.

Finding 6: In our study, after applying R1 or R3 in isolation, the novices
exhibit less visual effort in the AOI. Less visual effort in the AOI is also
exhibited by the novices after applying R1, R2, and R3 in combination.

5.7 Summary

In Table 6, we present the confirmation/rejection of the original null-hypotheses.
Figures 7(a)–(c) summarize total time in the AOI, number of answer submis-
sions, fixation duration in the AOI, fixation count in the AOI, and regressions
count in the AOI for R1, R2, and R3, respectively, for P1–P4 combined. Fig-
ure 7(d) summarizes the results for the mentioned metrics, however, from a
combined perspective, instead of analyzing each refactoring individually.

The greatest effects were observed after applying R3. For instance, the
effect size for R3 in RQ1, RQ3.1, RQ3.2, RQ3.3 is close to medium in AOI
(Cliff’s delta ranges from -0.42 to -0.49). In other words, the effects of applying
R3 are noticeable. The effects after applying R1 were also noticeable, but to
a smaller degree.

After applying the refactorings R1, R2, and R3, we have an addition of
40.6%, 57.3%, and 37.7% in the median number of characters in AOI, respec-
tively. After applying the refactorings, all tasks from all projects had more
characters. Even with more characters, we observed that applying R1 or R3
statistically significantly reduced the time, fixations duration, and fixations
count in AOI. In addition, after applying R3, there is a statistically signif-
icant increase in number of correct answers submitted. We did not observe
differences in these metrics after R2 applied.

6 Discussion of the Interview

In this section, we discuss the qualitative interview with the novices. Besides
analyzing their performance in solving code comprehension tasks, we analyze
how the answers provided in the interview can help us to validate, understand
quantitative results, and complement our discussion on the research questions.
In the interview, we asked the participants to describe 1) their approach used
to solve the tasks, 2) their perception on how difficult were the tasks, and 3)
what difficulties they had, if any. The participants provided a general approach
used in all solved tasks and they were free to share any particular approach
used in any specific situation. The same applied to the difficulties, where they
were encouraged to point out in the code any area where they had difficulties
with the task. With this qualitative feedback, we aimed to better understand

Title Suppressed Due to Excessive Length 23

how time, accuracy, fixation duration, fixation count and regressions count
could be better explained through a triangulation of the data.

Based on Corbin and Strauss [46], we adopted the following approach to
qualitatively code the interview: In Step 1, the first author played the inter-
viewer role analyzing each whole sentence spoken by the participant during the
interview and taking note of the major idea conveyed by this sentence, giving a
name to it. In Step 2, we read these names searching for opportunities to group
them in distinct categories. In Step 3, we categorized the names by discussing
how similar they were according to their properties, for instance, “#ifdef”
and “directive” could be in the same category, since both refer to “#ifdef.” In
Step 4, we searched for opportunities to link the categories. Given the lack of
clear connections between the categories in Step 4, we did not delve deep into
them on how they could be used to interpret our results. Thus, we based our
results and interpretation on the resulting categories.

Regarding our first question of the interview, we observed that the most
common approach adopted consisted of first checking whether the macro was
defined (37 participants). In addition, 13 participants mentioned looking at
#ifdefs directives, and, by doing so, 6 participants mentioned that they could
ignore unnecessary parts of the code. This relates to what we call activated
and deactivated areas, where, given a macro declared, only one part of the
AOI (activated area) gets exercised. Moreover, 16 participants mentioned also
first looking at the function that was on the top of the code, 8 participants
mentioned starting to read the code from the beginning, and 9 participants
mentioning reading the code in a top-down fashion. Furthermore, 9 partic-
ipants mentioned a sequential reading pattern, whereas 7 participants men-
tioned looking at the end of the code, specifically to the output, and 2 partic-
ipants mentioned a bottom-up fashion. Regardless of the order in which they
were mentioned, participants mentioned looking at key parts such as variables
(14 participants) and their assigned values (7 participants). To summarize, the
most frequent terms such as macro, function, variables, and #ifdef worked as
key elements that guided them in the execution flow of the code. Their influ-
ence on time, fixation duration, fixation count, and regressions count should be
taken in consideration when investigating code comprehension in the presence
of disciplined and undisciplined annotations.

Regarding the second question of the interview, 78% of the participants
found the tasks very easy or easy to solve on a scale of five options, namely, very
easy, easy, neuter, difficult, and very difficult. Since the tasks were somewhat
simple, these results were not surprising and confirmed the results we had
in our RQ2, regarding number of submissions, which did not present much
variation. Even though the majority mentioned that the tasks were easy, they
also mentioned having difficulties with some specific tasks.

Regarding our third question of the interview related to their possible dif-
ficulties, the most frequent ones related to specific code elements were the
following: if inside #ifdef (18 participants), boolean expressions (11 par-
ticipants), broken lines (9 participants), confusion regarding the interaction
between commands from directives and language constructs (7 participants),

24 José Aldo Silva da Costa et al.

and confusion with #ifdefs specifically (5 participants). These terms were
mentioned when referring to R1 〈wrapping function call〉, R2 〈undisciplined
if conditions〉, and R3 〈alternative if statements〉 in all projects. Other more
general terms were frequently evoked. For instance, 11 participants mentioned
that they had difficulties resulting from the fact that they did not pay as
much attention as they should, skipping important details, and 9 participants
mentioned confusion disregarding a certain pattern specifically.

According to RQ1, after applying R1 or R3, novices were able to complete
tasks faster. Approaches used to solve the tasks and difficulties reported in the
interview may shed light on some of the reasons underlying these results. For
instance, “broken lines” was reported by the novices as a factor that caused
them to face difficulties in completing the tasks. However, by applying R1,
the method’s parameters that were separated or broken became wrapped as
depicted in Figure 6(a), which may have helped them to solve tasks faster.
Similarly, the participants reported difficulties in reasoning about if inside
#ifdef and about the interaction between commands from directives and lan-
guage constructs such as if and #ifdef, #endif and else. However, by ap-
plying R3, the if statement is moved from the #ifdef body as in Figure 6(c),
which may have contributed to a faster task completion.

According to RQ2, after applying R3, novices provided more correct an-
swers. Even though after applying R3 we have the same median number of
submitted answers, we observe that the data seem more scattered in the box-
plot regarding number of submissions in Figure 7(c). Separating an if state-
ment with #ifdef annotations and placing else close to the #else seemed to
confuse the participants. Separating these terms by adding an alternative if
statement, participants seemed less confused about the correct output.

According to RQ3.1 and RQ3.2, after applying R1 or R3, novices exhibited
less attention in AOI and in the whole code by reducing both the number
of fixations and their duration. These reductions imply less effort of jumping
from one place to another in the code, which translates to less visual effort. For
instance, participants mentioned difficulties in dealing with if statement inside
#ifdef, from which we may infer an effort jumping back and forth between
those code elements, which translates to higher number of fixations. They also
mentioned confusion with else and #else, which may have contributed with
more fixations, but also longer ones focusing on those elements specifically
to make sense of them. Applying R3 separates the if body from the #ifdef
body, which may have impacted the way they concentrated their attention on
the AOI. Similarly, after applying R1, the parameters of the function that were
separate become wrapped, which impacts the number of jumps from distinct
parts of the same statement distributed over distinct lines.

Title Suppressed Due to Excessive Length 25

7 Threats to Validity

We discuss potential threats to validity: internal validity (Section 7.1), exter-
nal validity (Section 7.2), and construct validity (Section 7.3).

7.1 Internal Validity

The environment location may have influenced the participants’ attention.
Given difficulties in getting more people, we performed the experiment in seven
different rooms. However, these environments were similar in terms of being
quiet places with minimum distraction and similar lighting and temperatures.

The first author’s presence may have unintentionally influenced the data
because participants may have felt being observed. The author may also have
influenced the participants to achieve certain outcomes. To mitigate these
threats, the author minimized the interaction with the participants to let them
feel free to act and be concentrated on the tasks.

Our camera has limitations. Even carefully calibrating and re-calibrating it,
we observed that the fixation data needed some adjustments, which is a threat
resulting from the equipment. For instance, in some cases, we saw parts of the
heatmaps with red color over a blank area not touching the code but a small
adjustment was sufficient to correct these cases. In those specific cases, these
small errors were systematic meaning that all the fixations for the task needed
the same adjustment. Right after solving the tasks, we plotted a heatmap of
one task, and only when necessary, we shifted the sample points and showed
it to the participants in order to verify whether it best matched their visual
intent. In addition, two of the authors later on discussed this strategy. To
minimize the threat of the equipment, we performed a correction of the eye
tracking data in the aforementioned cases, which generated another threat.
The correction may influence the position of the gaze points, which may in-
fluence our interpretations. We chose to correct the data of some participants
because data pointing to a blank area of the code would influence our interpre-
tations leading to misunderstandings. It is worth mentioning that the median
number of pixels that we have used to correct the fixations in y-coordinate
was 10 pixels and the maximum value was 70 pixels. We did not correct x -
coordinate. In addition, the generated fixations are available in our replication
package [1].

A chair with swiveling capabilities can impair the camera of collecting data,
or even prejudicing the camera accuracy. To reduce this threat, we used chairs
without swiveling capability. Given the difficulties in arranging the setup in
some locations, seven participants used still chair with swiveling capabilities.

The duration of the experiment may have influenced the visual effort of
the participants. The six tasks for each participant plus one for warming up
have to be taken in consideration. To minimize this threat, we have designed
simple tasks so that they could also be solved faster. The maximum amount

26 José Aldo Silva da Costa et al.

of time a participant spent on a task was 5 min and 2 seconds, and the median
time for all the tasks of all participants was 36 seconds.

We gave the option to the participants to keep trying until they answered
correctly, but they had the option of quitting at any time without having
to provide any reasons for that. We thus compared the number of trials until
they answered correctly. However, using this approach, if a participant answers
incorrectly in the first tentative, she can make more fixations or even longer
ones, with more regressions. An alternative approach would be conducting the
study such that these metrics were analyzed before they kept trying over and
over. However, in our study, this threat is minimized by the fact that 77.6%
of the 384 tasks were answered correctly in the first try.

From the total of 384 tasks, three of them were not answered, which cor-
responds to less than 1%. We used PMM method that imputes missing data
using predictive mean matching [23]. Regarding the reliability of this method,
PMM generally performed better when sample size was sufficiently large [24],
which we have confidence in our sample with more than 99% of the data.

Following the Latin Square experiment design, we have blocked the set of
tasks to control noise. In addition to performing an analysis under a combined
perspective of the tasks in all evaluated refactorings, we analyzed the refactor-
ings under an individual perspective. The extent of the impact of such violation
of the Latin Square design is not estimated. However, analyzing the data from
both perspectives, combined and individual, provides a more nuanced and
complete approach to understand the effects of the evaluated refactorings.

7.2 External Validity

We had to resort to small tasks for the purpose of fitting the code snippet
of each task onto the screen without compromising the accuracy of the data.
This may restrict the capacity of generalizing to more complex or larger tasks.
However, even in more simple code snippets, we have shown several oppor-
tunities to apply the evaluated refactorings. In addition, all our tasks have
a template associated with real projects. Medeiros et al. [28] found that 27
out of 63 C real projects contain possibilities of applying the three evaluated
refactorings together. However, we need to conduct more studies with more
complex tasks to provide evidence regarding those tasks.

Since the majority of participants in our study were novices in the C pro-
gramming language, we cannot generalize our results to more experienced
developers in C. Other studies have also investigated code comprehension
from the perspective of novices as well, revealing an interesting field to be
explored [9]. We had a total of 64 participants in our study, out of which only
10 were experienced participants. For our analysis and reported results, we
did not filter out these 10 experienced participants. To ensure that this does
not affect the validity of our results, we did a separate analysis where we com-
pared the results of considering all 64 participants to the results of considering
only the 54 novice participants. We found that the results from both groups

Title Suppressed Due to Excessive Length 27

of 64 (all participants) and 54 (only novices) participants are the same. In the
future, we need to conduct further studies with more experienced participants
to better understand if there are any differences compared to novices.

We have used code snippets written in the C language, which may restrict
the generalization capacity to other languages. To limit this threat, we have
used constructions that commonly occur in other languages, and all the par-
ticipants reported some experience with other languages, which minimized the
effect of syntax constructions.

We have performed a “specify the correct output” type of task, in which
the participant reads the code and says out loud the correct answer. Thus,
it may not generalize to other types of tasks, such as finding bugs or adding
new features. The font size or font style may have influenced the participant’s
attention. To reduce this threat, we chose a common font style as well as a size
that fitted the screen. All snippets were displayed in the same font size, black
colored, and no bold font. The number of macros may also have influenced the
visual effort of the participants, in which they had to reason about enabled
and disabled macros to understand which conditions were valid. To minimize
this threat, we used only one macro in all the tasks.

7.3 Construct Validity

Eye tracking metrics similar to the ones employed in our study have been
used in other studies for both similar and distinct purposes [30,7,43,3]. For
the purpose of investigating code comprehension, time and accuracy have been
used in isolation [37,26] and in combination with visual effort [42]. The visual
effort has been measured before by separate eye-tracking based metrics such
as fixation duration and fixation count [42,4]. In addition to fixations-based
metrics, regressions have been associated with visual effort [39].

We tried to not influence our subjects’ decisions on where to look or for
how long, but we may have done so nevertheless, which is a side effect of
inviting people to participate in an eye tracking study. We did not inform the
participants about the precise goals of the study to avoid hypothesis guessing,
but we informed that their eyes were being tracked, which may have influenced
where or how much they have looked at some regions of the code.

8 Related Work

In this section, we provide an overview of the related work. In Section 8.1, we
discuss in detail the related work that is closest to ours, and, in Section 8.2,
we discuss in detail the related work that is second closest to ours and, in
Section 8.3, we discuss the other relevant work.

28 José Aldo Silva da Costa et al.

8.1 Comparison with Medeiros et al. [28]

Medeiros et al. [28] conducted a survey with 246 experienced developers to ac-
cess their perception on the proposed refactorings. The majority of the develop-
ers reported having at least five years of experience with C preprocessors. They
sent a questionnaire to the participants with six templates presented as pairs:
on the left-hand side, they presented the original code from a real C project
and, on the right-hand side, the refactored version of the original code. They
asked the participants which version they preferred, whether the original or the
refactored one. Among the refactorings, they evaluated R1 〈wrapping function
call〉, R2 〈undisciplined if conditions〉, and R3 〈alternative if statements〉 of
our study. In their study, the rate of preferences for R1, R2 and R3 were 90.3%,
70.4%, and 64.8%, respectively.

In contrast, in our work, we have focused on novices rather than on ex-
perienced developers. The majority of the participants reported having one
year or less of experience with C programming language. In addition, we have
conducted a controlled experiment in which the novices had to solve a set
of proposed tasks. We investigated eye tracking metrics to evaluate R1, R2,
and R3 with respect to time, accuracy, fixation duration, fixation count, and
regressions count.

Thus, our study and the one conducted by Medeiros et al. [28] are distinct in
the following characteristics: research questions, experience of the developers,
tasks used, empirical method, metrics, and threats to validity. These differences
are summarized in Table 7. The differences shown in Table 7 may explain the
differences in the conclusions. However, we need to conduct further studies to
better understand the reasons for some differences.

Besides the survey, Medeiros et al. [28], submitted patches with the eval-
uated refactorings. Six patches using R1 were submitted and all patches were
accepted. Five patches were submitted using R2 and 80% of them were ac-
cepted, and five patches were submitted using R3 and 80% of them were
accepted. These results indicate a higher rate of acceptance of R1. Applying
R1 or R3 in isolation correlated with improvements in time and visual effort
in our study.

8.2 Comparison with Fenske et al. [16]

Fenske et al. [16] have conducted a controlled study involving both an ex-
periment and questionnaires with 521 experienced developers to understand
the impact of refactoring C preprocessor directives. The evaluated refactor-
ings were called discipline directive, extract alternative function, and unify
compile-time and runtime-time variability. They evaluate coarse-grained trans-
formations converting from undisciplined to disciplined annotations instead of
evaluating a single fine-grained transformation, such as the ones we evaluated
in our work (see Figure 6). Their comprehension tasks are distinct from ours
comprising larger snippets with more directives. In addition, multiple choices

Title Suppressed Due to Excessive Length 29

Table 7: Summarizing the comparison between the study conducted by
Medeiros et al. [28] and our study.

Medeiros et al. [28] Our study

Common
RQs

— —

Distinct
RQs

What is the number of possibilities to
apply the refactorings in practice?

To what extent do disciplined annota-
tions affect task completion time?

What opinion do developers have on
the catalog of refactorings in practice?

To what extent do disciplined annota-
tions affect task accuracy?

Do the refactorings of the catalog pre-
serve program behavior?

To what extent do disciplined annota-
tions affect visual effort?

Common
Findings

Developers prefer applying R1 Applying R1 correlated with improve-
ments in time and visual effort

Developers prefer applying R3 Applying R3 correlated with improve-
ments in time, accuracy, and visual ef-
fort

Distinct
Findings

Developers prefer applying R2 Applying R2 did not correlate with
improvements in time, accuracy, or vi-
sual effort

Experience Experienced developers in C program-
ming language

Novices in C programming language

Tasks Non-executable code templates Executable code snippets

Empirical
Method

Online survey with participants not
being observed

Controlled experiment with partici-
pants being observed

Metrics Subjective opinions and preferences Objective metrics: time, accuracy, fix-
ation duration, fixation count, and re-
gressions count

Threats
to
Validity

Simple code snippets, incompleteness
of catalog, programming language,
some undisciplined directives different
from the practice

Environment location, camera limita-
tions, chair setup, time for the ex-
periment, answers’ submission, sim-
ple tasks, developers’ experience, pro-
gramming language, type of task, eye
tracking metrics’ representativeness

are presented to the participants. For instance, among multiple statements
about the code, the participants had to select the correct one. Moreover, the
participants had to configure their selection so that a certain line would be ex-
ecuted. They mainly investigated how the perception of the developers aligned
with their objective of comprehension performance. According to their results,
comprehension performance worsened in terms of correctness when the partici-
pants worked on code with refactored directives. However, on their perception,
the refactored code was more comprehensible and easier to work. In contrast,
we have presented smaller snippets with one directive to the participants. We

30 José Aldo Silva da Costa et al.

have configured the directive by enabling or disabling the macro. Then, we
asked the participants an open-ended question regarding the correct output of
the snippet. In addition, we have performed a controlled experiment using eye
tracking with novices.

Thus, our study and the one conducted by Fenske et al. [28] are distinct
in the following characteristics: experience of the developers, tasks used, an-
swer submissions method, empirical method, and metrics. These differences
are summarized in Table 8 and may explain the differences in the conclusions.
However, we need to conduct further studies to better understand the reasons
for some differences.

Table 8: Summarizing the comparison between the study conducted by Fenske
et al. [16] and our study.

Fenske et al. [16] Our study

Experience Experienced developers in C pro-
gramming language

Novices in C programming language

Tasks Larger snippets with more directives Short snippets with one #ifdef

Answer
submission

Multiple options Open-ended without multiple options

Empirical
method

Online survey and experiment Controlled experiment

Metrics Subjective preferences, time, and ac-
curacy

Objective metrics: time, accuracy,
fixation duration, fixation count, and
regressions count

8.3 Comparison with other Related Work

Medeiros et al. [27] interviewed 40 developers with at least five years of ex-
perience, and conducted a survey with 202 developers with different levels
of experience regarding conditional directives usage, to understand common
problems with the C preprocessor such as code understanding, maintainability,
and error proneness. Developers affirmed that they checked only a few config-
urations of the source code when they were testing their implementations. The
study showed that C preprocessor had problems, such as faults, inconsisten-
cies, code quality, and incomplete testing, making it a “hell.” The survey and
interview focused on the perception of the developers, which included experi-
enced subjects. Differently, we conducted an eye tracking study and focused
on analyzing the performance, code comprehension, and visual attention of
novices. From this perspective, even in simple tasks, we observed that novices

Title Suppressed Due to Excessive Length 31

had difficulties to comprehend code with undisciplined annotations, mention-
ing terms such as broken lines, statements, and syntax. We observed that tasks
were easier to comprehend using the disciplined version by the correlation with
the improvements on the accuracy after applying R3.

Schulze et al. [37] conducted a controlled experiment to analyze the effect
of disciplined and undisciplined annotations on program comprehension. The
participants were undergraduates with less programming experience than ex-
perienced developers. The study addressed this topic by measuring correctness
and response time for solving a set of tasks. The results of the study did not
reveal any statistically significant differences between disciplined and undis-
ciplined annotations from a program comprehension perspective. In addition
to time and accuracy, but distinctly from their study, we have measured the
fixation duration, fixation count, and regressions count, which allowed us to
access the participant’s visual effort in solving tasks. The eye tracker allowed
us to understand code comprehension from the analysis of these additional
dimensions. Furthermore, similar to their study, the majority of the subjects
of our study consisted of undergraduates. Differently from their results, we
have shown statistically significant differences for the evaluated refactorings
with disciplined annotations, indicating that the composition of refactorings
evaluated correlated with improvements in time, fixation duration, fixation
count, and regressions count.

Malaquias et al. [26] compared undisciplined and disciplined annotations
by investigating the influence of disciplined annotations on maintenance tasks.
They performed the study with undergraduates with three to five semesters of
experience with programming. Their results showed that undisciplined anno-
tations are more time-consuming and error prone, disagreeing with Schulze et
al. [37]. For R1 or R3, the results of Malaquias et al. [26] align with ours in the
sense that disciplined annotations correlate with improvements in task com-
pletion time. In addition, disciplined annotations correlate with improvements
in accuracy after applying R3 in the context of novices. For the composition
of three evaluated refactorings, their results also align with ours for the time,
fixation duration, fixation count and regressions count perspective. Regarding
accuracy, we did not reject the null hypothesis for the number of submissions.
Notice that our tasks are simple. In our study with an eye tracker camera, we
are able to explore other dimensions besides time and accuracy, and quantify
developer’s difficulties by measuring time in specific areas, as well as effort
with visual attention.

Aiming to understand how developers debug code in the presence of code
variability, Melo et al. [30] carried out an experiment by using an eye tracker
predominantly with graduate students. All participants had Java program-
ming experience, and several of them had industrial experience. Main results
indicate that variability increases debugging time for code fragments with vari-
ability. Besides performing a distinct type of task, so called “find the bug,” they
have focused only on disciplined annotations. They observed that variability
prolongs the initial scan in the task of finding defects. We have focused on
refactorings to discipline annotations to understand how novices specify the

32 José Aldo Silva da Costa et al.

correct output. We put extra effort in minimizing potential threats regarding
eye tracker camera usage. For instance, we systematized program style with
fewer number of lines and larger size, to easy reproducibility, as well as avoided
chairs with swiveling capability, which showed potential to impact data quality.

Melo et al. [29] presented a controlled experiment predominantly with grad-
uate students. All participants had Java programming experience, and several
of them had industrial experience. They aimed to quantify the impact of vari-
ability on the time and accuracy in finding bug in configurable systems. They
only considered disciplined annotations. By exploring these dimensions, they
found that the time of bug finding decreases linearly with the degree of variabil-
ity. In addition, it is harder to identify the exact set of affected configurations
than finding the bug in the first place. They mentioned difficulties in reason-
ing about several configurations. In our study, we explore time, accuracy, and
other additional dimensions, but in another type of task. We did not present
many configuration options, only one macro enabled and disabled, and sim-
ple tasks. Even in simple tasks, we observed that it became easier to find the
correct output after applying R3, removing undisciplined annotations. In the
qualitative feedback, novices mentioned difficulties in reasoning about broken
statements, which were removed by applying refactorings.

The use of an eye tracker camera has been traditionally applied in the
context of cognitive psychology for the purpose of studying the reading and
information processing at the cognitive level [34]. For instance, using an eye
tracker, Crosby and Stelovsky [14] observed that there are differences in read-
ing source code and reading prose. However, they did not investigate refactor-
ings. We analyzed how the disciplined annotations affect the way novices read
and comprehend code.

In the programming language context, eye tracking allowed researchers to
understand a variety of tasks, such as code comprehension and code debug-
ging [32]. For instance, Sharafi et al. [43] investigated the influence of identifier
styles (camel case and underscore) on the speed and accuracy of comprehend-
ing source code. No differences regarding accuracy were observed in this con-
text. Nevertheless, results indicate a significant improvement in time and lower
visual effort with the underscore style. In our study, we considered similar
metrics—time, accuracy, fixation duration and fixation count—but in another
context. Binkley et al. [4] also studied the influence of identifier styles on code
reading and comprehension. With an eye tracker, they found that camel case
shows to be more advantageous. Likewise, we perform a comparison between
two types of code styles, namely disciplined and undisciplined annotations,
aiming to find which one is more advantageous. However, to analyze visual
effort, in addition to regressions count, we explored fixation duration and fixa-
tion count inside AOI, in the whole code, and in specific areas such as activated
and deactivated ones.

Turner et al. [47] presented a study to analyze the effect of the choice of the
programming language, namely C++ and Python, on code comprehension. The
metrics they used consisted of accuracy, time, and visual effort. The former
metric concerns to the rate one looks at buggy lines. In our work, we also

Title Suppressed Due to Excessive Length 33

cover accuracy, time, and visual effort, which we relate to fixation duration,
fixation count, and regressions count. Binkley et al. [5] studied the effect of
identifier length on the ability of programmers to recall. Their experiment’s
results suggested that longer names reduce correctness and take more time to
recall from memory. In our domain, the eye tracking metrics gave us additional
insights. Table 9 summarizes these works.

Table 9: Other related works. In column “Eye,” we refer whether eye tracking
was used or not. In column “Ann.” we specify the annotations in which U refers
to Undisciplined and D refers to Disciplined. In column “Exp.” we specify
whether the participants were experienced or not, in which “Yes” refers to
experienced and “No” refers to not experienced. In column Goal, the symbol
(∗) refers to a survey while (†) refers to a controlled experiment.

Study Eye Ann. Exp. Metrics Goal Finding

Medeiros
et al. [27]

No — Yes — Access developers’
perception on C
preprocessor usage
(∗)

Despite the criti-
cism of C prepro-
cessor, they use it
nonetheless

Schulze et
al. [37]

No U,
D

No Time and accu-
racy

Analyze the effect
of annotations on
program compre-
hension (†)

No differences be-
tween disciplined
and undisciplined
annotations

Malaquias
et al. [26]

No U,
D

No Time and accu-
racy

Analyze whether
annotation influ-
ences maintenance
tasks (†)

Undisciplined an-
notations are more
time-consuming
and error prone

Melo et
al. [30]

Yes D Yes Time, accu-
racy, fixations
and saccades

Study how develop-
ers debug with vari-
ability (†)

Debugging time in-
creases with vari-
ability

Melo et
al. [29]

No D Yes Time and accu-
racy

Analyze the impact
of variability on
metrics (†)

Time of bug finding
decreases with the
degree of variability

Ours Yes U,
D

No Time, accu-
racy, fixation
duration, fix-
ation count,
and regressions
count

Evaluate whether
R1, R2, and R3 af-
fect comprehension
and visual attention
(†)

Applying R1 or R3
correlates with re-
duction in time, fix-
ation duration, fixa-
tion count, and re-
gressions count.

9 Conclusions

In this article, we reported on a controlled experiment using an eye tracker
camera with 64 subjects who were novices in C language to evaluate the influ-
ence of three refactorings that discipline #ifdef annotations. In our results,

34 José Aldo Silva da Costa et al.

applying R1 〈wrapping function call〉 or R3 〈alternative if statements〉 corre-
lated with improvements in the time and visual effort. In addition, applying
R3, specifically, correlated with improvements in the accuracy. We do not
observe statistically significant improvements in time, accuracy, and visual
effort in our code comprehension tasks after applying R2 〈undisciplined if
conditions〉, in isolation. Instead, we observed an increase in time for R2 in
both AOIs and the whole code. We also found that applying R1, R2, and R3
in a composite perspective correlated with reductions in the total time and vi-
sual effort. There are a number of opportunities to apply them in a composite
manner in real projects [28].

As future work, we intend to evaluate other refactorings proposed by
Medeiros et al. [28]. We aim at performing experiments considering more par-
ticipants, experienced developers, as well as exploring different settings, other
types of tasks that add functionalities to the code and fix bugs, higher number
of macros, and other types of annotations. We also intend to explore larger
source code files, which can also be studied with eye tracking with the addition
of a proper tool such as iTrace [19]. This tool allows scrolling or navigation
of the content overcoming the limitation of short code snippets for the tasks.
Finally, we will consider other eye tracking metrics, such number of blinks,
scans, and other metrics based on gaze transitions.

Acknowledgments

We would like to thank the anonymous reviewers, Rafael Mello, and Rodrigo
Bonifácio for their insightful comments. This work was partially supported
by CAPES (117875 and 175956), FAPEAL (60030.0000000462/2020), CNPq
(426005/2018-0, 421306/2018-1, 309844/2018-5, 311442/2019-6, 310757/2018-
5, 427787/2018-1), and FAPDF (00193-00000926/2019-67).

References

1. José Aldo, Rohit Gheyi, Márcio Ribeiro, Sven Apel, Baldoino Fonseca, Vander Alves,
Flávio Medeiros, and Alessandro Garcia. Evaluating refactorings for disciplining #ifdef
annotations using eye tracking with novices (artifacts). At https://github.com/
josealdo/EMSE21-ifdefs-with-eye-tracking, 2021.

2. Victor Basili, G. Caldiera, and H. Rombach. The goal question metric approach. En-
cyclopedia of software engineering, pages 528–532, 1994.

3. Roman Bednarik and Markku Tukiainen. An eye-tracking methodology for charac-
terizing program comprehension processes. In Proceedings of the Symposium on Eye
Tracking Research & Applications, ETRA’06, pages 125–132, 2006.

4. Dave Binkley, Marcia Davis, Dawn Lawrie, Jonathan Maletic, Christopher Morrell, and
Bonita Sharif. The impact of identifier style on effort and comprehension. Empirical
Software Engineering, 18(2):219–276, 2013.

5. Dave Binkley, Dawn Lawrie, Steve Maex, and Christopher Morrell. Identifier length
and limited programmer memory. Science of Computer Programming, 74(7):430–445,
2009.

6. George Box, J. Stuart Hunter, and William G. Hunter. Statistics for experimenters.
Wiley-Interscience, 2005.

https://github.com/josealdo/EMSE21-ifdefs-with-eye-tracking
https://github.com/josealdo/EMSE21-ifdefs-with-eye-tracking

Title Suppressed Due to Excessive Length 35

7. Teresa Busjahn, Roman Bednarik, Andrew Begel, Martha Crosby, James H Paterson,
Carsten Schulte, Bonita Sharif, and Sascha Tamm. Eye movements in code reading:
Relaxing the linear order. In Proceedings of the International Conference on Program
Comprehension, ICPC’15, pages 255–265. IEEE, 2015.

8. Teresa Busjahn, Carsten Schulte, and Andreas Busjahn. Analysis of code reading to gain
more insight in program comprehension. In Proceedings of the Koli Calling International
Conference on Computing Education Research, pages 1–9, 2011.

9. Teresa Busjahn, Carsten Schulte, Sascha Tamm, and Roman Bednarik. Eye movements
in programming education II: Analyzing the novice’s gaze. 2015.

10. Gary Charness, Uri Gneezy, and Michael A Kuhn. Experimental methods: Between-
subject and within-subject design. Journal of Economic Behavior & Organization,
81(1):1–8, 2012.

11. Norman Cliff. Dominance statistics: Ordinal analyses to answer ordinal questions. Psy-
chological bulletin, 114(3):494, 1993.

12. Jacob Cohen. Statistical power analysis for the behavioral sciences. Academic press,
2013.

13. Martha Crosby, Jean Scholtz, and Susan Wiedenbeck. The roles beacons play in com-
prehension for novice and expert programmers. In Workshop of the Psychology of
Programming Interest Group, PPIG’02, page 5, 2002.

14. Martha Crosby and Jan Stelovsky. How do we read algorithms? A case study. Computer,
23(1):25–35, 1990.

15. Michael Ernst, Greg Badros, and David Notkin. An empirical analysis of C preprocessor
use. IEEE Transactions on Software Engineering, 28(12):1146–1170, 2002.

16. Wolfram Fenske, Jacob Krüger, Maria Kanyshkova, and Sandro Schulze. #ifdef direc-
tives and program comprehension: The dilemma between correctness and preference. In
Proceedings of the International Conference on Software Maintenance and Evolution,
ICSME’20, 2020.

17. Niels Galley, sDirk Betz, and Claudia Biniossek. Fixation durations: Why are they so
highly variable. Advances in visual perception research, pages 83–106, 2015.

18. Alejandra Garrido and Ralph E. Johnson. Embracing the C preprocessor during refac-
toring. Journal of Software: Evolution and Process, 25(12):1285–1304, 2013.

19. Drew Guarnera, Corey Bryant, Ashwin Mishra, Jonathan Maletic, and Bonita Sharif.
iTrace: Eye tracking infrastructure for development environments. In Proceedings of the
Symposium on Eye Tracking Research & Applications, ETRA’18. ACM, 2018.

20. Dan Hansen and Qiang Ji. In the eye of the beholder: A survey of models for eyes and
gaze. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(3):478–500,
2009.

21. Frouke Hermens and Sunčica Zdravković. Information extraction from shadowed regions
in images: An eye movement study. Vision research, 113:87–96, 2015.

22. Kenneth Holmqvist, Marcus Nyström, Richard Andersson, Richard Dewhurst, Halszka
Jarodzka, and Joost Van de Weijer. Eye tracking: A comprehensive guide to methods
and measures. OUP Oxford, 2011.

23. Anil Jadhav, Dhanya Pramod, and Krishnan Ramanathan. Comparison of perfor-
mance of data imputation methods for numeric dataset. Applied Artificial Intelligence,
33(10):913–933, 2019.

24. Kristian Kleinke. Multiple imputation under violated distributional assumptions: A
systematic evaluation of the assumed robustness of predictive mean matching. Journal
of Educational and Behavioral Statistics, 42(4):371–404, 2017.

25. Jörg Liebig, Christian Kästner, and Sven Apel. Analyzing the discipline of preprocessor
annotations in 30 million lines of C code. In Proceedings of the International Conference
on Aspect-Oriented Software Development, AOSD’11, pages 191–202, 2011.

26. Romero Malaquias, Márcio Ribeiro, Rodrigo Bonifácio, Eduardo Monteiro, Flávio
Medeiros, Alessandro Garcia, and Rohit Gheyi. The discipline of preprocessor-based
annotations – Does #ifdef tag n’t #endif matter. In Proceedings of the International
Conference on Program Comprehension, ICPC’17, pages 297–307. IEEE, 2017.

27. Flávio Medeiros, Christian Kästner, Márcio Ribeiro, Sarah Nadi, and Rohit Gheyi. The
love/hate relationship with the C preprocessor: An interview study. In Proceedings of the
European Conference on Object-Oriented Programming, ECOOP’15, pages 999–1022.
ACM, 2015.

36 José Aldo Silva da Costa et al.

28. Flávio Medeiros, Márcio Ribeiro, Rohit Gheyi, Sven Apel, Christian Kästner, Bruno
Ferreira, Luiz Carvalho, and Baldoino Fonseca. Discipline matters: Refactoring of pre-
processor directives in the #ifdef hell. IEEE Transactions on Software Engineering,
44(5):453–469, 2018.

29. Jean Melo, Claus Brabrand, and Andrzej Wąsowski. How does the degree of variabil-
ity affect bug finding? In Proceedings of the International Conference on Software
Engineering, ICSE’16, pages 679–690. ACM, 2016.

30. Jean Melo, Fabricio Batista Narcizo, Dan Witzner Hansen, Claus Brabrand, and An-
drzej Wąsowski. Variability through the eyes of the programmer. In Proceedings of
the 25th International Conference on Program Comprehension, ICPC’17, pages 34–44,
Piscataway, NJ, USA, 2017. IEEE Press.

31. Marcus Nyström and Kenneth Holmqvist. An adaptive algorithm for fixation, saccade,
and glissade detection in eyetracking data. Behavior research methods, 42(1):188–204,
2010.

32. Unaizah Obaidellah, Mohammed Al Haek, and Peter C-H Cheng. A survey on the usage
of eye-tracking in computer programming. ACM Computing Surveys (CSUR), 51(1):5,
2018.

33. Delano Oliveira, Reydne Bruno, Fernanda Madeiral, and Fernando Castor. Evaluating
code readability and legibility: An examination of human-centric studies. In Proceedings
of the International Conference on Software Maintenance and Evolution, ICSME’20,
2020.

34. Keith Rayner. Eye movements in reading and information processing. Psychological
bulletin, 85(3):618, 1978.

35. Keith Rayner. Eye movements in reading and information processing: 20 years of re-
search. Psychological bulletin, 124(3):372, 1998.

36. Dario Salvucci and Joseph Goldberg. Identifying fixations and saccades in eye-tracking
protocols. In Proceedings of the Symposium on Eye Tracking Research & Applications,
ETRA’00, pages 71–78, 2000.

37. Sandro Schulze, Jörg Liebig, Janet Siegmund, and Sven Apel. Does the discipline of
preprocessor annotations matter?: A controlled experiment. In Proceedings of the 12th
International Conference on Generative Programming: Concepts & Experiences, GPCE
’13, pages 65–74. ACM, 2013.

38. Samuel Sanford Shapiro and Martin B. Wilk. An analysis of variance test for normality
(complete samples). Biometrika, 52(3/4):591–611, 1965.

39. Zohreh Sharafi, Timothy Shaffer, Bonita Sharif, and Yann-Gaël Guéhéneuc. Eye-
tracking metrics in software engineering. In Proceedings of the Asia-Pacific Software
Engineering Conference, APSEC’15, pages 96–103. IEEE, 2015.

40. Zohreh Sharafi, Bonita Sharif, Yann-Gaël Guéhéneuc, Andrew Begel, Roman Bednarik,
and Martha Crosby. A practical guide on conducting eye tracking studies in software
engineering. Empirical Software Engineering, 25(5):3128–3174, 2020.

41. Zohreh Sharafi, Zéphyrin Soh, Yann-Gaël Guéhéneuc, and Giuliano Antoniol. Women
and men—different but equal: On the impact of identifier style on source code reading.
In Proceedings of the International Conference on Program Comprehension, ICPC’12,
pages 27–36. IEEE, 2012.

42. Bonita Sharif, Michael Falcone, and Jonathan Maletic. An eye-tracking study on the
role of scan time in finding source code defects. In Proceedings of the Symposium on
Eye Tracking Research & Applications, ETRA’12, pages 381–384. ACM, 2012.

43. Bonita Sharif and Jonathan Maletic. An eye tracking study on camelcase and un-
der_score identifier styles. In Proceedings of the International Conference on Program
Comprehension, ICPC’10, pages 196–205. IEEE, 2010.

44. David J Sheskin. Handbook of parametric and nonparametric statistical procedures. crc
Press, 2020.

45. Henry Spencer and Geoff Collyer. #ifdef considered harmful, or portability experience
with C news. In USENIX Summer. USENIX Association, pages 185–197, 1992.

46. Anselm Strauss and Juliet Corbin. Basics of qualitative research techniques. Citeseer,
1998.

47. Rachel Turner, Michael Falcone, Bonita Sharif, and Alina Lazar. An eye-tracking study
assessing the comprehension of C++ and Python source code. In Proceedings of the

Title Suppressed Due to Excessive Length 37

Symposium on Eye Tracking Research and Applications, ETRA’14, pages 231–234.
ACM, 2014.

48. Hidetake Uwano, Masahide Nakamura, Akito Monden, and Ken-ichi Matsumoto. Ana-
lyzing individual performance of source code review using reviewers’ eye movement. In
Proceedings of the Symposium on Eye Tracking Research and Applications, ETRA’06,
pages 133–140. ACM, 2006.

José Aldo Siva da Costa is a PhD student at the Federal University of
Campina Grande, Paraíba, Brazil. He received his master’s degree in Com-
puter Science in 2016 from the same university. His research interests include
program comprehension in the context of refactorings with eye tracking.

Rohit Gheyi is a professor in the Department of Computer Science at Federal
University of Campina Grande. His research interests include refactorings,
formal methods, and software product lines. He holds a Doctoral degree in
Computer Science from the Federal University of Pernambuco.

38 José Aldo Silva da Costa et al.

Márcio Ribeiro is an Associate Professor in the Computing Institute at
Federal University of Alagoas. He holds a Doctoral degree in Computer Sci-
ence from the Federal University of Pernambuco (2012). He also holds the
ACM SIGPLAN John Vlissides Award. His PhD thesis has been awarded as
the Best in Computer Science of Brazil in 2012. His main research interests
are Configurable Systems, Empirical Software Engineering, Software Testing,
and Refactoring. He created the Aglomerações app, an app to register and
track agglomerations. The app pioneered the idea in which the user registers
agglomerations during the COVID-19 pandemic in Brazil.

Sven Apel holds the Chair of Software Engineering at Saarland University
& Saarland Informatics Campus, Germany. Prof. Apel received his Ph.D. in
Computer Science in 2007 from the University of Magdeburg. His research
interests include software product lines, software analysis, optimization, and
evolution, as well as empirical methods and the human factor in software
engineering.

Title Suppressed Due to Excessive Length 39

Vander Alves is Associate Professor at the Computer Science Department of
the University of Brasilia, Brazil. He conducts research on Software Product
Lines, Command and Control, and Model-Driven Development. Previously, he
was a CAPES-Humboldt Fellow at the University of Passau, Germany, and he
also held research and development positions at Fraunhofer IESE, Germany,
Lancaster University, England, and IBM Silicon Valley Lab, USA.

Baldoino Fonseca is an associate professor at Federal University of Alagoas
(UFAL), heading Engineering and Systems Group (EASY). His main research
interests include software maintenance and machine learning.

40 José Aldo Silva da Costa et al.

Flávio Medeiros is a professor in the Federal Institute of Alagoas, Brazil.
His research interests include configurable systems with a high amount of
variability, refactoring and software product lines. He received his Doctoral
degree in Computer Science from the Federal University of Campina Grande,
Brazil, in 2016.

Alessandro Garcia received the PhD degree in informatics from the Pontif-
ical Catholic University of Rio de Janeiro. He is an associate professor with
Informatics Department of Pontifical Catholic University of Rio de Janeiro. His
research focuses on software modularity, software metrics, exception handling,
and empirical software engineering. He is a member of the IEEE.

	Introduction
	Motivating Example
	Study Definition
	Methodology
	Results
	Discussion of the Interview
	Threats to Validity
	Related Work
	Conclusions

