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Abstract—Merge conflicts often occur when developers concur-
rently change the same code artifacts. While state of practice
unstructured merge tools (e.g. Git merge) try to automatically
resolve merge conflicts based on textual similarity, semistructured
and structured merge tools try to go further by exploiting the
syntactic structure and semantics of the artifacts involved. Al-
though there is evidence that semistructured merge has significant
advantages over unstructured merge, and that structured merge
reports significantly fewer conflicts than unstructured merge, it
is unknown how semistructured merge compares with structured
merge. To help developers decide which kind of tool to use, we
compare semistructured and structured merge in an empirical
study by reproducing more than 40,000 merge scenarios from
more than 500 projects. In particular, we assess how often the
two merge strategies report different results: we identify con-
flicts incorrectly reported by one but not by the other (false
positives), and conflicts correctly reported by one but missed by
the other (false negatives). Our results show that semistructured
and structured merge differ in 24% of the scenarios with con-
flicts. Semistructured merge reports more false positives, whereas
structured merge has more false negatives. Finally, we found
that adapting a semistructured merge tool to resolve a particular
kind of conflict makes semistructured and structured merge even
closer.

Index Terms—software merging, collaborative development,
code integration, version control systems

I. INTRODUCTION

To better detect and resolve code integration conflicts, re-
searchers have proposed tools that use different strategies to
decrease effort and improve correctness of the integration.
For merging source code artifacts, unstructured, line-based
merge tools are the state of practice [1]–[3], relying on purely
textual analysis to detect and resolve conflicts. Structured
merge tools [4]–[7] go beyond simple textual analysis by
exploring the underlying syntactic structure and static semantics
when integrating programs. Semistructured merge tools [8], [9]
attempt to hit a sweet spot between unstructured and structured
merge by partially exploring the syntactic structure and static
semantics of the artifacts involved. For program elements whose
structure is not exploited (e.g., method bodies), semistructured
merge tools simply apply unstructured merge textual analysis.

Although there is evidence that semistructured merge has
significant advantages over unstructured merge (semistructured
merge reports fewer conflicts, fewer false positives, and its
false positives are easier to analyze and resolve)[9], and that
structured merge tools report significantly less conflicts than
unstructured merge (average reduction of 59% on the number

of reported conflicts) [4], it is unknown how semistructured
merge compares with structured merge. Apel et al. [4] argue
that structured tools are likely more precise than semistructured
tools, and they conjecture that a structured tool reports fewer
conflicts than a semistructured tool. However, the reduction
of reported conflicts alone is not enough to justify industrial
adoption of a merge tool, as the reduction could have been
obtained at the expense of missing actual conflicts between
developers changes.

In fact, although one might expect only accuracy benefits
from the extra structure exploited by structured merge, we
have no guarantees that this is the case. Previous works [8],
[9] provide evidence that the extra structure exploited by
semistructured merge is not only beneficial: while it helps to
eliminate certain kinds of spurious conflicts (false positives)
reported by unstructured merge, it might introduce others
that can only be solved by algorithms that further combine
semistructured and unstructured merge. Likewise, the extra
structure helps semistructured merge to detect conflicts that
are missed (false negatives) by unstructured merge, but it
unfortunately comes with new kinds of false negatives. So, it
is imperative to investigate whether the same applies when
comparing semistructured and structured merge, as this is
essential for deciding which kind of tool to use in practice.

To compare and better understand the differences between
semistructured and structured merge, we apply both strategies to
more than 40,000 merge scenarios (triples of base commit, and
its two variants parent commits associated with a non-octopus1

merge commit) from more than 500 GitHub open-source Java
projects. In particular, we assess how often the two strategies
report different results, and we identify false positives (conflicts
incorrectly reported by one strategy but not by the other) and
false negatives (conflicts correctly reported by one strategy but
missed by the other). To control for undesired variations arising
from implementation details, we have implemented a single
tool that can be configured to use semistructured or structured
merge. This way, we guarantee that structured merge behaves
exactly as semistructured merge except for merging the body
of method, constructor, and field declarations.

We found that, overall, the two strategies rarely differ for
the scenarios in our sample. Considering only scenarios with
conflicts, however, the tools differ in about 24% of the cases. A

1An octopus merge commit represents the merging of more than two variants.



closer analysis reveals that they differ when integrating changes
that affect the same textual area in the body of a declaration, but
the modifications involve different abstract syntax tree (AST)
nodes in the structural representation. Correspondingly, they
also differ when changes in the same AST node correspond to
different text areas in the semistructured merge representation
of the same declaration body.

Furthermore, we found that semistructured merge reports
false positives in more merge scenarios (36) than structured
merge (4), whereas structured merge has more scenarios with
false negatives (39) than semistructured merge (5). Based on
our findings regarding false positives and false negatives, and
the observed performance overhead associated with structured
merge, semistructured merge appears to be a better match for
developers that are not overly concerned with false positives.
Finally, we observe that adapting a semistructured merge tool
to report textual conflicts only when changes occur in the same
lines (resolving conflicts caused by changes to consecutive
lines) would make the two strategies report different results in
fewer merge scenarios.

All the scripts and data used in this study are available in
our online appendix [10].

II. SEMISTRUCTURED AND STRUCTURED MERGE

The most widely used software merging tools are unstruc-
tured: every software artifact is represented as text. Although
fast, unstructured merge tools are imprecise [4], [8], [9],
[11]. Alternatively, semistructured and structured merge tools
incorporate information on the structure of the artifacts being
merged. They represent classes and class level declarations as
AST nodes. This way, they avoid typical false positive con-
flicts of unstructured merge [8], [9], such as when developers
add declarations of different and independent methods to the
beginning of a class. They differ only on how they represent
the bodies of method, constructor, and field declarations. In a
structured tool, such bodies are also represented as AST nodes;
in a semistructured tool, they are represented as text, and are
merged in an unstructured way.

We illustrate how this difference affects merging in Figure 1,
which shows different versions of a method body.2 The base
version at the top shows a method call that adds a new key-value
entry to a map. The structurally merged version at the bottom
highlights, in red, the changes made by developer A, who simply
refactored the code by extracting key. It also highlights, now
in blue, the changes made by developer B, who added an extra
argument to the constructor call. As the two developers changed
different AST nodes from the base version, corresponding
to different arguments of the method call, structured merge
successfully integrates their changes. In contrast, semistructured
merge reports a conflict because the two developers changed
the same line of code in the method body.

To compare semistructured and structured merge, we could
simply measure how often they are able to merge contributions

2Based on method createDefaultParametersToOptimized
merged in merge commit https://git.io/fjneH from our sample.

Figure 1: Merging with semistructured and structured merge
(false positive).

as in the illustrated example. The preference would be for the
strategy that reports fewer conflicts. Given that merging code
is the main goal of any merge tool, in principle that criterion
could be satisfactory. However, in practice, merge tools go
beyond that and detect other kinds of integration conflicts that
do not preclude the generation of a valid program, but would
lead to build or execution failures. For instance, consider the
situation illustrated on Figure 2, where developer A, besides
extracting the key variable, also changed its value to "j". The
merge tools would behave exactly as in the original example. In
this case, however, the changes interfere [12], and the behavior
expected by A (new key with old value) and B (old key with new
value) will not be observed when running the integrated code.
In this case, the preference would be for a semistructured tool—
the tool that reports a conflict when integrating these changes.

Figure 2: Merging with semistructured and structured merge
(true positive).

Whereas the original example in Figure 1 illustrates
semistructured merge reporting a false positive (incorrectly

https://git.io/fjneH


reported conflict), the modified example illustrates a structured
merge false negative (missed conflict). This shows that our
comparison criteria should go beyond comparing the number of
reported conflicts. We should also consider the number of false
positives and false negatives, that is, the possibility of missing
or early detecting conflicts that could appear during build or
execution. Such comparison should be based on the differences
between the merge strategies. By construction, semistructured
and structured merge differ only when merging the bodies of
method, constructor, and field declarations.

III. RESEARCH QUESTIONS

To quantify the differences between semistructured and
structured merge, and to help developers decide which strategy
to use, we analyze merge scenarios from the development
history of a number of software projects, while answering the
following research questions.

RQ1: How many conflicts arise when using semistructured
and structured merge?

To answer this question, we integrate the changes of each
merge scenario with semistructured and structured merge. For
the results of each strategy, we count the total number of
conflicts, that is, the number of conflict markers3 in the files
integrated by each strategy. Based on this, we count the number
of conflicting merge scenarios, that is, scenarios with, at least,
one conflict with semistructured or structured merge. To control
for undesired variations on individual tools implementation, we
have implemented a single configurable tool that, via command
line options, applies a semistructured or structured merge
strategy.

RQ2: How often do semistructured and structured merge
differ with respect to the occurrence of conflicts?

We answer this question by measuring the number of merge
scenarios having conflicts reported by only one of the two
strategies. In principle, the strategies could still differ when
they both report conflicts for the same scenario, as the reported
conflicts might be different. However, by construction, both
strategies report the same conflicts occurring outside of method,
constructor, and field declarations. In dry runs, we observed that
this already corresponds to a large fraction of the conflicts. We
also observed that conflicts occurring inside such declarations
are exactly the same or contain slightly different text in between
conflict markers, but are essentially the same conflict in the
sense that they report the same issue. Similarly, we observed
equivalent conflicts that are reported with a single marker by
semistructured merge, but involve a number of markers in
structured merge, as illustrated later in this paper.

3As illustrated in Figure 3.

RQ3: Why do semistructured and structured merge differ?

We answer this question by inspecting merge scenarios and
the code merged with each strategy for a sample of scenarios
that have conflicts reported by only one of the strategies. This
way we can understand the difference on strategies behavior
that leads to diverging results.

RQ4: Which of the two strategies reports fewer false
positives?

A merge tool might report spurious conflicts in the sense
that they do not represent a problem and could be automatically
solved by a better tool. These are false positives, which lead to
unnecessary integration effort and productivity loss, as devel-
opers have to manually resolve them. To capture true positives,
we rely on the notion of interference by Horwitz et al. [12],
who state that two contributions (changes) to a base program
interfere when the specifications they are individually supposed
to satisfy are not jointly satisfied by the program that integrates
them. This often happens when there is, in the integrated
program, data or control flow between the contributions. We
then say that two contributions to a base program are conflicting
when there is not a valid program that integrates them and is
free of unplanned interference.

As interference is not computable in our context [12], [13],
we rely on build and test information about the integrated code
that we analyze, and, when necessary, we resort to manual
analysis. Again, we focus on scenarios that have conflicts
reported by only one of the strategies; so when only one of
the strategies produced a clean merge. We attempt to build the
clean merge and run its tests. If the build is successful and
all tests pass, we manually analyze the clean merged code to
make sure the changes do not interfere; passing all tests is a
good approximation, but no guarantee that the changes do not
interfere, as a project’s test suite might not be strong enough,
or even do not cover the integrated changes. If we find no
interference in the clean merge, we count a scenario with false
positive for the strategy that reported the conflict.

RQ5: Which of the two strategies has fewer false nega-
tives?

A merge tool might also fail to detect a conflict (false nega-
tive). When this happens, a user would be simply postponing
conflict detection to other integration phases such as building
and testing, or even letting conflicts escape to operation. So
false negatives lead to build or behavioral errors, negatively
impacting software quality and the correctness of the merging
process. Similarly to RQ4, we rely on build and test information
to identify false negatives. We attempt to build the clean merge
and run its tests. If the build breaks or, at least, one test fails
due to developers changes (when the base version and the



integrated variants do not present build or test issues, but the
merge result has issues, so the changes cause the problem), the
strategy responsible for the clean merge has actually missed
a conflict (false negative). Thus, we count a scenario with a
false negative for the strategy that yielded the clean merge.

It is important to emphasize that RQ4 and RQ5 consider
only the differences between the semistructured and structured
merge strategies. Our interest here is to relatively compare both
strategies—not to establish how accurate they are in relation to
a general notion of conflict (we do not have the ground truth).
So we do not measure the occurrence of false positives and
negatives when both strategies behave identically.

RQ6: Does ignoring conflicts caused by changes to con-
secutive lines make the two merge strategies more similar?

In the example of Figure 1, semistructured merge reports a
conflict because developers A and B have changed the same
line in a method body. However, even if A had simply added a
single line (even a comment like //updating the map)
before the method call, semistructured merge would report a
conflict too. This happens because the invoked unstructured
merge algorithm reports a conflict whenever it cannot find a line
that separates developers changes. As in the example, structured
merge would successfully integrate the changes. Assuming that
changes to the same line are often less critical than changes
to consecutive lines, it would be important to know whether
a semistructured tool that resolves consecutive lines conflicts
would present closer results to a structured tool. So, to answer
this question, we check whether a semistructured merge conflict
is due to changes in consecutive lines of code, that is, there
is no intersection between the sets of lines changed by each
developer, but one of them changes line n and the other changes
line n+1. Then, for each merge scenario, we check the number
of reported conflicts by semistructured merge, and how many
of these conflicts are in consecutive lines. Finally, answering
this research question consists of revisiting previous research
questions contrasting results with and without consecutive lines
conflicts.

IV. STUDY SETUP

Answering our research questions involves two steps: mining
and execution. In the mining step, we implemented scripts to
mine GitHub repositories of Java projects and collect informa-
tion on merge scenarios—each scenario consists of the three
revisions involved in a three-way merge.

In the execution step, we merge the selected scenarios with
both semistructured and structured merge. For each merge
without conflicts, we use a build manager to build the merged
version and execute its tests (to find false positives and false
negatives; see Section III). In the remaining of the section, we
describe the two steps in detail.

A. Mining Step
Our study relies both on the analysis of source code and

build status information, so we opt for GitHub projects that

use Travis CI for continuous integration. As the merge tool
used in the execution step is language dependent, we consider
only Java projects. As parsing Travis CI’s build log depends
on the underlying build automation infrastructure, we consider
only Maven projects because we use its log report information
for automatically filtering conflicts.

We start with the projects in the datasets of Munaiah et
al. [14] and Beller et al. [15], which include numerous carefully
selected open-source projects that adopt continuous integration.
From these datasets, we select Java projects that satisfy two
criteria: first, the presence of Travis CI and Maven configuration
files, which indicates that the project is configured to use the
Travis CI service, and that the project uses the Maven build
manager;4 second, the presence of, at least, one build process
in the Travis CI service, and confirmation of its active status,
which indicates the project has actually used the service.

After selecting the project sample, we execute a script that
locally clones each project and retrieves its non-octopus merge
commit list—a merge commit represents a merge in the subject
project’s history and therefore can be used to derive a merge
scenario. As most projects adopted Travis CI only later in
project history, for each project, we consider only the merge
commits dated after the project’s first build on Travis CI. For
each scenario derived from these merge commits, we check
the Travis CI status of the scenario’s three commits. If any of
them has an errored (indicates a broken build) or failed status
(indicates failure on tests), we discard the scenario. The reason
is that we would not be able to confirm whether a problem in
the merged version was caused by conflicting changes—the
problem could well have been inherited from the parents.

As a result of the mining step, we obtained 43,509 merge
scenarios from 508 selected Java projects. Although we have
not systematically targeted representativeness or even diver-
sity [16], our sample exhibits a considerable degree of diversity
along various dimensions. Our sample contains projects from
different domains, such as APIs, platforms, and network proto-
cols, varying in size and number of developers. For example,
the TRUTH project has approximately 31 KLOC, while HIVE
has more than 1 KKLOC. The WEB MAGIC project has 45
collaborators, while OKHTTP has 195. We provide a complete
list of the analyzed projects in our online appendix [10].

B. Execution Step

After collecting the subject projects and merge scenarios,
we merge the selected scenarios with both semistructured and
structured merge. To control for undesired variations, we have
implemented a single configurable tool that, via command
line options, applies semistructured or structured merge. This
way we guarantee that structured merge behaves exactly as
semistructured merge except for merging the body of method,
constructor, and field declarations. The new implementation
adapts and improves previous and independent implementations
of a semistructured [17] and a structured merge tool [18].

4We check whether the repository contains both Travis CI and Maven
configuration files: travis.yml and pom.xml.



In particular, our tool is built on top of the semistructured
tool. While a standard semistructured merge tool invokes
unstructured merge for bodies of declarations, our configurable
tool also allows structured merge to be invoked instead. When
configured to use semistructured merge, the tool invokes the
standard and widespread diff3 unstructured algorithm at decla-
rations level. When configured as structured merge, the tool
invokes the most mature and extensively evaluated structured
implementation [4], [19]–[22].

For each merge scenario, our infrastructure generates two
merged versions: a semistructured version and a structured
version. For each file, we count the number of reported conflicts.
For the semistructured merge versions, we also count the
number of conflicts that are due to changes in consecutive
lines. To do so, we check whether the sets of changed lines
in the variants are disjoint, and whether the numbers of the
contribution lines in the conflict text are consecutive.5

Based on the number of conflicts, we select scenarios having
conflicts reported by only one of the strategies. The strategies
could also differ by reporting different conflicts for the same
scenario, as discussed earlier in Section III. In our sample, how-
ever, we verified that whenever semistructured and structured
merge report conflicts in the same scenario, these conflicts
are in the same file. Even so they could still report different
conflicts in the same file. We have, in fact, observed such cases,
but they actually refer to equivalent conflicts, reported by the
strategies in different ways, using different sets of markers and
associated conflicting code. So we can consider them to be the
same conflict, but with different textual representations derived
from the difference in the exploited syntax granularity. This is
illustrated in Figure 3, in a merge scenario from project NEO4J-
FRAMEWORK:6 both developers added different declarations for
the same constructor. As this constructor is not declared in the
base version, both strategies report conflicts. Structured merge
reports a conflict for any two syntactic level differences between
the versions, resulting in several small conflicts. Semistructured
merge reports a single conflict for the entire declaration.

Having identified scenarios for which the strategies differ, we
collect information on false positives and false negatives. We
use Travis CI as our infrastructure for building and executing
tests for each scenario, as explained in Section III and illustrated
in Figure 4. As Travis CI builds only the latest commit in a
push command or pull request, not all commits in a project
have an associated build status on Travis CI. The generated
semistructured and structured merged versions certainly do not
have a Travis CI build, as they are generated by our experiment.
So we use a script that forces build creation in such cases.
Basically, we create a project fork, activate it on Travis CI, and
clone it locally. Then, every push to our remote fork creates a
new build on Travis CI. So, for each scenario for which the
two strategies differ (by definition one of the merged versions
is clean and the other is conflicting), we create a merge commit
with the clean merged version, and push it to our remote fork

5We use GNU’s diff command passing the base version and each variant
separately.

6https://git.io/fjne9

Figure 3: Equivalent conflicts with different granularity.

to trigger a Travis CI build. Note that we are only able to
build and test code without conflicts, as the conflicts markers
invalidate program syntax.

If the build status on Travis CI of the resulting merge commit
is errored (when the build is broken) or failed (when the build
is ok, but, at least, one of the tests failed), we consider that
the corresponding merge scenario has a false negative from
the strategy that did not report a conflict—therefore a true
positive reported by the other strategy. However, it is possible
that a build breaks or a test fails due to external configuration
problems, such as trying to download a dependency that is
no longer available or exceeding the time to execute tests.
We filter these cases as they do not reflect issues caused by
conflicting code. To do so, we analyze, for each generated
build, its Maven log report seeking for indicative message
errors. Finally, since we have also filtered merge scenarios
having problematic parents (see Section IV-A), if the new
merge commit still has build or test issues, we can conclude
that this is because developers changes interfere.

Figure 4: Building and testing merge commits. A green check
mark indicates no conflict with one strategy, a red cross
indicates conflict with the other strategy.

https://git.io/fjne9


In case the resulting merge commit build status on Travis
CI is passed, we are sure that the merged version has no build
error, and all tests pass. So this is a candidate false positive of
the strategy that reported the conflict. However, whereas this
provides precise guarantees for build issues, the guarantees for
test issues are as only good as the project’s test suite. Even
for projects with strong test suites, unexpected interference
between merged contributions might be missed by the existing
tests. So, to complement test information, we manually inspect
all conflicting files from all merged versions with potential false
positives. In this manual analysis, two of the authors analyzed
the first 5 conflicting files to consolidate the guidelines. Then,
two other authors individually analyzed the remaining files.
In the case of divergence between authors’ classification for
the same file, a third author reviewed that file. In the case of
uncertainty regarding the contributions, a message was sent to
the original committers to clarify the changes.7

During this manual analysis, we check the changes made
by each developer, analyzing whether they interfere, following
the definition of interference of Section III. If one of the
developers simply changes spacing and comments, or extracts
a variable or a method, we conclude that there is no interfer-
ence. The corresponding merge scenario is then confirmed as
having false positives. The same applies when the developers
change unrelated state, or when they change assignments to
unrelated local variables. Conversely, if both developers change
program semantics, such as modifying related state or changing
assignments to the same variable, we conclude that there is
interference. We then confirm that the corresponding merge
scenario has a false negative. As discussed in Section II, the
same applies to the variation of the example illustrated in
Figure 1. For each merge scenario we find interference in the
merged version, we add explanation and discuss a test case that
fails in the base commit, passes in one of the parent commits,
and fails in the merged version. This is further evidence that the
changes made by the considered parent commit were affected
by the changes of the other parent commit.

V. RESULTS

We use our study design to analyze 43,509 merge scenarios
from the development histories of 508 Java projects. In what
follows, we present our results, following the structure defined
by our research questions. More details, including tables and
plots, are available in our online appendix [10].

A. How many conflicts arise when using semistructured and
structured merge?

In our sample, we found 4,732 conflicts using semistructured
merge, and 4,793 when using structured merge. This is a reduc-
tion of 1.27% in the number of reported conflicts when using
semistructured merge. This results at first might be surprising to
those who expect that more structure leads to conflict reduction.
However, as pointed out in Section IV-B and illustrated in
Figure 3, structured merge might report more conflicts due to

7We provide a sheet with the detailed analysis of all files in our online
appendix.

its structure-driven and fine-grained approach. This leads to
conflicts that respect the boundaries of the language syntax,
which might result in many small conflicts that are reported
as a single conflict by semistructured merge.

To control for the bias of conflict granularity, we consider
also the number of merge scenarios with conflicts: 1,007 (2.31%
of the scenarios) using semistructured merge, and 814 (1.87%)
using structured merge. This time we observe a reduction
of 19.17% in the number of scenarios with conflicts when
using structured merge. In a per-project analysis, we found
similar results: 2.25 ± 4.58% (average ± standard deviation)
of conflicting scenarios with semistructured merge, and 1.8 ±
3.92% with structured merge.

Summary: Semistructured and structured merge report
similar numbers of conflicts, but the number of merge
scenarios with conflicts is reduced using structured merge
(by about 19%). In general, conflicts are not frequent when
using both strategies (in about 2% of the scenarios).

B. How often do semistructured and structured merge differ
with respect to the occurrence of conflicts?

Overall, we found 223 (0.51%) scenarios with conflicts
reported only by semistructured merge, and 30 (0.07%) reported
only by structured merge. So the two strategies differ in 0.58%
(253) of the scenarios in our sample; a per-project analysis
gives a similar result: on average, the strategies differ on 0.52
± 2.06% of the scenarios.

The reported percentages are comparatively small because
most scenarios are free of conflicts even when using less
sophisticated strategies such as unstructured merge. In fact,
most scenarios involve only changes to disjoint sets of files,
so they cannot possibly discriminate between merge strategies
because there is no chance of conflict. So it is more reasonable
to consider the relative percentages for conflicting merge
scenarios, which correspond to 2.28% of our sample scenarios.
Overall, semistructured and structured merge differ in 23.67%
of the conflicting scenarios (an average of 23.22 ± 44.45% in a
per-project analysis). The observed error bounds are explained
by some projects having low rates of merge scenarios with
conflicts. For instance, projects such as CLOCKER, WIRE and
LA4J had only one conflicting merge scenario, and, for this
single scenario, the strategies differ as a result of the reasons
we explain on the next research question.

Summary: Semistructured and structured merge substan-
tially differ in terms of reported number of conflicts when
applied only to conflicting scenarios of our sample (they
differ in about 24% of these scenarios).

C. Why do semistructured and structured merge differ?

To better understand the differences between the merge
strategies, we manually analyzed a random sample of 54
merge scenarios that have conflicts reported by only one of



the strategies, guided by power and sample size estimation
statistics [23]. This includes 44 scenarios with conflicts reported
only by semistructured merge, and 10 scenarios with conflicts
reported only by structured merge. For each scenario, we
analyzed developers’ changes, the code merged by one of the
strategies, and the conflict reported by the other strategy. This
way, we can relate characteristics of the integrated changes
with the strategy that reported the conflicts.

We begin with scenarios having semistructured merge con-
flicts, and a structured clean merge. Consider the example
in Figure 5. Developer A added modifier final to the
IOException catch clause right after the try block.
Meanwhile, developer B added a new catch clause to
ResourceNotFoundException, also right after the try
block. As no line separates these changes in two distinct areas
of the text, semistructured merge—which invokes unstructured
merge to integrate method bodies— reports a conflict. Develop-
ers then have to manually act and decide which catch should
appear right after the try block. In contrast, structured merge
detects that the changes affect different child nodes of the try
node, and successfully integrates the changes by including the
new child node (B’s contribution) and the existing changed node
(A’s contribution). We observed the same kind of situation in
every scenario that leads only to semistructured merge conflicts,
including the motivating example illustrated in Section II.

Figure 5: Semistructured merge conflict from project
GLACIERUPLOADER (from merge commit https://git.io/fjney).

Summary: Semistructured and structured merge differ
when changes occur in overlapping text areas that corre-
spond to different AST nodes.

Next, we consider scenarios with structured merge con-
flicts, and a semistructured clean merge. In the example of
Figure 6, developer A deletes an argument from the call to
method doInsertFinalNewLine inside a for statement.

Developer B converts the same for statement into a for-
each statement. Since these changes occur in non-overlapping
text areas, semistructured merge successfully integrates the
contributions. Structured merge reports a conflict because it
is unable to match the new for-each with the previous for
statement—they are represented by nodes of different types. It
correctly detects that the subtree of the body of the for state-
ment was changed by one of the developers, but it incorrectly
assumes that the whole for statement was deleted by the
other developer. As a consequence, structured merge does not
proceed merging the child nodes from these iteration statements,
and reports a single conflict for the entire statements. Note
that the changed method call doInsertFinalNewLine is
accidentally included in this deletion as it is not matched with
the corresponding version in the for-each statement.

Figure 6: Structured merge conflict from project
EDITORCONFIG-NETBEANS (from merge commit https://git.io/
fjneX).

Structured merge differs in a second kind of situation, as
illustrated in Figure 7 (a). In this example, developer A added
a call to method viewModel to an existing method call chain.
Developer B changed the argument of method provided
in the same chain. Semistructured merge successfully inte-
grates the changes because it detects that they occur in non-
overlapping text areas: the line that calls method context
act as a separator between the areas. Structured merge reports
a conflict because, by analyzing and matching the base AST
with the developers’ ASTs (see Figure 7 (b)), it incorrectly
concludes that the left child of the second MethodCall node
was changed by both developers. Indeed, as marked in red
in the figure, the three nodes in this position are different.
Developer B has not actually changed the call to provided,
but changed the level of the call to context in the AST by
adding a new method call to viewModel. As tree matching
is top-down and mostly driven by MethodCall nodes (in
this case) [4], structured merge is not able to correctly match
the calls, and assumes that Developer B changed the call to

https://git.io/fjney
https://git.io/fjneX
https://git.io/fjneX


(a) Code (b) AST

Figure 7: Structured merge conflict from project MVVMFX (from merge commit https://git.io/fjneD).

provided by a call to context. This is why the reported
conflict involves these two method calls; the second in the
conflict text corresponds to a base node not changed by the
developers (context call). The text does not refer to the AST
node that actually caused the conflict (viewModel call).

Summary: Semistructured and structured merge differ
when changes occur in non-overlapping text areas that
correspond to (a) different but incorrectly matched nodes
and to (b) the same node.

D. Which of the two strategies reports fewer false positives?

As explained in Section IV-B, we use Travis CI to build
and test the merged code of the 253 scenarios for which the
strategies differ. We found 44 scenarios with merged code
that successfully builds and for which all tests pass; their
Travis CI status is passed. Although this status provides precise
guarantees that there are no build and test conflicts, there
could still be other kinds of semantic conflicts, as unexpected
interference between merged contributions might be missed
by existing tests. These 44 scenarios are then potential false
positives of the strategy that reported a conflict, but we have to
confirm this with a manual inspection of the merged code and
the individual code contributions. As explained in Section IV-B,
these scenarios were analyzed by two authors separately. In
3 scenarios, there was disagreement between the authors, so
the review of another author was necessary. Besides, in only
1 scenario the contributions were not clear, so we asked the
actual contributors for clarification by commenting the original
merge commit.

From the 44 potential scenarios with false positives, 39 are
related to semistructured merge; they were successfully merged

by structured merge and have a passed status in Travis CI.
Conversely, only 5 scenarios are potential false positives of
structured merge. The manual analysis revealed that 36 of the 39
scenarios were actually false positives produced by semistruc-
tured merge. Only 3 scenarios were actual true positives, and,
as a consequence, false negatives of structured merge. For
instance, in a merge scenario from project SWAGGER-MAVEN-
PLUGIN,8 both developers added elements to the same list.
As a consequence, each developer expected different resulting
lists, which are themselves different from the list that will be
obtained by executing the merged code. None of this project’s
tests exercises these contributions, but it is not hard to come
up with a test that passes in the developers versions but fails
in the merged version, revealing the conflict.9

From the 5 structured merge scenarios having potential false
positives, 4 of them were classified as actual false positives.
Only 1 was an actual true positive produced by structured
merge, and a false negative of semistructured merge. The
actual true positive is a scenario from project RESTY-GWT.10

In this scenario, one of the developers edited the condition
and block of an existing if statement, while the other added
another if statement after the previous if statement. Both
if statements return different values based on the value of the
same method parameter. However, the first developer’s edited
condition now satisfies both developers conditions, affecting
the method result expected by the other developer, and no test
of the mentioned project captures this interference. A test that
captures this interference could be one, added by the second

8https://git.io/fjneS
9Suppose a test that checks whether the size of the list is n+1; if it passes

in the developers’ individuals versions, it will fail in the merged version, in
which the size of the list will be n+2.

10https://git.io/fjneF
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developer, that checks the value of the mentioned parameter,
and then enters into his added if block.11

E. Which of the two strategies has fewer false negatives?

We found 209 scenarios with merged code that either cannot
be successfully built (Travis CI errored status) or can be
properly built but, at least, one of the tests do not pass (Travis
CI failed status). By performing a Travis CI log report analysis,
we found that most scenarios (169) errored and failed status
are due to a number of reasons (Travis CI timeout, unavailable
dependencies, etc.) unrelated to the contributions being merged,
and that suggest these are older scenarios that would be hard to
compile and build anyway. So we cannot automatically classify
these as false negatives. We then focus on 40 scenarios with
errored and failed status; we confirm the status by parsing
Travis CI log messages and checking that they are compiler or
test related. Since our sample does not include scenarios having
broken or failing parents (see Section IV-A), if the resulting
merged code presents build or test issues, we conclude this is
due to interference between the merged code contributions.

From the analyzed 40 scenarios, we found only 4 scenarios
that are false negatives produced by semistructured merge: 3
with errored and 1 with failed status.12 In contrast, we found 36
scenarios that are false negatives produced by structured merge:
23 with errored status and 13 with failed status for the merge.13

Although the two merge strategies are somewhat different,
we identified some common causes for false negatives due to
broken builds. For example, we found situations in clean merges
from both strategies (e.g., in projects BLUEPRINTS and SINGU-
LARITY), where one developer added a reference to a variable
while the other developer deleted or renamed this variable.
Consequently, the compiler could not build the file. We also ob-
served situations (e.g., in projects NEO4J-RECO and VRAPTOR),
where one developer changed the value passed as an argument,
while the other developer changed the corresponding parame-
ter’s type. After the merge, there is a compilation error reported
due to the mismatch between expected and passed argument.

Regarding test failures causing false negatives, the only
failed scenario from semistructured merge was in project
CLOSURE-COMPILER, where the developers’ changes are
responsible to update the same list. Conversely, on failed
scenarios from structured merge, we observed, for example,
developers inadvertently changing the same connection
creation in project JEDIS, or assigning different objects to the
same variable in project DSPACE.

Table I summarizes our findings for false positives and false
negatives after all analyses.

Summary: Semistrutured merge reports more false pos-
itives (9 times more scenarios with false positives), and

11The test passes on second developer’s version, and fails on the merged
version because now it would enter on first developer’s if block, returning a
different value.

12Structured merge having reported conflicts for these cases
13Semistructured merge having reported conflicts for these cases.

Table I: Numbers for merge scenarios with false positives and
false negatives.

Semistructed Merge Structured Merge

False Positives 36 4
False Negatives 5 39

structured merge misses more conflicts (has more false
negatives; 8 times more scenarios with missed conflicts).

F. Does ignoring conflicts caused by changes to consecutive
lines make the two strategies more similar?

Our results show that our metrics on number of reported
conflicts and on when the two strategies differ slightly drop
if a semistructured merge tool could resolve conflicts due to
changes in consecutive lines.14 In particular, the number of
scenarios with semistructured merge conflicts is reduced by
3.38%, and the number of scenarios in which semistructured
and structured merge differ is reduced by 11.07%.

In projects such as QUICKML, SEJDA and SONARQUBE, we
found that this happens because changes to consecutive lines
often correspond to changes to different AST nodes. In such
situations, structured merge does not report conflicts. Thus,
when semistructured merge is able to resolve consecutive lines
conflicts, it might avoid conflicts due to changes to different
AST nodes, similar to structured merge.

Summary: A semistructured merge tool that can resolve
consecutive lines conflicts would present even closer num-
ber of scenarios with conflicts to structured merge, and
fewer scenarios in which the two strategies differ.

G. Threats to Validity

We rely on manual analysis to identify interference between
merged contributions, so there is a risk of misjudgment. To
mitigate this threat, every scenario was analyzed separately
by two authors, and in case of disagreement, another author
acted as a mediator. We also asked the actual contributors
for clarification of the changes when they were not clear. As
mentioned in Section V-D, this was only necessary in one
occasion.

We opted for a single merge tool that can be configured to
apply semistructured and structured merge. This was necessary
to ensure that we have a structured merge tool working as
expected. This single tool is basically an extension of the
semistructured merge tool able to invoke a structured merge
tool on declarations. To the best of our knowledge, these tools
are the most mature and evaluated tools available.

In addition, as we discard merge scenarios that we could
not properly build on Travis CI, or that have broken or failed

14We only count consecutive lines conflicts, we actually do not resolve
them. Thus, we dot not have numbers for false positives and false negatives.



parents, we might have missed differences in the strategies’
behavior. We might have also missed them because we analyze
only code integration scenarios that reach public repositories
with merge commits; this is not the case, for example, for
integrations with Git rebase, or that were affected by Git
commands that rewrite history.

Finally, we focus on open-source Java projects hosted on
GitHub, using Travis CI and Maven. Thus, generalization to
other platforms and programming languages is limited. Such
requirements were necessary because the merge tools are
language specific, and to reduce the influence of confounds,
increasing internal validity.

VI. DISCUSSION

Our results show that, overall, the two merge strategies
rarely differ for the scenarios in our sample, as most of them
are free of conflicts. Many merge scenarios affect disjoint
sets of files, having no chance of leading to conflicts, no
matter which merge strategy is adopted by the tool one uses.
However, for scenarios that reflect more complicated merge
situations, we do observe that the choice of the merge strategy
makes a difference: considering scenarios with conflicts, the
two strategies differ in about 24% of the cases. This is maybe
surprisingly low given that most code and changes occur
inside (method, constructor, etc.) declarations exploited by
the significant extra structure considered by structured merge.
In terms of conflicting scenarios with diverging behavior,
structure plays a similar role when moving from unstructured
merge to semistructured merge (27%) [9], and when moving
from semistructured to structured merge (24%).

In cases where two strategies differ, semistructured merge
reports false positives in more merge scenarios than structured
merge, whereas structured merge has more scenarios with
false negatives than semistructured merge. The extent of the
difference in the false positive and false negative rates are
quite similar. Semistructured merge’s false positives are not
hard to resolve: the fix essentially involves removing conflict
markers. Analyzing the changes before removing the markers
might be expensive, but certainly not as in unstructured merge
(with its crosscutting conflicts [9]), or as in structured merge
(with its fine-graned conflicts, as illustrated in Figure 3). In
contrast, structured merge’s false negatives might be hard to
detect and resolve. Most of the observed false negatives actually
correspond to compilation and static analysis issues that escape
the merging process but cannot escape the building phase. These
are always detected and are often easy to resolve. However, part
of the observed false negatives are related to dynamic semantics
issues that can easily go unnoticed by testing and end up
affecting users. These are hard to detect and, when detected, are
often hard to resolve. A more rigorous analysis based on conflict
detection and resolution timing data could differently weight
false positives and false negatives, in the spirit of Berry [24],
and better assess the benefits of the two strategies.

Based on our findings regarding false positives and false
negatives, and given the observed modest difference between
the two merge strategies, we conclude that semistructured

merge would be a better match for developers that are not overly
concerned with false positives. This is reinforced by considering
the observed performance overhead associated with structured
merge, and the extra effort needed to develop structured merge
tools [8]. Together with our findings about consecutive lines
conflicts, this discussion suggests the development of a tool
that adapts semistructured merge to report textual conflicts
only when changes occur in the same lines (resolving conflicts
caused by changes to consecutive lines). Such a tool could hit
a sweet spot in the tension between structure and accuracy in
merge tools.

Our observations, especially the ones that explain when the
two strategies differ, shall help researchers and merge tool
developers to further explore improvements to merge accuracy
and the underlying tree matching algorithms. In the same vein,
our manual analysis of false positives reveal opportunities
for making merge tools avoid a number of false positives.
For example, by detecting straightforward semantic preserving
changes, we could avoid 42% of false positives reported by
semistructured merge in our sample.

Combining the two merge strategies as suggested by Apel
et al. [4] seems also promising. One idea is to invoke struc-
tured merge, and when it does not detect conflicts, invoke
semistructured merge and return its result, which would reduce
the chances of false negatives. This is a conservative approach,
which considers the costs associated with false positives to be
inferior to those associated with false negatives. Such a tool
would eliminate structured merge’s false negatives, but would
still have semistructured merge’s false negatives. Conversely,
in the best case, when structured merge does detect conflicts,
it would present structured merge’s false positives; and, in
the worst case, the tool would present semistructured merge’s
false positives. A less conservative combination, in which
semistructured is used as long as it does not detect conflicts,
is also worthwhile to explore.

VII. RELATED WORK

Several researches propose development tools and strate-
gies to better support collaborative development environments.
These tools try to both decrease integration effort and improve
correctness during code integration. For instance, to overcome
weaknesses associated with traditional unstructured merge,
structured [4], [5], [20], [25]–[29] and semantic merge strategies
have also been proposed [30]–[33].

For example, Apel et al.[4] developed JDime, the structured
tool used in this study, also capable of tuning the merging
process on-line by switching between unstructured and struc-
tured merge, depending on the presence of conflicts. They also
proposed semistructured merge, which takes advantage of the
underlying language’s syntactic structure and static semantics,
but without the performance overhead associated with full
structured merge [8]. Studies [9], [11] provide evidence that
semistructured merge might reduce the number of reported
conflicts in relation to traditional unstructured merge, but not
for all projects and merge scenarios. Cavalcanti et al. [9] go
further and provide evidence that the number of false positives



is significantly reduced when using semistructured merge. How-
ever, they do not find evidence that semistructured merge leads
to fewer false negatives. Lessenich et al.[20] attempt to improve
JDime by employing a syntax specific lookahead to detect re-
namings and shifted code. They demonstrate that their solution
can significantly improve matching precision in 28% while
maintaining performance. Zhu et al.[22] built AutoMerge, on top
of JDime, that matches nodes based on an adjustable so-called
quality function. Their goal is to find a set of matching nodes
that maximizes the quality function, preventing the matching of
logically unrelated nodes, and, as consequence, false positives
conflicts. They found that AutoMerge was able to reduce the
number of reported conflicts compared to original JDime, being
slightly slower. We complement these prior studies by compar-
ing semistructured and structured merge, not only in terms of
reported conflicts, but also in terms of false positives and false
negatives. We conclude that semistructured merge would be a
better match for developers that are not overly concerned with
false positives, especially when a semistructured merge tool
resolves conflicts caused by changes to consecutive lines. We
also suggest that a combination of these two strategies seems
promising as it is able to reduce weaknesses of both strategies.

Souza et al. [33] propose SafeMerge, a semantic tool
that checks whether a merged program does not introduce
new unwanted behavior. They achieve that by combining
lightweight dependence analysis for shared program fragments
and precise relational reasoning for the modifications. They
found that the proposed approach can identify behavioral
issues in problematic merges that are generated by unstructured
tools. This tool needs as input a merged program besides the
three versions present in a merge scenario, so it could be used
in combination with a semistructured or structured merge tool,
or even our suggested tool that further combines these two
strategies, to reduce their behavioral false negatives. However,
SafeMerge only analyzes the class file associated with the
modified method declarations, so it may suffer from both false
positives and false negatives too. In particular, their analysis
results are only sound under the assumption that the external
callees from other classes have not been modified.

Other empirical studies provide evidence about the
occurrences and effects of conflicts and their associated
causes [2], [34]–[41]. For example, Brun et al. [34] and Kasi
et al. [35] reproduce merge scenarios from different GitHub
projects with the purpose of measuring the frequency of merge
scenarios that resulted in conflicts. Zimmermann [2] conducted
a similar analysis reproducing integrations from CVS projects
instead. They all conclude that conflicts are frequent. Adams
and McIntosh [37], and Henderson[38] even report that
companies have migrated to single-branched repositories to
avoid merge problems. Our work complements these studies
providing evidence of conflict frequency depending on the use
of different merge strategies. Finally, Menezes et al.[39] analyze
merge scenarios from open-source Java projects to investigate
the nature of merge conflicts. in terms of what conflicts look
like, what kinds of conflicts occur, how developers fix them,
and more. Based on their results, they argue that it is difficult to

envision a single generic merge strategy that can automatically
resolve all possible conflicts, because the diversity in conflicts
is simply too large. Still, they believe it is possible to improve
over the existing tools to better resolve conflicts, for instance,
in the form of plug-ins that can automatically handle specific
kinds of conflicts. Accioly et al. [41] derive a catalog of conflict
patterns expressed in terms of the structure of code changes that
lead to merge conflicts. Their results show that most conflicts
occur because developers independently edit the same or
consecutive lines of the same method. However, the probability
of creating a merge conflict is approximately the same when
editing methods, class fields, and modifier lists. Similarly, [36]
investigate how conflicts on method declarations are resolved
on open source Java projects. They found that most part of them
is resolved by adopting one of the versions, then discarding the
other. These findings about conflicts characteristics might be
adapted by a merge tool as strategies for resolving conflicts.

VIII. CONCLUSIONS

When integrating code contributions from software devel-
opment tasks, one often has to deal with conflicting changes.
While state of practice tools still rely on an unstructured, lined-
based strategy to merging, recent developments demonstrate the
merits and prospects of advanced merge strategies, in particular
semistructured and structured merge. Previous studies provide
evidence that semistructured merge has significant advantages
over unstructured merge, and that structured merge reports
significantly fewer conflicts than unstructured merge. However,
it was unknown how semistructured merge compares with
structured merge. In this paper, we compared semistructured
and structured merge by reproducing 43,509 merge scenarios
from 508 GitHub Java projects. Our results show that users
should not expect much difference when using a semistructured
or a structured merge tool: they differ substantially only when
applied to conflicting scenarios (in about 24% of them), which
corresponds to only about 2% of our subject scenarios. When
semistructured merge is able to resolve conflicts due to changes
in consecutive lines of code, the two strategies differ in about
22% of the conflicting scenarios instead, and the number of
scenarios in which they differ is reduced by about 11%. When
deciding which kind of tool to use, a user should consider that
semistructured merge reports more false positives (9 times more
scenarios with false positives), but structured merge misses
more conflicts (false negatives; 8 times mores scenarios with
missed conflicts). Combining the two strategies seems promis-
ing as it is able to mitigate the weaknesses of both strategies.
As future work, we shall implement and evaluate such a combi-
nation of strategies to verify its actual benefits and drawbacks.
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