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Abstract—An early study showed that indentation is not a
matter of style, but provides actual support for program compre-
hension. In this paper, we present a non-exact replication of this
study. Our aim is to provide empirical evidence for the suggested
level of indentation made by many style guides. Following Miara
and others, we also included the perceived difficulty, and we
extended the original design to gain additional insights into the
influence of indentation on visual effort by employing an eye-
tracker. In the course of our study, we asked 22 participants to
calculate the output of Java code snippets with different levels of
indentation, while we recorded their gaze behavior. We did not
find any indication that the indentation levels affect program
comprehension or visual effort, so we could not replicate the
findings of Miara and others. Nevertheless, our modernization of
the original experiment design is a promising starting point for
future studies in this field.

Index Terms—Code Indentation, Program Comprehension,
Visual Effort

I. INTRODUCTION

Program comprehension is an important cognitive process,
as programmers spend about half of their time comprehending
source code [1], [2]. To support developers in this process,
coding conventions have been proposed, which are meant to
help them to communicate with other developers, including
reviewers, maintainers, and testers of their code. For illustra-
tion, we show an example for Pascal in Listing 1 and the
same example for Java in Listing 2. The coding conventions
for the two languages suggest different ways of formatting
the respective code: In Java1, the guideline suggests to name
variables in a lowerCamelCase style. The coding conventions
for Pascal2 recommend to name both variables and constants
in a UpperCamelCase style. The two guidelines also contain
different rules for indentation: While indentation in Java
should consist of four spaces, Pascal code should have an
indentation of two spaces. Agreement on a common guideline
is supposed to ease the communication between developers
and support them in code diffing and merging.

Similar style guides exist for most modern program-
ming languages, sometimes augmented with individual flavors
(e.g., Google’s JavaScript style guide [3]). A suggested level
of indentation is often part of those recommendations for pro-
gramming languages. However, recommendations are typically
not explicitly justified and are only a guess about the most

1https://google.github.io/styleguide/javaguide.html#s5-naming
2http://www.sourceformat.com/coding-standard-pascal-gnu.htm

1 program factorial;
2 const
3 OriginalValue=6;
4 var
5 i,Fact:integer;
6 begin
7 Fact:=1;
8 for i:=1 to OriginalValue do
9 Fact:=Fact * i;

10 writeln(Fact);
11 end.

Listing 1. Factorial in Pascal

1 class Factorial{
2 public static void main(String[] args) {
3 final int ORIGINAL_VALUE = 6;
4 int i = 0, fact = 1;
5 for (i = 0; i < ORIGINAL_VALUE; i++;) {
6 fact = fact * i;
7 }
8 System.out.println(fact);
9 }

10 }

Listing 2. Factorial in Java

suitable level of indentation by the authors of guidelines. This
is surprising, because although indentation is to a large degree
a subtle component of style, it is omnipresent and can hardly
be escaped when working with code.

Some languages, such as Python [4], explicitly require
indentation for indicating the beginning and end of block
structures. In such cases, programmers have to commit to the
specific language requirements and are limited in the usage
of indentations as stylistic device. In languages such as Java,
indentation is purely optional. Here, indentation does not bear
any meaning, so it can be set arbitrarily and is left to personal
preference. For Java, there are several suggestions for code
conventions, and the best known might be style guides of
Oracle [5] and Google [6], who propose an indentation of
four spaces.

Despite guidelines, it is unclear how the level of indenta-
tion actually affects the comprehensibility of Java code. One
early study was conducted by Miara and others [7] in 1983
(“Program Indentation and Comprehensibility”). It focused on
Pascal and showed that an indentation of 2 to 4 spaces is
most helpful for comprehending code [7]. Since the results
of this study are limited to Pascal and more than 35 years
old, we set out to evaluate whether the recommendation of
2 to 4 spaces still holds in modern programming languages.



To this end, we conduct a non-exact replication of the study
of Miara and others, adapted to Java and with students instead
of professional programmers. As a further refinement, we are
interested in whether different spaces of indentation affect
visual effort (i.e., how much effort participants spend to
understand a snippet), so we recorded the eye movements of
participants with an eye tracker.

Our results indicate that the level of indentation has no effect
on program comprehension or perceived difficulty of the code
snippets, as it neither affected the time the participants needed
for solving tasks nor the correctness of the answers nor their
rating of difficulty. Furthermore, indentation levels did not
affect visual effort of participants (a difference for fixation
rate vanishes in post hoc tests).

In summary, we make the following contributions:
• We report a non-exact replication of the first study on the

effect of indentation levels on program comprehension
• We modernized the experiment design to include typical

code fragments in Java
• We added eye tracking to evaluate the effect of indenta-

tion levels on visual effort
• We provide a replication package and share all collected

data at https://github.com/brains-on-code/indentation/

II. ORIGINAL STUDY

In this section, we summarize the original study by Miara
and others [7]. The authors of the original study asked 86 pro-
grammers with varying experience levels to answer questions
about one code snippet with varying indentation levels and
to estimate its difficulty. The participants had 20 minutes to
complete the tasks and the rating of difficulty. Each participant
received one of seven code versions.

A. Variables

The original study used a single Pascal code snippet that
calculated how often a word occurred in a given input. It used
several syntactic structures that are typically indented, such
as while loops and if-then-else statements. It was treated with
different levels of indentation, which was the first independent
variable. Specifically, the snippet came in four different con-
figurations, with zero, two, four, and six spaces of indentation.
Additionally, the code within Pascal’s begin-end blocks was
either aligned with the begin and end statements or also
indented. Together with the different spaces of indentation,
this resulted in seven different versions of the code snippet
(see the project’s Web site for details).

In their design, Miara and others considered programming
experience as additional factor. To this end, participants were
categorized either as novice or expert, based on the number
of years they had been programming. Participants who had
been programming less than three years in school or less than
two years in practice were categorized as novices, all others
as experts.

The first dependent variable was program comprehension.
To measure it, the authors asked nine multiple choice questions
about the program (e.g., “The maximum number of input

records is?” or “The output is?” followed by choices) [7].
A higher score in the quiz indicated better program com-
prehension. Additionally, participants were asked to give a
description of the function of the program. The answer was
given gradual credit depending on its accuracy. This credit was
then added to the overall score.

The second dependent variable was the perceived difficulty
for comprehending the code snippet—participants should rate
the difficulty on a discrete scale from 1 (very easy) to 7 (very
hard) with 4 representing a moderate level of difficulty.

B. Results

Miara and others found that two-spaced indentation led
to the highest number of correct answers, followed by four
spaces. The zero-indented code snippet had the fewest correct
answers. As for perceived difficulty, two spaces were rated
easier than other indentations, and zero spaces was rated
as the most difficult. Independent of the indentation level,
experts performed overall better than novices and perceived
the snippets as easier.

III. REPLICATION

In this section, we describe our non-exact replication of the
study of Miara and others. We highlight the changes that we
made in comparison to the original study in each subsection.

A. Material

We decided to convert the Pascal snippets to Java as a
modern programming language. The four snippets that we used
in the study were selected under the aspects of being similar
enough to be comparable to each other (e.g., regarding length,
complexity), but at the same time being different enough to
avoid learning effects. Each snippet treats a problem involving
an array (of numbers or subsequences of a string).

The snippets are similar to standard text book problems and
were adapted from the code snippets of previous work [8], [9],
[10]. They all contain two block structures (i.e., if-then-else
block or loops). To ensure that the snippets are suitable for
our study (i.e., such that participants are finished neither too
fast nor take too long), we conducted pilot tests. Based on the
results of the pilot tests, we replaced one snippet that was too
easy (implementing the replacement of elements in an array
with a constant value except for one index). In Listings 3 to
6, we show all four snippets that we used in our study.

The first snippet calculates the difference of the respective
sums of odd and even numbers in an array (Listing 3). The
second snippet adds characters to a resulting string depending
on a comparison of a value and an element of a traversed array
of numbers (Listing 4). The third snippet sums up the integers
contained in intervals, which are given in a string (Listing 5).
The last snippet counts the elements of an array that are above
and below certain thresholds (Listing 6).

Each snippet has 17 lines of code. This way, we ensured that
the snippets are not too trivial and that the eye-tracker was able
to differentiate the points of gaze. Each Java class contains a
single main method, which, in turn, contained at least one



1 public class Do {
2 public static void main (String[] args) {
3 int[] array = {5, 6, 11, 0, 2};
4 int integer = 0;
5 int number1 = 0;
6 int numberA = 0;
7 while (integer < array.length){
8 if (array[integer] % 2 == 0){
9 number1 += array[integer];

10 } else {
11 numberA += array[integer];
12 }
13 integer++;
14 }
15 System.out.println(numberA - number1);
16 }
17 }

Listing 3. Subtraction of odd and even numbers.

1 public class Main {
2 public static void main(String[] args) {
3 int[] values = {3, 0, 1, 0, 2};
4 StringBuilder result = new StringBuilder();
5 int variable = 3;
6 for (int value : values) {
7 if (value == variable) {
8 result.append("x");
9 } else if (value < variable) {

10 result.append("m");
11 }
12 result.append("o");
13 variable --;
14 }
15 System.out.print(result);
16 }
17 }

Listing 4. Conversion of numbers into characters.

1 public class Program {
2 public static void main(String[] args) {
3 String input = "1-3,10-11";
4 int output = 0;
5 for (String part : input.split(",")) {
6 String[] numbers = part.split("-");
7 int left = Integer.parseInt(numbers[0]);
8 int right = Integer.parseInt(numbers[1]);
9 int number = left;

10 while (number <= right) {
11 output += number;
12 number++;
13 }
14 }
15 System.out.println(output);
16 }
17 }

Listing 5. Sum of interval numbers.

1 public class Test {
2 public static void main(String[] args) {
3 int variable = 0;
4 String string = "3 21 4 2 55 0 13";
5 int start = 2;
6 int end = 18;
7 String[] keys = string.split(" ");
8 for (int i = 0; i < keys.length; i++) {
9 int key = Integer.parseInt(keys[i]);

10 boolean check = (key >= start && key <= end);
11 if (check) {
12 variable += 1;
13 }
14 }
15 System.out.print(variable);
16 }
17 }

Listing 6. Element count of values above and below thresholds.

print statement, determining the output of the program. We
chose identifier names such that they did not hint at their
function in the code (e.g., number1, variable), and we
named the classes vaguely (e.g., Program, Main). This way,
we ensured that participants could not guess the output based
on the identifier names, but instead had to focus on actually
comprehending the snippets. This way, we enforced bottom-up
comprehension of the code, which reduces the effect of prior
knowledge on the way of understanding the snippet [11].

Unlike the original study, the snippets implemented differ-
ent problems and were shorter (17 compared to 101 lines).
This way, we could compensate for our small sample by
using a within-subject design: one participant saw all four
different levels of indentation on all four different snippets.
Furthermore, the snippets needed to fit on one screen without
scrolling to ensure a reliable identification of code location
to participants’ eye gaze. Technically, eye trackers support
scrolling, but this adds additional complexity to the setup and
analysis to ensure accurate recording of eye movements.

B. Variables

We varied the level of indentation as an independent vari-
able. Similar to the original study, we implemented four levels:
zero, two, four, and eight spaces. Note that the fourth level
had a depth of eight spaces, instead of six spaces, because we
aimed at maximizing the effect of highly indented code, while
keeping it at a reasonable level. For indentation of code blocks,
we followed Oracle’s Java coding conventions [5], so code
blocks that belong to the following constructs were indented:

• Class header
• Method header
• Loop header
• if, else if, and else

Unlike in the original study, we did not treat programming
experience as independent variable, because we could not
recruit a sufficient number of experienced programmers for
our study (15 out of 22 participants were students).

As dependent variables, we measured program comprehen-
sion, perceived difficulty, and visual effort. We operationalized
program comprehension and perceived difficulty different than
in the original study:

a) Program Comprehension: To measure program com-
prehension, we asked the participants to determine the output
of a snippet. An answer was counted as correct if it matched
exactly the actual output (e.g., “xoxxom” was not given partial
credit, when the right answer was “xooxom”). To this end,
participants needed to examine the source code line by line
and keep track of the values of the variables.

We deviated from the multiple-choice questions and sum-
mary of the original study, because our goal was that par-
ticipants have to go through the code snippets line by line,
until having found an answer. This allowed us also to measure
visual effort with an eye tracker.

In addition to correctness, we also measured the response
time for each task, from the time a snippet was presented
until a participant submitted their answer. We decided to
include response time (in contrast to the original study),
because the duration of the comprehension process is also



an indicator for the effect of different indentation levels on
program comprehension.

b) Perceived Difficulty: We asked participants to rate
each snippet’s difficulty. To this end, we displayed all snippets
at once and asked the participants to sort the snippets from
easy to difficult, thus enforcing a choice on a relation among
the snippets. We chose this method because it encourages the
participants to compare the snippets directly with the other
snippets they had seen. An alternative would have been to
display the individual snippets one after another and asking
for a rating on a certain scale. We dismissed this idea, because
we anticipated that this method would cue participants to
give an absolute rating of how difficult they felt the previous
tasks had been and compare each snippet to snippets they
had encountered outside of the study. We deviated from the
absolute rating of difficulty, because it allowed us to reduce
the influence of inter-individual differences, such that each
participant sees different levels of indentation and can focus on
the rating of difficulty more than on the different indentation
levels, rather than on the complexity of the snippet itself. For
rating difficulty, we displayed the snippets next to each other,
along with the respective answers given in the preceding trials,
to indicate that the participant had in fact seen the snippet
earlier.

The participants rated twice: First, all snippets were dis-
played with a normalized indentation depth of four spaces.
This way, we aimed at learning about their perception of
difficulty without giving hints about the role of indentation
in the study. Second, we showed the code with the actual
indentation that participants saw in the comprehension tasks,
that is, with different indentation levels. This way, participants
could take the level of indentation into account for their
rating. For analysis, we used both ratings of difficulty. This
way, we reduced the influence of different complexities of the
individual source-code snippets. Our method of evaluating the
participants’ estimation of difficulty differs from the one used
by Miara and others, who let the participants rate the difficulty
on a scale from 1 to 7.

c) Visual Effort: In addition to the original study’s setup,
we included eye tracking to measure visual effort, which
allows us to discover challenges while reading code. We use
fixations and saccades to operationalize visual effort (much
like in Sharif and others’ eye-tracking study [12]).

A fixation takes place when the gaze is resting on a point.
It “lasts anywhere from some tens of milliseconds up to
several second” [13]. There are numerous measures regarding
fixation, such as fixation position, duration, count, and rate.
The transition between two fixations is called a saccade. It
does not need to follow a straight line, but can be curved before
ending in a fixation [13]. Measures regarding saccades include
saccadic velocity, saccadic amplitude, and the directions of
saccades.

Based on fixations and saccades, we can derive different
measures that describe visual effort (see Holmqvist and oth-
ers [13] for a detailed overview). In our study, we selected
fixation duration, fixation rate, and saccadic amplitude, be-

cause they are the most widely used and thus well-understood
measures for visual effort:

Fixation Duration: The duration of a fixation is “likely to
be the most used measure in eye tracking research” [13].
In 1980, Just and Carpenter proposed “that there is no
appreciable lag between what is being fixated and what
is being processed.” [14]. This implies that the longer a
fixation is, the longer the fixated part is processed, and
the larger the visual effort is. This statement has to be
handled with some caution, because “some processing
trace of a fixated item may continue for a very long
time after the eye has left the fixated position” [13].
Nevertheless, fixation duration is a good indicator for
processing text or code, because only visually perceived
items can be handled by the reader. We expected the
level of indentation to affect fixation duration, because
participants have to adapt their gaze behavior not only to
the different layout, but also to the assumedly differing
difficulty of the code. For example, a well-formatted piece
of code with the supposedly optimal level of indentation
could allow participants to concentrate more on certain
code lines, therefore increasing their fixation duration.

Fixation Rate: The number of fixations per second is known
as the fixation rate. It is related to fixation duration, but
“includes saccade and blink duration” [13]. Nakayama
and others found that fixation rate (or “gazing time” as
they call it) decreases when task difficulty increases [15].
A high fixation rate implies that the reader jumps more
from fixation to fixation, so from item to item, resulting
in higher visual effort. In contrast, a low fixation rate may
either occur when people have a harder time to process
some parts of a code snippet, or when they feel no need
for looking back for understanding single items. Like
with fixation duration, we expected this measurement to
be influenced by indentation. For example, non-indented
code could increase the number of saccades in the code
to figure out corresponding blocks of code, resulting in
an increased fixation rate.

Saccadic Amplitude: The spatial length of a saccade is also
known as saccadic amplitude. It relates to the jumps
made by participants and to the difficulty of a task,
such as understanding a code snippet. The more difficult
the task, the shorter the saccadic amplitude [16]. Higher
difficulty in tasks related to counting was also shown to
result in decreased saccadic amplitudes [17]. Naturally,
the saccadic amplitude can also be influenced by the
layout of the stimulus. If visual clues lie farther apart
from each other, the saccades between them cover a larger
distance, leading to higher visual effort. We therefore
expected that the saccadic amplitude is influenced by the
level of indentation, as it changes the distance between
ending and beginning of new lines. Furthermore, as
code becomes more unstructured, the possible resulting
jumping between distant lines of code would affect the
saccadic amplitude.



Having presented our independent (level of indentation) and
dependent (program comprehension, perceived difficulty, vi-
sual effort) variables, we now describe our research questions.

C. Research Questions

The overarching question of our study is: Does indentation
affect program comprehension? At first glance, indentation
by itself does not directly influence program comprehension:
The code is still the same, only differently formatted. In
many cases, there is no additional information encoded in
this choice. The reason why we believe that indentation could
have an effect on program comprehension is its structuring
influence: Indentation highlights cohesive code parts, making
them easier to detect. The advantage that proper indentation
offers is therefore a small gain of time, which could be invested
for deeper program comprehension. However, this highlighting
effect of indentation could be subverted if the number of
spaces used is too high. Stretching the code too far to the right
could make it more difficult to keep the bigger picture in mind
(the role the indented code lines play in the program’s overall
function). The surrounding code lines could shift out of focus
for programmers and they might have trouble to consider the
context of the read lines.

We therefore reason that the level of indentation affects pro-
gram comprehension in terms of correctness and time, as well
as perceived difficulty of the program snippets. Furthermore,
as indentation changes the layout of code, we assume that
visual effort is also influenced by the level of indentation.

To evaluate these considerations, we formulate the following
research questions:

RQCorrect Does indentation affect correctness?
RQTime Does indentation affect response time?
RQDiff Does indentation affect perceived difficulty?
RQFix:Dur Does indentation affect fixation duration?
RQFix:Rate Does indentation affect fixation rate?
RQSacc:Amp Does indentation affect saccadic amplitude?

D. Experiment Design

Our study has a within-subject design (every participant
sees every code snippet and every level of indentation) with
a randomized order of code snippets. This way, we reduced
the influence of individual differences, such as programming
experience and reading speed. Additionally, we reduced the ef-
fects of confounding parameters that are inherent to empirical
studies, such as learning and ordering effects.

Randomizing the order of the four snippets results in
4! = 24 different orders. The same counts for the four different
levels of indentation, leading to 24 × 24 = 576 possible
sequences of code snippets and indentations, where no code
snippet and no indentation is repeated. For each participant,
one sequence was randomly selected.

This design was different than in the original study with one
snippet and between subjects. We selected a within-subjects
design to reduce the effect of a possible interaction between
code snippet and indentation, for example, such that one
snippet is the easiest to understand with an indentation of

eight spaces (so, using only this version might lead to the false
conclusion that eight-space indentation is the most effective).
Furthermore, we could compensate for the smaller sample size.

E. Participants

We recruited 39 participants via personal invitation, word-
of-mouth recommendation, and an invitation mass e-mail
addressing all students at the University of Passau. However,
due to a bug in an auxiliary code script, the order was
not randomized for all participants, so we needed to omit
the data of 17 participants from the analysis. Hence, all
following statements refer to the remaining 22 participants
(see Section VI and project’s Web site for more details). As
compensation, we offered participants sweets and the chance
to win an Amazon gift card.

The participants were mainly students of Computer Science
and Internet Computing at the University of Passau. Most
participants were undergraduates in the fourth or fifth semester
(Mean = 4.7, SD = 2.1), who spent, on average, seven hours
per week on programming (Mean = 7.4, SD = 7.3).

Another group of participants was working at our de-
partment of Computer Science (Ph.D. students, post docs,
university staff). Three other participants were employees at
the msg systems ag, a software company located in Passau,
Germany.

F. Procedure

We conducted the study in an office with two desks facing
each other. On one desk, the monitor and keyboard for the
participants were assembled, the other one was empty. The
experimenter took place on this desk. We closed the curtains
and roller shutters as far as possible and turned on the light in
the room to obtain optimal results from the eye tracker. During
the study, a construction site outside the building repeatedly
caused a higher noise level, but the participants stated that
they have not been disturbed during the tasks.

We used a Tobii EyeX tracker with the ‘Tobii Eye Tracking
Core Software’ in version 2.9.0. The tracker has a sampling
rate of 60 Hz and an operating range of 50–90 cm. It is suitable
for a display size up to 27” [18]. We used a monitor with a
diagonal of 24” and a FHD resolution (1920 × 1080 pixels
/ 16:9 aspect ratio) with a refresh rate of 60 Hz. We placed
it ˜50 cm away from the desk’s edge and ˜19 cm above the
desk’s level. We provided a standard keyboard and a wireless
mouse.

Before the actual study started, we asked participants to take
place in front of the screen and to sit down as if they would
do when they had to use the keyboard and mouse. To obtain
good gaze data, we asked to them to change their position until
they felt comfortable and until the Tobii Tracking Software
could reliably detect their eye movements. The experimenter
stayed in the room, and we instructed participants to ignore
her. Then, the study software was executed. It was a self-
written .NET program, which uses the WPF-Framework and
handles the logging of the gaze data and the participants’ input.
The language used in the instructions was German.



The study started with a welcome screen, which was
also where the participants gave their informed consent. We
asked demographic questions and about their programming
experience. When participants declared to be students, we
directed them to answer questions about their studies, before
getting to the questions regarding programming experience,
which all participants answered. Afterwards, the eye tracker
was calibrated. We asked the participants to remain in their
current position as far as possible to keep the calibration valid.
Subsequently, we gave them the instructions for the tasks,
including a warm-up snippet to get accustomed to the study.
Then, the actual tasks started. The snippets were preceded
by a fixation cross of 1.5 seconds. The following task screen
showed the stimulus code snippet in the main part of the
window. Separated by a thin line, the input field for the output
answer was at the bottom part of the screen. The question to
be answered (“What output does this code produce?”) was
written to the left side of this field. With a click on ‘Done’,
participants moved on to the next screen. Each task had a
time limit of 5 minutes (which we introduced based on the
pilot study, so that the experiment would not last too long for
slower readers). No participant exceeded the time limit.

After each snippet, participants had the chance to decide
for themselves when to continue. After comprehending all
four snippets, participants rated the difficulty of the code
snippets. Via drag-and-drop, participants ordered the snippets
according to difficulty. Then, we asked participants whether
they participated seriously and whether they got distracted
during the experiment. Finally, participants could state whether
they wanted to take part in the lottery and be informed about
the study results.

Each trial took, at most, 30 minutes (up to 20 minutes for
the code tasks plus ˜10 minutes to answer the questionnaire,
read the instructions and the warm-up task.)

IV. RESULTS

In this section, we present the results of our study, followed
by the analysis of the influence of the level of indentation on
the depending variables.

A. Descriptive Statistics

This section gives an overview of the values of the depen-
dent variables and their distributions. In tables, we show mean
and standard deviation of the values, if the data are normally
distributed (as the Shapiro-Wilk test [19] indicates), and the
median and the interquartile range (IQR), otherwise.

Since Response time and Saccadic Amplitude are not nor-
mally distributed, we calculated the natural logarithm of the
values (i.e., a log transformation), on which we base the
analysis. The figures and tables show the raw, untransformed
values of the data. Note that the graphs show groupings and
do not reflect that the data were collected using a repeated-
measures design, that is, our statistics account for inter-
individual effects, but our graphs do not as they are not able
to show the data points collected from the same participant.

TABLE I
SUMMARY OF RESPONSE TIMES AND CORRECTNESS

Time in Seconds

Indentation Median IQR % correct answers

0 95.00 34.77 73 %
2 97.55 41.07 68 %
4 93.42 47.79 77 %
8 85.08 59.02 55 %
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Fig. 1. Distributions of Response Times (untransformed)

1) Program Comprehension: The results for program com-
prehension (i.e., response time and correctness) are shown
in Table I. The time values are not normally distributed
but skewed to the left (shown by a p-value of below 0.001
for the Shapiro-Wilk test), which is typical for response
times. An indentation of eight spaces resulted in the fastest
response time, but in the smallest number of correct answers.
Four spaces of indentations led to the highest correctness of
answers. Overall, the participants needed the longest time for
completing the tasks with an indentation of two spaces.

To minimize the effect of the skewed response times, they
can be transformed, for example, by inversion or applying
a logarithmic function [20]. Here, we log-transformed the
response times [20], leading to normally distributed data
(p-value of 0.1 for the Shapiro-Wilk test). With normally
distributed data, we can conduct an ANOVA to evaluate our
hypotheses (see Section IV-B).

TABLE II
SUMMARY OF POSITION IN RATING WITH EQUAL AND REAL

INDENTATIONS

Rating Equal Rating Real

Indentation Median IQR Median IQR

0 2 1 2 2
2 2 1.75 2 1
4 1 0.75 1 2
8 1 2 1 2



2) Rating: Table II shows a summary of the position in
the rating for the respective level of indentation that a rated
code snippet had, when the rating took place with equal
indentations (i.e., four spaces) and with the actual indentation
of how participants saw them in the study. The medians of the
two conditions are equal, only the distributions differ for the
indentation levels. In both cases, small levels of indentation
(zero and two spaces) were rated as more difficult than larger
levels of indentation (four and eight spaces).

3) Visual Effort:
a) Fixation Duration: The median fixation duration of

each trial is approximately normally distributed (Shapiro-Wilk
test: W = 0, 98, p = 0.18). The results are summarized in Ta-
ble III. On average, the fixations of participants lasted longest
with an indentation of four spaces (i.e., 157 milliseconds), and
shortest with non-indented code (146 milliseconds), indicating
the highest visual effort for 4 spaces.

b) Fixation Rate: The fixation rate is not normally dis-
tributed but skewed to the right with a long tail on the left
side (W = 0.76, p < 0.001). The results are summarized
in Table III. Here, participants had the highest fixation rate
of 3.45 fixations per second with non-indented code and the
lowest with four spaces (3.23 fixations per second), indicating
the highest visual effort for 0 spaces.

c) Saccadic Amplitude: The average saccadic amplitudes
per trial are not normally distributed (W = 0.95, p = 0.001).
They are skewed to the left and thus were log-transformed
for later analysis (similar to response times). The transformed
values are normally distributed according to a Shapiro-Wilk
test (W = 0.98, p = 0.11). The untransformed values are
summarized in Table III. Overall, the participants’ saccades
were the longest when they handled non-indented code (i.e.,
155 pixels) and the shortest when handling code with an
indentation of four spaces (139 pixels), so visual effort appears
to be highest for 0 spaces.

B. Statistical Analysis

Next, we answer our research questions. We used two
tests for statistical significance of the differences in our data
regarding our research questions:

One-way repeated-measures ANOVA: This test compares
means of groups that are differentiated by one factor
(here: level of indentation), and that were collected from
the same source [21]. It requires that the dependent
variable is interval-scaled and normally distributed (either
directly or after transformation) and that sphericity can be
assumed (for example, by insignificance of the Mauchly
test [22]).

Friedman test: This is an alternative test for ANOVA when
the assumptions are violated, so when data are not
normally distributed and/or sphericity cannot be as-
sumed [23]. By ranking the values, the test analyzes
the variance of repeated measures derived from one
independent variable. It requires that the values between
samples are paired and independent within a sample.

Next, we report the results of the significance tests for each
research question, followed by an explanation for test selec-
tion.

RQCorrect: Does indentation affect correctness? → No.
The Friedman test showed that the number of correct
answers was not significantly affected by the levels of
indentations (χ2(3) = 3.32, p = 0.36).
We used this test, because the dependent variable (‘correct
answer given’) is not interval-scaled.

RQTime: Does indentation affect response time? → No.
A One-way ANOVA with repeated measures showed
that the effect of the level of indentation on the
log-transformed response times was not significant
(F (3, 63) = 0.44, p = 0.72, η2p = 0.006).
We selected this test, because the dependent
variable (‘Time’) is normally distributed after a
log-transformation. Sphericity can be assumed, as a
Mauchly test indicates (Mauchly − W (3) = 0.85,
p = 0.65).

RQDiff: Does indentation affect perceived difficulty? →
No.
For determining whether the rating positions of the code
snippets differed depending on the level of indentation,
we applied the Friedman test, once for the rating with
equal indentations, and once for the one with the actual
indentations. For both, the differences are not significant
(χ2(3) = 4.64, p = 0.20 and χ2(3) = 5.35, p = 0.15).
Since the dependent variable (‘Rating Position’) is
ordinal-scaled, we chose the Friedman test.

RQFix:Dur: Does indentation affect fixation duration? →
No.
A One-way ANOVA with repeated measures showed
that the effect of the level of indentation on the
median fixation duration per trial was significant
(F (3, 63) = 2.85, p = 0.045, η2p = 0.028). However, we
could not confirm this difference with post hoc tests, for
which we used t tests for dependent samples and false
discovery rate (FDR) correction to adjust the p value for
multiple testing.
We chose ANOVA and the t test, because the dependent
variable (‘Median Fixation Duration Per Trial’) is
interval-scaled and normally distributed. Sphericity can
be assumed (Mauchly −W (3) = 0.77, p = 0.39).

RQFix:Rate: Does indentation affect fixation rate? → No.
There was no significant difference among the
distributions of the fixation rates for the four levels of
indentation according to the Friedman test (χ2(3) = 7.36,
p = 0.06).
As the dependent variable (‘Fixation Rate’) is not
normally distributed, also not after transformation, we
chose the Friedman test.



TABLE III
SUMMARY OF MEDIAN FIXATION DURATION, FIXATION RATE, AND SACCADIC AMPLITUDE

Fixation Duration per Trial (ms) Fixation Rate (fixations/second) Saccadic Amplitude (pixels)

Indentation Median IQR Median IQR Median IQR

0 146.09 25.94 3.45 0.81 155.53 41.36
2 153.75 24.45 3.38 0.39 144.11 33.23
4 157.41 25.83 3.23 0.67 139.48 22.58
8 153.50 22.04 3.42 0.38 149.09 40.42

Total 152.69 24.54 3.35 0.69 145.24 32.91
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Fig. 2. Distribution of Median Fixation Duration, Fixation Rate, and Saccadic Amplitude (untransformed)

RQSacc:Amp: Does indentation affect saccadic amplitude?
→ No.
A One-way ANOVA with repeated measures showed
that the effect of the level of indentation on the log-
transformed average saccadic amplitude was not signifi-
cant (F (3, 63) = 1.69, p = 0.18, η2p = 0.029).
We selected this test, because the data are normally dis-
tributed after a log-transformation and the dependent vari-
able (‘Saccadic Amplitude’) is interval-scaled. Sphericity
can be assumed (Mauchly −W (3) = 0.87, p = 0.74).

We further discuss the strictness of our statistical analysis
in Section VI-C.

V. DISCUSSION

Although we observed subtle differences for correctness,
response time, perceived difficulty, and visual effort, none
of these differences was statistically significant. Thus, we
obtained a negative result, showing that guidelines for inden-
tation do seem to be a matter of style.

There are several possible explanations for the negative
result. First, the actual effect of the original study was possibly
spurious. Maybe comprehensibility was not influenced by
indentation but by hidden variables that were not present in
our study. Maybe the obtained results only apply to Pascal, but
not to Java, or maybe programming education played a more
important role. However, without further studies, we cannot
know why Miara and others observed an effect and we did
not.

Another possible explanation could be the small effect size.
Regarding response time, the maximum difference was only

12 seconds (between 2 and 8 spaces, cf. Table I), and the
maximum difference for correctness was 22% (i.e., there were
5 more right answers given for snippets with 4 spaces of
indentation than for those with 8 spaces). For subjective rating
of difficulty, Cliff’s delta is also small, that is, -0.17 for equal
indentations and 0.27 for the actual indentations. Regarding
visual effort, the effect sizes are below 0.03 in terms of eta2

for fixation duration, fixation rate, and saccadic amplitude. For
fixation duration, this translates into a maximum difference of
11 ms (between 0 and 4 indentation spaces, cf. Table III).
In other words, participants needed about 11 ms longer to
process information when working with 4 spaces of indenta-
tion, compared to 0 spaces. Similarly small is the maximum
difference in fixation rate (0.22 fixations per second; between
0 and 4 spaces) and saccadic amplitude (16 pixels; between
0 and 4 spaces).

Additionally, the sample size may have played a role: While
Miara and others recruited 86 participants, we obtained only
22 records. However, where Miara and others used a between-
subjects design with small groups, we used a within-subjects
design and each participant saw 4 trials, resulting in 88 valid
data points that we used to calculate our statistics. Thus, our
sample size was effectively comparable. Wherever possible,
we used parametric tests, which have more statistical power
than non-parametric tests. However, comparing the power and
sample sizes between the studies is difficult, because we were
unable to pinpoint the effect sizes of the original study, as the
authors did not report all relevant values to calculate an effect
size precisely, so our discussion is based on a rough estimation



of these values. Lehman [24] suggests to estimate the sample
size for non-parametric tests by adding approximately 15% to
an estimation of a similar parametric test. Assuming that the
effect of indentations on comprehension is small (between 0.1
and 0.2 [25]), we estimated a required sample size for our
study, using G-Power [26]. Aiming at a desirable power of
1 − β = 0.8, we estimated a total sample size of n = 304
participants to find a small effect (f = 0.15) using a repeated-
measures ANOVA at a type-I-error probability α = 0.05, with
four measurements of four groups. Thus, to find an effect of
this magnitude with acceptable power, our sample might sim-
ply be too small. It is likely that our design was not sensitive
enough to detect such a small effect with the configuration
given. However, we believe that a shorter response time in the
order of seconds, as we found, does not justify as evidence
for an effect of indentation on program comprehension.

Besides the statistical aspects, other code-related factors
could have masked an effect, such as the computation per-
formed in the code snippets, the size and complexity of a
snippet, or syntax highlighting. It might well be that, the effect
of indentation comes more into play when the code is longer
and more complex. For example, with a higher degree of
nesting (e.g., 4 or 5 nested loops), the depth of indentation may
indeed affect comprehensibility of a code snippet. Looking at
the study by Miara and others, their snippet was longer (101
lines, compared to 17). Taking the results of both studies into
account, it might well be that for snippets similar to ours,
indentation depth might not affect comprehensibility, which
instead might come only into play with longer and more
complex code.

Last, experience may have affected the results. Different to
the original study, we mostly recruited novice programmers
(i.e., undergraduate students) for our sample. It might well
be that they are not yet accustomed to layout guidelines.
Soloway and Ehrlich found a similar effect, showing that
the performance of experts degraded compared to the perfor-
mance of novice programmers when their expectations were
violated [27]. We might observe a similar effect here, such
that programming experience interacts with indentation depth.

In a nutshell, we could not find any evidence that a certain
level of indentation is optimal for program comprehension.
Thus, especially when working with code that has similar
properties as the snippets in our setting (e.g., in terms of
complexity and length), personal preferences and experience
of developers might be the best recommendation that we can
give. Nevertheless, it might be worth to dig deeper into why
the personal preferences of indentation emerge in the first
place, and how indentation interacts with other properties of
source code, such as complexity, nesting depth, or length.

VI. THREATS TO VALIDITY

A. Internal Validity

While all participants declared that they were not distracted
during the tasks, the noise of the construction site might
have had an influence on the concentration of participants. Of
course, the sheer presence of the eye tracker may have affected

the participants’ behavior, too. To minimize this threat, we
asked participants afterwards how much they were distracted,
and none said that it disturbed their work.

Rating the code snippets’ difficulty by asking participants to
order them does not depict absolute values. Participants were
not able to adequately express their perception of difficulty,
when they thought all snippets were equally easy or difficult.
However, forcing participants to make a decision for each
snippet allowed us to compare the relative difficulty of the
snippets to each other and not to other code snippets that
participants had worked with before.

The eye-gaze attributes examined in this study are only a
subset of possible aspects for measuring visual effort. Other
measures, such as blink rate or pupil dilation, might have been
more informative. We did not measure these because the aim
of this study was to get a first insight into how visual effort is
affected by indentation, whereas for measuring other factors,
a more elaborate eye tracker setup is needed.

The absence of evidence of the effect of indentation and
visual effort could originate from the high subjective factor
of eye-tracking data, “meaning that one person’s parameters
are different from another person’s, irrespective of task” [13].
The small number of participants might thus hinder obtaining
significant results for differences in visual effort. Furthermore,
the data obtained by the eye tracker may be too inaccurate to
find significant effects in gaze behavior with the materials and
setting of this study.

Due to an error in the script for conducting the experiment,
the order of the snippets was randomized only for 22 of the
39 participants. To evaluate whether the lack of a randomized
order affected the results, we separately analyzed the data
of the 22 participants that received a randomized order and
compared the results to the analysis of all 39 participants. We
found that the effect sizes as well as the means or medians
differed between the 22 and 39 participants, indicating that the
order of presentation also affected the results. To reduce the
effect of order, we only included the data of the 22 participants
who received a randomized order in our analysis (see project’s
Web site3 for a comparison).

B. External Validity

The number of participants was comparatively small, and
they were also mostly students. Thus, the lack of effects of in-
dentation depth can only be very carefully transferred to other
settings, such as longer code snippets or more experienced
programmers. Nevertheless, our setting is especially relevant
for novice students, which comprise a significant population
in computer science.

C. Statistical Conclusion Validity

Given our small sample size in comparison with the original
study, we need to be careful not to be too conservative in our
hypotheses testing. To this end, we used a liberal approach
to correct for multiple comparison (i.e., FDR correction, not
a Bonferroni correction). Furthermore, we also considered
defining a less conservative significance level of 0.1 (as often



used in exploratory studies), but the effects still vanish after
FDR correction.

VII. RELATED WORK

There are related studies that explicitly manipulate a layout
property as independent variable. Jbara and Feitelson evaluated
how regularity of code affects program comprehension [28].
Regularity refers to structural similarity of code fragments,
so the more the structural patterns (e.g., several nested for
loops) repeat, the more regular code is. They found that
with more regular code, participants tend to thoroughly read
code in the beginning only, and switch to a scanning gaze
pattern once they have grasped the structure. Binkley and
others evaluated the effect of identifier naming styles, that is,
camelCase and under score on program comprehension, and
found that camelCase styles lead to more accuracy and affected
response times, which is modulated by familiarity with the
style, such that participants familiar with camelCase are faster,
but otherwise under score style is faster [29]. Sharif and
Maletic replicated this study and added eye tracking, finding
that participants could spot under score identifier styles signif-
icantly faster, independent of participants familiarity with the
styles [12]. Furthermore, identifiers with the under score style
lead to lower visual effort for some of the measures they used.
Busjahn and others manipulated the similarity of the execution
order of code and the actual location in the source code
file [30]. They recorded the eye movements of participants and
found that the presentation of code affected the reading order,
which is modulated by expertise, such that experts follow the
execution order and novices follow the presentation order.
All these papers evaluate how code layout affects program
comprehension, and in that line they contribute empirical
evidence for code style guidelines. Hofmeister and others
found that shorter identifier names take longer to comprehend,
whereas longer names with more semantic information reduce
response times [8].

Different to these four studies, there are several studies that
aim at building a model of how a set of layout properties
affect the comprehensibility of code. Jørgensen conducted a
study that dates before the study by Miara and others [31].
He let human raters create a ground truth of readable and
non-readable source code, on which he based a regression
model containing several properties of code, which results
in a readability score. He found that the average number of
goto-statements per label has the highest influence on the
readability score. In a modernized setting, Buse and Weimer
conducted a similar study [32], [33]. Instead of a regression
model, they build a classifier and used properties of code
as features to learn whether a code snippet is readable or
not. They found that the average number of identifiers in a
line of code is the best feature in predicting the readability.
Lee and others conducted a similar study, with the difference
that the ground truth was automatically determined based
on readability metrics by Posnett and others [34], [35]. In
contrast to Jørgensen and Buse & Weimer, they found javadoc
comments to be the best predictor for readability (i.e., when

they fail to follow their convention, readability decreases).
In contrast to our work, these authors looked for a set of
layout properties of code that influence readability, while
we explicitly modify one property to evaluate its effect on
readability.

In another line of research, indentation has been studied
as a measure for complexity and maintainability of code.
For example, Munson and Khoshgoftaar considered mean and
maximum indentation level as a complexity measure [36]. Hin-
dle and others found that indentation correlates with traditional
complexity and maintainability measures [37], such as Mc-
Cabe’s cyclomatic complexity [38] and Halstead’s complexity
metrics [39]. Finally, Gong and Schmidt used indentation to
refine McCabe’s complexity measure [40]. In contrast to our
focus on the effect of indentation on program comprehension,
this line of research uses indentation as a modification to
objective complexity measures.

VIII. CONCLUSION

Suggestions on indentation depth of code blocks are part of
most style guides on code layout, yet there is little empirical
evidence on optimal indentation depth. Inspired by a study
by Miara and others [7], who found that 2-spaced indentation
has the best effect on program comprehension, we conducted
a non-exact replication to provide empirical evidence for style
guides. To this end, we modernized the study design by
adapting it to Java snippets and by including eye tracking to
measure visual effort.

Our results did not show any effect of indentation depth
on program comprehension, perceived difficulty, or visual
effort, indicating that indentation is indeed simply a matter
of task and style, and do not provide support for program
comprehension.

There are several ways to continue this line of research,
especially by increasing the complexity of the code snippets,
such that scrolling is also necessary. This way, keeping track
of the control flow could become more challenging for the
participants, so the size of the effect of indentation could
increase, simply by its increased occurrence. However, this
would also require a more advanced eye tracker that is more
robust when measuring gaze behavior. Furthermore, exploring
how the visual effort of more experienced programmers is
affected by different indentation depths is also on our agenda.
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