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Many open-source software projects depend on a few core developers, who take over both the bulk of
coordination and programming tasks. They are supported by peripheral developers, who contribute either via
discussions or programming tasks, often for a limited time. It is unclear what role these peripheral developers
play in the programming and communication e�orts, as well as the temporary task-related sub-groups
in the projects. We mine code-repository data and mailing-list discussions to model the relationships and
contributions of developers in a social network and devise a method to analyze the temporal collaboration
structures in communication and programming, learning about the strength and stability of social sub-groups
in open-source software projects. Our method uses multi-modal social networks on a series of time windows.
Previous work has reduced the network structure representing developer collaboration to networks with
only one type of interaction, which impedes the simultaneous analysis of more than one type of interaction.
We use both communication and version-control data of open-source software projects and model di�erent
types of interaction over time. To demonstrate the practicability of our measurement and analysis method, we
investigate 10 substantial and popular open-source software projects, and show that, if sub-groups evolve,
modeling these sub-groups helps predict the future evolution of interaction levels of programmers and groups
of developers. Our method allows maintainers and other stakeholders of open-source software projects to
assess instabilities and organizational changes in developer interaction and can be applied to di�erent use
cases in organizational analysis, such as understanding the dynamics of a speci�c incident or discussion.
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1 INTRODUCTION
Open-source software (OSS) projects often depend on a relatively small group of developers,
accountable for a large share of code contributions and coordination e�orts. These core developers
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are supported by a large number of peripheral developers, who invest less time and e�ort individually,
but together add a substantial part of the value in open-source software creation [19, 51, 92].
Peripheral developers often pursue a particular aim, such as getting a feature they need [59].
This way, core and peripheral developers form open-source communities, which make signi�cant
contributions, such as the Linux kernel. Within the communities, shifting priorities and tasks lead
to the formation of temporary sub-groups, working on a topic or task for a limited time only [6].

Social sciences and software-engineering researchers, as well as practitioners who strive for the
optimal software creation process, seek to understand and predict the social dynamics of open-
source projects better. Metrics that operationalize social dynamics correlate with the emergence of
code de�ciencies and bugs [9, 107] and help predict project success [17]. For example, a high stability
of a project’s organizational structure can result in several bene�cial characteristics, including
robustness and scalability [23]; tensions between single developers can cause signi�cant distortions
in group structures and substantial developer turnover [48].
Network analysis can help to investigate structural distortions and assess the stability of a

project’s organizational structure: Innes et al. [46] use network analysis of communication data
to understand the genesis of con�icts in social networks. In general, network and graph mining
methods can help understand social phenomena in OSS development [7, 24, 53]. In this article, we
devise a measurement and analysis method that relies on graph mining methods to explore two
facets of the social coding process: the strength and stability of sub-groups, and the relationship
between communication and collaboration (i.e., co-editing source code). Methodologically, wemap a
multiplex network structure to a four-dimensional data structure (i.e., a tensor). Multiplex networks
consist of several networks that share the same set of nodes but di�er in types of interaction [45].
A multiplex network takes several modes of interaction simultaneously into account without
mixing them up—such as communication and co-editing source code in our case. We apply a
tensor decomposition to detect temporary sub-groups in the networks. We visualize the result
of the decomposition to simplify the detection of groups and anomalies. Finally, we use a trend
extrapolation to investigate whether we can leverage the sub-group dynamics to predict future
interaction events. With this last step, we also validate whether our assumed overlapping group
structure describes the OSS group structure well. Network analysis is a powerful tool for studying
organizational structures in a non-intrusive way, without changing or in�uencing the observed
organizational structure or system [57]. We seek to contribute a methodology to investigate the
e�ects of social structures and their emergence in more detail, to support research on organizational
stability like research on the re-emergence of sub-groups in self-organizing OSS communities after
major disruptions [109].
To demonstrate the practicability of our method, we use communication data and �le-editing

data from 10 substantial and popular OSS projects of varying size: BusyBox, FFmpeg, Django,
Git, Jailhouse, OpenSSL, QEMU, U-Boot, ownCloud, and Wine. For our study, we retrieve the
data from mailing lists and version-control systems containing the source code of the projects.
Ultimately, we seek to lay the technical and methodological foundations for research on social
dynamics in OSS software development, which can complement other approaches to social network
analysis in OSS research [47].

Our results show di�erent levels of stability of social relationships across di�erent OSS projects.
We found signi�cant improvements in predictive accuracy when concentrating on the central
sub-groups and reducing the weight of peripheral developers—which means that stable sub-groups
arise that last for a couple of years in all projects that we investigated. In some of the projects,
we also saw high levels of congruence between the groups who discussed via the mailing and the
groups who were programming together. When we augment the target number of groups that the
decomposition is supposed to identify, more detailed insights into role di�erentiation are possible.
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Our method is capable of identifying single developers who complement either the programming
groups or the discussion groups only. In some projects, we identi�ed a stable group of people that
take over communication and programming activities right from the beginning, and that persisted
in later phases and took over the coordination activity. Moreover, we �nd that growth in the number
of developers and co-editing events is usually not complemented by communication activity growth.
Our results imply that, even though all of our subject projects are successful and have a vivid
contribution history, they di�er structurally in the strength of social relationships and the coherence
of communication and programming interaction. This can be related to di�erent ways of using
mailing lists. We found stable social structures in all projects, and a consistent improvement of link
prediction performance when concentrating on the particular sub-groups instead of all developers.
However, against common belief, our results indicate that, in many projects, the sub-group structure
that arises from developer communication does not align with the sub-group structure that arises
from co-editing source code, indicating that the congruence between communication activities and
co-editing activities is not always pronounced.

In summary, we make contributions in four areas:

(1) From a methodological perspective, we advance the use of multiplex network modeling of
the organizational dynamics of software projects: We devise a modular, multi-step method
to detect developer groups using established community-detection algorithms and predict
their behavior using widely-used forecast algorithms. In particular, we use a canonical tensor
decomposition and combine it with a state-space trend extrapolation to detect temporary
sub-groups and predict future developer interactions. With this exploratory approach, we
lay the foundations for further inductive research for �nding patterns in social networks.

(2) From a software engineering perspective, we provide insights into the strength and stability
of group structures in open-source software development, as well as into the diversi�cation
of roles and the congruence of communication and collaboration behavior.

(3) From a practitioner perspective, we propose amethod to track important changes in a project’s
organization, identify sources of problems and change, and thereby recognize instabilities and
irregularities for enhanced project and process management. Such irregularities or changes
in the group structure of OSS projects could arise when, for example, core developers leave
or join a project, or when they pursue other tasks than they did before.

(4) From a research perspective, we provide a measurement and modeling framework in form of
a replication package (consisting of scripts as well as links on how to gather the raw data
used for our study) on our supplementary Web site1.

The article is structured as follows: In Section 2, we provide an overview of related work and
explain the research gap we seek to �ll. In Section 3, we introduce our research questions and
explain how we represent the interaction dynamics of open-source software projects via multiplex
(i.e., multi-modal) networks, how this data structure translates into a tensor data structure, and
how the overlapping group structures can be translated into a dynamic latent factor model. In
Section 4, we introduce our subject projects, data sources, the operationalization of communication
and collaboration, and our estimation strategy. We provide empirical results and answers to our
research questions in Section 5. Section 6 contains a discussion of the advantages and drawbacks
of our method and continues with implications for research and practice in collaborative software
engineering. Section 7 concludes and summarizes our method.

1https://se-sic.github.io/paper-groupdynamics-oss-tensordecomposition/
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2 RELATEDWORK
Researchers in management science early started to investigate the emergence of governance,
communities, and organizational stability in OSS projects [78, 80]. Previous work in software-
engineering research has shown that the organizational structure of a software project, in particular
the coordination among software developers, has an in�uence on software quality [11, 33, 35, 58,
62, 77, 100, 113]. However, Mauerer et al. [73] have recently shown that socio-technical congruence
is a “complex and multi-faceted phenomenon”, that varies across projects and their evolutions. In
general, there is a growing corpus of research on coordination and collaboration of developers in
OSS projects [19, 86, 97].

Network representations are core to the analysis of OSS projects: Developers constantly create
connections when communicating or co-changing code. From a graph or network perspective,
this means that developers are represented as nodes, and interactions between developers as
edges (which are also called links). Social and socio-technical network analysis helps analyze the
determinants of software quality [74], track the evolution of OSS project organization [52], for
learning about code de�ciency [9, 107], and understanding OSS success [32, 99]. As many disciplines
in organization science seek to learn from the self-organizing nature of OSS projects, there is a
substantial corpus of work that investigates network structures to explore developer characteristics
and organizational structures in OSS projects [16, 40, 42, 50, 51, 69, 83, 93, 102, 104, 112]. For
example, Palomba and Tamburri [81], and Tamburri et al. [101] investigated network characteristics
to discover community patterns and to predict community smells (e.g., developer groups that do
not communicate with each other or developers who dominate discussions regarding almost every
topic). They found that social-network characteristics, in particular socio-technical metrics, are
most valuable for predicting community smells in OSS projects. We will use a network approach to
investigate the dynamic stability of social ties and sub-groups of OSS projects. For this purpose, we
look at both communication (social) and co-editing (socio-technical) among developers, modeling
developers as nodes and interactions (communication and co-editing) as edges. Co-editing is, in
our context, the joint creation or joint edits of a software artifact.

With this operationalization, Joblin et al. [52] investigated the collaborative dynamics of 18 large
open-source projects. They found that, over time, “the organizational structure of large projects is
constrained to evolve towards a state that balances the costs and bene�ts of developer coordination”.
As one of the typical long-term patterns, the authors found that modular group structures tend to
emerge in developer collaboration. The “mirroring hypothesis” suggests that the social structure
of a software project mirrors its code structure because of the coordination needs that software
modules create [17]. This means that group structures among developers may re�ect modular
structures in code. For example, there are several sub-modules in the Linux kernel. Each of these
sub-modules involves di�erent �les and developers, but single developers can also contribute to
more than one sub-module. Basing on the theory of mirroring, we assume that groups are generally
overlapping, and one voluntary developer can be part of several groups.
Previous �ndings on the strength of social structures in OSS projects are contradictory. One

stream of research sees relatively weak social structures in OSS projects, and a high degree of
�exibility. Bird et al. [8] found that open-source developer networks show a high degree of volatility
and that communication tends to adapt ad hoc to current tasks in programming instead of forming
a stable organizational structure. Bird et al. [7, 8] and Shihab et al. [95] did not �nd any structure
beyond the ad-hoc collaboration on current tasks, which led them to the conclusion that there is little
long-term stable organizational structure in OSS projects. In contrast, Howison et al. [41] showed
that, in OSS projects, the degree of group strength and stability also depends on whether developers
are core or peripheral members of the group: Independently of project size, the core groups are more
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stable than peripheral, temporary coalitions. In combination with the large share of peripheral
developers in OSS projects, this may explain why measures that do not di�erentiate between
core and peripheral developers fail to identify stable social relationships. Both the presence and
absence of long-term collaboration foster a strong congruence of communication and collaboration
tasks. Previous research found that collaboration creates communication needs, as it requires the
exchange of information on the source code and coordination of programming tasks [11, 13].

Mauerer et al. [73] explored whether and how socio-technical congruence a�ects certain software-
quality metrics. In particular, they investigated whether the number of bugs or code churn (the
number of changed lines) are statistically related to socio-technical motif congruence (which
is a certain notion of socio-technical congruence that incorporates that developers who work
on the same �le should communicate with each other). Their �ndings reveal that the degree of
socio-technical congruence is not related to the number of bugs, nor to code churn.
Ashraf et al. [5] investigated whether developer groups derived from socio-technical issue

networks of OSS projects are related to sets of developers contributing code to the same subsystem
of an OSS project. Their results indicate that the developer groups arising in communication, in
general, do not overlap with the groups of developers derived from jointly editing source code in
the same subsystem. Furthermore, they identi�ed that the developer groups in communication are
rather task-driven and unstable over time and, thus, also communicate with varying developers
that prematurely work on other subsystems, whereas the developer groups derived from the joint
contribution to the source code of a subsystem are rather stable.
The multi-dimensionality of group structures is also related to a role di�erentiation that may

arise in social organizations. Depending on tenure, experience, and personality, developers may
prefer to contribute only to the collaboration or the communication mode of the network or to do
both simultaneously. If developers can freely choose their focus, they can also be active in whatever
way they want. They may prefer programming, coordinating, or merely discussing ideas and
technical solutions or organizational issues without actually contributing code [63]. Consequently,
it is advantageous to look at di�erent forms of interaction simultaneously to understand the
social structure of a project. Tymchuk et al. [105] show that relying on a single data source for
measuring collaboration can be problematic. This simpli�cation can lead to false conclusions on
group structures, the strength of relationships, and the importance of single developers. Gandhi
et al. [29] showed that multi-layer modeling of di�erent types of relationships of developers
adds value to the analysis of OSS developer interaction by revealing relationships that would be
undiscovered in the analysis of uni-dimensional links among developers.

Previous research lets us expect a partial congruence of communication and co-editing. Looking at
the content of communication, researchers have found that indeed a large share of communication
in open-source projects is centered on ad-hoc needs of programming tasks. Guzzi et al. [34]
conducted a text analysis of mailing-list communication to analyze the interplay of co-editing and
communication in OSS projects at a content level. Their insights suggest that an important part
of communication e�orts goes into activities that are not directly related to programming tasks.
The authors found that mailing lists are an important, though not the only, medium of developer
communication. They categorized the topics of communication and �nd that only 16% of all
threads were treating technical infrastructure. Communication about project status (e.g., planning
and communication about releases and due dates) is accountable for around 7% of all mailing-
list communication. This part of the communication is independent of direct implementation
issues. Moreover, social interaction (i.e., threads about topics such as social norms, contributors,
acknowledgment, and coordination) is accountable for about 6% of all threads. So, a signi�cant share
of communication is not on implementation issues and re�ects social relationships that go beyond
the urgent technical needs of collaboration and programming [34]. Mannan et al. [72] showed
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that roughly 89% of the technical discussions of an open-source software project appear to take
place on the mailing list of the project. Not only the core developers, but also peripheral developers
participate in these implementation-related discussions, which is an indicator that various kinds of
developers having di�erent roles in the project are involved in such discussions. Thus, mailing lists
are an important and comprehensive communication channel when investigating the relationship
between communication and programming activities among developers.

3 RESEARCH QUESTIONS, METHOD, AND MODELS
In this section, we translate our assumptions on the nature of group structures in OSS developer
networks into statistical models. Moreover, we formulate three research questions and explain
the method and models we use to answer them. We start with the presentation of our research
questions in Section 3.1. Then, we provide an overview of our method in Section 3.2. In Section 3.3,
we introduce our network-based representation of coordination in OSS development. In Section 3.4,
we introduce a probabilistic network model that lays the foundation of parameter identi�cation. In
Section 3.5, we explain how to combine the model with the assumption of intersecting dynamic
group behavior and the core/periphery network structure. In Section 3.7, we describe how infor-
mation on the dynamic importance of the groups are useful to predict the developer networks’
evolution. In Section 3.8, we synthesize the previous ideas and summarize how they are related to
the description and validation of the stability of group structures in OSS developer interaction.

3.1 Research�estions
In our study, we aim at answering three research questions regarding group structures in OSS
projects and their stability. We encode di�erent facets of developer interactions into di�erent models
and use statistical tools to model these facets. The facets we model include repeated interaction,
stable social groups, and dynamic development of groups. The core modules of our method consist
of a clustering of the developers, and a time-series approach to predict the future level of activity
of the identi�ed developer groups. We use tensor decomposition and a state-space time-series
prediction model to implement these modules. Tensor decomposition is a well-established and
fast method to detect group structures when multiple networks are assumed to have a common
underlying group structure (as, for instance, in communication and programming activities of
developers); it is robust to various statistical data distributions [15]. While the individual statistical
tools we use are well established, their combination to validate assumptions on developer behavior
is novel. Our research questions consequently include both the capability of our method to model
developer behavior and the insights into the developer behavior itself.
First of all, we are interested in whether stable group structures do emerge in OSS projects,

leading us to our �rst research question:

RQ1: Are there stable group structures in OSS projects? That is, are there groups of developers that
steadily interact with each other during the project’s evolution? Or are there no stable group
structures, merely developers who just rally round certain tasks and vanish afterwards?

As we model di�erent interaction channels simultaneously, namely co-editing source code
and communication, there might be commonalities or di�erences of the group structures of the
di�erent channels. According to the “mirroring hypothesis” [17], there shall emerge a state of socio-
technical congruence between organizational structures (e.g., communication among developers)
and structures arising from programming activities, which results in joint group structures. This
brings us to our next research question:
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RQ2: Does the communication behavior of developers result in the same group structures as arises
from co-editing behavior? To what extent do the group structures that emerge from commu-
nication and from co-editing source code overlap in terms of developers who participate?

To identify group structures and to obtain insights into their emergence and evolution, we
devise a method combining di�erent statistical tools. We suggest four models addressing di�erent
facets of the interaction of developers in OSS projects (such as past interactions of developers,
which might still be present in the future due to acquaintance and common working topics). In
addition, we propose two baseline models for comparison. To answer our research questions, we
compare the models’ predictive performance on 10 subject projects, covering di�erent project
sizes and project domains, to demonstrate how well the di�erent models perform in di�erent
situations. The predictive performance of the di�erent models helps us to judge the stability and
importance of the detected group structures: If a certain facet of developer interaction is present,
the corresponding models should have a better predictive performance compared to the models
which do not consider this facet. As we use predictive performance to evaluate our models, we
aim at answering the following research question to get a better understanding of the stability and
endurance of interactions among developers:
RQ3: Does considering past activity in co-editing or communication improve the prediction of

future co-editing or communication? Following the “mirroring hypothesis”, can the prediction
on one channel be improved by incorporating past activity on the other channel respectively?

To explore the capability of our method to model developer behavior, we use descriptive insights
and decomposition insights from the application of our method to our subject projects. Our
research questions on the insights into developer behavior will mainly be answered by analyzing
the predictive performance of our models, as the predictive performance helps us to �gure out
whether a certain facet of developer interaction is present in OSS projects.

3.2 Overview of the Method
We devise a methodology to study sub-group stability. Previous studies, such as the studies by Joblin
et al. [52], Bird et al. [8], and Shihab et al. [95], consider a single mode of interaction, such as e-mail
communication, for �nding social coalitions. In this article, we consider dynamic group structures
in the joint communication and co-editing behavior of OSS developers. We use a model that assigns
a probability of interacting for every pair of developers in a speci�c way at a speci�c time. This
probability depends on whether the two developers are part of a sub-group, and whether this
sub-group is currently active or not. We de�ne a group to be a temporal coalition among developers
that manifests in communication and co-editing activity, where groups are non-exclusive, and
every developer can be “fractionally” involved in an unlimited number of groups. By co-editing,
we mean collaborative source-code creation or editing within a certain time window, which can be
tracked and assessed via version-control data, as introduced by Joblin et al. [53] as a notion of
collaboration. So, co-editing captures all the edits developers make to a commonly changed source-
code artifact (i.e., �le) within a certain period of time. We expect that co-editing will manifest, at
least, to a certain degree in the developers’ communication. That is, we expect a positive correlation
between co-editing and communication events. We operationalize communication by tracking the
exchange of information via mailing lists. In our operationalization, we speak of communication
when two developers contribute to the same mailing-list thread within a certain period. Unlike
Gandhi et al. [29], we emphasize a dynamic view of these multi-layer structures, and discretize the
network into multiple time windows of three month duration and track changes over time.

We base our models and analysis on the following assumptions, as illustrated in Fig. 1: In some
projects, alliances may arise ad hoc depending on spontaneous coordination requirements, whereas
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Task 2

Task 1

"occasional"

"repeated"

Fig. 1. Graphical representation of our assumptions: Unobserved “tasks” drive co-editing (solid lines) and

communication (dashed lines), causing overlapping group behavior. Our definition of groups involves (a) a

subset of developers, (b) the usage of the interaction channels communication and co-editing, (c) within a

limited period. Every developer can be part of multiple groups with varying intensity.

in others, strong social bonds may prevail, leading to more stable long-term group structures.
We assume that there are overlapping groups in open-source software projects, that manifest
in co-editing and communication behavior. The more regularly developers contribute, the more
critical their role for the single group. Given observed communication and co-editing activities,
we can infer the groups even if we do not have explicit information on group structures. When
designing our analysis, we seek to cover three main facets discussed above: First, if group structures
are more stable among core than among peripheral developers [41], an algorithm that seeks to
identify stable group structures can bene�t from concentrating on the core group of developers and
down-weighting the importance of peripheral developers. Second, we want to assess the stability
of coalitions over time, instead of describing a group structure descriptively. Third, we want to
consider multiple channels of developer interaction simultaneously.

3.3 Network Representation of OSS Development
Group structures describe the state of a network for a certain period and shed a topological perspec-
tive on the network. To operationalize these periods, we choose a window-based data-mapping
approach. We map the collaborative editing of the same code artifact (e.g., �le) within the time
window C to co-editing ties and communication on the same mailing-list thread within the time
window C to communication ties. For this purpose, we use version-control system data and retrieve
co-editing events from authoring time stamps of commits. Version-control systems support detailed
documentation on programming progress, and the corresponding data are publicly available for
open-source projects. Like Zimmermann et al. [115] and Gall et al. [28], we call the act of two
edits to the same code artifact (i.e., �le) by two developers within the time window C a cochange
event. To model communication, we rely on mailing-list metadata. We call the act of mailing-list
communication between developer 8 and developer 9 a mail event if 8 and 9 both sent an e-mail to
the same thread on the mailing list within some time window C . Many open-source projects rely on
mailing lists for communication and the discussion of new patches and code [72, 85, 98]. In some
projects, every patch must be sent to a mailing list for general discussion before the developers’
proposed changes are incorporated into the software. In the project policy of QEMU2, for example,
the process of submitting a patch to the mailing list is strictly regulated. The need to communicate
to get changes rolled out leads to a close relationship between development and mailing-list com-
munication [8, 110]. The mailing network does not cover all facets of communication, though. It
2https://wiki.qemu.org/Contribute/SubmitAPatch (accessed 15 February 2019)
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is possible that data from other communication channels, like issue data from GitHub and other
version-control platforms, could bring additional information about communication. In the ideal
case, we would include all available means of communication, which would provide the most
detailed insights into the interplay of communication and co-editing. However, mailing lists have
high coverage, and researchers showed that they play a non-negligible role in OSS development [98],
and a dominant role in our subject projects (cf. Section 4.1).
We denote a cochange event between developers 8 and 9 in time window C by a scalar binary

value I8 9CC ∈ B. If developers 8 and 9 have co-edited (at least) one code artifact in C , then let I8 9CC = 1,
and I8 9CC = 0 otherwise.3 If developers 8 and 9 have contributed to (at least) one common e-mail
thread within C , let I8 9MC = 1, and I8 9MC = 0 otherwise. More generally, I8 9:C is an interaction event,
where : = � stands for cochange and : = " stands for mail events. Much like previous work, we
do not distinguish who wrote the message �rst or contributed �rst, therefore, I8 9MC = I 98MC and
I8 9CC = I 98CC . The event I88:C is not de�ned, since a node cannot have a relationship with itself. For
the tensor decomposition, these values are set to 0. The notation is illustrated in Fig. 2.

I8 9"C = 1 I 9ℎ�C = 1
i

j

h

Fig. 2. Our central data structure: Two developers are connected at time C if they have either communicated

(: = " , mail, dashed line) or co-edited (: = � , cochange, solid line).

The binary cochange and mail events I8 9:C ∈ B can be arranged in a fourth-order binary tensor4

Z ∈ B#×#× ×) , where # is the number of developers,  is the number of interaction channels
(here: mail and cochange,  = 2), and ) is the number of time windows. When I8 9:C = I 98:C (as in
our case, because we do not distinguish senders and receivers of e-mails), it is said that the tensor
is symmetric in the �rst and second mode. Z· ·:C ∈ B#×# is a two-dimensional tensor slice—a matrix
that contains all interactions at time C in channel : . As I88:C has been set to 0, the main diagonal of
every tensor slice Z· ·:C contains only zeros.

3.4 Predicting Interaction
To approximate communication and co-editing structures in OSS networks, we mine interaction
behavior of developers. The observed data allow us to infer the probability of interaction among
developers in several interaction channels for future interactions. For inference, we combine the
observed data with a model, and the �t and predictive performance of this combination provide
information on the correctness of our assumptions on the behavior of developers. So, the main goal
of our model is not prediction of future states, but the validation of our assumption on developer
interaction behavior. Our basic model is the overlapping group structure with dynamic importance,
as illustrated in Fig. 1: Developers work together in overlapping groups or sub-groups. The group’s
activity level varies, a�ecting both the developers’ propensity to write to the mailing list and to
3We denote scalars by lowercase italic letters, vectors by bold lowercase letters, matrices by bold capital letters, and
higher-order arrays by underlined bold capital letters.
4A tensor is a higher-order array: An array of order zero is a scalar, an array of order one is a vector, an array of order two
is a matrix, and a higher-order array is a tensor.
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contribute to code �les. If our model approximates the reality better than other assumptions, it
will perform well in predicting the links that arise in a network, compared to models that involve
more parameters or are over-simpli�ed. In what follows, we explain how we translate the idea of
overlapping dynamic groups into a statistical model and combine it with the observed data.

In link prediction, the probability of a link being there or not is usually expressed with a score. We
denote the score for I8 9:C = 1 by \8 9:C . The score is monotonically positively related to % (I8 9:C = 1),
that is, if \8 9:C is large, then also the probability of 8 and 9 to connect via channel : at time C is large:
% (I8 9:C = 1) ∼ \8 9:C , where ∼ denotes a monotonic positive relationship. For simplicity, we assume
that the monotonic relationship is linear, that is, % (I8 9:C = 1) is a linear transformation of \8 9:C .5
When the probability of an edge to exist is known, the edges are stochastically independent, and
the probability of all events happening at the same time is just the product of the probabilities of
the single events happening. Therefore, conditional on knowing all interaction probabilities, the
probability of observing the given entire network reduces to the product of the probabilities of the
single edges. This conditional independence is expressed in the following equation [26, 37]:

% (Z|�) =
∏
8≠9

% (I8 9:C |\8 9:C ), (1)

where % (Z) is the probability of observing a speci�c network and its tensor Z ∈ B#×#×2×) . Then,
� ∈ R#×#×2×) is the fourth-order tensor that contains the scores \8 9:C .

∏
8≠9 denotes the product

of all probabilities of all the links I8 9:C , 8 ≠ 9 . The score \8 9:C contains all known and unknown
information about developers 8 and 9 that in�uences their interaction in medium : at time C .
Examples include whether developers 8 and 9 are currently collaborating on a task, whether they
are interested in the same topics, and how much they currently contribute to the project. As we
cannot observe �, we make assumptions about its nature and try to infer it from the observed
network. In likelihood maximization, we choose � such that it maximizes the probability of
observing the given network Z. If we can choose between two di�erent sets of values �, we choose
the set that leads to the higher probability % (Z|�), that is, the set of \ -values that would have
most likely resulted in the observed network. This way, we can compare di�erent theories on the
emergence of a network by comparing which theory was most likely to produce the observed
outcome—and performed best in link prediction.
Every link has an unobserved probability of being existent, as no pair of developers is equal to

another pair. Consequently, without further restricting assumptions, we would have to estimate
just as many \ -values as there are di�erent entries in Z, that is, ((# − 1) · # ·  ·) )/2.6 We need
some restricting assumptions on the structure of the scores to reduce the number of parameters in
the model. Moreover, restrictive assumptions improve the model’s predictive power, as they reduce
the in�uence of chance on the parameter estimation. The assumptions are equal to di�erent models
that describe developer behavior, and the one that best �ts the observed data will be considered the
most likely model in our analysis.
A relatively simple assumption to combine with our statistical rule is that the same developers

that communicate or co-edit in C will communicate or co-edit in C + 1 again. This assumption is
naïve, as there is developer turnover in OSS projects and developer participation depends also on
other factors such as the release cycle of the project [27, 54, 66]. Also, working on di�erent features
could end up in changing interactions with di�erent developers. Nevertheless, for simplicity, we
will use this simple assumption on sustained developer interactions as a baseline model: If more
complex models (which we will introduce later on) do not perform better than this most simple
5An alternative would be to assume a logistic relationship. Such change would complicate the inference of model parameters
but not change the model’s basic intuition. See Ho� [37] for an explanation in a matrix context.
6Remember that the Z is symmetric, and I88:C is not de�ned.

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: July 2021.



Measuring and Modeling Group Dynamics in Open-Source So�ware Development :11

model, we will conclude that the more complex models do not add explanatory value. For baseline
model naive, assume that we have observed the network up to time window ) , and want to look
ℎ time windows into the future. Let \̂ naive

8 9:,)+ℎ |) designate the estimated score for time window ) + ℎ
with information up to time window ) . Then, the estimated score at time ) + ℎ is equal to the
observed value at time ) :

\̂ naive
8 9:,)+ℎ |) = I8 9:) (2)

For baseline model naive, we do not assume stable long-term cohesion. Instead, we assume
short-term alliances between developers that �nish the tasks and discussions they have started.
Consequently, the naïve model says that there is perfect stability of inter-personal links from time C
to C + ℎ, but no group behavior or long-term stability of interaction. We will compare this model’s
performance with the performance of a model that assumes that developers have a longer memory
and that they are more likely to interact, the more often they have interacted before. To express
this idea, we introduce a second baseline model, model sum. Here, the score of two edges is equal
to the sum of all edges:

\̂ sum
8 9:,)+ℎ |) =

)∑
g=1

I8 9:g (3)

The scores in this model can be any integer from 1 to) if two developers have communicated or
co-edited previously, else, it is 0. Two developers have a positive probability to co-edit if they have
co-edited before, no matter when they co-edited.
As our baseline models naive and sum are rather simple, one could also come up with more

sophisticated baseline models. For example, instead of simply summing up the previous edges,
one could up-weight edges present in more recent time windows or down-weight edges present
only in older time windows. However, such considerations would give rise to many additional
questions (e.g., how many time windows to consider and how to determine which weights would
be appropriate), which would need to be explored and evaluated separately. The models we propose
next are independent from such questions.

3.5 The Reduced-Rank Latent Factor Model
Neither of the two baseline models naive and sum pays particular attention to similar interests
among developers, sub-groups, congruence of communication and co-editing, or time e�ects arising
from long-term tasks and stable social relationships. Therefore, even if we assumed the conditional
independence for these models, we would likely be wrong, as there are e�ects of reciprocity and
other phenomena that disturb the assumption of independence in the model. To address RQ1 (i.e.,
whether there are stable group structures in OSS projects), we introduce a model that translates
the assumption of overlapping groups and a core-periphery structure into a statistical network
model – the reduced-rank latent factor model. We will evaluate that model later against the baseline
models naive and sum by checking which one provides better predictions and �t.
Recall our assumption from Fig. 1: We assume that developers work in overlapping temporal

groups that are driven by tasks. These tasks a�ect the probability of edges among particular
developers in a speci�c channel : at time C . We can restrict \8 9:C such that it re�ects the idea of
overlapping dynamic sub-groups. One way to do so is to express \8 9:C as a sum of latent factors
that consist of three di�erent elements:

• Assume that a project involves programming a feature. We call the creation of this feature
“Task 1”. Depending on her motivation and knowledge, some developer 8 may consider
contributing to “Task 1”. Denote her motivation/interest in “Task 1” by D:81 ∈ R, where
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the superscript : means that we look at sub-groups only within communication (M) or
co-editing (C) separately. If developer 8 is indi�erent to working on “Task 1”, then D:81 = 0. If
she has an aversion against working on “Task 1”, or if she is currently busy in a di�erent
task, D:81 < 0. If she is interested, D:81 > 0.

• The probability of developers 8 and 9 to interact is monotonically related to the product of D:81
and D:91. If developer 8 is indi�erent, D

:
81 = 0, then “Task 1” has no in�uence on her likelihood

to co-edit or communicate with 9 on a task, as any number D:91 multiplied by D:81 = 0 is 0. If
developer 8 is interested, and 9 has a strong aversion against task “Task 1”, then they have
D values with opposed signs. Then, D:81 · D:91 < 0, and “Task 1” decreases their likelihood to
interact.

• The task is worked on in periods 20 to 25. Let 3:C1 be the importance of “Task 1” at time C .
Then, 3:20,1, . . . , 3

:
25,1, the dynamic weight of “Task 1” from period 20 to period 25, is relatively

large.

Using these three insights, we assume that “Task 1” can be fully described by u:A=1 ∈ R#
and d:A=1 ∈ R) : These vectors contain the # developers’ and ) periods’ values D:1,1, . . . D

:
# 1 and

3:1,1, . . . , 3
:
) 1 regarding “Task 1”. As any multiple of Θ is equally valid as a score, u:A=1 and d:A=1

are not identi�ed, that is, there are several equally valid solutions for the concrete values in the
vectors. One way to �x the values is to restrict the vectors to length 1, |u:A=1 |2 = 1 and |d:A=1 |2 = 1,
where | |2 is the Euclidean norm. “Task 1” is the �rst latent factor, that is, the �rst unobserved
reason why developers 8 and 9 communicate and co-edit at a speci�c time. However, there may
be more than one task. If there is a second task, we need to give a weight to both tasks to �x the
importance of the tasks. Let the weights of “Task 1” and “Task 2” be _:1 and _:2 . Then, the score is
\8 9:C = _

:
1 · D:81 · D:91 · 3:C1 + _:2 · D:82 · D:92 · 3:C2. Say that in total, there are ' ∈ N latent factors or tasks.

The score of two developers in a speci�c interaction channel at a speci�c time is determined by the
sum of the ' factors. This results in model 3d, which uses a third-order tensor decomposition with
rank reduction, looking at the information of a speci�c interaction channel:

\ 3d
8 9:C

=

'∑
A=1

_:A · D:8A · D:9A · 3:CA (4)

with \ 3d
8 9:C

, _:A , D
:
8A , D

:
9A , 3

:
CA ∈ R, A ∈ {1, . . . , '}, ' ∈ N.

Developer 8 can be described by ' scores that describe how involved he or she is in task A ∈
{1, . . . , '}. These ' values are encoded in a vector u:8 ∈ R' . The same is true for developer 9 . This
common interest is multiplied with a time weight, which we call d:C ∈ R' . Every factor A in�uences
# developers and ) time windows. Let u:A ∈ R# be the vector of all developers regarding the
A -th latent factor and d:A ∈ R) be the dynamic weights of the A -th latent factor within interaction
channel : .
We can use this model for link prediction, by assuming that the future importance of tasks at

time) +ℎ is likely to be equal to the importance of tasks in the current period) . Should this model
perform better than the baseline models, there is evidence for group behavior, but no evidence
about the stability of the group importance over time yet. Note that more than one of the tasks can
currently be important, so we have overlapping group behavior. The current level of activity of
the overlapping groups describes the project at time ) . Future activity levels are most likely to be
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equal to the current weights of the factors:

\̂ 3d
8 9:,)+ℎ |) =

'∑
A=1

_:A · D:8A · D:9A · 3̂:)+ℎ,A |) (5)

We can now make an assumption on the future importance of the A -th task. In model 3d, we
assume that the importance of the component will stay the same as it is currently:

3̂:
)+ℎ,A |) = 3:)A (6)

The model has an additional advantage compared to naive and sum: It increases the weight of
developers with many edges to other developers by concentrating on the most in�uential patterns
in the data. When we infer only a few factors from the observed data (' is small), then the model is
forced to focus onmeaningful coalitions and groups. Concentrating on fewer groups reduces the risk
of over-interpreting spurious patterns. This reduced risk, together with the relatively low number of
parameters, improves interpretability and link prediction performance. The model concentrates on
the more “important” developers, where “important” has a multi-layer interpretation: If developer 8
(a) interacts with a large number of other developers, (b) over several periods, she receives higher
weights in the developer e�ects u:8 . Her scores will likely be higher—but the single score \8 9:C
also depends on u:9 , the scores of the potential partner. The rank reduction “considers” occasional
interaction to be “noise” and reduces their weight in the prediction. This noise reduction is useful
for prediction: The low-rank e�ects or factor model has been used in the �eld of data mining for
link prediction [2, 4, 37, 56, 96], as well as for community detection [4].

3.6 Congruence of Sub-Groups in Coordination and Programming Work
Previous research has shown that, in OSS projects, core developers often take over both the bulk of
communication and programming work [10, 49, 76, 103]. This brings us to RQ2, in which we ask
whether communicative tasks and co-editing tasks result in the same group structures. If there is no
distinction between both types of tasks, then the sub-groups should be similar in both interaction
channels, since the “mirroring hypothesis” states that there shall emerge joint group structures due
to a socio-technical congruence between communication and programming activities. Estimating
only one group structure for both interaction channels may reduce noise and estimation uncertainty
even more, and it helps to measure the congruence of group structures in both channels. Thus,
we assume that the developer 8’s interest in a task is the same for communication and co-editing
(D:8A simpli�es to D8A in both channels). Moreover, when estimating only a joint group structure
for both communication and co-editing, we assume that a task is similarly important for both
communication and co-editing at time C . So, we estimate only one weight for latent factor A at
time C , instead of separate weights for communication and co-editing (3:CA simpli�es to 3CA ). Also
the relative importance of the tasks is assumed to be the same (_:A simpli�es to _A ). Instead, we
assume that a task can require more or less communication and co-editing and add a 2:A parameter
to the equation.

• Let 2:1 ∈ R be the channel e�ect of “Task 1”. Assume that, to ful�ll “Task 1”, developers have
to co-develop code, but no communication is necessary. Then, let 2M1 = 0, and 2C1 > 0.

Similar to the previous speci�cations, there is a 2:A for every task A , and cA=1 ∈ R2 are the two
interaction channels’ strengths of relationship to the task A = 1. The length of the vector is, again,
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normalized: |cA=1 |2 = 1. Model 4d extends model 3d by one more dimension:

\ 4d
8 9:C

=

'∑
A=1

_A · D8A · D 9A · 2:A · 3CA (7)

with \ 4d
8 9:C

, _A , D8A , D 9A , 2:A , 3CA ∈ R, ' ∈ N.

\̂ 4d
8 9:,)+ℎ |) =

'∑
A=1

_A · D8A · D 9A · 2:A · 3̂ 4d
)+ℎ,A |) , (8)

3̂ 4d
)+ℎ,A |) = 3),A (9)

The parameter 2:A describes the e�ect of a task A on the interaction channel : , that is, whether the
task requires a lot of cochange activity or mail activity. \8 9:C can now also be higher when a task
a�ects multiple (in our case, two) interaction channels.
The core assumption of the low-rank factor model is the separability of the three forms of

dependency. Inter-personal dependency describes relationships and groups among developers, which
are due to common interests, common tasks, or other unobserved developer characteristics, denoted
by uA . Temporal dependency describes that developers are likely to work on speci�c topics at a
speci�c time. The static aspect of “Task A” is described by user e�ects and channel e�ects. dA denotes
the current importance of “Task A”. This separability assumption is less ambitious than the models
above but not harmless: When the requirements of a task change over time, or when groups
change only incrementally over time, the model is likely not to describe the real situation well.
Cross-channel dependency describes the integration of co-editing and communication interaction
channels. Independently of who contributes and independently of time, the task requires a certain
amount of communication and co-editing. cA denotes this e�ect of the task on the interaction
channel. In other words, the model is based on �xed inter-personal relationships and cross-channel
patterns, and allows only the current importance of these patterns to change. If one task is done, the
respective factor’s dynamic weights will revert to 0. Changing coalitions manifest only in changes
in the weights of the groups. The group structures themselves are assumed to be constant in time.
While this limits the applicability of the model for tracking changes in a group, it is useful for
identifying groups and helps in link prediction due to the noise reduction e�ect.

3.7 Spectral Growth
3CA in model 4d, as well as 3:CA in model 3d, describe the current activity level of latent factor A
at time C . So far, we assumed that in the future, this importance will be constant: 3̂)+ℎ,A = 3)A

and 3̂:
)+ℎ,A = 3

:
)A
. However, if factor A has been growing more important in the last few periods,

it can be a reasonable assumption that the group’s importance will further increase in the next
periods. Therefore, the trend in dA can be extrapolated to the future, to make a dynamic forecast.
This can be used to address RQ3, in which we ask whether considering past activity in co-editing
or communication does improve the prediction of future activities.
The assumption of constant factorial patterns with trends in dynamic importance has been

discussed by Kunegis et al. [60] under the name of “spectral stability”: The authors proposed to
infer u1, . . . , u' from two consecutive time slices of a network (via matrix decomposition), and to
extrapolate the changes in the dynamic weights to predict future links. The designation “spectral”
results from the fact that their argumentation bases on spectral matrix decomposition as a factor
extraction method. The authors �nd that, the more stable the inter-personal alliances, the better
an extrapolation of dA to the future performs for link prediction. Suppose we want to predict
developer interaction ℎ time windows ahead (ℎ stands for forecast horizon). For a window length of
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Fig. 3. The current trend of the weights of the A -th factor (e.g., a certain task shared among the developers) is

extrapolated to future time windows for prediction.

three months, ℎ = 1 is equivalent to predicting interaction within the next three months. ℎ = 5 is
interaction in the three-month window that lies one year in the future. We can make a prediction
at any time window C , but use only information from the past. Therefore, 3)+ℎ,A is the unobservable
weight of component A at time ) + ℎ, whereas 3̂)+ℎ |) denotes the predicted value of 3)+ℎ,A given
all information at time ) . Kunegis et al. [60] calculate 3CA and 3C−1,A by matrix decomposition and
vector matching, and calculate the growth of a latent factor as Δ3CA = 3CA − 3C−1,A . Assuming that
this is the current change in the importance of latent factor A , they assume that this change will
repeat itself for each of the ℎ steps we go into the future:

3̂)+ℎ,A |) = 3)A + ℎ · (3)A − 3)−1,A ) = 3)A + ℎ · Δ3)A (10)

Kunegis et al. [60] compare the performance of their method to more restrictive growth models.
Such restrictive growth models include the assumption of constant relative importance of the single
unobserved components such as triangle closing kernels and path-length models [64]. The authors
�nd that their method performs better in link prediction if the relative performance of the single
underlying growth-driving patterns (whatever these patterns are) changes over time. They attribute
the gains in predictive performance to the additional freedom that there is no parametric growth
curve imposed on the temporary weights of the decomposition.

As we base our methodology on tensor decomposition, we can pro�t from more information and
adapt the extrapolation strategy in several regards. First, we want to make use of data from more
than one time window ago, that is, we want to use the information in the vector dA ∈ R) . Second,
we have enough information to infer a “current trend” and a “current level” that we can extrapolate
to the future. To estimate 3C+ℎ with all information up to time window C , that is, to calculate 3̂C+ℎ |C ,
we use a double exponential smoothing. This model bases on the state-space model proposed by
Hyndman et al. [44]. The state-space model is a univariate time-series model that estimates that
current information is more valuable than old information for the prediction of a time series. This
estimation is in line with our assumptions on the collaboration of developers, as knowing about the
current collaboration of developers might be more valuable for predicting future collaboration than
knowing that certain developers had collaborated several years ago. This means that 3) receives
a higher weight than 31 when predicting 3)+ℎ . To avoid over�tting and vulnerability to small ) ,
we use an additive double exponential smoothing extrapolation. For details on multiplicative and
additive and other models, see Hyndman et al. [44].
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We treat dA = 31A , . . . , 3CA , . . . , 3)A as a univariate time series. This time series can look like the
green solid line in Fig. 3, which indicates that the importance of component A (e.g., a certain task
shared among the developers) increased until time window 15, and then declined. At time ) , the
time series has reached a kind of stable level, with a slightly decreasing trending behavior. We call
the current level of the time series at time ) ;) , and we call the slightly decreasing trend 1) . When
predicting the future of this time series, we extrapolate the current behavior to the future and
assume that the level and trend will continue. The predicted value of 3)+ℎ is denoted by 3̂)+ℎ,A |) ,
the estimated value with all information available at time ) . We call the corresponding models
3d-ext and 4d-ext for “extrapolated”: The predicted (extrapolated) values can be multiplied with
the values D:8A and D

:
9A in model 3d-ext, and D8A , D 9A , and 2:A in model 4d-ext, respectively, to

obtain an estimate for future scores of the developer pairs. Using 3d-ext, we aim at answering RQ3,
whether past activity in co-editing or communication, respectively, improves the prediction of future
co-editing or communication when compared to the simpler model 3d. Using 4d-ext, we investigate
whether the prediction on one communication channel can be improved by incorporating past
activity on the other channel, as compared to the simpler models such as 4d.
The combination of dA with a time-series smoothing method for extrapolation to the future

reduces the vulnerability of the method to short time windows and provides additional stability.
Combining the two methods—tensor decomposition and the state-space model—has been shown to
be e�ective for link prediction [90]. When we observe new information, that is, as soon as 3C+1,A
becomes observable, we can update our beliefs about the level and the trend of the time series 3C,A .
Let nC+1 describe the di�erence between our predicted value 3̂C+1,A |C and the observed 3C+1,A . We
react to the mistake we made by updating ;C,A to ;C+1,A and by updating 1C,A to 1C+1,A . Two parameters
determine the strength of the adaptation of the estimate to new information, UA and VA . UA describes
how strong our adaptation of the level ;C,A is, and VA describes how strong our adaption of the
trend 1C,A is. Below, our updating equations and the prediction for a factor A ’s weight at time C + ℎ
with information from time C are given:

;C,A = ;C−1,A + 1C−1,A + UAnC,A , (11)
1C,A = 1C−1,A + UA VAnC,A , (12)

3̂C+ℎ,A |C = ;C,A + ℎ · 1C,A (13)

3̂C+ℎ,A |C is the predicted future weight of the A -th factor, assuming that the current trend 1C,A and the
current level ;C,A describe the future dynamics of the A -th factor. This estimated 3̂C+ℎ,A |C can then be
put back into the prediction formulas for models 3d-ext and 4d-ext.
In model 3d-ext, this results in the following prediction equations for the prediction of the

scores \8 9:,)+ℎ at the last observed period ) :

\̂
3d-ext,:
8 9:,)+ℎ |) =

'∑
A=1

_:A · D:8A · D:9A · 3̂
3d-ext,:
)+ℎ,A |) , (14)

3̂
3d-ext,:
)+ℎ,A |) = ;

3d-ext,:
)A

+ ℎ · 13d-ext,:
)A

(15)

As the ' groups are estimated separately for the mail and cochange channel, also the prediction
for the future weights of the ' groups are computed separately.
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In model 4d-ext, there are ' groups estimated for both channels. So, the dynamic of every
group is the same in both channels:

\̂ 4d-ext
8 9:,)+ℎ |) =

'∑
A=1

_A · D8A · D 9A · 2:A · 3̂ 4d-ext
)+ℎ,A |) , (16)

3̂ 4d-ext
)+ℎ,A |) = ; 4d-ext)A + ℎ · 1 4d-ext

)A (17)

Model 3d-ext assumes that the two modes of interaction have separate groups and group
dynamics. Instead, model 4d-ext assumes that both modes of interaction share a joint group
structure. This assumption is based on the “mirroring hypothesis” [17], saying that there is a socio-
technical congruence between organizational structures (e.g., communication among developers)
and structures arising from programming activities, which results in joint group structures.
The extrapolation of the current changes in the group weights brings additional parameters

UA and VA that need to be estimated and can bring additional uncertainty to the estimations. This
additional uncertainty can be harmful especially for small ) , as then the parameters have to be
estimated from a small sample size. However, it can also lead to improved predictions by better
assessing recent group dynamics. It can predict growth where group weights are currently growing,
and shrinkage where group weights are currently shrinking.

3.8 Summary
Every pair of developers has an individual probability of communicating or co-editing in a given
period. To estimate these probabilities, we need to restrict the number of parameters—especially
if we want to predict future developer interaction behavior. The insight that overlapping sub-
groups in developer networks arise can be translated into a dynamic low-rank factor model [3, 37]
that bases on the assumption that both co-editing and communication are driven by unobserved
“tasks” or groups, which lead to developer clustering, and cross-channel and dynamic dependency.
To do so, we map interaction data to a higher-dimensional tensor structure and decompose it
into time, person, and channel-related patterns with a higher-order tensor decomposition [96].
Tensor decomposition plays a vital role in knowledge discovery in multi-dimensional networks
where computational complexity quickly grows, and matrix-based methods miss the dependency
of di�erent network modes [21]. The tensor-based approach has the advantage of keeping time
windows and interaction channels separate. As Gauvin et al. [30] point out, a matrix-based approach
would require the aggregation of all data in time, which leads to the loss of temporal information.
A tensor factorization avoids this loss of information. The same is true for considering several
interaction channels: The tensor structure retrieves group structures from communication and
co-editing without aggregating both modes of interaction.

The decomposition and rank-reduction approach is used a lot in link prediction and exploratory
data mining [37, 56, 96]. Deprived of the possibility to do classical statistical hypothesis testing,
we base our validation strategy on related measures of predictive performance: We quantify
temporal stability by measuring how much information on past collaboration events increases the
performance of a prediction of future developer interaction. Furthermore, we investigate whether
information on communication is useful for predicting co-editing and vice versa. Our method
reduces the complexity level of group dynamics to two dimensions and allows us to visualize the
dynamic group structures in simple plots.

We will compare our proposed models to verify the value of historical information and the group
model for understanding the data structure. Table 1 summarizes the six models and prediction
strategies (including the two baseline models naive and sum). Models 3d, 4d, 3d-ext, and 4d-ext
are based on the assumption of unobserved, independent latent factors that explain the correlation
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Table 1. Overview on models for performance comparison.

Model Description Equations

naive Developers who interact in channel : at time C are likely to
interact at time C + 1 in channel : again.

(2)

sum All information from periods 1, . . . , C at equal importance,
developers who collaborated in three time windows are three
times as likely to collaborate again in the future compared
to developers who collaborated in only one time window.

(3)

3d Developer interaction is driven in both channels indepen-
dently by dynamic, non-overlapping group behavior (also
described above as “tasks”). Current activity level of single
group in one mode of interaction will be the same in the next
period.

(4), (5), (6)

4d Developer interaction is driven in both channels simulta-
neously by dynamic, overlapping group behavior (also de-
scribed above as “tasks”). Current activity level of single
group will be the same in the next period.

(7), (8), (9)

3d-
ext

Based on 3d. However, activity levels of groups in co-editing
OR communication context have trends and levels, and a
time-series model can extrapolate these trends to future pe-
riods.

(14), (15)

4d-
ext

Based on 4d. However, activity levels of groups have trends
and levels, and a time-series model can extrapolate these
trends to future periods.

(16), (17)

structure among the interaction events. These latent factors can be seen as “tasks”, but are not
limited to tasks: They also cover dynamic patterns of homophily and other reasons for inter-
personal relationships. It does not matter whether it is a function that needs to be programmed, a
discussion on a speci�c topic, or some other reason for co-editing or communicating. The latent
factor is just some unobserved phenomenon that drives co-editing and communication activity of
the developers, and that will manifest in the network topology and the tensor Z [60].

So, how are the tensor factorization and the extrapolation linked to verifying stability in group
structures among open-source software developers? We base our empirical validation strategy on
four arguments:

(a) If the factorial structure adequately re�ects real-world group structures, we should see major
events like the drop-out of an important developer disturb the project in the decomposition.
The decomposition attributes high weights to developers who are well integrated into the
community structures of the project. Hence, the drop-out of a well-connected developer
can—in a very active group—lead to the identi�cation of a completely separated new group
after the drop-out.

(b) If there are sub-groups in the network that describe the social network structure reasonably
well (see RQ1), then a latent factor model (3d, 4d, 3d-ext, and 4d-ext) should perform
better in link prediction than naive and sum. The reason is that not very well integrated
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developers are not identi�ed to be part of the important sub-groups and are attributed a minor
role in the prediction. Should the contribution behavior of these not very well integrated
developers be just as stable and continuous as the identi�ed group structures, we will not
see a bene�t for the models 3d, 4d, 3d-ext, and 4d-ext: These models attribute a weight to
developers according to their position in the network—developers who are integrated into
important sub-groups receive a higher weight than peripheral developers, who contribute
only temporarily and add little contribution to the project. The two baseline models, instead,
do not take a developer’s position in the network into account and only count the absence or
presence of an interaction with another developer.

(c) If the same sub-groups that exchange e-mails do also collaborate in programming (see RQ2),
then 4d-ext should perform better than 3d-ext, and 4d should perform better than 3d. When
the group structures are congruent in both interaction modes, the estimation will be more
reliable in the models 4d-ext and 4d than in their three-dimensional counterparts as more
evidence on the groups is provided.

(d) If the alliances are of changing importance (see RQ3), then the weight extrapolation (3d-ext
and 4d-ext) should perform better than a non-dynamic prediction method (3d and 4d). The
state-space time-series prediction method allows the groups to continue growing or shrinking
over time, whereas the models without a time-series component are more vulnerable to
temporarily di�erent weights in the last time period and assume constant importance of
tasks or groups.

The predictive performance of the models will help us to judge the stability of sub-group impor-
tance and collaboration dynamics. The insights of the decomposition reveal the social integration
of developers and the changes in social relationships, as opposed to node centrality measures or
simply event counts. By validating the �t of an assumption with the predictive accuracy of the
corresponding model, we proceed like Dong et al. [22]: They use the assumption that people engage
similarly in multiple social contexts as an argument to estimate similar interaction structures
for link prediction in these di�erent contexts. Then, they interpret the improvement of the link
prediction as evidence for the correctness of the assumption.

Concerning argument (a), we will look for signi�cant events that involved a drop-out or change
of core developers and see whether these events have a corresponding manifestation in the factor
structure. Concerning argument (b), we will use the rank reduction for link prediction and verify
whether the reduced-rank prediction performs better than the non-reduced models. Concerning
argument (c), we will compare the predictive performance of the respective models on third-order
tensors Z" and Z� against the predictive performance of the respective models on the fourth-order
tensor Z. Concerning argument (d), we will compare the predictive performance of the rank-reduced
model with extrapolation of group dynamics with simpler models that do not use the time-series
state-space model.

4 IMPLEMENTATION AND STUDY SETUP
Having laid out our models and our validation strategy, we will now proceed to its application to a
series of subject projects. The main purpose is to demonstrate the practicability of our measure-
ment and analysis method. We start with a detailed overview of how and from which sources we
retrieve and operationalize data on communication and co-editing (Section 4.1). Then, we intro-
duce some descriptive measures that help us in getting an overview of the interaction dynamics
and the congruence of communication and co-editing (Section 4.2). Next, we explain how we
retrieve the parameter estimates for the models 3d, 4d, 3d-ext, and 4d-ext with a canonical tensor
decomposition (Section 4.3) and how we apply time-series extrapolation for the models 3d-ext
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and 4d-ext (Section 4.4). Finally, we discuss how to measure the performance of the models in
time, and we verify the robustness of our models regarding discretionary decisions regarding the
implementation (Section 4.5).
All scripts are available from our supplementary Web site7. The multi-modal networks based

on co-editing and communication are organized with the help of the igraph package [20] in
the statistical software R [87]. We use the cp() function from the rTensor package [65] for the
canonical decomposition. For computation of performance measures, we use the roc() function
from the pROC package [88]. For the state-space extrapolation, we use the holt() function from
the forecast package [43].

4.1 Study Setup and Implementation Overview
We apply our method to 10 well-established open-source projects from di�erent domains: QEMU
is a virtual machine emulator. OpenSSL is an encryption library to secure connections on the
Internet. BusyBox is a UNIX command-line tool suite. Git is a version-control system. FFmpeg is
an audio and video encoding tool suite. Wine is a runtime environment enabling Windows-based
programs to be executed on UNIX systems. U-Boot is a boot loader mostly used in embedded
systems. Jailhouse is a Linux-based hypervisor abstracting from real hardware and operating
systems, mostly used for embedded systems. ownCloud is a �le hosting service. Django is a web
framework. All our subject projects use mailing lists as the main channel for coordination and most
of them have strict regulations to submit patches to the mailing list for discussion before integrating
them into the version-control system.8 Hence, in all the projects, mailing lists are a historically
rich and well-established communication channel.9 Our subject projects cover a broad range of
project sizes, ranging from a total of 17 individual developers for Jailhouse to 1 356 individual
developers for U-Boot, as Table 2 shows. To evaluate our method on di�erently shaped projects
and to demonstrate that and to which extent it is applicable, our project selection covers multiple
projects of di�erent domains and sizes.

We use Codeface10 [53] to extract commit data from Git repositories. For the operationalization
of mail data, we downloaded historical archives of the developer mailing lists from the mailing-list
archive Gmane11. We use only mailing lists that involve primarily developers, and not lists that are
addressing users. For network modeling, we analyze e-mail communication only among developers
that have contributed to the source code. That is, we do not consider communication among users
or between users and developers. Therefore, there may be developers who have co-edited but
not communicated in our networks, but not vice versa. Table 2 provides an overview of the total
number of active developers and the analyzed time ranges per project. Additional information
regarding the downloaded mailing lists and the URLs to the analyzed Git repositories are available
on our supplementary Web site. To build networks based on co-edits to �les or e-mail conversations,
we use the network library coronet12. We work on discretized developer networks derived from
collaborative software changes and mailing-list communication. We use time windows of three
months, indicating in a binary decision whether there has been mail interaction or not between
7https://se-sic.github.io/paper-groupdynamics-oss-tensordecomposition/
8The only exception here is project Django, which uses pull requests, which are not discussed on the mailing list, instead of
patch submissions to the mailing list. We include this project as it is a highly active project and we are interested whether
the group structures arising from the discussions on the mailing list are, even though not containing patch discussions,
similar to the group structures arising from co-editing activities.
9This holds for all the analyzed time ranges of all our subject projects except for project ownCloud, which has abandoned
the use of its mailing list in 2016. We discuss this issue for project ownCloud in Section 5.1.
10https://siemens.github.io/codeface/ (accessed 12 February 2019)
11https://gmane.org/ (accessed 12 February 2019)
12https://github.com/se-sic/coronet/ (accessed 26 November 2020)
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Table 2. Numbers of developers (# ) in our 10 subject

projects, with start of the first and end of the last

three-month time window, and the number of analyzed

time windows () ).

Project # Start End )

Jailhouse 17 2013-11-20 2016-08-24 11
OpenSSL 153 2002-04-21 2016-02-19 55
BusyBox 217 2003-01-14 2016-02-16 52
ownCloud 471 2010-03-24 2018-05-20 32
QEMU 919 2003-04-29 2016-07-27 52
Git 943 2005-04-13 2017-03-12 47
Wine 1 092 2002-04-06 2017-11-16 62
Django 1 131 2005-08-01 2017-12-04 49
FFmpeg 1 256 2003-01-06 2017-12-12 59
U-Boot 1 356 2000-01-01 2017-12-18 71

nodes 8 and 9 , and whether there has been cochange interaction between nodes 8 and 9 . Meneely
and Williams [74] as well as Joblin et al. [51] have shown that three-month time windows are a
good aggregation level to describe topological features of socio-technical developer networks. We
further count repeated cochange or mail contact within a three-month time window as a single
interaction. The developers or “nodes” are tied to one another if they have edited the same �le or
responded to the same mailing-list thread within one time window. As described in Section 3.3, this
results in a binary # ×# ×2×) -dimensional array of 2 modes of interaction between # developers;
Z ∈ B#×#×2×) . As the collaborative editing of source code does not imply a natural direction for
relationships, we use only undirected, unweighted networks.

4.2 Exploratory Congruence Analysis
To explore the data, we compare the activity level as the number of interaction events for both
channels. Let #C be the number of developers that have either communicated or co-edited at time C .
Furthermore, let =",C be the number of mail events at time C , and =�,C be the number of cochange
events at time C :

=",C =
1
2

∑
8 9

I8 9"C (18)

=�,C =
1
2

∑
8 9

I8 9�C (19)

The average numbers of mail and cochange events over all time windows are de�ned as:

=̄" =
1
)

∑
C

=",C (20)

=̄� =
1
)

∑
C

=�,C (21)

To make the measure comparable across projects, we normalize =̄" and =̄� with the number of
potential edges in the network. The number of possible edges within a single channel of interaction
is 1

2# (# − 1), as the edges are undirected. We de�ne the measures =̄%
�
and =̄%

"
and call them
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average density of the mail and cochange network, respectively:

=̄%" =
=̄"

1
2# (# − 1)

· 100 (22)

=̄%� =
=̄�

1
2# (# − 1)

· 100 (23)

To provide some �rst impressions about the relationship between mail and cochange events,
we compute the number of edges that are present in both interaction channels at time C , and call
this measure =11,C , where =11,C is the number of edges that are present both in mail and cochange
networks at time C .

=11,C =
1
2

∑
8 9

(I8 9MC · I8 9CC ). (24)

=11,C is bounded: Its minimum is 0 and its maximum is equal to the minimum of the two values
=",C and =�,C . The maximum of =",C and =�,C is the number of edges that can be present within a
time window C and within a single channel: # (# − 1)/2. If =11,C is close to its maximum, there is a
high temporal congruence of interaction across channels. The measure depends on the number of
nodes and interaction events. To provide a more comparable measure for the congruence of mail
and cochange events, we use the “phi”-Coe�cient q [89] as a measure for the correlation of the
binary events in the mail and cochange networks. As we measure it for every time window, we
index it with C . To compute the measure, let =00,C be the number of events that are neither present
in one nor the other channel. Similarly, =01,C is the number of edges that are only present in the
cochange network, and =10,C is the number of events that is only present in the mail network.

=00,C =
1
2

∑
8 9

(1 − I8 9"C ) · (1 − I8 9�C ) (25)

=01,C =
1
2

∑
8 9

(1 − I8 9"C ) · I8 9�C (26)

=10,C =
1
2

∑
8 9

I8 9"C · (1 − I8 9�C ) (27)

# (# − 1)/2 − =",C is the number of “absent” mail events and # (# − 1)/2 − =�,C is the number
of “absent” cochange events at time C . Then, qC is the product of the “congruent” number of events
minus the product of the “di�erent” events, scaled by the square root of the number of all four
groups of events:

qC =
=11,C · =00,C − =01,C · =10,C√

=",C · =�,C · ( 12# (# − 1) − =",C ) · ( 12# (# − 1) − =�,C )
(28)

qC is equal to 1 if all the edges in cochange are present also in mail and vice versa (100% overlap),
and −1 if none are present in both channels (0% overlap). It is equal to 0 if there is a random overlap
between both groups, the measure can therefore be interpreted like a correlation (q is equal to
the Pearson correlation when the variables of interest are binary). The four measures of interest,
=",C , =�,C , =11,C and qC are visualized for every project, as for example in Fig. 5. Only some of the
plots (the best suited for explaining and interpreting our �ndings) are included in this article, the
others can be found on our supplementary Web site. Our �ndings take all the plots and values into
consideration, though. Additionally, we provide and discuss the time averages of every measure,
=̄" =

∑
C =",C/) , =̄� =

∑
C =�,C/) , =11 =

∑
C =11,C/) and q̄ =

∑
C qC/) for every subject project.
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C = 1 C = )
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Fig. 4. The canonical decomposition of Z: The four-dimensional data structure is reduced to ' rank-one

tensors, which are composed of the vectors uA , cA , and dA of length # , 2, and ) , respectively.

4.3 Canonical Tensor Decomposition
The multiplicative latent factor model translates the assumption of overlapping cross-channel
dynamic groups (see Fig. 1) into a statistical model. None of the parameters can be observed (which
is why the factors are latent), but we can estimate them from the data with a tensor decomposition:
uA , cA , and dA can be inferred from the observed network Z: When the data are organized as a
tensor Z, we can use a canonical decomposition to infer the individual latent factors from the
observed interaction events [4], as illustrated in Fig. 4. Via so-called canonical decomposition Z is
decomposed into ' four-dimensional rank-one tensors, each consisting of the vectors uA , cA , and
dA , and a scalar weight _A , where A ∈ 1, . . . , '.

The combination of a tensor decomposition with a selection of a subset of the available factors
is called rank reduction [36–39]. By restricting the number of factors, we project the data into a
lower-dimensional space, making the data more concise and reducing noise [94].
As we expect many readers to be familiar with the factorization of matrices via principal com-

ponents, we explain the similarities and di�erences between the canonical tensor decomposition
and principal component analysis via spectral matrix decomposition in Appendix A. In a nutshell,
both kinds of decomposition use rank reduction to infer latent factors. However, spectral matrix
decomposition produces the same �rst �ve, most important factors, whereas the latent factors in
tensor decomposition depend on the total speci�ed number of factors '.

4.4 Time-Series Extrapolation
After applying the canonical decomposition, we proceed to the extrapolation of trends in dA . For
this purpose, we use function holt() from package forecast [43]. The function optimizes the
parameters U and V autonomously.13 As we assume that single latent factors describe individual
groups or “tasks”, treating each series of weights separately makes more sense than multivariate
techniques. We do the estimation separately for the ' latent factors. The exponential smoothing
13The optimization uses the Akaike Criterion, for details see Hyndman et al. [43].
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method is commonly used as a data-driven prediction method for univariate time series [44]. It
is optimized to adapt to slowly-varying trends and changes in the level. Note that exponential
smoothing can be inadequate when there are only few time windows (small ) ), as it requires a
certain burn-in period to perform well. If ) is small, simpler models or a pre-speci�ed U and V
should be used. In our cases, the time series are reasonably long, and therefore we let the algorithm
optimize the parameters by itself.

4.5 Cross-Validation
To validate changes in stability of the network’s social structure, the predictive performance needs
to be measured over time. We use a cross-validation technique inspired by time-series analysis and
the Area Under Curve (AUC) performance measure to make changes in the performance visible.
AUC is the evaluation metric of choice when the analyzed link data are sparse.14 Sparse means
that there are less existing connections between nodes in a network than non-existing connections
between nodes (e.g., when there are more zero elements in the corresponding adjacency matrix
than non-zero elements). As there are only few connections in a sparse network, the prediction of
the non-existence of links between nodes does not really matter for the predictive performance,
as we are interested into predicting links, of which only few exist. AUC is indi�erent to class
imbalances of existing and non-existing links in a network.

For validating predictive performance, we start the computation of predictions and performance
measures with half of all available time windows, that is, with a tensor of order # × # × 2 × d 12) e.
Then, we extrapolate the time weights that result from this decomposition to d 12) e +ℎ, and measure
predictive performance. We then extend the tensor by one period. That is, at the second iteration,
the tensor is of order # × # × 2 × (d 12) e + 1). This cross-validation strategy adequately honors the
dynamic structure of the data. While updating the tensor decomposition becomes advisable and
even mandatory for larger tensors than the ones that we are dealing with [106], our network sizes
allow us to generate a new decomposition for every cross-validation iteration.15
Next, we chose a performance measure. The Receiver Operating Characteristic (ROC) curve

balances speci�city (penalizes false positives) and sensitivity (penalizes “missed” positives, that is,
false negatives) of a prediction method. The ROC curve depends on the True Positive Rate (TPR)
and the False Positive Rate (FPR). This is advantageous in the case of sparse networks, where
True Negatives are of limited importance [75]. The ROC curve has been criticized for ignoring
the predicted probability values and the goodness-of-�t of the model [e.g., 68], and some authors
recommend the average precision rather than ROC and AUC [111]. Still, the ROC and AUC are
the most widely accepted metric [14]. A single-number summary of the shape of the ROC curve
is the Area Under Curve (AUC). The expected AUC for random guessing is 0.5, and the lower
and upper limit of the AUC are 0 and 1, respectively [114]. We compute an AUC measure for
our models, separately either for the prediction of mail or for the prediction of cochange events.
The performance of the models indicated by the AUC provides evidence on the bene�cial e�ect
of simultaneous consideration of co-editing and communication, of rank reduction, and of the
extrapolation of trends in group weights.
To aggregate the performance curves to a single number per project and prediction method,

we will average the performance measures and directly compare the methods. As we start the
cross-validation at d 12) e, and calculate it up to ) − ℎ,16 the aggregated performance measure per
14An explanation of why this is the case and of the intuition behind the measure has been provided by Chen et al. [14].
15We ignore I88:C , that is, the main diagonal of the tensor slices Z··:C . Remember that self-links are not de�ned. Nevertheless,
the values \88:C for these links are positive, as D28A simply expresses the importance of developer 8 for component A .
16Remember that, to measure the predictive performance for forecast horizon ℎ, \8 9:,)+ℎ |) , we can only use information
up to ℎ periods before the �nal period.
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subject project and method is:

AUC =
1

(b 12) c − ℎ)

)−ℎ∑
C= d 12) e

AUCC (29)

We distinguish di�erent prediction horizons for seeing at what forecast horizon ℎ the rank
reduction leads to the highest bene�t compared to the baseline models. We expect the general
performance to decrease with a growing forecast horizon ℎ. However, we expect rank reduction to
be bene�cial for prediction as it decreases the noise in the data, and therefore we expect that the
advantage of the rank reduction will show more in a twelve-months-ahead than in a three-months-
ahead prediction.

We need to validate not only the performance in time, but also the performance for di�erent values
of '. As we lack a ground truth on the number of groups in the data, we need to assume that when
the “right” groups have been identi�ed, the predictive performance of the model is high. The risk of
�nding spurious patterns increases with ', and with it, the risk to �nd di�erent interpretations for
repeated estimation. Depending on whether the interpretation of group structures is very important,
there are three possible approaches: (a) Checking the interpretation for repeated estimation with
di�erent seeds, (b) analyzing the variance in the time components, and (c) checking the predictive
performance of the choice of '.
(a) If the interpretation of the patterns changes with the random seed, this is a sign for a too large

rank ' that leads to spurious patterns.
(b) The canonical decomposition does not treat the time dimension di�erently than the other

dimensions. This means that in the “eyes” of the algorithm, C is as “close” to C + 1 as to C + 5. As
we expect group constellations not to change too abruptly every time window, we are looking
for an ' value that produces relatively smooth time patterns in dA .

(c) To avoid over�tting looking for the perfect ', we check the robustness of the predictive
performance of the choice of ' by cross-validating ' in the range between 1 and 20. We visualize
and discuss the outcomes and discuss their implications for the project’s social structure.
All three robustness checks are important to avoid interpreting spurious correlations. A small '

can under�t, a large ' can over�t the data. At the same time, this has implications for the di�erent
use cases of the analysis: A large ' can detect more granular changes in group constellations, thus,
a large ' can help to understand known problems in the past. A small ' can be better for predicting
future interaction, as it is less prone to over-interpret changes from the past.

5 RESULTS
For the purpose of presenting our results, we concentrate on a single case study17: BusyBox. This
project was, based on chance, the �rst we investigated. We chose it for its relatively small size and
number of developers. With this case study, we investigate the exploratory value of our method.
We will then answer our research questions by comparing the models’ predictive performance
and generalize our �ndings over 10 subject projects. We start with an exploratory perspective on
the data in Section 5.1. Then, we proceed with the description of the canonical decomposition in
Section 5.2. The ensuing question is how much our results depend on the choice of '. Thus, we
continue with the results of the cross-validation of ' in Section 5.3. Then, we discuss the models’
performance for a �xed ' in Section 5.4. Finally, we summarize our results and answer our research
questions in Section 5.5.

17Beside BusyBox, we also present a single �gure on our subject project ownCloud to discuss exceptional cases.
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Table 3. Characterization of mail and cochange activity in our 10 subject

projects. # is the total number of developers involved in each project. =max
"C

is

the maximum number of mail edges per time window (Eq. (18)), =̄" is the

average of the number ofmail edges over time (Eq. (20)), and =̄%
"

is the average

density of the mail network (Eq. (22)). The definitions are equivalent for =max
�C

,

=̄� , and =̄
%
�
. =11 is the average number of intersecting edges (Eq. (24)), q̄ is the

average qC coe�icient (Eq. (28)).

# =max
"C

=̄" =̄%
"

=max
�C

=̄� =̄%
�

=11 q̄

Jailhouse 17 27 11.8 8.69 27 9.8 7.22 4.6 0.39
OpenSSL 153 159 20.3 0.17 737 94.5 0.81 6.8 0.15
BusyBox 217 150 62.6 0.27 300 110.7 0.47 16.2 0.19
ownCloud 471 111 29.2 0.03 1 964 929.3 0.84 12.8 0.08
QEMU 919 1 651 723.3 0.17 9 888 2 586.3 0.61 368.0 0.20
Git 943 1 892 750.0 0.17 3 855 2 270.1 0.51 230.8 0.18
Wine 1 092 912 446.5 0.07 5 567 3 671.1 0.62 218.3 0.18
Django 1 131 266 131.7 0.02 9 370 1 991.5 0.31 48.4 0.18
FFmpeg 1 256 1 595 569.5 0.07 8 572 3888.6 0.49 279.4 0.21
U-Boot 1 356 1 139 455.4 0.05 3 643 1197.3 0.13 163.4 0.18

5.1 Descriptive Insights
To provide a �rst impression of the congruence of mail and cochange activity, we discuss the
descriptive statistics of the projects in Table 3.
Relationship between the number of developers and interaction frequency: First, the mail and

cochange activity are not—as one might expect due to the quadratic relationship between possible
edges and nodes—monotonically related to the number of developers in a project. ownCloud is
twice as large as BusyBox in terms of number of developers, and has fewer maximum and average
mail edges, but roughly eight times as many cochange interactions, on average. There is very
little mail activity in ownCloud and Django, with an average density of only 0.03% and 0.02%,
respectively. Yet, Django has more than twice as many developers. With 0.84% average density in
cochange, ownCloud seems to have a vivid co-editing culture, where many developers edit the
same code �les. ownCloud has little communication among the developers via the mailing list,
though. It has a lower =max

"C
, yet more than six times as many cochange edges =max

�C
as BusyBox.

Another project with very little density in the mail network is Django, which is the third largest
project in our study, having 1 131 developers in total. For this project, also the density in the
cochange network is lower than average. Another large project where both mail and cochange
density is low is U-Boot, with a =̄%

"
of 0.05 and =̄%

�
of 0.13. In general across all projects, there is

approximately 30% to 150% more interaction per developer in the cochange network than in the
mail network.
Relationship between mail and cochange modes (q̄): The correlation between mail and cochange

interaction is surprisingly stable across the projects, with values between 0.15 and 0.21. There is
consistent evidence that mailing activity is positively related to co-editing. Two exceptions apply:
Jailhouse with its 17 active developers has a strong positive correlation (0.39) and ownCloud has
a weak positive correlation (0.08). Together with the very low mail activity in ownCloud, this
suggests that the mailing list is not strongly related to development activities here. Fig. 5 shows
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Fig. 5. Current number of mail (=",C ) and cochange (=�,C ) edges, correlation between mail and cochange qC ,
and number of active developers (#C ) for ownCloud. As the number of edges grows quadratically with #C ,

we use a square root transformation for the y-axis in the second panel. From time window 14 on, the mailing

list seems to be abandoned. Accordingly, qC and =",C as well as =11,C go down. When there is no mailing-list

activity, qC cannot be computed.

that there is no ongoing activity on the mailing list from time period 14 on.18 During the active
usage of the list (time periods 6 to 14), qC was in the expected range. For Jailhouse, the smallest of
all projects in terms of number of developers, the correlation is very strong. For Django, both the
density of the mail network and the cochange network are rather low. Nevertheless, the correlation
is within the typical range of the subject projects.
Relationship between descriptive measures and project phase: Fig. 6 shows the evolution of the

descriptive measures for BusyBox over time. In the early phases of the project (up until time
window 30), the number of interaction events per developer grows quadratically with the number
of active developers. After time window 30, the number of edges in the network and the number
of simultaneous edges in both channels stagnate, despite continued growth in the number of
developers. At the same time, qC is constant between 0.1 and 0.2. A maximum in the correlation
of 0.31 at time window 29 happens in a phase of growing mail activity. #C shows that BusyBox
experiences strong growth from the 25Cℎ time window on. At the same time, =",C and =�,C start
growing, where cochange activity grows faster than mail activity. An interesting particularity of
BusyBox can be seen in =11,C and, as a direct consequence, in qC : With the sharp drop of mailing
activity at time 14–16, =11,C drops to 0: In time window 16, not a single edge is present in both
channels—a sign for a major distortion around that time. Shortly before this drop, there has been a
peak in mail activity. The distortion is also visible in qC : There is a moderate correlation between
mail and cochange events, except for C = 16, where qC drops to 0. qC is pretty volatile for early

18This goes well with decisions of the ownCloud community to no longer use the mailing list:
https://central.owncloud.org/t/replace-mailing-lists/875 (accessed 26 November 2020). We, though, have decided to investi-
gate this project as it has a comparably high amount of commit activity but a comparably low amount of e-mail activity
(even before abandoning the mailing list). Therefore, we explore how our analysis method performs with respect to such
anomalies in the data.
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Fig. 6. Current number of mail (=",C ) and cochange (=�,C ) edges, correlation between mail and cochange ΦC ,
and number of active developers (#C ) for BusyBox. As the number of edges grows quadratically with #C ,

we use a square root transformation for the y-axis in the second panel. About one fourth of all mail edges

is usually present in both channels. There are no common edges in C = 16 despite normal activity in both

interaction modes.

phases of the project, but stabilizes to a value of between 0.10 and 0.20 in later time windows. The
phase of stability coincides with a rise in the number of active developers from time window 33 on.

General observations across all projects: When evaluating all projects in a similar way, we see that
some projects show a strong relation between the general number of co-editing and communication
events, whereas in others, both modes of interaction seem to be decoupled. We provide links to the
corresponding plots on our supplementary Web site in square brackets after a project’s name.

In the following list, we describe the �ndings for those projects wheremail and cochange activity
seem to be relatively independent, and the mail activity does not follow general growth trends:

• For FFmpeg [F1], the mailing-list tra�c drops around time window 35. Only the number
of cochange events grows as expected with the number of developers. This may indicate
that only a constant subset of developers communicate via the existing mailing list after this
change in trend behavior at timewindow 35.qC then stabilizes at a value of approximately 0.15,
after a plateau of 0.25 before.

• InWine [W1], the number of edges in the mail networks slowly declines over time.
• For Django [D1], the usage of the mailing list is constant along the whole time line. It is
completely independent of the strong growth in the number of developers and cochange
events. Accordingly, the more developers join, the smaller qC becomes. The mail network
has very little in common with the cochange network from there on.

• For project U-Boot [U1], the pattern is similar as for BusyBox and FFmpeg: The number of
cochange events closely quadratically follows the number of developers, whereas the number
of mail events stagnates.

In other projects, we observe that both means of interaction (mail and cochange) are closely
related:
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• For Jailhouse [J1], the mailing-list activity closely follows general growth trends. The
correlation between both channels of interaction is strong. However, the maximum qC of 0.8
occurs at a time when there are only 4 developers in the project—of the 9 cochange events at
that time, 8 (and only these 8) edges are also present in the mail network. The number of
actively co-editing developers never exceeds #C = 13.

• In OpenSSL [OS1],mail and cochange activity follow equally the general trend in the number
of developers—the number of cochange edges follows more directly while the number of mail
edges leaks a bit behind. Due to the moderate size of the project, all numbers are relatively
volatile—qC meanders strongly around a general mean of 0.1 from time window 20 on.

• For Git [G1], the number of cochange and mail edges does not follow the growth trend in
the number of developers, rather, both values stagnate or decrease from time window 14
on. This is a sign of decreasing per-capita interaction with growing number of developers.
Together with mail activity, qC slowly decreases from around 0.20 to around 0.15 over time.

• QEMU [Q1] shows the opposite behavior of ownCloud [OC1]: The mailing list that we
retrieve for modeling the mail edges seems to be in usage only from time window 25 on,
and then consistently with a qC that slightly decreases from around 0.30 to 0.25, as the mail
activity does not grow as much as the cochange activity.

Our results suggest that usually, only in early phases of the projects, there can be moremail than
cochange activity. The correlation between the presence of mail and cochange edges is relatively
stable for most projects, never exceeding values of 0.5 and usually �uctuating around 0.2 to 0.3.
The relationship between mail and cochange edges is weakest for ownCloud and strongest for
Jailhouse, which can be partially explained by the small number of active developers in Jailhouse.
ownCloud turned out to be an exception as the mailing list is abandoned in later phases of the
project, and we expect that this will in�uence the results of the decomposition and prediction that
we will discuss in the next sections.

5.2 Decomposition Insights
Next, we seek to extend the insights from the descriptive statistics in Table 3 and the time-based
plots discussed in the previous paragraph. We apply a canonical decomposition and see whether
it helps to understand the project dynamics even better by making group constellations visible.
These group constellations are of exploratory nature and can (with our chosen decomposition
methodology) not be tested statistically, but they may help to identify the sources and dynamics of
project changes.

For the purpose of discussion, we had a look at the results for di�erent values of ', and chose the
ones that reveal interesting patterns to us. These patterns are therefore prone to over�tting. For
description and exploration, large values of ' can be helpful, whereas for prediction, the in�uence
of ' can be cross-validated with regard to predictive performance and usually is chosen smaller, as
patterns in the past are usually not very indicative for the future.

For illustration, we discuss the decomposition of the four-dimensional tensor Z for BusyBoxwith
'=8 (Fig. 7). The decomposition results in estimates for _A=1, . . . , _A=8, uA=1, . . . , uA=8, cA=1, . . . , cA=8,
and dA=1, . . . , dA=8, which are visualized in panels (a) to (d) of Fig. 7, respectively. In what follows,
we discuss some selected observations on the decomposition.

(a) Fig. 7(a) shows the weights of the latent groups, _1, . . . , _8. While these values should not be
interpreted in absolute terms, their relative size is important. The second (r=2) and eighth
(r=8) factors have largest _A and therefore the strongest correlation with the probability of
developers to interact. The sixth component is the least in�uential for the overall number of
interaction events.
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Fig. 7. Results of canonical decomposition for BusyBox and '=8. Panel (a) shows the weights of the factors _A ,
Panel (b) shows the developer e�ects D8A for a selection of developers with the highest values in the first five

factors, Panel (c) shows the interaction channel e�ects 2:A , and Panel (d) shows the dynamic weights 3CA and

thereby which factor was important at what time.

(b) Fig. 7(b) shows which developer 8 is involved in which component A , D8A . The plot shows a
selection of the �ve most central developers19 per component, which results in 15 developers
for BusyBox as sometimes the top 5 are overlapping. The �gure reveals aspects such as that
developer 158 is relevant only for components A = 1 and A = 4. In the other components,
this developer does not play an outstanding role. The most clear-cut group can be seen
in component A =6, where the contrast between important and non-important developers
is most pronounced. Developer 45 is a special person who seems to be involved in all the
di�erent phases and topics except component A =6.

(c) Fig. 7(c) shows which interaction channels are a�ected by the eight components (i.e., groups
of developers). Components A =1, A =3, A =4, and A =6 describe predominantly mail activity.
That is, the respective developer groups arise from joint e-mail activity. Their 2"A is large
in absolute value compared to their 2�A value. The other four components describe mostly
cochange activity (i.e., groups of developers connected by joint editing activity), with varying
shares of mail activity.

(d) Fig. 7(d) reveals that the component A =6 describes developer interaction activity in the early
phase of the project, time windows 10–15. Remembering the observations from Fig. 6, we look
more closely at C = 16: At this time, a sudden decrease in activity in component A =6 can be
seen. This component relates predominantly to mailing activity, as we learned from Fig. 7(c).
Most components cover a time range of 15 to 25 time windows, that is, approximately 4 to
6 years.

19Because of ethical considerations, we do not state developers’ names, but use pseudonymized developer ids instead.
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Shortly before the distortion at time C = 14, the activity level of component A = 6 has a peak.
Shortly before, component A = 5 starts growing, with two new developers 16 and 45, without
developers 194 and 212, as Fig. 7(b) reveals. Fig. 7(c) �nally tells us that the new group is glued
mainly by cochange activity whereas the “old” group had intensive exchange via the mailing
list. After C = 15, a new mailing group arises (A = 3), which describes mail exchange between
developers 16, 45, 131, 167, 194, and 212. That is, mainly developers 49, 149, and 164 dropped out
and developer 45 joined compared to component A =6.
While it is not advisable to prematurely draw conclusions from these insights, as the insights

depend on ' and on previous assumptions, they can still provide useful insights for further investi-
gation. Like for BusyBox, we computed the decomposition of the tensors for various numbers of
groups, and screened the plots for interesting �ndings about the developers and group constella-
tions.

• Jailhouse [J2]: As expected, the strong association between cochange and mail leads to
a poor di�erentiation between mail- and cochange-related groups. For ' = 3, however, a
speci�c mail pattern arises that excludes two of the developers that are usually involved in
the cochange activities. This pattern can be used to investigate what the discussion in time
windows 7 and 8 was about, and why some of the core developers did not participate. As
Jailhouse is a small project, spurious patterns are likely to arise with growing ', and we
found signs for over�tting already for ' = 4.

• OpenSSL [OS2]: ' = 2 and ' = 4 reveal that, for the �rst 40 time windows, the project has
been dominated by developers 8, 13, 18, 119, and 134. Thereafter, new developers joined.
' = 4 suggests that these new joiners were active on the mailing list, whereas mailing activity
excluded developer 18.

• ownCloud [OC2]: As expected, mail activity plays a subordinate role. But at ' = 3 already,
the mail activity is separated in the component A = 1, and the time trend shows that this
sub-group indeed phases out later. Also, developer 320 seems to have in�uenced the project
mainly in the time windows 15 to 25.

• QEMU[Q2]: When going with ' = 5, the two mail-related sub-groups A = 3 and A = 4 were
dominated by the developers 75, 245, 594, and 621 (for A = 3) and 65, 89, and 115 (for A = 4).
Also, the bulk of the discussions of the fourth group, A = 4, happened before the discussions
of the third group, A = 3. It can also be seen that the social dynamics in the project have
probably been most a�ected by the decrease in activity of developers 89 and 115, who were
active mostly between time windows 25 and 40. This is a valuable insight for investigating
the stability of the project’s group structure over time.

• Git[G2]: ' = 6 reveals that the mailing list was heavily used from time window C = 5 on, and
its activity level peaked at C = 14. While the social relationships in the mailing list remain
constant, their importance declined over time.

• Wine[W2]: The decomposition for ' = 6 reveals that, in early phases of the project, especially
developers 38, 254, 301, 351, 619, 684, 691, and 833 were forming strong bonds, mostly
performing cochange activity. When using larger ', more distinguishable sub-groups show
up. ' = 9, for example, reveals a particular communication component A = 7.

• Django[D2]: For Django, mail and cochange networks are tightly integrated. Only for ' = 9,
a mail component (A = 4) reveals itself with a very clear-cut sub-group. In combination with
the relatively small value for _4, it becomes clear why this component shows up only for
large values of ': This component a�ects only few mail interaction edges.
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• FFmpeg[F2]: There is no di�erentiation between mail and cochange activity for ' = 4. The
sub-group that involves a clear-cut subset of developers, A = 4, shows an activity peak
between time windows 18 and 25.

• U-Boot[U2]: At ' = 5, a speci�c mail component can be distinguished from the other
components. This communication sub-group gradually augments its activity from time
period 45 on. The other sub-groups contain mainly cochange events. The interpretation of
the mail patterns becomes more detailed at ' = 9.

The results meet our expectations: In phases of strong correlation of mail and cochange activity,
the modes of interaction do not split into separate components. Larger projects, which can be
expected to have more complex social dynamics and structures, often pro�t from higher values of '.
When interpreting the results and looking for interesting �ndings, it is worth trying di�erent values
for '. In our cases, ' = 3 for small projects was usually enough. Also, when there was much more
cochange activity, the mail patterns were partially hidden in lower-rank decomposition, whereas
the higher-rank decomposition revealed more detailed social dynamics at the risk of over�tting.

5.3 Predictive Performance by '
As shown in Section 5.2, a large rank ' of decomposition may reveal more detailed insights into
group evolution in a project. In what follows, we also verify whether these insights are useful for
prediction. As explained, if the sub-groups really describe long-term stable social relationships,
they should be helpful for predicting future interaction. As mentioned in Section 3, a strong rank
reduction can lead to overlaid patterns and reduced information content, hiding important informa-
tion on dynamics. A high value for ', however, can lead to spurious patterns and interpretations.
One way to assess whether patterns are spurious is to see whether they help in predicting the
future. All results of this section (for all projects and di�erent values of ') can be checked on our
supplementary Web site.

We start with a comparison of the predictive performance of our models for BusyBox [B3] over
time. Figs. 8, 9, and 10 show the predictive performance for BusyBox for ' = 2, ' = 3, and ' = 5.
Especially, before C = 40, that is, before BusyBox started into the growth phase identi�ed in Fig. 6,
a large rank for the decomposition severely a�ects the prediction performance and lets them drop
below the performance of the models naive and sum. A rank-2 reduction for the third-order tensor
(i.e., model 3d) provides very good scores for predicting mail events right from time window 26 on.
For ' = 2, all reduced-rank models consistently outperform naive and sum. That is, a strong focus
on the core developers helps in identifying future pairs of developers that will interact again. A
di�erentiated perspective on the overlapping groups, however, appears to add more noise to the
prediction and seems not to be very helpful.

Next, we validate the interplay of choice of ' and �*� for BusyBox [B4]. Only the four models
3d, 4d, 3d-ext, and 4d-ext involve a rank reduction, so we visualize the changes in performance
only for these models. Fig. 11 shows the predictive performance of the models for BusyBox by time
horizon and the choice of the number of components, '.

While the forecast performance for ℎ=1 seems to be invariant to the choice of ', a longer forecast
horizon pro�ts from a weaker rank reduction. That is, while the shorter time horizon pro�ts from a
stronger reduction of noise, the long-term prediction pro�ts from the identi�cation of more speci�c
patterns. The optimum seems to be reached at around 10 components. This observation is relatively
consistent for cochange and mail data, however, '=2 performs better for predicting ℎ=5 than '=5
for the mail data (independently of whether mail and cochange are analyzed simultaneously or
separately—the identi�cation of group structures and trends in the weights of those structures does
not seem to help to predict mail interaction in BusyBox).
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For the other projects, the results are similar. For small ', 3d and 3d-ext, as well as 4d and 4d-ext
are similar in performance, and di�erentiation only happens when ' is increased. This speaks in
favor of the exponential smoothing to reduce noise in the decomposition of quickly changing time
trends. In general, the decomposition models’ performance improves over time, while naive and
sum perform similarly all the time. In some projects such as Django, model 3d-ext performs a
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Fig. 8. AUCC by type of interaction and time for BusyBox, ℎ = 1, for ' = 2.
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Fig. 9. AUCC by type of interaction and time for BusyBox, ℎ = 1, for ' = 3.
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Fig. 10. AUCC by type of interaction and time for BusyBox, ℎ = 1, for ' = 5.
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Fig. 11. AUC by forecast horizon ℎ and rank ' of reduction for BusyBox. As expected, a small number of

components is beneficial for prediction. The relative performance of model 4d decreases with higher ' values,

consistently for both time horizons and communication channels.

lot better than the models without extrapolation for high ' values. The extrapolation seems to
smooth out some of the disadvantages of choosing higher ' by smoothing the relatively volatile
time weights.
The results imply that, while a rank reduction and the encompassing concentration on core

developers is bene�cial, the group patterns themselves change only slowly, and �ve latent factors
are enough to describe the underlying structure of mail and cochange interaction. Small values
for ' usually result in good prediction results that outperform naïve predictions (models naive and
sum). However, ' = 3 can already lead to over�tting, and larger values of ' lead to instability in
prediction performance and are only suitable for description, not for extrapolating group structures
to the future.

5.4 Overall Performance for Fixed '
To avoid over�tting and discussions about ', we conduct the next analyses with a �xed ' = 3.
Table 4 shows the average performance, �rst averaged over time by project, and then averaged
over all projects (separate for two di�erent forecasting horizons—one year ahead or in the next
time window). The results are also shown on our supplementary Web site.
Fig. 12 shows the results averaged across time, for each subject project. The �gure reveals that

the averaged measures are highly in�uenced by a few outliers where the method makes no sense
given the data quality. The three-dimensional decomposition with time-series extrapolation (model
3d-ext) fails for the mail network for ownCloud and Wine. For ownCloud, this problem is due
to the non-usage of the mailing list. This phenomenon is also responsible for the 100% accuracy
that Fig. 12 reveals for ownCloud (model 3d). In the case of the �*� values for method 3d for
both forecast horizons, the numbers show that this instability is valid only for ' = 2 and ' = 3. For
values larger or equal to 4, it performs similar to the other methods. Except for this instability, the
results look like what we expected. Social relationships among developers seem to be least stable
for project U-Boot, where edges are hardest to predict and the �*� values are smallest.
In general, model naive performs worst. Table 4 shows that for ℎ = 1 AUC

naive
is, at least,

0.10 points lower than any other method for the prediction of cochange events, and, at least,
0.11 points lower than any other method for the prediction ofmail events (neglecting model 3d-ext
due to the above described problems regarding mail events in projects ownCloud and Wine). The
low performance of model naive is also true for the long-term forecast, ℎ = 5, where AUC

naive

leaks behind the other models. Model sum achieves the second last position, but its performance
is relatively close to the rank-reduction-based models 4d-ext, 3d-ext, and 4d. 3d-ext performs
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Table 4. ∅ indicates the arithmetic mean of all AUC measures by model and forecast horizon ℎ = 1 or ℎ = 5,
for ' = 3. Model 3d performs best for all four combinations of interaction mode and forecast horizon.
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Fig. 12. AUC measures by interaction channel, subject project, model, and forecast horizon. Projects are

ordered by the involved number of developers (see Table 2) and organized in rows. Columns represent

prediction methods, and the four main blocks represent interaction channel (horizontally) and forecast

horizon ℎ (vertically). ' = 3 in all models that involve a rank reduction (3d, 4d, 3d-ext, and 4d-ext).

bad for the prediction of mail events, but Fig. 12 shows that this is due to the instabilities of the
model in ownCloud and Wine. As can be seen in Fig. 12, for the models naive and sum, it is
harder to predict interaction one year ahead than in the next three months: The AUC values are
consistently smaller for the forecast horizon ℎ=5 than for ℎ=1. However, this does not hold for
the tensor-decomposition-based models (3d, 4d, 3d-ext, and 4d-ext): Here, the AUC values for the
forecast horizons ℎ=5 and ℎ=1 are relatively close to each other, in many cases even higher for
ℎ=5.

In many cases, the models 3d and 3d-ext perform similar to 4d and 4d-ext, as can be seen in
Fig. 12. Averaging over all projects, 3d performs better than 4d, whereas 4d-ext performs better
than 3d-ext (see Table 4). Hence, we are inconclusive whether sub-groups that exchange e-mails
do also collaborate in programming tasks. We also do not see a clear di�erence between the weight
extrapolation models (3d-ext and 4d-ext), which are robust to alliances of changing performance,
and the non-dynamic prediction models (3d and 4d). This inconclusiveness might also be introduced
by over�tting.
The intuition that there is low congruence of mail and cochange activity (an intuition derived

from the =11,C measure) is con�rmed by this analysis: Model 4d-ext performs only slightly better
than model 3d-ext for cochange prediction, and inconclusive formail prediction. The consideration
of information on one interaction channel is of little to no predictive power for predicting the other
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interaction channel. The performance of the reduced-rank decomposition without extrapolation
(i.e., models 4d and 3d) is equal to or sometimes even better than the reduced-rank decomposition
with state-space extrapolation (i.e., models 4d-ext and 3d-ext).

5.5 Summary
When evaluating the predictive power of the di�erent models, we can clearly see that all the
models which are based on tensor decomposition perform better than the simpler baseline models.
Hence, by using tensor decomposition and rank reduction, we can identify more stable, latent
group structures in the communication and co-editing activity of open-source software projects.
This answers RQ1:

Answer to RQ1: With our method, we are able to identify stable group structures in OSS
projects. That is, we identify groups of developers that steadily interact with each other during
the project’s evolution. Our results show that there can be distortions in the group structure
(e.g., some developers joining the project take over the core work whereas, at the same time,
previous core developers tend to restrict their activity to communication only).

The manifestation of these group structures varies in the di�erent subject projects, and co-
editing and communication group structures are project-speci�c and do not necessarily overlap.
This answers RQ2:

Answer to RQ2: The overlap between the group structures that emerge from communication
and the group structures that emerge from co-editing source code is project-speci�c: In some
projects, there is a high overlap between co-editing and communication group structures
(i.e., communication behavior and co-editing behavior of developers seem to be very similar),
whereas in others, the overlap is small or even not recognizable.

Finally, regarding RQ3, in which we ask whether considering past activities improves the predic-
tion of future co-editing or communication activities, we cannot provide a single answer, as the
predictive performances of the models that use tensor decomposition together with state-space
time-series extrapolation perform di�erently on di�erent projects when compared to the models
which use tensor decomposition without state-space time-series extrapolation. Consequently, the
emergence of group structures on di�erent interaction channels is project-speci�c, and considering
dynamic weights improves prediction of future activities in some of the investigated projects
whereas it does not in other projects.

Answer to RQ3: Considering past activity performs similarly well as without. In some projects,
considering past activity slightly improves the predictive performance compared to not consid-
ering past activity. That is, some alliances seem to be of changing importance, whereas others
seem to maintain a consistent importance. It also is project-speci�c whether the prediction on
one channel can be improved by considering past activity on the other channel.

In sum, our method is capable of identifying stable group structures. Relying on past activities
for prediction or expecting similar group structures for co-editing and communication activities
sometimes leads to an improvement in prediction. This indicates that it cannot be assumed that
the “mirroring hypothesis” is ful�lled, in general, as many project speci�c characteristics may
in�uence the relationship between co-editing and communication. Our approach, though, can help
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to investigate questions of modularity and organizational patterns in several modes of interaction
simultaneously. The tensor structure can easily be extended to three or four channels of interaction.
Alternatively, interaction in di�erent contexts can be one of the modes of the tensor.

6 DISCUSSION
Our work has two main areas of contribution: methodology and empirical insights into developer
behavior. We will start with a discussion of the strengths and weaknesses of our method and models
in Section 6.1, and then continue with the discussion of our insights into developer behavior from
a research perspective in Section 6.2 and from a practitioner’s perspective in Section 6.3.

6.1 Methodology
We have transformed a multiplex network with event-driven edges into a tensor structure and
applied a tensor decomposition as a clustering algorithm for visualizing group dynamics over
time. We added a prediction model to quantify the predictive strength of di�erent model variants.
For analyzing the dynamics of group structures in socio-technical networks, we adapted the
framework of Kunegis et al. [60] to a multi-dimensional tensor structure. As this results in a
relatively long vector of dynamic weights dA for every latent component, we were able to combine
the tensor decomposition with a state-space time-series framework for predicting future weights
of the components, and thereby future interactions. Our exploratory and descriptive approach
provides insights into sub-groups and temporary priorities in social networks with multiple types
of interaction.
The method we have proposed has a few caveats that are due to its aim to simplify the under-

standing of processes and to make the dealing with large, multi-modal networks computationally
feasible. The �rst noticeable simpli�cation of our modeling approach is that event data (the creation
of a commit or the response to an e-mail thread) is considered as a prolonged state of the network
lending itself to a topological description. This simpli�cation allows us to discretize time and to
explore the current state of a network. We understand our approach as a heuristic to understand
group dynamics in an exploratory way. Due to the lack of statistical hypothesis tests, most of
our conclusions are built on the validation of predictive performance instead of testing. Another
simpli�cation is the usage of binary, unweighted edges. Tensor decompositions require relatively
equal weight of every mode to bring insights into all interaction modes. We usually found fewer
mailing list exchange than co-editing activities. We could have standardized the single modes, but
decided to use a binary edge, as it kept the weights of the modes up. When searching for groups in
both modes, it can be adequate to use weighted edges and standardize by mode instead.
Our results show that the denoising of the networks via rank reduction, as well as the overlap-

ping, dynamic group model describes the networks better than a simple assumption on repeated
collaboration. For small values of ', a comparison with a rank reduction without state-space time
series (the model 4d) showed that this improvement is likely to be due to the rank reduction, not
the state-space time-series model and exponential smoothing. For large values of ', the time-series
method smoothed out the volatility that we �rst introduced with the many sub-groups that the
method was allowed to look for. In combination, a large ' can bring more detailed insights into
group structures, and the extrapolation smooths out the volatility, and the combination of both a
rank reduction and extrapolation brings more robustness.
In the following, we discuss our methodology from three di�erent perspectives: We �rst em-

phasize and demonstrate that our method is based on a modular concept of combining di�erent
statistical tools. Then, we discuss methodological threats to validity. Finally, we elaborate on the
potential threats to the validity of the empirical data that we have used in our study to evaluate
our proposed models.
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6.1.1 Modular Concept of Combining Statistical Tools. Our method combines well-established
statistical tools and methods that express our assumptions on the communication and co-editing
behavior of developers. One of our core aims was high robustness and transferability of our
method to contexts where multiple types of interaction behavior need to be explored over time.
Our method scales well to multiple types of interactions and also to large projects with many
developers. To achieve this, we used tensor decomposition and prediction methods that make little
assumptions on statistical distributions. At the same time, these methods are not suitable for testing
statistical hypotheses (e.g., whether the grouping behavior of developers is a signi�cant driver of
developer behavior). Neither are these methods suitable for calculating prediction intervals (e.g., by
validating whether observed group growth lies within the predicted range of values). We think
of our method as a chain of modules that, if needed, can be replaced by di�erent clustering and
prediction algorithms.
In general, we base our approach on the assumption that it makes sense to represent commu-

nication and co-editing events in a time-slice tensor structure, as the observed events describe a
temporal, enduring relationship. Other types of link prediction models such as Exponential Random
Graph Models forgo this simpli�cation and try to detect whether grouping behavior would, indeed,
lead to networks that look like the observed network [70]. These models do not detect clusters in a
speci�c network but rather test hypotheses on the drivers of interaction behavior. Foundational
work on this alternative logic was done by Quintane et al. [84]. Our approach, however, seeks to
identify clusters in observed networks with multiple types of interaction, it does not seek to prove
that clustering behavior is a generative pattern of the networks. Clustering is an unsupervised
machine learning technique. That is, it seeks to �nd a set of nodes in a network that are close to
each other in the same cluster and far away from di�erent clusters [15]. In multiplex networks,
common cluster (i.e., community or group) structures can emerge across the di�erent types of
interaction [25, 55].

Under the assumption that the tensor representation has been accepted as a useful representation
of developer networks, and that the groups we look for manifest in the temporal slices of the tensor
structure, tensor decomposition methods can be used for clustering. Chen et al. [15] provide an
overview on the most commonly used variants of tensor decomposition for clustering in multiplex
networks. They also propose a clustering method that allows to estimate di�erent groups across two
modes of interaction. This approach would complicate the visual representation and interpretation
of the decomposition outcomes, but could provide an alternative approach for model 3d to capture
channel-speci�c group structures. As we wanted to avoid any dependency between the identi�ed
groups in both channels in model 3d, we have chosen to cluster both interaction modes separately.
The method proposed by Chen et al. [15] di�erentiates between groups in both contexts, still using
the entire tensor (instead of, as in our model 3d, decomposing two three-dimensional tensors to
allow for separate group structures). As our method consists of a modular concept of combining
statistical tools, the outcome of their decomposition approach would be compatible with the next
steps of our method: There are cluster weights for a time period and stable groups over time that
could be combined with a time-series prediction to extrapolate the current activity level of the
groups and to predict future interaction.
As with the clustering step, also the prediction step can be easily changed to model additional

assumptions on the development of group weights. For example, our current approach allows group
weights to increase without bound. But—in real life—a developer’s capacity and time are limited.
Hence, an extrapolation method that includes a damping factor for growth could be more suitable.
When using multivariate techniques (i.e., methods that model relationships between the single
groups’ weights and predict them simultaneously), one should keep in mind that the time series are
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actually related through their origin from a tensor decomposition. Therefore, we recommend to use
univariate methods that do not involve assumptions on the statistical properties of the error term.

The above stated examples, on the one hand, relate central parts our method to state-of-the-art
work and, on the other hand, demonstrate the bene�ts of our overall method as a modular concept
of combining statistical tools. In particular, these examples exhibit how certain parts of our modular
concept can be replaced by other statistical tools and that our method could be easily applied and
adjusted to additional assumptions in practice.

6.1.2 Methodological Threats to Validity (Construct Validity). One threat to the validity of our
�ndings is the speci�cation of a length of the time windows for our method. We chose three-month
time windows and an aggregated approach as we seek to describe the evolution of a topological
pattern of the network: developer grouping or node clustering. The analysis can neglect the
importance of people that replied to some messages only after the switch from one time window
to another. The naïve baseline (naive) is most vulnerable with regard to the time-window length,
as it contains ever less information per time window when time-window length decreases. The
tensor decomposition is less vulnerable, as it always looks at the entire tensor. However, the time
weights becomemore noisy, with more ups and downs in dA . Experimental work by González-Bailón
et al. [31] illustrates the biases that arise when sampling network data: As we sample repeatedly
and keep the edges that cross windows, we have this risk of interpreting common changes as an
interaction where there is actually no collaboration. For example, in our setting, two events can
count as an interaction if the person who edited the �le �rst has already left the project. This might
be problematic for interpreting the identi�ed group structures and using them for link prediction
as we assume that this person was active all the time (and therefore had lots of interactions with
various developers) whereas it never was (except for the beginning). When discretizing interactions
between developers into time windows, in general, we can either lose interactions that go beyond
the ranges of a time window or we can keep edges that go beyond time windows and take the risk
that some of these edges actually do not constitute a real interaction due to the potentially long time
span between the two corresponding events, which leads to a distorted picture on the relationship
between developers’ activities. Torn between these two poles, we decided to keep interactions that
go beyond time windows, to not lose potentially important edges between developers.
Second, we have chosen a relatively simple decomposition method, which infers latent factors

without indication of standard errors, probabilities, or similar quality criteria that would help
assessing the �t of the decomposition and the group structures. The probabilistic model discussed
in Anandkumar et al. [3] describes in more detail how tensor decomposition can be used to
infer group structures on the basis of the assumption of a Dirichlet distribution of the observed
interactions. The method relates community detection to the mixed-membership community model
of Airoldi et al. [1]. Much like their model, our models assume stochastic independence of single
edges given the group members of the nodes in the network. However, to keep our calculations
computationally feasible also for large projects, we decided to use a non-probabilistic decomposition
method, to the disadvantage of hypothesis testing and precision estimation. When applying our
method as a prediction method, the cross-validation procedure has to be adapted. We did not hold
back a test sample to test the best ' or model. This was not necessary because we wanted to describe
the �t of the models for the given data set: Which of the models with their basic assumptions best
�ts the observed data? Usually, sparser models perform better for prediction, and therefore, we
expect lower numbers of ' to perform even better in a setting where the rules of holding back a
part of the sample are being followed. Within the tool set of exploratory clustering of nodes, there
may be better approaches, for example, including a penalty for the simultaneous membership in
more than one group may help to achieve better results.
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A third point worth discussing is the assumption of constant group patterns that vary over
time only in their relative importance. Much like the models of Airoldi et al. [1] and Anandkumar
et al. [3], our models assume nodes to be members of di�erent overlapping groups, that can be
described statically in strength of inter-personal relationships. We use the tensor decomposition to
�nd patterns that describe a stable group behavior—groups that are active for a certain span of
time and that collaborate via joint programming and communication. Only the relative importance
of the groups change, through their _A weights. A di�erent approach is to model the change in
some few central groups via a clustering that results in one developer being member of only one
group, but changing groups over time. This alternative result could also provide a parameter that
estimates the speed of group-structure adaptation, measuring the changes from one time window
to the next. We found our constant group understanding easier to use for a description of the entire
project history—when a current state of the network is all that is needed, the other approach may
be more helpful.
In future work, we will extend the analyses by directed and weighted edges. For example, it

is known who contributes to a mailing-list thread �rst, and who edits a code artifact �rst [53].
The binary values can be replaced by weights, such as the number of contributions within time
window C , the number of code lines edited in the cochange events, or the number of responses of
developers 8 and 9 on a mailing list.

6.1.3 Threats to Data Validity (Internal and External Validity). We used data extracted from
10 well-established open-source projects from di�erent domains to validate our models empirically.
Nonetheless, the validity of our data is threatened by several aspects.
As we identify developers by their names and e-mail addresses, one potential threat is that

developers may use di�erent spellings of their names and use various e-mail addresses, which
makes it hard to impossible to precisely track the co-editing and communication events for each
developer correctly. However, we use the heuristic for name and e-mail disambiguation of Oliva
et al. [79], which matches developers by their names and e-mail addresses and which has turned
out to work well in empirical studies [108].
Another potential threat is our general assumption that links between two nodes in the net-

work describe the co-editing or communication of these developers. This does not threaten our
methodological outcomes, but is a potential risk to the interpretation of our empirical results, as
two developers who reply to the same mailing-list thread or work on the same �le might not
necessarily work on a common task and might also not be aware of each other and each other’s
actions. However, many related studies in the literature also rely on this assumption and base their
analysis of developer networks on this operationalization [6–8, 28, 42, 52, 53, 69], which also has
previously been validated via developer surveys to be accurate and meaningful [51]. Nonetheless,
even if there is no explicit common task and the developers do not really interact with each other,
their links in the network describe some latent interaction. Hence, such links represent implicit
interactions of developers and their contributions, arranging them in groups of developers working
on similar tasks, which still is an important facet when investigating the evolution of a software
project and its group dynamics.

To increase the external validity of our results, more subject projects have to be considered, and
also other forms of communication, such as communication via chat or GitHub issues. Commu-
nication on a project’s mailing list is not the only communication channel, and group patterns
may also extend to other interaction channels. Nevertheless, we evaluated the performance of our
models on 10 well-established open-source projects from di�erent domains to provide some initial
insights in how our models perform when looking at two di�erent interaction channels, which
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already allows us to synthesize some implications on the performance of our models as well as for
empirical software-engineering researchers.

6.2 Implications for Empirical So�ware-Engineering Researchers
A key question of this work is how strong social ties and group structures in OSS projects are, and
how congruent interaction via communication and co-editing is. We found substantial di�erences
between the projects, which appear mainly related to the size and growth of a project.
The rank-reduction-based models (3d, 4d, 3d-ext, and 4d-ext) perform better than the non-

reduction-based models (naive and sum). This con�rms that ignoring occasional contributions
helps in predicting future developer interaction and that there are core and peripheral developers.
The canonical decomposition is able to identify groups of developers, where every developer can be
member of several groups, and reduces the weight of peripheral developers (including developers
who only interacted with others for a single time period). With that, our method determines
the important developers based on their involvements in certain latent tasks as well as on the
importance of these tasks. As our results indicate, this improves the prediction of future developer
interactions and, therefore, our method can also be used to identify core developers of a project
from a more nuanced view than state-of-the-art classi�cation techniques do, which are merely
based on standard network centrality measures and possibly ignore the latent group dynamics.
Interestingly, our results show that relatively long phases of stable weights 3CA arise in the

canonical decomposition, which can be interpreted as evidence in favor of stable social relationships.
These social relationships lead to repeated collaboration over a limited period. That is, there are
interactions among developers which persist for a certain period of time (e.g., while developers
jointly work on a new feature), but as soon as these relationships may appear, that soon such
relationships also can come to an end (e.g., the implementation of the new feature is �nished).
For instance, our decomposition insights for QEMU showed that a group of developers mostly
participating in discussions on the mailing list for a time period of about 3.5 years mainly has
a�ected the social dynamics of the project in that time period. At the beginning and end of that
time period, structural changes in the project organization might have emerged due to the changes
in the communication activity of these developers. Hence, this could be used as a starting point for
analyzing the causes and e�ects of structural changes (perhaps driven by certain organizational
events) on the project health. So, this could be helpful for better understanding social dynamics
and improving a project’s software creation process.

Our results also show that communication and co-editing have a consistent positive correlation
(positive values qC between 0.15 and 0.21, omitting one outlier in each direction). This is, to some
extent, in line with “Conway’s Law” [18] or the “mirroring hypothesis” [17], in which it is assumed
that the social structure (i.e., communication) of a software project mirrors its technical structure
(i.e., co-editing) because of the coordination requirements that arise from co-editing software
modules [12, 13, 71]. This also lets us assume that there is a (weak) socio-technical congruence, as
the occurrence of communication and co-editing activities are positively correlated. Researchers
have argued that the state of socio-technical congruence arises from the decomposition of the
programming activity into work items or tasks [61, 82]. In our setting—we are even more abstract—
such work items can also be the latent factors A which we treat as unobserved tasks. When
choosing larger values of ', usually the decomposition identi�ed one or two speci�c sub-groups in
communication. That is, most of the identi�ed sub-groups are mainly related to co-editing, but
with a high enough rank of decomposition, at least, one communication-related sub-group appears
in our subject projects. Thus, mainly communication-related sub-groups are harder to detect. This
could be an indication that there are only few pure communication-related sub-groups and most of
the co-editing-related sub-groups also cover the corresponding communication part. Nevertheless,
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we need further investigations to �nd out whether the developers that are mostly involved in the
communication-related sub-groups do also appear to be important in one of the co-editing-related
sub-groups, and, if not, what this means with respect to socio-technical congruence.

Our results and our method can inspire research on software development with regard to di�erent
aspects. One important stream of research is to understand what developers usually discuss about,
and how their communication is related to joint programming. Our article contributes to this
�eld of research by showing that communication (at least, in terms of exchange on public mailing
lists) and co-editing are only weakly simultaneously related. This result is also supported by Xuan
and Filkov [110] who analyzed the synchronicity of cochange events and e-mail activity on the
mailing list. However, they identi�ed a stronger correlation than we do, which might be speci�c
to the chosen subject projects but also is a�ected by the di�erent operationalizations, as they use
simple time-series event data of six OSS projects whereas we build developer networks from a
richer history of 10 OSS projects and apply a tensor decomposition on it with the aim of being
more accurate to identify latent structures. There might be multiple reasons why socio-technical
congruence seems to be rather weak in the projects we analyzed (e.g., related co-editing and
communication activities could be shifted such that they do not take place temporally close-by, or
developers who mainly coordinate may not show up in co-editing activities any more, etc.), which
has also been discussed in the literature [e.g., 29, 34, 63] and needs further attention in future work.

Research in Empirical Software Engineering can pro�t from our method and models for �nding
patterns in the relationship between developers, without the need to explicitly specify all mecha-
nisms and reasons that lead to the formation of modules, or hierarchy. Joblin et al. [52], for example,
investigate the emergence of scale-freeness, modularity, and hierarchy in open-source developer
networks like ours. While the authors choose descriptive measures for showing these network
characteristics, their approach could be combined with our probabilistic model of seeing the men-
tioned characteristics as latent phenomena that drive the emergence of links in the networks. This
could help to better understand the evolution of software projects and identify changes in (latent)
network characteristics which might have in�uenced the organizational structure (e.g., including
coordination procedures) and structural health of an OSS project. Such a better understanding could
be used to prematurely identify such phenomena in ongoing states of open-source projects and to
be able to launch potential countermeasures for retaining project health. Especially modularity has
a direct interpretation in terms of latent factors, and understanding and measuring modularity can
provide important information to decision taking in open-source software development: Modularity
helps to keep coordination needs among developers reasonable, and often arises naturally due to
common capabilities and interest in a common problem or challenge [52].

While describing the topology of a network, factorization provides insights into the generation
process, by carving out the latent patterns that have led to the observed structure. Latent factors,
extracted for example via spectral decomposition, inherently represent clustering, local hetero-
geneity, and other characteristics such as maximum distance across the network, bottlenecks, and
degree of randomness [37, 91]. Knowing about such latent factors, researchers can get new insights
into growth processes in OSS projects and draw new conclusions regarding whether and how such
characteristics of growth processes can in�uence project health. For example, as we have seen
in the decomposition insights of BusyBox, the latent information regarding dynamic weights of
sub-groups can be used to identify which latent factors (and, therefore, which sub-groups) are
responsible for the temporary sharp drop of mailing activity, which developers are related to these
sub-groups, and also which latent factors (i.e., sub-groups and developers) are responsible for
the anew increase of mailing activity afterwards (e.g., whether these sub-groups are the same as
before or whether other sub-groups have gained importance). Such investigations cannot only be
undertaken to examine activity patterns, but also to investigate network distortions or formation
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processes etc. [67]. Besides, �nding latent factors can also be used for community detection: As a
latent factor describes a certain group of developers that work on a joint unobserved task, all the
latent factors already represent overlapping groups of developers. However, the tensor decompo-
sition does not only show us the groups but also provides us with further information of group
importance, kind of involved activity (co-editing vs. communication), and dynamic importance
over the complete project time span, which can provide more insights than detecting groups based
on simple network classi�cation metrics. For example, in ownCloud, we can see that when decom-
posing the tensor into three latent factors, there is a high overlap among the three developer groups
(showing that many of the core developers have a stable position in the project structure over
time), but one certain developer is only important for one of those three groups which only played
a central role in a rather early project stage. This provides us with more information about the
groups, which could be used to examine the reasons why certain groups gain or loose importance.

In sum, our method can be used by researchers as an easy means to investigate project evolution,
and later on, this can be helpful for project maintainers to get a deeper knowledge on the ongoing,
past, and potential future activities and the importance of certain groups in the project history.
This information could be exploited to reveal coordination needs and improve co-editing activities
and communication of developers with respect to certain organizational events (e.g., to coordinate
knowledge sharing when a central long-term developer of the project is about to leave).

6.3 Implications for Practitioners
There are potential insights for practitioners: The information on the role of certain groups, on coor-
dination needs, and on knowledge sharing could be collected and visualized in a dashboard, which
could developers help to improve coordination based on the knowledge about group structures and
their importance. For instance, (potentially unexpected) instabilities or irregularities in the group
structures of collaborating developers could be detected by our method. Project managers can then
use the decomposition insights to identify sources of problems and develop concrete ideas on how to
mitigate or even solve the problems identi�ed via irregularities in the group structures. For example,
in BusyBox, we recognized irregularities when new developers joined the project, previous core
developers left the project, and the remaining group of previous core developers discontinued their
co-editing activities but started concentrating on communication tasks only. These irregularities
can be detected when having a closer look at our decomposition results (see Fig. 7): The dynamic
weight of the latent component that describes the main tasks of a group of previous core developers
had a sudden decrease, while the dynamic weight of another component (which also contains some
of these previous core developers, but only consists of communication activity) suddenly started
to increase. At around the same time, a new group of developers (including two recently joined
developers) emerges and takes over most of the co-editing activity. However, this new group has
almost no communication activity, as the interaction channel e�ects of the corresponding latent
component reveal. Such an irregularity could be further investigated to uncover whether there is a
potential lack of coordination. Knowing about such a collaboration issue could be bene�cial for
successfully integrating the new developers (e.g., project managers could detect such issues and
discuss them with the developers early).

7 CONCLUSION
OSS projects have a reputation for being anarchic compared to commercial software development.
Some assume that this is one of their major strengths as it fosters for �exible organizational
structures and integration of peripheral developers, who contribute a signi�cant share of the value
of OSS projects. Nevertheless, researchers found that repeated collaboration and stable social
relationships are essential drivers of software development quality and success. In this article,
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we asked how strong social relationships in OSS projects are and how congruent sub-groups in
communication and programming are and developed a method to provide an answer to this question.
We departed from a model that assumes groups in OSS projects to be overlapping, both across tasks
and in time, and operationalized this model with a tensor data structure, a decomposition to �nd
the groups, and a time-series extrapolation to predict the future behavior of the groups.

Furthermore, we proposed a probabilistic model to analyze the strength and dynamics of group
behavior in open-source software development. We model the groups as latent factor structures in a
low-rank factorial structure, and assume that the social structure of a project contains ' sub-groups.
As any developer can work on multiple tasks, there is no restriction of one developer belonging only
to one speci�c group, instead, groups are overlapping. One latent factor consists of developer e�ects
that re�ect the involvement of developer 8 in one particular group A , interaction channel e�ects that
re�ect how much this group involves either co-editing or communication (: ∈ {1, 2}), and time
e�ects that contain the current weight of the sub-group for a particular time window C . This way
of thinking and modeling is similar to collaborative �ltering approaches, where correlations and
similarities are mined without strong hypotheses on the nature and properties of the underlying
group-forming mechanisms. We infer the latent factors from the observed data with the help of
canonical tensor decomposition. To do so, we discretized the event data into ) non-overlapping
time windows. Finally, we combined the factorization with a state-space time-series model and
exponential smoothing to extrapolate a trend and current level of the relative importance of the
single latent factors to future time windows.

To assess the appropriateness and predictive performance of our models, we de�ned a series of
baseline models. Baseline naive assumes that everyone who co-edits or communicates at time )
will also do so at time ) + ℎ. Baseline sum sums up all the past interaction behaviors, putting
more emphasis on older information and repeated interaction than naive. Model 3d looks at
communication and co-editing information separately, using third-order tensor decomposition,
which resembles the state-of-the-art approach of analyzing the social and technical dimensions
separately. Model 4d uses fourth-order tensor decomposition and simultaneously models groups in
co-editing and communication. Both models 4d and 3d assume that the current relative weights of
the patterns will be constant in the future. Finally, to account for changing group weights, in the
models 4d-ext and 3d-ext, we use a time-series method to extrapolate the current group weight
growth or shrinkage to the future. The models 4d-ext and 3d-ext outperform the baseline models
in the prediction of future links. However, the extrapolation leads to instabilities when compared
to the remaining approaches. Consequently, the models 3d and 4d turned out to be more robust
to abnormalities in communication usage such as the decreasing use or abandonment of mailing
lists and had a slightly better mean performance for prediction. While rank reduction and the
incumbent concentration on the more central developers indeed bene�t predictions, the state-space
time-series model and trend extrapolation did not signi�cantly improve predictive performance.
Our research shows that there is evidence that rank reduction is able to identify valid group

structures and correctly describes the social structure of the data. Our method is a relatively intuitive
and exploratory way to investigate group structures in social networks, as it consists of a modular
concept of combining di�erent statistical tools. This way, our method can be easily adjusted to
investigate various assumptions on developer behavior in OSS projects. So, it can be used to better
understand dynamics in a computationally feasible way, even in huge networks with more than
two types of interaction.

In empirical software-engineering research, ourmethod can be used to explore the group structure
in more detail and to understand collaboration structure, role diversi�cation, and the usage of
di�erent modes of interaction. For example, we found that shortly before a temporary decrease in
the mailing activity of the project BusyBox, there is a peak in the activity of a sub-group which
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had extensive exchange via the mailing list, whereas thereafter a sub-group mainly driven by
co-editing activities started to be active. After the temporary decrease of the mailing activity, a new
sub-group arises that takes over only communication activity. However, recently joined developers
(who are part of the sub-group that mainly performs co-editing activities) are not involved in the
communication activity, which could point to a potential lack of coordination. Using our method,
we are able to identify such distortions in the network structure and easily analyze the underlying
changes with respect to interaction channel, dynamic importance, and developer importance. We
have investigated the group dynamics of co-editing and mailing-list communication in 10 well-
established and long-running OSS projects and, via canonical tensor decomposition, we identi�ed
stable group structures (consisting of groups being stable for several years) as well as periods of
sub-group instability in all the investigated projects. Some of these sub-groups are mainly related
to programming activity whereas others are mainly related to communication, and some are taking
over the coordination activity (showing both communication and programming activities). While
some sub-groups are persisting since the beginning of the project, others emerge in the course of
project growth. Interestingly, project growth in terms of increasing programming activity is usually
not complemented by increasing communication activity, as we detected only a weak correlation
between co-editing and communication events, showing us that there might be a need to improve
developer coordination. Our method can help to detect patterns of instability in certain sub-groups
(such as the abandonment or joining of important developers) by considering multiple interaction
channels all at once, and to assess their e�ects on the project health and potential coordination
needs within or among speci�c sub-groups. Such insights can drive the improvement of virtual
cooperation platforms like GitHub by helping to determine the collaborators for a certain task or
discussion, recommending project contributors who may be able to answer a question or should be
informed about some aspect.
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A APPENDIX
Canonical Tensor Decomposition vs. Principal Component Analysis
Here, we brie�y explain the similarities and di�erences between the canonical tensor decomposi-
tion and principal component analysis via spectral matrix decomposition. A principal component
analysis is a method to infer two-dimensional latent factors from a matrix—like a canonical decom-
position is a method to infer higher-dimensional latent factors from a tensor. The low-rank tensor
decomposition is similar to a principal component analysis in that it projects ormaps =-dimensional
data into a lower-dimensional coordinate system spanned by rank-one components, which is one
way to infer latent factors. Like in matrix decomposition, the number of possibly extracted compo-
nents or factors is equal to the rank of the matrix or tensor, respectively. There are, however, two
main di�erences in the choice of the number of components to extract. First, the computation of the
rank of a tensor is NP-hard [94]. Second, the spectral decomposition of a matrix produces the same
�rst �ve factors (ordered by importance), no matter how many latent factors are being extracted.
The latent factors in tensor decomposition, however, depend on the total speci�ed number of
factors. When ' is chosen too small, interesting patterns will be overlaid. When ' is chosen too
big, then spurious patterns arise, which have nothing to do with real-world group dynamics. In
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the case of tensor decomposition, “repeatedly subtracting the dominant rank-1 tensor is not a
converging process” [94, p.794]. Therefore, the number of components in�uences the results, unlike
in principal component analysis, and the choice of ' is non-trivial and is prone to over�tting.
For repeated estimation, the tensor decomposition can �nd di�erent solutions for the same ', as
its results depend on the random initiation. Therefore, it is important to set a seed (when doing
the computations). To summarize, the tensor decomposition is an exploratory instrument to �nd
interesting patterns, which should then not be over-interpreted (especially for large ').
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