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Abstract. Software testing is still the most established and scalable
quality-assurance technique in practice. However, generating effective
test suites remains computationally expensive, consisting of repetitive
reachability analyses for multiple test goals according to a coverage cri-
terion. This situation is even worse when testing entire software prod-
uct lines, i.e., families of similar program variants, requiring a sufficient
coverage of all derivable program variants. Instead of considering ev-
ery product variant one-by-one, family-based approaches are variability-
aware analysis techniques in that they systematically explore similarities
among the different variants. Based on this principle, we present a novel
approach for automated product-line test-suite generation incorporating
extensive reuse of reachability information among test cases derived for
different test goals and/or program variants. We present a tool imple-
mentation on top of CPA /TIGER which is based on CPACHECKER, and
provide evaluation results obtained from various experiments, revealing
a considerable increase in efficiency compared to existing techniques.
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1 Introduction

Software-product-line engineering [15] has become a key technology to cope with
the variability of highly-configurable (software) systems, prevalent in various ap-
plication domains today. In recent years, software product lines (SPL) have found
their way into numerous industrial application domains, e.g., automotive, infor-
mation and mobile systems [29]. SPL engineering aims at developing a family of
similar, yet well-distinguished software products based on a common core plat-
form, where commonality and variability among the family members (product
variants) are explicitly specified in terms of features. Each feature corresponds
to (1) user-visible product characteristics in the problem domain, relevant for
product configuration, as well as to (2) composable implementation artifacts
for (automated) assembling of implementation variants. This philosophy of ex-
tensive reuse of common feature artifacts among product variants facilitates a
remarkable gain in efficiency compared to one-by-one variant development [15].



For SPLs to obtain full acceptance in practice, established quality-assurance
techniques have to be lifted to become variability-aware as well, to also benefit
from reuse principles [24, 26, 27]. Various promising attempts have been pro-
posed, enhancing respective model-checking and software-testing techniques to
efficiently verify entire families of software products instead of every single vari-
ant [4,12,14,16]. In practice, systematic software testing remains the most es-
tablished and elaborated quality-assurance technique, as it is directly applicable
to real-world applications at any level of abstraction [28]. Furthermore, testing
allows for a realistic and controllable trade-off between effectiveness and effi-
ciency. In particular, white-box test generation aims at (automatically) deriving
sample inputs for a given program under test to meet certain test goals. There-
upon, the derivation of an entire test suite is usually guided by test-selection
measures by means of coverage criteria, e.g., basic-block coverage and condition
coverage [8]. Coverage criteria impose multiple, arbitrarily complex test goals,
thus requiring sets of test-input vectors to achieve a complete coverage [8]. De-
pending on the concrete application domain and the respective level of mission-
/safety-criticality, it is imperative, or even enforced by industrial standards, to
guarantee a certain degree of code coverage for every delivered product [11]. The
computational problem underlying automated test generation consists of expen-
sive reachability analyses of the program state space. Symbolic model checking
has emerged in the past as a promising approach for fully automated white-
box test generation using counterexamples as test inputs [7]. However, in case
of large sets of complex test goals, scalability issues still hinder efficient test-
case generation when being performed for every test goal anew. This is even
worse when generating test inputs for covering entire product-line implemen-
tations. To avoid product-by-product (re-)generation of test cases with many
redundant generation runs, a family-based test-generation approach must en-
hance test-suite-derivation techniques to be likewise applicable to product-line
implementations [12,24].

In this paper, we present a novel approach for efficient white-box test-suite
generation that guarantees multi-goal test coverage of product-line implementa-
tions. The approach systematically exploits reuse potential among reachability-
analysis results by means of similarity among test cases

— derived for different test goals [8], and/or
— derived for different product variants [12].

The interleaving of both techniques leads to an incremental, coverage-driven ex-
ploration of the state space of the product line under test implemented in C
enriched with feature parameters [19]. We implemented an SPL test-suite gen-
erator for arbitrary coverage criteria on top of CPA /TIGER which is based on
CPACHECKER [9], a symbolic model checker using the CEGAR approach [13].
In our evaluation, we consider sample product-line implementations of varying
sizes to investigate the general applicability of the novel test-suite-derivation
approach, as well as the gain in efficiency obtained from the reuse of reachabil-
ity analyis results. The results reveal a considerable improvement in efficiency
compared to test-suite-generation approaches without systematic reuse.



1 int func(int x, int y, int z) {
2 int a;

3 if (x < y)

4 a = x;

5 else

6 a =y;

7 zZ = z - a;

8 return z;

9

(a) Sample C-Code (b) CFA

Fig. 1. C Code and CFA Representation of a Program Under Test

2 Background

In this section, we give a brief overview on the general principles and notions of
white-box test-case derivation and its application to software product lines.

2.1 White-Box Test-Suite Derivation

Consider the C code snippet in Fig. 1(a) implementing a simple function func
that takes three integer parameters, x, y and z, subtracts the smaller value
of x and y from z, and returns the result. The program operates on a set
V = {z,y,z,a} of typed program variables, where the subset {z,y,z} C V
constitutes input variables of the program. The purpose of test-case derivation
is to systematically derive sample vectors of concrete input values, one for each
input variable, to stimulate and therefore investigate a particular behavior of the
program under test. For example, executing the given sample program with the
input vector [xt = 1,y = 2,z = 3] enforces a test run that traverses the if branch
in Lines 3 — 4. In addition to the input vector, a test case often further consists
of a test oracle, i.e., a specification of the intended outcome of running the test,
e.g., by means of the expected return value of a function in case of unit testing.
Hence, a test case consists of a pair of an input vector and a test oracle, e.g.,
([x =1,y = 2,z = 3],[z = 2]). To properly test a program, typically a whole
set of test cases is required. However, due to the large and even (theoretically)
unbounded size of input-value domains (integer in this example), exhaustive
testing is, in general, infeasible, or even impossible. To guide the selection of ap-
propriate subsets of input vectors into a test suite, various adequacy criteria have
been proposed [28]. Concerning white-box testing, in particular, code-coverage
measures refer to syntactic program elements as multiple test goals to be cov-
ered by a test suite. For this purpose, an abstract representation of the program
under test is considered, e.g., a control-flow automaton (CFA) [8], as shown in
Fig. 1(b). Nodes of the CFA refer to program locations (program-counter valu-
ations), and edges denote control transfers between locations according to the
syntactic structure of the program. Edges referring to (blocks of) operations are



labeled with respective value assignments on program variables, whereas edges
referring control-flow branches are labeled with corresponding predicates (as-
sumptions) over program-variable values. Covering a test goal on a CFA means
to find an input vector that traverses a CFA path that matches this goal. For
instance, applying statement coverage to the CFA of Fig. 1(b), the statements
in Lines 4, 6, and 7 each constitute a test goal, where the aforementioned test
case ([t = 1,y = 2,2 = 3], [z = 2]) covers the goals 4 and 7. To obtain complete
statement coverage, a further test case, e.g., ([x = 2,y = 1,z = 3],[z = 2]), is
required to cover the else branch (Lines 5 — 6). Hence, both test-input vectors
in combination constitute a complete test suite for statement coverage.

Statement coverage is one of the weakest code-coverage criteria, solely ensur-
ing a small subset of the reachable program state space to be actually explored.
In the context of safety-critical systems, coverage criteria such as MC/DC [11]
comprise more complex test-goal specifications including sets of pairs (¢, ) of
program locations ¢ together with predicates ¢ over program variables in V.
Coverage criteria not only define quality measures for existing test suites, but
also serve as test-end criteria during test-suite generation. Therefore, a test-suite
generator iterates over the set of test goals and derives a satisfying test case for
each test goal. For example, statement coverage selects the program locations 4,
6, 7 as test goals and starts with location 7, which is trivially reached by any
input vector, e.g., [t = 1,y = 2,z = 3|. In addition, location 4 is also already
covered by this test case. Thus, results of test-case generation may be reused
among test goals to reduce test-generation/execution efforts.

2.2 Test-Suite Derivation for Product-Line Implementations

The program in Fig. 1 implements a fixed functionality without any behavioral
variability, as apparent, e.g., in software product lines [15]. In a product line,
features are related to dedicated artifacts within the solution space. These arti-
facts are composable into product variants derivable for a given configuration,
thus facilitating systematic reuse of artifacts among product-family members
at any level of abstraction [1]. At source-code level, features may occur as im-
plementation parameters annotating dedicated pieces of code as feature-specific
implementation variability, e.g., using C preprocessor [19].

Consider the product-line implementation func-spl in Fig. 2(a) (line breaks
are added for better readability), which extends the example from Fig. 1(a) by
variability. Therein, #ifdef conditions over (Boolean) feature parameters anno-
tate those code pieces being conditionally compiled into a variant implementation
depending on the feature selection. In the example of Fig. 2, feature parameters
control that, from x and y, either the smaller (LE) or the greater value (GR) is
either added (PLUS) or subtracted (MINUS) from z. In the case of subtraction,
feature NOTNEG ensures the result not to be negative for positve input values.

The set of features, together with constraints limiting their possible combi-
nations, are usually captured in a variability model. Here, we limit our attention
to a representation in terms of propositional formulae over Boolean feature vari-



1 int func-spl(int x, int y,

int z) {

2 int a;

3 #ifdef LE

4 if (x < y)

5 a = x;

6 else

7 a =y;

8 #elsif GR

9 if (x> y)
10 a = x;
11 else
12 a =y;
13 #endif NOTNEG { “NOTNEG
14 #ifdef PLUS !
15 z = z + a; /‘
16 #elsif MINUS {
17 #ifdef NOTNEG { I
18 if ((z - a) < 0) H
19 a =ax*x (-1); ,/‘
20 } ¢
21 #endif
22 z = z - a;
23 #endif
24 return z;
25 %}

(a) Sample Product-Line C-Code (b) CFA

Fig. 2. Parameterized C-Code and CFA Representation of a Product-Line Under Test

ables [5]. For our example in Fig. 2(a), the variability model states that
(LEY GR) A (PLUS ¥ MINUS) A (NOTNEG — MINUS)

holds, where ¥ denotes exclusive or. The features LE and GR, as well as PLUS and
MINUS denote alternative choices, whereas NOTNEG is an optional feature, only
selectable in combination with MINUS. Thus, there are 6 valid configurations.
The inherent variability of product-line implementations has to be taken into
account also during test-case derivation [12]. The enhanced CFA representation
for the example of Fig. 2 is depicted in Fig. 2(b), where each variation point
is represented as an additional (dashed) branch edge labeled over respective
feature constraints. Hence, actual test runs, i.e., the code parts traversed and the
final results computed for a test case applied to a product-line implementation,
depend on the configuration of the product variant under test. For instance, the
input vector [x = 1,y = 2,z = 3| traverses the if branch (Lines 4 — 5) only
if feature LE is selected, and the else branch (Lines 11 — 12) if feature GR is
selected. Next, either Line 15 is executed for feature PLUS, or Line 22 for feature
MINUS. In the latter case, the execution of Line 19 for feature NOTNEG further
depends on whether LE or GR is selected, whereas the if branch (Lines 18 —
19) is not covered and Line 19 is skipped in both cases. Finally, the expected



value returned in Line 24, again, depends on the selected feature combination,
ie., [z = 4] for LE and PLUS, [z = 2] for LE and MINUS, [z = 5] for GR and
PLUS, and [z = 1] for GR and MINUS, whereas feature NOTNEG does not affect
the outcome of the test run.

To cope with behavioral variability, the derivation of test cases must be
variability-aware. Therefore, a test-case specification is extended to a triple,
eg, ([x = 1,y = 2,z = 3],[z = 2],¢), where ¢ denotes the presence condi-
tion, i.e., a propositional formula over feature parameters constraining the set of
configurations for which this test case is valid. In the example, ¢ = LE A MINUS
holds, i.e., this test case is (re-)usable for configurations with and without fea-
ture NOTNEG. In the same way, the notion of code coverage must be adapted
to product-line implementations. For instance, concerning location 19, the in-
put vector [z = 1,y = 3,z = 2] covers this location on configurations with GR,
MINUS, and NOTNEG being selected, whereas in program variants with fea-
ture LE instead of GR, location 19 remains uncovered. In contrast, input vector
[x = 3,y = 2,z = 1] covers location 19 on both program variants, and, together
with input vector [z = 2,y = 3,z = 1], the resulting test suite achieves complete
statement coverage for the entire product line.

To summarize, a systematic approach for variability-aware, yet efficient test-
suite derivation for complete product-line coverage has to take both dimensions
of reuse into account: among test goals as well as among variants.

3 Test-Suite Generation for Product Lines

In this section, we introduce an approach for white-box test-suite generation for
covering entire product-line implementations based on symbolic model check-
ing. The approach incorporates systematic reuse of reachability-analysis results
among different test goals as well as different product variants.

3.1 Test-Case Generation based on Symbolic Model Checking

The derivation of test inputs for covering a particular test goal requires a reach-
ability analysis of the state space of the program under test. Model checking has
been extensively investigated as a viable technique for automating the evaluation
of respective reachability queries. The basic idea of those approaches is to pass
the (negated) test goal to the model checker to derive a counterexample serving
as test input for covering that goal [7].

Considering white-box testing in particular, symbolic model checking has
recently shown promising performance improvements when applied to derive
test inputs for a given program under test [8]. Symbolic test-input derivation for
a test goal consisting of a pair (¢, ¢) is performed in two interleaved steps.

1. Find a path through the CFA of the program under test to location /.
2. Derive input values satisfying the path condition for ¢ and state predicate .
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Fig. 3. ARG for C Program and Product-Line Implementation

For Step 2, the model checker uses an abstract reachability graph (ARG) as
central data structure to symbolically represent the reachable program state
space [7]. Based on the approach of lazy abstraction [6], the ARG is iteratively
constructed and refined for any possible CFA path reaching ¢, until either a sat-
isfying variable assignment has been found, or the path conditions of all possible
paths leading to (¢, ¢) turn out to be unsatisfiable.

The fully-explored ARG for the program in Fig. 1(a) is depicted in Fig. 3(a).
Each ARG path refers to some path of the CFA in Fig. 1(b), where the accu-
mulated state predicates over program variables denote the path condition to
be satisfied by input values to reach that location in a concrete execution. Fresh
temporal variables, e.g., zg, 21, are introduced using SSA encoding. For instance,
for the ARG path 1,4,7,8, derived for test goal (¢ = 8,p = (x < y)), there is an
initial variable assignment satisfying the respective path condition as well as ¢,
whereas, for path 1,6,7,8, no such assignment exists.

Formally, the set V' of program variables is typed over a compound do-
main D, where we limit our considerations to D = B U Z, i.e,. Boolean
and Integer variables. Thereupon, the labeling alphabet of a CFA is given as
L(V) = Lassume(V) U Lassign(V'), where Lossume(V) = (V — D) — B comprises
the sub-alphabet of predicates over V, and L,s5i9n(V) = (V. — D) — (V — D)
denotes the sub-alphabet of (blocks) of value assignments on V. We refer to
elements of the labeling alphabet as a € L(V).

Definition 1 (Control-Flow Automaton). A CFA is a triple (L,{, E),
where L is a finite set of control locations, £y € L is the initial control location,
and E C (L x L(V) x L) is a labeled transition relation.

For a CFA to be well-structured, we require each node except termination nodes
to have either exactly one outgoing edge labeled over £,ssign(V'), or all outgoing
edges labeled with mutually excluding predicates from Lgssume(V). A concrete
execution of a program traverses some path of the corresponding CFA, denoted

aj—
lo 2% 0 2 o 0 gy,



where (¢;,a;,0;11) € E, 0 < i < k, holds. Semantically, a concrete execution
corresponds to a sequence

7= (lo,co) % (1, c1) 25 - 225 (0 cn)

of program states, i.e., pairs (¢;,¢;), 0 < i < k, of locations ¢; € L and current
values of program variables given by a mapping ¢; : V' — D, such that either

— Cit+1 = ai(ci) if a; € ‘Cassign(v); or
— ¢ip1 =¢; and ¢; F ag, if a; € Lossume(V)

holds. Based on this notion of program-execution semantics, input-variable
assignments of an initial program state ¢y constitute a (concrete) test-case-
satisfying test goal (¢,¢) iff there is a concrete program execution reach-
ing some state ({,c;) with ¢ | . Stepping from concrete executions to
symbolic-execution semantics is done by predicate representation of (sets of)
concrete data values in program states: a set of possible program-variable as-
signments, called a region, in a program location is symbolically characterized
by a state predicate r € Lyssume(V), where R(V) denotes the set of all regions
over V. For constructing symbolic executions, the strongest postcondition oper-
ator spy : (R(V) x L(V)) — R(V) is defined such that, for ' = spy,(r,a;) and
for each ¢; = r, either

= Ciy1 = ai(ci) and Cit1 ): ’I“/, if a; € 'Cassign(v)a or
—cNa; B, if a; € Lossume(V)

holds. The symbolic representation of regions as predicates supports abstrac-
tion, i.e., omitting information about the state space that is not necessary for
the analysis: the abstract states might over-approzimate sets of concrete states.
Based on these notions, an ARG is defined as follows.

Definition 2 (Abstract Reachability Graph). An ARG of a CFA (L, ¢y, E)
is a triple (S, so,T), where S C (L x R(V)) is a set of abstract program states,
so = (lo, true) € S is the initial abstract program state, and T C (S x E x S) is
a labeled transition relation, where (¢,7) < (¢/,7') € T if e = ({,a,") € E and
| spy ().

An ARG is complete, if it contains, for every concrete execution m of a program,
a corresponding abstract path

(Lo, 7o) <2 (€1,71) 25 - 225 (4, ),

with ¢; | r;, 0 < ¢ < k. For deriving a test case that covers goal (¢, ), it is
often sufficient to only partially explore the ARG until an abstract state (¢,r)
with r |= ¢ is found, for which an initial program state ¢y with ¢o |= r¢ exists.
Although being much more efficient than explicit state-space exploration in many
cases, this process has to be repeated until every reachable test goal is covered
by, at least, one input vector.



Symbolic test-case generation is applicable to derive test cases from product-
line implementations as shown in Fig. 2. Formally, a product line enhances a
single program implementation by adding a set of distinguished Boolean (read-
only) input variables Vg — B to the set of program variables Vp, thus leading
to V = Vp UVr. Based on the concept of variability encoding [25], preprocessor-
based, compile-time variability can be transformed into run-time variability us-
ing plain if-then-else statements over feature variables in a fully-automated
way [19]. Similarly, the feature model can be represented as propositional for-
mula FM € L,ssume(Vr) over Vg [5]. Correspondingly, (partial and complete)
product configurations are denoted as v € L ssume(Vr), where v | FM. Based
on this encoding, the derivation of a test case satisfying a test goal (¢, ) can be
performed as described before. Starting with feature model FM as initial path
condition, ARG regions r = (pc A ¢) € R(Vp U Vp) now is a conjunction of
two separated parts: (1) a path condition pc € L ssume(Vp) over program vari-
ables Vp restricting the inputs and (2) a presence condition ¢ € Lassume(VF)
over feature variables Vp restricting the feature selections for which the test case
is valid.

The partially explored ARG for test goal (¢ = 14, true) in the CFA of Fig. 2(b)
is shown in Fig. 3(b). The path condition and the presence condition are sepa-
rated by a dashed line, for better readability. Path 1,3,7,13, 14 suffices to cover
the goal on complete configurations with feature LE, whereas for configurations
with feature GR, the additional path 1,8,12,13,14 is required. As location 14
is only reachable in variants with feature PLUS, this ARG is sufficient to derive
inputs for covering the test goal on every variant in which that goal is reachable.

Definition 3 (Complete Product-Line Test Suite). Let G be a set of test
goals on a product-line implementation. A set Cs of initial program states is
a complete product-line test suite, if for each g = (¢,¢) € G and for each
Y € Lassume(Vr) with v = FM it holds that, if (Co,y) <% -+ =225 (0, 7) with
T = @ exists, then there exists co € C'rs with ¢o = v and ¢y covering g.

To achieve complete coverage of product-line implementations, test-case deriva-
tion has to be repeated for each test goal (¢, ¢) until it is covered by, at least,
one valid test case on each program variant in which the test goal is reachable.

3.2 Reuse of Reachability-Analysis Results

We now describe an efficient approach for deriving a test suite for multi-goal cov-
erage of product lines. The approach incorporates systematic reuse of reachabil-
ity information that is already obtained from a (partially explored) ARG during
test-case derivation for other test goals and program variants. The overall ap-
proach consists of two phases: (1) incremental ARG exploration until sufficient
reachability information is obtained to cover each test goal on every program
variant in which it is reachable; (2) derivation of concrete test-input data from
ARG path conditions for reachability counterexamples. In the first phase, ARG
exploration is guided by repetitively traversing paths of the CFA until every test



Algorithm 1 Abstract Product-Line Test-Suite Derivation

Input: CFA (L, /4, E), Feature Model FM, Test Goals G = {g1,92,-.-,9n}
Output: Abstract Test Suite T'S

1: TS:={};for all g G: CS[g]:=FM

2: for all g = ({,¢) € G do

3: ro = CS[g]

4 if (o,r0) =% --- SN (Lr,re) with £ = £g,re = (peg, dr), and pe, = ¢ then
5: for all ¢’ = (4;,¢') € Gwith 0 <i <k, r; = (pc;, ¢:), and pc; = ¢’ do

6: if Agp; € Lassume(VF): TS[g', ¢;] # undef A ¢; = ¢; then

7 TS(g',¢i]:=pc; CS[g']:= CS[g' | A—¢i

8: end if

9: end for

10: else

11: G:=G\{g}

12: end if

13: end for

goal ¢’ = (¢;,¢") € G from a set G of test goals is covered. The corresponding
region r; of the ARG state (¢;,7;) that is reached via the CFA path then con-
tains the path condition pe;, as well as the presence condition ¢; for concrete
test input data.

The general procedure for the first phase is outlined in Alg. 1. The algorithm
incorporates two reuse strategies for reachability-analysis results during ARG
exploration: (1) reuse of reachability information for multiple product variants
and (2) reuse of reachability information for multiple test goals. The algorithm
operates on the CFA of the product-line implementation, the corresponding fea-
ture model FM, and a finite set G of test goals of the form g = (¢, ). The data
structure TS (test suite), holding the result of the algorithm, maps test goals
g together with presence conditions ¢ onto path conditions pec, such that each
concrete input vector satisfying pec covers g on every program variant whose con-
figuration satisfies ¢. In addition, the map CS (cover set) assigns to every test
goal g a predicate over feature variables, denoting the subset of product config-
urations on which g is not yet covered. The cover set of every test goal g € G
is initialized with FM (Line 1), thus requiring a reachability analysis of g for
every valid product configuration. The algorithm iterates over the set of not yet
completely processed test goals from G (Lines 2 — 13), and incrementally refines
the ARG, correspondingly. To consider test goal g € G, reachability analysis is
initialized with region ro = CS|[g] (Line 3), thus restricting the search to the
subset of product configurations on which g is not yet covered by a previous ARG
refinement. If a further ARG refinement succeeds to obtain a feasible ARG path
reaching ¢ on configurations from the remaining product subset (Line 4), then
TS is updated (Line 5 — 9) and otherwise, g is removed from the working set G
(Line 11). In the first case, the ARG path potentially not only covers g, but may
be also (re-)used to (partially) cover further test goals in G. In particular, every
test goal ¢’ € G (including g) whose location ¢; lies on the ARG path reaching g

10



TG | TC | CFA Path Presence Condition g g 83 81 8 8 &7
7|t | 1,35,13,14,24 LE A PLUS Py | te, — - - i i
g7 t¢, | 1,3,5,13 LE Py| - tes - -  — i tq
g | te; | 1,8,10,13,14,24 GR A PLUS Py | te; — i iy
gs tdy, |1,8,10,13 GR Py| - teg —  tef oty - -
g2 | tes | 1,8,12,13,17,18,19,22.24 | GR A MINUS A NOTNEG Py | - tes i — - i) ic
gs | tdy | 1,8,12,13,17,18,19,22 GR A MINUS A NOTNEG Po | — fc; lc, ] i, — -
g |t | 1,8,12,13 GR

g2 | tes | 1,377.13,17,18.19,22,24 | LE A MINUS A NOTNEG

g3 | tdy |1,3,7,13,17,18,19,22 LE A MINUS A NOTNEG Py : LE,PLUS

g6 |t | 1,3,7,13 LE P, : LE,MINUS

g2 | tes | 1,3,7,13,17,22,24 LE A MINUS Py : GR,PLUS

g2 | teg | 1,8,10,13,17,22,24 GR A MINUS Py : GR,MINUS

Py : LE, MINUS, NOTNEG
Ps : GR, MINUS, NOTNEG

(a) Test-Case Derivation for func-spl (b) Test-Goal Coverage for func-spl

Fig. 4. Sample SPL Test-Suite Derivation

and whose predicate ¢’ is satisfied by the path condition pe¢; of the respective

ARG state may be added to TS (Line 5). If ¢’ is already covered by a previously
obtained ARG path with presence condition ¢;, it is added to TS only if ¢; is
not subsumed by any those existing ¢; in TS, i.e., ¢; = ¢; (Line 6). Thus, the
corresponding path condition pe; is added for ¢’ and ¢, to T'S and the cover set
of ¢’ is further restricted, accordingly (Line 7).

After termination, T'S contains an abstract, symbolic product-line test suite
in the sense that it provides enough reachability information to derive in the
second phase a concrete test suite that completely covers the entire product-line
implementation. In particular, for each pair (g, ¢) with TS[g, ¢] = pc, a concrete
test suite C'rg contains an initial program state ¢y with ¢o = pc as test input
being applicable to all program variants whose configuration complies ¢. The
following result essentially relies on the soundness of ARG refinement (Line 4).

Theorem 1. A concrete test suite Crg obtained from the abstract test suite TS
generated by Algorithm 1 is a complete product-line test suite (cf. Def. 3).

A sample application of Alg. 1 to the example from Fig. 2 is illustrated in Fig. 4,
considering statement coverage. The resulting set of test goals G = {¢1,...,97}
are attached (in boxes) to the CFA edges in Fig. 2(b). Fig. 4(a) lists the iterations
over (G, where each horizontal line marks the next iteration of the outer loop.
Starting with test goal g1, the corresponding ARG path obtained for test case tcq
traverses the CFA such that the resulting path condition requires the features LE
and PLUS. In addition, test case ¢c; is reusable as test case tc) covering g;. The
presence condition of t¢] is, therefore, weakened to LE, as the predicate requiring
PLUS does not occur in the respective sub-path. A further ARG exploration is
required to finally cover g; also on those configurations with GR instead of LE
selected. After termination, six abstract test cases have been generated explicitly
to cover all products P; — Py, as summarized in the table in Fig. 4(b). In contrast,
considering every single test goal on every program variant anew without any
information reuse would have required at least 20 reachability-analysis steps.
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4 Evaluation

To investigate the effects of the two proposed reuse strategies, we compare both
of them to a product-by-product (PbP) product-line test-suite generation ap-
proach. For quantifying the effects of reuse among product variants, we apply a
family-based (FB), i.e., variability-aware, generation approach, whereas for the
reuse among test goals (TG), we apply a PbP approach. Finally, we combine both
reuse strategies (FBTG) to measure potential synergies. The two product-by-
product approaches are regarded for comparison purposes. These considerations
led us to the following research questions.

— RQ1: Do the presented reuse strategies improve the efficiency of product-
line test-suite generation in terms of CPU time and model-checker calls?

— RQ2: Does a family-based approach decrease testing effectiveness by leaving
more test goals uncovered than a product-by-product approach due to the
presumably more complex control-flow of product-line implementations after
variability encoding?

To answer the research questions, we implemented a product-line test-suite gen-
erator based on CPA /TIGER?, a test-case generator on top of CPACHECKER®,
which is a software model checker for C programs. Internally, CPACHECKER uses
CFA and ARG representations and applies the CEGAR, approach, as described
in Sect. 3. Furthermore, we use FQL® (FShell Query Language), which is part of
CPA /TIGER, to specify complex coverage criteria. For a variability-aware gener-
ation of product-line test suites, we integrated a BDD-based feature-parameter
analysis into CPA /TIGER and added further code to determine which test goals
of which variants are covered by a given test case. For our experiments, we se-
lected two subject systems that are well-known from several benchmarks, e.g.,
in context of product-line verification and feature interaction detection [3].

— Mine-Pump (MP) implements a water pump system based on the CONIC
project [20]. The product-line implementation has 279 LoC, 7 features, e.g.,
a methane sensor, and 64 configurations.

— E-Mail (EM) is based on a model of an e-mail system developed by Hall [18].
The product-line implementation we used has 233 LoC, 4 features, e.g., en-
cryption and automatic forwarding, and 8 configurations.

As coverage criterion, we applied Basic-Block Coverage, i.e., each basic state-
ment block constitutes a test goal. Our measurements, e.g., the CPU time and
the number of model-checker calls, were obtained by hooking into the test-case
generator. We performed our evaluation on a E5-2650 (2 GHz) machine with
30 GB of RAM. CPA /TIGER ran with value-based analysis, an overall timeout
of 24h, and a timeout per test goal of 900s, i.e., if a test goal had not been
reached after 900 s, the next test goal was processed. Table 1 summarizes the re-

4 http://forsyte.at/software/cpatiger/
® http://cpachecker.sosy-lab.org/
5 http://forsyte.at/software/fshell /fql/
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#TG processed feasible infeasible timeout #TC #CPA t (in h)

PbP | 3792 3792 3298 490 4 3298 3720 13.9

MP TG 3792 3792 3300 490 2 427 847 3.7
FB 93 93 42 1 50 52 145 24
FBTG 93 81 42 1 38 46 127 24

PbP | 1084 1084 804 280 0 800 1874 32.9

EM TG 1084 1084 804 280 0 169 533 10.4
FB 198 131 78 16 37 154 285 24
FBTG| 198 160 91 30 39 103 224 24

Table 1. Overview of Evaluation Results (#TG: Test Goals, #TC: Test Cases, #CPA:
Model-checker Calls, t: CPU Time)

sults of our experiments. Compared to PbP, we observe the following effects: (1)
the number of model-checker calls and generated test cases have been reduced
by both reuse strategies, (2) TG led to high time savings, and (3) FB led to
more timeouts. For test goals not reached by FB within 24h, we extrapolated
the results.

Considering RQ1, both reuse strategies are able to drastically reduce the
number of test cases to be generated, as well as the generation time in terms of
model-checker calls. However, a decrease of CPU time was only observable for
TG, whereas FB led to increased CPU time compared to PbP due to the addi-
tional control-flow for variability encoding. The number of model-checker calls
and generated test cases has been further reduced when using both reuse strate-
gies in combination (FBTG), compared to applying them independently. Fur-
thermore, we obtained no valuable CPU time results for the FB and the FBTG
approaches due to timeouts after 24 h. Finally, concerning RQ2, we observed
that more test goals stayed uncovered using FB/FBTG than using PbP/TG
since more CPU time is required, which leads to more timeouts. This might be
avoided by increasing the overall timeout, as well as the test-goal timeout.

5 Related Work

In previous work, the problem of generating test suites for product-line cover-
age has been investigated in the context of model-based (black-box) testing [12].
There, the explicit-state model checker SPIN has been used for reachability
analysis, with a posteriori reasoning about test-case reuse among product vari-
ants, but without any reuse of reachability results among test goals. Applying
CPACHECKER for product-line verification has been proposed [3], incorporating
BDD analysis for reuse of verification results [2]. Reuse of reachability analy-
sis results for different test goals [7,8] has been presented and implemented as
CPA /TIGER on top of CPACHECKER and corresponding reuse concepts have
been applied to intermediate verification results [10]. Both approaches are lim-
ited to single systems without variability. Recent approaches for variability-aware
product-line analysis can be roughly categorized into four strategies: sample-
based, family-based, feature-based, and incremental techniques [27]. Most of
these approaches consider the adoption of formal methods for product-line ver-
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ification [26]. Similar to the problem of test generation, these approaches are,
in general, also concerned with exploring the state space of entire product lines
incorporating inherent variability. Family-based SPL analysis approaches focus
on lifting static analysis and model-checking techniques to entire product lines.
Some of those approaches also use symbolic model-checking techniques, handling
features as special inputs, as in our approach [14,16]. However, those approaches
consider a family-based evaluation of one particular model-checking query with-
out systematic reuse of analysis results. Feature-based [21], as well as incremental
SPL model-checking techniques [22], perform a step-wise state-space exploration
similar to the CEGAR approach, but, again, considering a single query instead of
multiple analysis/test goals. Finally, incremental approaches focus on step-wise
test-suite refinement and retest selection inspired by regression testing, where
the test-case generation approach is out of scope [17,23].

6 Conclusion

We presented a test-suite-generation approach for efficiently achieving complete
multi-goal test-coverage of product-line implementations. Qur approach exploits
similarity information to facilitate systematic reuse of reachabiltity information
among product-line variants. To this end, we extended the test-suite generator
CPA /TIGER and presented evaluation results showing a considerable gain in
efficiency compared to approaches without reuse. In addition, we plan to fur-
ther improve reuse strategies, e.g, by fully adopting the concepts from previous
work [8] and considering optimization criteria for the ordering of test goals.
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