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and pull requests. In an empirical study on 25 GitHub projects, (1) we validate the set of automatically identified core developers
with a sample of project-reported developer lists, and (2) we use our set of identified core developers to assess the accuracy of
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we extracted from privileged issue events, is sound and the accuracy of state-of-the-art unsupervised classification methods
depends mainly on the data source (commit data vs. issue data) rather than the network-construction method (directed vs.
undirected, etc.). In perspective, our results shall guide research and practice to choose appropriate unsupervised classification
methods, and our method can help create reliable ground-truth data for training supervised classification methods.

CCS Concepts: » Software and its engineering — Software creation and management; Collaboration in software
development; Open source model.

Additional Key Words and Phrases: open-source software projects, developer classification, developer networks

ACM Reference Format:
Thomas Bock, Nils Alznauer, Mitchell Joblin, and Sven Apel. 2023. Automatic Core-Developer Identification on GitHub:
A Validation Study. ACM Trans. Softw. Eng. Methodol. , (April 2023), 28 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Coordination among software developers is critical to ensure software quality and to drive software evolution [20,
44, 53, 55]. This holds especially for open-source software (OSS) projects, in which volunteers can participate and
developers are globally distributed, often not knowing each other personally [5, 43]. With increasing project size
and popularity, developers who hold leadership roles (i.e., who take care of the project’s health and are highly
involved in its long-term maintenance) are crucial for a thriving evolution of the project [23, 61, 99, 102]. As
opposed to closed-source software projects, where leadership positions are typically established by mandated
organization structures and well-determined within the organization, OSS projects often do not provide explicit,
publicly recognizable information regarding group structures and project responsibilities. Still, in OSS projects,
hierarchical group structures among developers do exist [87, 103, 107], but they are typically not determined by a
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centralized authority but rather emerge following principles of self-organization [28, 104]. So, despite the lack of
predefined hierarchical group structures in OSS projects, certain developers take particular responsibilities in
the project, such as performing maintenance tasks or implementing core functionality. Such developers, often
called maintainers or core developers [46, 48, 66, 68], become crucial to these projects, as they hold key knowledge
about source code and software architecture [78] and shape the character and culture of the project [1, 92, 108],
especially when OSS projects grow fast in terms of developers and amount of source code [36]. As a prominent
example, the Linux kernel maintains a public list of maintainers, who are responsible for specific subsystems
and who have deep knowledge about the project [107]. Using this list, external and internal developers can
find out whom to contact for any matters. Unfortunately, many OSS projects do not maintain such a public,
curated list. Especially for newcomers in a software project, but also for developers that are not consistently
active (also called peripheral developers [27, 48, 66, 68]), it is important to know who is playing the role of a
core developer, who is making decisions and maintaining the code base, and who will finally accept or reject
code contributions [62, 84]. In well-organized projects, this might not be an actual problem for newcomers,
as one can easily check who has recently reviewed or merged pull requests. Some projects even use bots to
automatically assign developers for reviewing a new pull request [94]. However, in projects that are badly
organized and which do not use such well-structured code-review processes, it might be not that easy to find
out whom to contact in the case of questions, for instance. Knowing how developers organize is also important
for companies, to decide whether and how to invest in a project or how to efficiently contribute to an OSS
project [16, 33, 106, 109]. For researchers, knowing about core developers also aids the investigation of a project’s
hierarchical structure, which helps avoid high developer turnover and identify organizational smells that could
endanger project success [19, 24, 29, 42, 55, 75, 86].

There is a growing corpus of research that attempts to automatically extract information about the core
developers of a project. A state-of-the-art approach is to construct a developer network from various data sources
(e.g., commits, e-mails, issue comments) and to apply network-based centrality metrics. The assumption is that core
developers are responsible for about 80% of the contributions and activities in the project [48, 49, 51, 62, 65, 101,
105], attaining central positions within the network due to the high number of contributions and many interactions
with other developers. While this is an appealing approach, the actual performance of such classification methods
on the identification of core developers is largely unclear, especially as there are various ways on how to construct
developer networks and also many, possibly contradicting classification methods can be applied thereafter.

Therefore, we devise a method to automatically derive a set of core developers and maintainers from privileged
events in GitHub issue discussions and pull requests. The rationale is that GitHub permits triggering certain
events (e.g., merging a pull request) only to user accounts that have been assigned to a certain role. Nevertheless,
these privileged events cannot be used to identify potential candidates for future core developers before they
get any privileges in the project and also not for projects that user other social coding platforms than GitHub
issues. Therefore, other classification methods for identifying core developers are still essential, which is why it
is also our goal to assess the accuracy of the state-of-the-art classification methods. In an empirical study on
25 widely-used and well-known GitHub projects, we (1) validate our automatically derived set of core developers
based on privileged issue events with publicly available, project-reported lists of maintainers or core developers
for projects that provide such lists, and we (2) use our set of core developers to assess the accuracy of various
state-of-the-art unsupervised developer classification methods based on well-established count-based metrics
(e.g., commit count) or network-based metrics (e.g., degree centrality).

Our results indicate that our automatically identified set of core developers is sound and that the accuracy of
state-of-the-art unsupervised developer classification methods depends mainly on the data source (commit data
vs. issue data) rather than the network-construction method (e.g., directed vs. undirected). Combining issue data
and commit data behaves similarly to just using issue data. Our results hold the potential to help researchers and
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Fig. 1. Overview of our approach: ((0) extract data from GitHub, ((D)) identify a set of core developers based on the events in
issues and pull requests, ((2) validate it with project-reported lists, (3)) assess the accuracy of state-of-the-art unsupervised
classification methods.

Commit Data

OSS communities choose the appropriate unsupervised classification method for identifying core developers or
potential maintainers.

Moreover, our method can help create reliable ground-truth data for training supervised classification methods,
as—to the best of our knowledge—the lack of sufficient volumes of ground-truth data has prevented supervised
learning methods from being developed. Although we devise a method to automatically derive a set of core
developers from privileged events in GitHub issues, there is still a need for supervised classification methods:
On the one hand, it is more tedious to get the necessary data for the extraction of privileged events than for the
state-of-the-art count-based or network-based classification methods, as privileged events may not be available
for projects that use other social coding platforms than GitHub. On the other hand, supervised classification can
be used to identify potential future core developers and maintainers from activity data before the developers get
any privileges in the project. Of course, becoming a core developer might not only be a matter of participation,
but also a matter of trust [3, 17, 83]. As trust, however, cannot be quantified in the accessible data, using activity
data can be a first step towards finding potential candidates, especially since accepted commits and intensive
involvements in issue discussions can be used as a first indicator for the trustworthiness of a candidate [31].

In summary, we make the following contributions:

e An overview of literature on how core developers have been identified in previous work (see Tables 1 and 2).

o A method to automatically identify a set of core developers based on role permissions of events triggered
in GitHub issues and pull requests (see step (D) in Figure 1).

e A validation of our automatically identified set of core developers based on privileged issue events with
official, publicly available maintainer or committer lists (see step (2) in Figure 1).

e An assessment of the accuracy of several state-of-the-art unsupervised developer-role classification methods
that use count- and network-based metrics (see step (3 in Figure 1). We found that network-construction
methods do not make a substantial difference, whereas the data source plays a more vital role: Classification
methods using commit data perform better than classification methods using issue data. Combining issue and
commit data behaves similarly to just using issue data, as the combination is dominated by the issue data.

o A small explorative experiment on how our automatically identified set of core developers can be used for
training supervised classification methods, from which we derive two hypotheses that should serve as a
starting point for future research on this topic.

o A replication package including pseudonymized raw data, classification data, tooling, and scripts on a
supplementary website:
https://se-sic.github.io/paper-developer-classifications/ and https://zenodo.org/record/7775882 .
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2 BACKGROUND & RELATED WORK

In this section, we provide background information and related work on determining developers’ roles and on
how developers can be classified into core and peripheral roles.

2.1 Developer Roles

As developers in OSS projects undertake different kinds of tasks and have different roles, Nakakoji et al. [68]
proposed the so-called “onion model” distinguishing eight different roles of community members: There are
several roles for project users (passive user, reader, bug reporter), who do not contribute to the project’s source
code. Five roles are directly related to source-code contributions: bug fixer, peripheral developer, active developer,
core member (also called maintainer), and project leader (who are mostly the project initiators). Xu et al. [100]
proposed a similar model composed of four developer roles. As the distinction into four or five different developer
roles is rather fine-grained and their boundaries are blurred, researchers often conflate them into just two
roles: Whereas bug fixers and peripheral developers only contribute occasionally and sporadic, according to the
“onion model”, active developers, core members, and project leaders contribute regularly. As a consequence, the
occasionally and sporadically contributing developers are called peripheral developers, whereas the remaining
ones are called core developers or maintainers [27, 30, 48, 49, 66, 89]. When automatically classifying developers,
often only these two roles are considered (see Section 2.3), so we use only these two roles in our study. Researchers
sometimes additionally consider the role of one-time contributors (also called newcomers), who contribute only
once to a project (e.g., provide a single bug fix) [25, 57]. One-time contributors, though, are considered to be part
of the group of peripheral developers [58, 73, 81].

In addition to the above mentioned developer roles, there are also other approaches on how developer roles can
be defined. For example, Cheng et al. [23] distinguish between developmental core developers and collaborative
core developers. However, such a distinction is not disjoint, as highly active developers may also collaborate
with many others. Constantino et al. [25] differentiate between project roles and committer roles. Whereas the
project roles represent various organizational and potentially overlapping tasks (developer, maintainer, team
leader, project promoter, reviewer, or coordinator), the committer roles encompass what we consider as core
and peripheral developer roles. Montandon et al. [67] distinguish technical roles of GitHub users across projects,
driven by the variety of technical tasks a developer mostly takes across all the projects a developer contributes to
(e.g., contribute to the frontend, to the backend, or to the continuous integration), whereas we study the activity
role of a developer within a specific project. Instead of defining concrete developer roles, Bock et al. [9] look at
groups of developers that form up around certain tasks, and they analyze the importance and stability of these
groups. In their approach, they identify groups of developers via canonical tensor decomposition on tensors that
model the communication and collaboration behavior of developers over time. This way, they determine the
importance of a developer based on the importance of the latent tasks in which the developer is involved.

Wang et al. [92] define the role of an elite developer as a developer having write permission in a GitHub project.
They identify elite developers within time ranges of 3 months based on performed tasks that require write permis-
sion. This approach is similar to how we identify core developers. However, there are a couple of differences be-
tween their approach and our approach: Whereas they access GitHub’s event API to gather the performed tasks of a
project (e.g., whether somebody has forked a project or starts watching a project) and merge it with additional infor-
mation from other data sources, we directly access GitHub’s issues API, which contains more detailed information
on the events that happen specifically in issues and pull requests (e.g., a comment was added, an issue was labeled,
a pull-request was merged, etc.). Another difference is that they needed to classify the gathered data into a complex
taxonomy of event types (communicative, organizational, typical, supportive), whereas we just use GitHub’s
official description of all the possible issue event types, which contains information on the user permission that
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is needed to trigger a specific issue event. Finally, while they use fixed time ranges of 3 months, we study the
time difference between certain issue events and investigate different times ranges between 3 and 12 months.

2.2 User Permissions on GitHub

As we identify core developers based on user permissions, we briefly describe which user roles and permission
levels exist on GitHub. First of all, GitHub distinguishes between organization (shared account across many
projects) and user accounts. Repositories (also called projects) can be created from either an organization or
a user account. Each organization on GitHub has, at least, one organization owner (which is a normal user).
Organization owners and project admins can set the user permission individually for each project and user. At
the project level, GitHub users can have one of the following permissions:!

e Read: default permission for any user seeing a project, “recommended for non-code contributors who
want to view or discuss your project”!. Users with read permission can open issues or pull-requests, submit
reviews on pull requests, write comments, and close issues or pull requests that have been opened by
themselves.

e Triage: “recommended to proactively manage issues and pull requests without write access”!. In addition
to read permission, a user with triage permission can set labels, close and reopen issues, assign issues to
users, and request reviews from users.

e Write: “recommended for contributors who actively push to your project™!. In addition to triage permission,
a user with write permission can push to a repository (i.e., directly push source code to the repository),
merge pull requests, publish releases, and submit reviews that “affect a pull request’s mergeability™.

e Maintain: “recommended for project managers who need to manage the repository without access to
sensitive and destructive actions”!. In addition to write permission, a user with maintain permission can
protect branches, decide on how pull requests can be merged, and restrict which other users can open
issues or pull requests, etc.

e Admin: “recommended for people who need full access to the project, including sensitive and destructive
actions like managing security or deleting repository”!. When creating a project, the user creating the
project has admin permission. Organization owners implicitly have admin permissions on all projects of
the organization.

In our study, we make use of these permissions to automatically identify a set of core developers by mapping
GitHub’s user permissions to our developer roles (see Section 3.2). Unfortunately, it is not publicly accessible
which user has which permission in a GitHub project. Instead, we need to infer the users’ permissions from
certain actions GitHub users perform on the issues and pull requests of a specific project.

2.3 Classification of Developer Roles

As opposed to our permission-based approach to automatically classify developers into core and peripheral,
researchers have developed and investigated various unsupervised, manually tuned methods. To obtain an
overview of how core developers have been identified in previous work, we performed a series of searches on
multiple different search engines (GoogleScholar, IEEEexplore, ACM Digital Library) using the search terms
“core developer” and “identification of core developers”, without restricting venue and publication year. We
manually checked the papers of the search results and looked for core-developer identification techniques that
were described, mentioned, or referenced in these papers. Moreover, we collected such techniques also from
papers that have been referenced in these papers in a backward-search fashion. In what follows, we summarize
the core-developer identification techniques that we have collected from the literature. Additionally, we manually

Thttps://docs.github.com/en/github/setting-up-and-managing-organizations-and-teams/repository-permission-levels-for-an-organization#
repository-access-for-each-permission-level (accessed: 2020-09-09)
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extracted the used data sources and classification metrics from all the collected papers. In Table 1, we provide an
overview of the data sources and network types that have been used in the literature to identify core developers;
in Table 2 we summarize the used metrics.

Mockus et al. [66] proposed that highly active developers (in terms of the number of contributions) should
be considered as core developers. They investigated the projects Mozilla and Apache Web Server and identified
that only a small number of 10-15 developers are responsible for around 80% of the source-code contributions.
Dinh-Trong and Bieman [34] replicated their study on FreeBSD and showed that even more than 15 developers
contribute 80% of the code base. Follow-up research showed that Zipf’s law holds for the number of commits
that are authored by a developer and, consequently, the top 20% of the developers are responsible for 80% of
the commits [30]. Using this 80% threshold is a commonly used approach when classifying developers based
on their commit count [2, 24, 30, 34, 37, 52, 66, 78-80, 89, 101]. For this reason, we also use this threshold in
our validation study for the developer classification based on commit count when we compare our approach
with the state-of-the-art classification methods (see Section 3.4). Valiev et al. [91] even used a threshold of 90%
of contributions per month, which was selected based on empirical observations on the Python Package Index
ecosystem. Coelho et al. [24] and Ferreira et al. [37] extended this approach by adding the additional restriction
that a core developer has to have authored, at least, 5% of the total number of commits in the project. Instead of
considering the number of commits, Canedo et al. [18] required a core developer to have authored, at least, 50%
of the files in the project. Nonetheless, relying on count-based operationalizations for developer classification
provides only limited insights into organizational matters of OSS projects, as relationships among developers
(possibly varying over time) are neglected [48].

To incorporate relationships among developers, Crowston et al. [30] suggested three different approaches on
how to classify developers into core and peripheral: For some of their analyzed projects, they found project-
reported lists on the projects’ websites, containing formal roles of developers (e.g., who is allowed to check-in
source code to the version-control system). This approach is similar to how we validate our set of core developers
(see Section 3.3). Using project-reported lists to determine core developers has also been adopted by other
researches [29, 54, 93]. However, such project-reported lists are only available for few projects. In their second
approach, Crowston et al. [30] considered developers to be core if they contribute, at least, one third of the
total number of comments on bug-tracker data from SourceForge. This approach is similar to the count-based
classification mentioned above and is based on the sheer number of posted comments. In their third approach [30],
they built communication networks on bug reports and applied graph partitioning algorithms, treating the tightly
interconnected group as core developers. All three approaches led to different results as the project-reported list
seemed to be incomplete and count-based and network-based classification focus on different characteristics of
core developers.

Network-based developer classification has been gaining considerable momentum in software-engineering
research. De Souza et al. [32] created networks based on developers’ contributions to the same modules. Bird et al.
[7] built networks based on mailing-list communication, and they used basic social network analysis techniques to
identify developers’ roles [5, 6, 8]. Licorish and MacDonell [59, 60] used networks built from the communication
on tasks in IBM’s Rational Jazz development environment and considered a developer to be core if they had
contributed to the communication of, at least, one third of the tasks. Oliva et al. [69, 70] identified core developers
in developer networks based on mailing lists and version-control systems. They used centrality metrics combined
with a quartile analysis to determine core developers, but they investigated only a short time-period of a small
project. We, thus, investigate a history of several years for 25 projects. Moreover, in our validation study, we build
developer networks based on version-control systems and communication in issues, not based on mailing lists.

Joblin et al. [48] constructed developer networks from the version-control system data and mailing lists
of 10 OSS projects. They applied the network centrality metrics degree centrality, eigenvector centrality, and
hierarchy centrality, which capture structural differences in the relationships among developers. To evaluate the
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Table 1. Classification data used in the literature

Data / Network Type Papers
Count-based Comr.nits [2, 18, 24, 37, 77-80, 89, 91, 101]
E-mails [54]
Issues [30, 88]
Commits, e-mails [48, 52, 69, 70]
Commits, e-mails, issues [34, 66]
Cochange [23, 49, 63, 71, 72]
Network-based E-mail [6, 50, 72, 82]
Issue [4, 27, 30, 50, 59, 60, 72]
Cochange, e-mail [5-7, 48, 50, 69, 70, 105]
Cochange, issue [13, 35, 50, 88]

Table 2. Classification metrics used in the literature

Metrics Papers
Count-based Commits [2, 24, 32, 37, 48, 69, 77, 79, 80, 89, 91, 101]

Lines of code (LOC) [48, 52, 66, 78, 101]

Authored files [18]

E-mails [54]

Modification requests [66]

Issue comments [30]

Pull-request comments [88]

Degree centrality [4-6, 13, 23, 27, 32, 35, 48, 63, 70, 72, 82, 90, 105]
Network-based Betweenness centrality [4-6, 13, 23, 27, 35, 63, 70, 82, 90, 105]

Eigenvector centrality [4, 13, 35, 48, 50, 69, 70, 82]

Closeness centrality [4, 13, 23, 35, 63, 70, 82]

PageRank [4, 13, 35, 105]

Clustering coefficient [48, 49, 63]

Hierarchy centrality [48-50]

Density [59, 60]

Modularity [7, 49]

Eccentricity [4]

Graph partitioning [30]

HITS [105]

Scale freeness [49]

classification outcomes, they conducted a survey among 166 developers of the examined projects. According
to the survey, the network-based developer classifications outperformed the simpler count-based developer
classifications. Notably, there is a substantial corpus of work that relies on network-based developer classifications
to investigate characteristics of core and peripheral developers and organizational structures in OSS projects [4,
13, 23, 35, 49, 50, 63, 71, 72, 82, 88, 90]. Naturally, this work depends on the accuracy of the classifications, which
is exactly the motivation of our validation study, in which we assess the accuracy of a selection of the above
mentioned classification methods.
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Zhang et al. [105] investigated whether the social-network metrics node degree (i.e., degree centrality),
PageRank [56] (a variant of eigenvector centrality), HITS [39] (an algorithm to detect hubs and authorities), and
betweenness of nodes in the network are capable of identifying core developers in OSS projects. They assessed the
accuracy of their classification methods against a self-created ground truth based on “the right to post messages”
on the developer mailing list of the project ArgoUML, considering only developers that had regular contributions
to source code and mailing list. All four network metrics performed similarly well in detecting core developers,
having a recall of more than 60% and a precision of about 60%. Similarly to their study, we also assess the accuracy
of classification metrics using a ground truth that is based on the permissions to perform privileged events on
GitHub issues. We improve over their study by investigating a variety of GitHub projects, constructing different
types of developer networks, and using network-based centrality metrics that have been used in state-of-the-art
research on developer classification.

3 METHODOLOGY

As illustrated in Figure 1 (page 3), our validation study proceeds in four steps: In the initial step ((0)), we extract
commit and issue data from GitHub. Then ((1)), we identify the developers who have triggered a privileged
issue event. Following this ((2)), we validate this set of developers with official, project-reported committer lists.
Finally ((3), we perform unsupervised developer classifications and assess their accuracy.

3.1 Data Extraction

We use the tool CODEFACE? [48, 49, 51] to extract commit metadata from Git, including author name, e-mail
address, author date, and the names of the changed files of a commit.

For extracting issue and pull-request data from GitHub, we developed the tool GiTHUBWRAPPER®, which
queries issue metadata (incl. review data, review comments, and all other comments of a pull request) from
GitHub’s official REST API*. Review data, review comments, and the remaining comments for a pull request are
separately crawled (as they need to be accessed through different interfaces of GitHub’s API) and then combined
with the remaining issue event data. Our tool also performs additional postprocessing steps to unify the data
(e.g., correctly determine the actual actor of a “subscribed” event, as on GitHub such an event can either be
actively triggered by a user subscribing themselves to an issue or, passively, by being mentioned by someone
else) or gather additional information (e.g., extracting names and e-mail addresses from referenced commits). The
extracted issue metadata contain information on which user has triggered which event (commented, labeled,
merged, etc.), on which issue or pull request, and at which point in time. Notice that GitHub internally treats pull
requests (PRs) as a special form of issues. For that reason, when we talk about issues this always also includes
pull requests.

Using the tool CODEFACE-EXTRACTION’, we merge the commit and issue data to match developers who use the
same name or the same e-mail address.® Developers found in only one of the data sources are kept, though. To
match developers via names and e-mail addresses, we use the disambiguation heuristic of Oliva et al. [69], which
has been proved to be accurate [96], and perform additional sanity checks and manual corrections.

More and more GitHub projects use automatic bots, which, for instance, submit comments to issues or review
pull requests. Bots often also close abandoned issues, execute automatic code refactorings, run continuous-
integration tasks, or perform similar tasks [15, 41, 94, 95, 98]. Previous research has shown that about 20% of issue

2https://github.com/se-sic/codeface/ (accessed: 2022-03-14)

3https://github.com/se-sic/GitHubWrapper/

*https://docs.github.com/en/rest/ (accessed: 2022-03-14)

Shttps://github.com/se-sic/codeface-extraction/ (accessed: 2022-03-14)

% As some GitHub users keep their real names or e-mail addresses private, we only use their public usernames if no name or e-mail is available
on GitHub.
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Table 3. GitHub issue events and the role permissions needed to be able to trigger them

Privileged Events Extended Events Common Events

(write, maintain, or admin permission) (at least, triage permission) (at least, read permission)

added_to_project, converted_note_to_issue, assigned, demilestoned, automatic_base_change_failed,

deployed, deployment_environment_changed, labeled, marked_as_duplicate, automatic_base_change_succeeded,

locked, merged, moved_columns_in_project, milestoned, base_ref_changed, closed, comment_deleted,
pinned, removed_from_project, unassigned, unlabeled, commented, committed, connected,
review_dismissed, transferred, unmarked_as_duplicate convert_to_draft, created, cross_referenced,
unlocked, unpinned, user_blocked disconnected, head_ref_deleted,

head_ref_force_pushed, head_ref_restored,
mentioned, ready_for_review, referenced,
referenced_by, renamed, reopened,
review_request_removed, review_requested,
reviewed, subscribed, unsubscribed

comments are posted by bots and about 31% of pull requests involve bots [40]. Not to distort developer-network
characteristics and core-developer identification, we must detect and remove bots’ activities from the extracted
issue data. Whereas some bots are labeled by GitHub to be bots or use a “bot” suffix in their usernames, research
has found that many bots are not labeled as such and also human users can use the “bot” suffix, which makes
bot detection a non-trivial task [40]. For that reason, Golzadeh et al. [40] have developed the tool BODEGHA to
automatically detect bots based on the total number of comments and commenting patterns. Unfortunately, many
projects use predefined issue or pull-request comment templates’, making BoODEGHA misclassify human users as
bots when they mostly use templates or post stereotyped comments. As a consequence, after using BODEGHA
for automatic bot detection on users that have posted, at least, 2000 comments in a project, we perform some
manual adjustments. For example, we classify 83 users that are widely-used bots as a bot even if the automatic
bot detection did not classify the user to be a bot (e.g., the “lockbot”, which is a bot that automatically locks
issues but usually does not post comments and, therefore, is not detectable by BODEGHA). In particular, we
manually checked all usernames that had a “bot” substring (such as the “lockbot”) whether they are marked as a
bot by GitHub. If so, we added them to the set of bots identified by BODEGHA. After bot detection, we remove all
bot-triggered events from the extracted GitHub issue data.

3.2 Identifying Core Developers based on Issue Events

To identify core developers, we analyze the events that appear in the above extracted issue data. For each of the
events, we look up in GitHub’s official event documentation® which user permission on GitHub is needed to
trigger the event (e.g., write permission is needed to merge a pull request). This way, we form three categories of
events: Common events, which can be triggered by everyone (e.g., write a comment), extended events that can
be triggered only when having, at least, triage permission (e.g., apply a label), and privileged events that can be
triggered only when having, at least, write permission (e.g., merge a pull request). In Table 3, we provide an
overview of all events and the categories we assigned them to.

As a next step, we analyze which user has triggered which event. Each user who has triggered a privileged
event is considered a core developer (at least, in the time range that contains the event). All remaining users
are considered peripheral developers. We base this decision on the fact that events that require, at least, write

"There are various different means of how issue templates can be used and enforced by a project, which also varies during project evolution.
One example can be found in the official documentation of GitHub: https://docs.github.com/en/github/building-a-strong-community/about-
issue-and-pull-request-templates/ (accessed: 2022-03-14)

8GitHub provides a list of possible events here: https://docs.github.com/en/developers/webhooks-and-events/issue-event-types/ (accessed:
2020-09-09)

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: April 2023.


https://docs.github.com/en/github/building-a-strong-community/about-issue-and-pull-request-templates/
https://docs.github.com/en/github/building-a-strong-community/about-issue-and-pull-request-templates/
https://docs.github.com/en/developers/webhooks-and-events/issue-event-types/

10 « Thomas Bock, Nils Alznauer, Mitchell Joblin, and Sven Apel

Privileged events of developer Alice:

merged locked pinned
e . .| | |
Core Core Core
time range 1 time range 2 time range 3 time range 4 time range 5

Fig. 2. Analyzing the issue events of developer Alice: For each time range, check whether Alice has triggered privileged
events. If so, Alice is considered core (time ranges 1 and 3). For the remaining ranges, check whether Alice has triggered
privileged events in the directly preceding and in the directly succeeding time range. If so, then also consider Alice core (time
range 2), otherwise peripheral (time ranges 4 and 5).

permission are either related to critical tasks for project maintenance (blocking users or locking issues) or to
decision making tasks that require deep project knowledge (e.g., merging or rejecting a pull request), and therefore
distinguish a core developer.’

It is important to note that we cannot know from the data when exactly a developer has received write
permission, nor whether or when the write permission may have been revoked. Instead, we only see when the
developer happened to trigger an event that requires write permission. So, when considering a developer as core
based on the triggered privileged events in a certain time range, we might potentially overlook core developers
who only rarely trigger privileged events. To mitigate this risk, we explore how regularly core developers make
use of privileged events. This way, we test whether time ranges of 3 to 12 months are long enough—and therefore
justified—to identify core developers based on the usage of privileged events within the time range. Therefore,
we investigate the following research question:

RO How long is the typical time difference between a developer’s events that require, at least, write
permission?

As developers might be absent for a particular time range (e.g., due to illness or vacation, etc.), we will exploit a
temporal smoothness assumption to improve the accuracy of our method. That is, we treat developers also as
core even when they are not triggering privileged events in the current time range but do so in both the previous
and succeeding time range (see time range 2 in Figure 2). We call the resulting set of core developers privileged
developers or Dy;y, for brevity.

As our approach to identify core developers does not require any manual effort (except for determining which
event belongs to which category), it can be performed for each GitHub project fully automatically.

3.3 Validating our Set of Core Developers

After identifying the privileged developers, we need to validate this selection. For this purpose, we ask the
following research question:

RQy: Is the set of privileged developers Dp,;, a sound approximation for the set of core developers?

To answer this question, we need to obtain a reliable set of core developers for a project. Although there are
many state-of-the-art classification methods for identifying core developers (as presented in Section 2.3), all these
methods might end up in different classifications, making it hard to validate our approach with respect to them.
Moreover, as we do not know the accuracy of these methods, we also cannot rely on them for the validation

9We have conducted a sensitivity analysis to explore whether we should consider extended events in addition, as users with triage permission
can already make some minor decisions (e.g., decide which issue is labeled as a bug). We discuss this in Section 4.3.
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of our approach. Instead, we search for projects that provide publicly available, project-reported maintainer
or committer lists, because the developers listed in such lists are (as an official source of information) reliably
considered as core developers by the project itself. As projects that collect and provide this information are rare,
we can perform this assessment only on a subset of our subject projects. Even if such lists are available, there are
different formalisms to publish them. Whereas some projects provide lists with different team member categories
in their repositories and keep them up to date (e.g., NoDE.Js provides a steadily updated list of “technical steering
committee”, “collaborators”, and “triagers”!?), other projects just provide a static list of contributors on external
project websites (e.g., as for project ANGULAR!!) without any historic resolution. Another issue with the latter is
to find out who is really a developer and who is just organizational staff, especially if there is a company behind
the OSS project. Due to these inconsistencies, we take manual efforts to determine which parts of which lists
are relevant for our study. We do not obtain time-resolved lists, but consider only the most recent time range
that we analyze for a project. We call the set of developers that have their mandates publicly documented in
project-reported lists documented developers or D4,

Note that neither D,;, nor Dy, are guaranteed to be complete: We cannot be sure that the project-reported
lists are regularly updated and really contain all core developers (e.g., some core developers might not want to be
listed there), and we can also not be sure that D,,;, is complete as there could also be core developers that do not
have the respective permissions or do not trigger corresponding events. To investigate whether our automatic
procedure of extracting Dy, is sound, we cross-check it with Dgq.. For this purpose, we use the Jaccard Index as
a similarity measure and the measures Completeness and Soundness as defined as follows:

jaccard(DdOCa Dpriv) = |Ddoc N Dprivl / |Ddoc U Dprivl (1)
The Jaccard Index lies between 0 and 1, higher values indicating higher similarity.
Complete(Dpriu | Daoc) = |Daoc N Dpriv| / |Ddoc| (2)

complete(Dpriy | Daoc) is the completeness of D,,;, with respect to Dyq, that is, the proportion of developers
in Dgo. that are also part of Dy, .

Sound(Dpriv | Ddoc) = |Ddoc N Dprivl / |Dpriv| (3)

sound(Dy iy | Dgoc) is the soundness of D,,;, with respect to Dgq, that is, the proportion of developers in D4,
that are also part of Dy,

In addition to validating D,;, with respect to Dgo., We also need to compare D, to the outcomes of state-of-
the-art classification methods, to obtain a deeper understanding of how our approach performs (see Section 3.5).
However, before we do so, let us first introduce the state-of-the-art classification methods that we investigate.

3.4 Developer Classification

Since the set of privileged developers cannot be used to identify potential future maintainers before they get
any privileges in the project, and since the necessary data for identifying the set of privileged developers is
not necessarily available for projects that use other social coding platforms than GitHub, other classification
methods for identifying core developers are still essential. As discussed in Section 2.3, many unsupervised
classification methods for identifying core developers do exist. For the network-based methods, there are also
various network-construction methods. This yields our main research question:

Which metrics and network-construction methods are most accurate in classifying developers
into core and peripheral?

RQ3Z

Ohttps://github.com/nodejs/node/blob/master/README.md#current-project-team-members (accessed: 2022-03-14)
https://angular.io/about?group=Angular (accessed: 2022-03-14)
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On the one hand, we investigate established count-based metrics. Particularly, we choose the two most frequently
used metrics of this sort (based on our overview of the classification metrics used in the literature in Table 2):
Commit count: the number of commits a developer has made in a certain time period.
LOC count: the number of lines of code (LOC) a developer has changed in a certain time period.
The more central a developer is, that is, the more commits a developer has made or the more LOC the developer
has changed, the more likely the developer is a core developer.

On the other hand, to capture the co-coding and co-communication activities of developers, we investigate
network-based metrics and different network-construction methods, which we describe in what follows.

Network types & network construction. We investigate three different types of developer networks. All three
of them have in common that the vertices represent developers and the edges represent relations among them.
However, the different network types differ in the type of relations:

Cochange: Two developers are connected by an edge when they have edited the same file within the same time
window [38, 47, 51, 72, 74, 110]. A pure technical view.

Issue: Two developers are connected by an edge when they have contributed to the same issue or pull request
(e.g., commenting, reviewing, closing, labeling, etc.) within the same time window [30, 45, 64, 72, 85].
A social view.

Cochange+issue: Contains edges from both above mentioned relations. A socio-technical view.

As also users of a project (not being developers) can contribute comments to issues, we investigate two different

cases (i.e., sets of vertices) when constructing issue networks:

All contributors: Construct networks with all users participating in issues, regardless of whether they con-
tributed to the source code.

Code contributors: Only users are considered who have contributed to the source code (i.e., who have authored
a commiit either in the current or in any previous time range). All other users are removed from the network.

Note that this differentiation only affects the network types issue and cochange+issue, as cochange networks by

construction contain only developers who contributed to the source code.

To construct the networks, we split the project data into subsequent time windows of the same length, as
common in the literature. We chose to investigate time windows of 3 months [7, 48, 88], 6 months [45, 65, 72],
9 months, and 12 months [79]. Shorter time windows would be threatened by short-term fluctuations (e.g.,
developers being ill or on vacation). Using larger time windows would neglect project dynamics and developer
turnover [37]. As edges that cross time-window boundaries are neglected in such a window-based approach, we
additionally investigate sliding windows, that is, instead of using subsequent time windows only, we shift the
subsequent window by half the time window, such that subsequent windows overlap and cover the edges which
are neglected when not using such a sliding-window approach [49].

When constructing networks, we vary between the following network-construction parameters: A network
can either be directed, that is, we consider the order of interactions (e.g., who replies to whom, including transitive
relationships as separate edges), or undirected (ignoring the temporal relationship). In addition, we differentiate
between simplified networks (only one edge per direction is allowed between one pair of developers, no loops)
and unsimplified (multiple edges between one pair of developers, loops are allowed). In Table 4, we provide an
overview of all possible choices during network construction as well as the network-based classification metrics
that we use, which we explain in the following.

Network-based classification. To classify developers into core and peripheral, we use three established network
metrics, which are widely used in the literature (as can be seen in Table 2). In particular, we selected a local
centrality metric (degree centrality), a global centrality metric that considers the importance of the developers
a developer is interacting with (eigenvector centrality), and a centrality metric that considers the community
structure of a network (hierarchy centrality):
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Table 4. The network-construction methods and network centrality metrics that we use in our study

Network Type Network Vertices Directedness Simplicity Time Range  Time Windows ‘ Centrality Metric

cochange all contributors directed simplified 3 months sliding degree centrality

issue code contributors undirected unsimplified 6 months subsequent eigenvector centrality

cochange+issue 9 months hierarchy centrality
12 months

Degree centrality is a local centrality metric. It considers the total degree of a developer in the network, that is,
the number of edges a developer has to other developers. The more connections a developer has, the higher
its degree centrality [12, 14].

Eigenvector centrality is a global centrality metric. It incorporates the centralities of the developers connected
to a developer, to weight the importance of developers by the importance of others they are interacting
with. Hence, a developer can have a high eigenvector centrality by either being connected to many other
developers or by being connected to developers who also have a high eigenvector centrality [10-12, 14].

Hierarchy centrality considers the community structure of a network. It is calculated by dividing the degree by
the local clustering coefficient of a vertex [76]. A high value in hierarchy centrality represents a developer
having many connections to other developers, which in turn are loosely connected amongst each other. A
low value stands for a developer down in the hierarchy, having only few connections to other developers
but which are tightly connected among each other. Core developers should have a high hierarchy centrality
due to their coordinative role in the project [48, 49, 51].

All the three network metrics we use have already been used in previous work on developer classification and

received a high agreement in the perception of surveyed developers [48].

On each of the metrics, for each time range, we apply the 80% threshold, which is widely used (see Section 2.3).

That is, developers whose centrality value is in the upper 20% quantile are considered as core, the remaining ones as

peripheral. For data processing, network construction, and centrality computation, we use the library cORONET2.

3.5 Assessing the Classification Accuracy

To assess the accuracy of the classification methods, we use the set of privileged developers D,,;, as a point
of reference. There are multiple reasons behind this choice. On the one hand, there are practical reasons: As
identifying privileged developers is not applicable on projects that use other social coding platforms than GitHub,
and since the set of privileged developers cannot be used to identify potential future core developers before they
get any privileges, the state-of-the-art classification methods are still necessary. In such cases, it would be helpful
to know for practitioners and researchers which of the state-of-the-art methods are closest to our approach on
identifying privileged developers. On the other hand, D,,;, is constructed based on the privileges developers
made use of in issue events. Hence, these developers must have received the corresponding permissions in the
project from the project’s maintainers, which incorporates trustworthy information that comes from a project
itself, whereas the established state-of-the-art classification methods do not consider such information.

2https://se-sic.github.io/coronet/ (accessed: 2022-03-14)
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Core

Fig. 3. Visualization of True Positives (TP), False Positives (FP), True Negatives (TN), and False Negatives (FN). The ellipsis
represents the set of privileged developers Dy iy, the two rectangles represent the core/peripheral classification of the used
classification method (i.e., the sets of developers that are classified as core or peripheral, respectively).

For assessing the classification accuracy, we compute precision, recall, and F1 score, based on the following

notions (see also Figure 3):

True Positives (TP): developers that are classified as core and are part of Dy ;.

False Positives (FP): developers that are classified as core but are not part of D5

True Negatives (IN): developers that are classified as peripheral and are not part of Do

False Negatives (FN): developers that are classified as peripheral but are part of D,,. In addition, developers
that are part of D,;, but that are neither classified as core nor peripheral are also considered to be a false
negative (e.g., developers who did never commit but are part of Dp,;, due to triggering privileged issue
events are missing in commit-data-based classifications).

Note that the definitions of FN and FP are specific to our setting: FN and FP are not defined with respect to Do,

but with respect to the classification. “negative” corresponds to “peripheral”; “positive” corresponds to “core”.

With that, we compute the following evaluation measures:

Precision = TP / (TP + FP) (4)
Recall = TP / (TP + EN) (5)
F1 = 2 - (Precision - Recall) / (Precision + Recall) (6)

Also note that the choice of the point of reference for the comparison of D,,;, and the classification results
is arbitrary in our case: If we would take the results of the state-of-the-art classification methods as point of
reference for assessing the accuracy of D,,;,, the values of precision and recall would only be swapped (since FP
would become FN then, and vice versa), and, consequently, the F1 score would stay the same. Nevertheless, for
the reasons stated above, we chose D,,;, to be the point of reference in our comparison, to assess the accuracy of
the state-of-the-art classification methods.

4 VALIDATION STUDY

In this section, we present the results of our empirical study. We start with an overview of our subject projects,
provide the results of our validation of D, and report on the assessment of the accuracy of the unsupervised
developer classification methods.

4.1 Subject Projects

We investigate 25 highly active software projects hosted on GitHub, covering various project sizes, domains, and
numbers of contributors and participants in issues, as the descriptive statistics in Table 5 indicate. We primarily
selected very popular projects that are among the most starred GitHub projects in 2020.13 Most of these projects
have also been considered in previous work on GitHub-related research topics. In order not to only analyze

Bhttps://www.attosol.com/top-50-projects-on-github-2020/ (accessed: 2020-09-09)
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Table 5. Descriptive statistics of our subject projects

Subject Project Investigated  # Commit  #Issue # Commits #Issues Project Domain Programming Languages
Time Period  Authors Participants incl. PRs

ANGULAR 2014-09-2020-09 667 22859 12349 38502 Web dev. platform TypeScript

ATOM 2012-01-2020-12 298 21047 15627 21138 Text editor JavaScript

BooTrsTraP  2011-08-2020-12 219 24744 2266 31735 Web front-end framew.  JavaScript, HTML

DENO 2018-05-2020-12 348 3070 3417 8760 Runtime for JavaScript Rust, JavaScript, TypeScript

DTP 2018-01-2020-04 16 73 633 859 Framew. for data transfer Java

ELECTRON 2013-05-2020-12 392 15559 10664 26733 Application dev. framew. C++, TypeScript

FLUTTER 2015-03-2020-12 683 34 460 13367 72504 Ul dev. kit Dart

JQUERY 2010-09-2020-12 244 3118 2675 4723 JavaScript library JavaScript

KERAS 2015-03-2019-11 716 12688 3471 13468 Deep learning API Python

KUBERNETES  2014-06-2020-12 2408 23220 38619 97218 Container management  Go

Mosy 2013-01-2020-12 1154 29083 14072 41731 Softw. containerization Go

NEXTCLOUD 2016-06—2020-09 355 9510 9718 22689 Cloud server PHP, JavaScript

NEXT.JS 2016-10-2020-12 867 11087 3891 15344 React framew. JavaScript, TypeScript

NODE.Js 2014-11-2020-02 1793 13190 12118 31372 JavaScript runtime env.  JavaScript, C++, Python

OPENSSL 2013-05-2019-12 400 3303 8722 10639 Crypto library C, Perl

owNCLOUD 2012-08-2019-10 393 10141 18274 36178 Cloud server PHP, JavaScript

ReacT 2013-05-2020-12 796 16 056 6921 20252 JavaScript library JavaScript

Repux 2015-06-2020-12 228 4123 701 3931 Container for JavaScript  TypeScript, JavaScript

REVEAL.JS 2011-06-2020-10 141 2861 1090 2762 HTML present. framew.  JavaScript, HTML

TENsoRFLOW  2015-11-2020-12 1519 35781 55499 45652 Machine learning framew. C++, Python

THREE.JS 2010-04-2020-12 954 8280 15999 20845 JavaScript library JavaScript, HTML

TyYPESCRIPT  2014-07-2020-12 467 18397 17934 40973 JavaScript language TypeScript

VS Cobke 2015-11-2020-12 1001 67 882 49814 111073 Integrated dev. env. TypeScript

VUE 2016-04-2020-11 217 8754 2256 9325 JavaScript Ul framew. JavaScript

WEBPACK 2012-05-2020-12 501 13091 5671 11710 Bundler for modules JavaScript

popular projects that have a high developer activity, but also cover projects that have a comparably small number
of developers, we added project DTP.

4.2 Time Difference between Privileged Events

In RQ;, we ask how long the typical time difference is between a developer’s privileged events. In most of the
projects, the median time difference is between 0 and 4 days; even the upper quartile of the time differences is
below 10 days (except for JQUERY, for which it is about 3 weeks). Although there are extreme outliers, for which
there are up to 2 000 days between the privileged events of a developer, in most cases, developers make use of
privileged events, at least, multiple times a month. As we can see in Figure 4, for more than 88% of the privileged
developers the median time difference between privileged events is smaller than 6 months. This holds for all
projects except for VUE, for which this time difference is only for 75% of the developers smaller than 6 months,
but also reaches 88% at about 7.5 months.

Answer to RQ;: The majority of privileged developers trigger privileged events, at least, once within a couple
of weeks. More than 75% of these developers have a median time difference less than 3 months between their
privileged events.

As a consequence, determining the set of privileged developers D,,;, based on privileged events with time
windows of 3-12 months is justified. That is, due to applying our temporal smoothness assumption (i.e., also
looking at the previous and subsequent range, see Figure 2), our approach is robust to time differences of up
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Fig. 4. Cumulative distribution of the median time difference in days between privileged events of a single developer. Each
line represents the developers of one subject project.

to three times the window size, ending up in covering core developers who use their permission only once in
9-36 months. As for all but one project more than 88% of the developers using privileged events have a median
time difference of less than 6 months between these events, we focus on presenting the results using 6-months
ranges in the rest of the paper. For the other time ranges, we refer to our supplementary website.!*

4.3 Validity of the Set of Privileged Developers Dy,

To answer RQ;, we check for the validity of the set of privileged developers D, ;,. For this purpose, we compare
Dprio in the most recent time period with project-reported lists (Dg,.). We were able to obtain D, for 12 out of
our 25 subject projects.

In Table 6, we report the sizes of Dy, and Dy, for the last-analyzed 6-months time range of each project.
When considering only privileged events to detect core developers, we can see that the size of D, is, in most
projects, smaller or nearly equal to the size of the project-reported lists. However, when considering privileged
and extended events (see Dy,;,+ in Table 6) to detect core developers, in most projects, we are able to extract a
much higher number of core developers than reported by the projects’ lists. This reinforces our decision that core
developers are the developers that have the permission to trigger privileged events. Nevertheless, the similarity
of Dyriy and Dyy. is highly project-dependent, as the Jaccard Indices between 0.03 and 1.0 indicate. There are
two outliers, though: Whereas KUBERNETES has way more developers in Dy, than in Dy, the list reported by
NExT.Js only contains very few developers. When looking at completeness, we can see that we are able to gather
up to 67% of the project-reported developers in D,,;, (for REVEAL.Js, where only one developer is reported, we
reach even 100%). Soundness, on the other hand, reaches up to 94% (for REVEAL.Js even 100%), showing that the
vast majority of developers in D,,;, are also in Dy,.. We obtain similar results when extracting D,,;, using other
time-window lengths; for more details, we refer to our supplementary website.!*

Answer to RQ,: The completeness of Dy, with respect to Dgo. seems to be rather small. This is to be expected
as we cannot be sure that the project-reported lists are up to date. More importantly, the vast majority of
developers in Dp,;, is documented in Dg,¢, which shows that our procedure of extracting Dp;;, is sound.

4https://se-sic.github.io/paper-developer-classifications/
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Table 6. Validation of the procedure to extract privileged developers for the 12 projects for which we found project-reported
lists. (We collected the lists only once per project, temporally close-by to the end of the latest 6-months time range that
we analyzed.)

5 &
< & \, ¢ <
¥ S) S S ) 9
& Ny > & 4 Pey o i< < g Qr
¢ $ ¥ &P 4 S $ & % $
S R R R N
IDaoc| 30 17 5 238 21 6 108 18 9 1 3 4
[Dpriol 20 12 5 51 9 25 34 11 10 1 3 6
IDprios 40 22 10 1125 9 27 63 199 392 2 3 7
jaccard(Dgoc, Dprio) 043 061 043 008 036 003 029 053 046 100 020 0.25
complete(Dprio | Daoc) 0.50 0.65 0.60 009 038 017 030 056 067 100 033 050
sound(Dpriv | Ddoc) 075 092 060 043 089 004 094 091 060 1.00 033 033
jaccard(Dgoc, Dpriv+) 0.49 0.63 0.25 0.08 0.36 0.03 0.50 0.09 0.02 0.50 0.20 0.22
complete(Dprio+ | Daoc) 077 088 060 044 038 017 053 094 078 100 033  0.50
sound(Dprio+ | Daoc) 0.58  0.68 030 009 089 004 090 009 002 050 033 029

Dgoc: project-reported list,
Dpriv: core developers based on privileged events,
Dpriv+: core developers based on privileged+extended events

4.4  Classification-Method Accuracy

Finally, to answer RQ3 about which unsupervised classification methods are most accurate in automatically
classifying developers into core and peripheral, we assess their accuracy using precision, recall, and F1. It turned
out that there is only a small-to-zero difference between using time windows of 3, 6, 9, or 12 months or using
sliding or subsequent windows. Also the difference of the results when using directed or undirected or simplified
or unsimplified networks is marginal. For this reason, we present here only the results for subsequent 6-month
windows, using unsimplified and directed networks, and briefly put each of the different parts of these results
into context; all other results are available on our supplementary website.

In Figure 5, we provide an overview of the accuracy of the different classification methods across all subsequent
time ranges of all 25 subject projects. The precision is higher for count-based classifications (median precision
between 0.6 and 0.8) and cochange-network-based classifications (median precision around 0.5) than for issue-
based (median precision around 0.04) or cochange-+issue-based classifications (median precision around 0.04). That
is, classifications based on commit data (as in the count-based approaches and on the cochange network) contain
a higher percentage of correctly classified core developers over all classified core developers, as compared to the
classifications using networks derived from issue data. This may be due to core developers extensively contributing
to the source code, whereas in issue networks there are also highly active commenting developers, who appear
central in the issue network and are, therefore, wrongly classified as core. In contrast, the recall is higher for
classifications based on issue (and cochange+issue) networks (median recall around 1.0) than for commit-data-
based classifications (median recall between 0.3 and 0.55). That is, the proportion of developers from Dy, that
are contained in the classified set of core developers is high, sometimes even close to 100%. This is not unexpected
as Dyri, was derived from issue data. More interestingly, these results indicate that the developers who trigger
privileged events also are central in issue networks and may also extensively participate in issues. In general, the
number of developers classified as core is higher on issue networks than for commit-data-based classifications,
and also higher than in D,,. This coincides with the overall number of developers, which is in issue data way
higher than in commit data, which may be a reason for the low precision of the approaches that use issue data.
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Fig. 5. F1, Precision, and Recall for each classification method with respect to Dyyjy.

It is also worth noting that the recall for methods that rely on commit data is lower than for the remaining
methods, as there are developers in D,,;, that are not part of the commit data and, therefore, neither classified as
core nor as peripheral. To account for that, we investigated how many of the developers in D,,;, are not classified,
at all. Across all projects, a median of about 17% of the developers of Dy, are not classified by commit-data-based
methods. This mainly happens because of two reasons: (1) Core developers may focus on maintenance tasks (such
as reviewing and merging) and do not contribute to the source code at all. (2) Some developers only contribute to
documentation files (such as README.md), which are not covered in our commit data, as we only keep track of
files that contain source code.

To compare the overall performance of the different classification methods, we look at the F1 score. The
commit-data-based classification methods have comparably high median F1 scores between 0.4 and 0.5, whereas
all the remaining classification methods have much lower median F1 scores of about 0.07. There is almost no
difference in the accuracy between issue networks (median F1 around 0.07) and cochange+issue networks (median
F1 around 0.07). The reason is that the issue network dominates the cochange+issue network, as there are way
more issue discussions than commits (which can also be seen in Table 5). Also the difference in the accuracy of
degree centrality, eigenvector centrality, or hierarchy centrality is marginal, which is moreover independent of
the network type (mostly degree centrality performs best, in some projects hierarchy centrality performs best).
So, in what follows, we neglect the different network metrics and also the cochange+issue networks to focus on
comparing count-based, cochange-based, and issue-based classification methods.

To obtain an overview of the overall performance on different projects, we ranked the F1 score (using the
median to aggregate across time ranges) of each classification method for each project. The classification methods
that resulted in the highest aggregated F1 score on a project received rank 1, the ones that resulted in the lowest
aggregated F1 score on a project received rank 11 (as we investigate 11 different classification methods). In
Figure 6, we show the distribution of the ranks of the classification methods across all projects. In most projects,
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Fig. 6. Distribution of the rank of the different classification methods. That is, for each project, we ranked the median F1
scores of all classification methods. The classification method(s) that had the highest median F1 on the project receive rank 1,

the method(s) that had the lowest median F1 in the project receive rank 11.

the commit-count-based method or the cochange-based methods perform best. However, there are also projects,
in which the issue-based classifications yield higher F1 scores (e.g., projects FLUTTER or DTP; we illustrate
accuracies for each project on our supplementary website). These projects have a comparably low number of
commits as opposed to a comparably high number of issues.

The overall picture slightly changes when restricting the issue data to code contributors (see Section 3.4). In this
case, the issue-based classifications end up with a lower recall (median values around 0.8) but a higher precision
(median values around 0.3) and also a higher F1 score (median values around 0.4) than when considering all
contributors (see median values stated above). So, when considering only code contributors, the issue-based
methods are almost as accurate as the commit-data-based methods, sometimes even more accurate.

Answer to RQs: In summary, using commit data or cochange networks for classifying core developers performs
best. Though, which of these classification methods performs best, is project-dependent. Issue networks often
are distorted by users who intensively participate in discussions. Different network-construction methods or
time-window lengths do not make a substantial difference for classifying developers into core and peripheral.

5 THREATS TO VALIDITY
The validity of our results may be threatened in various directions (as always in empirical studies). We have
grouped the potential threats into four categories that were introduced by Cook and Campbell [26], as suggested

by Wohlin et al. [97].
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5.1 Construct Validity

Different GitHub projects assign permission levels differently: Some are more liberal, others are more strict.
Also individual users use their permissions to a different extent. Thus, relying on the use of privileged events
could threaten the validity of computing the set of privileged developers D,;,. To mitigate this threat, we
investigated two different permission groups (privileged vs. privileged+extended) and four different lengths for
the time ranges.

Another threat concerns the way we construct issue networks, as users who do not contribute to the source
code may still be part of the issue data. We alleviate this by investigating two cases: When considering only
code contributors, the issue-based classification methods perform better than on all contributors, but the overall
picture only varies slightly.

Moreover, the network-construction procedure per se may affect our results. To account for that, we investiga-
ted different network-construction methods (i.e., directedness, simplicity, time ranges, and time windows, as
summarized in Table 4). Our results confirm that the choice of the network-construction method does not make a
substantial difference.

5.2 Conclusion Validity

Based on the outcomes related to RQ,, we conclude that D,,;, is a sound approximation for the set of core
developers (that might not be complete, though). This conclusion relies on the reliability of Dy, (i.e., project-
reported lists). As these project-reported lists are maintained by the project itself, they are an official source of
information declaring who is acting as a core developer in a project. Such project-reported lists may be out of
date or incomplete (as already discussed in Section 3.3), though. This is why we put on manual efforts to search
for these lists and check their relevance for our study. In most cases, when these lists are maintained even within
the repository, the commit history shows that they get regularly updated. Still, these lists do not directly map
to the time ranges that we used for validating D,;;,. Since this mapping incorporates substantial manual effort,
we performed this validation step only for the last analyzed time range of a subject project. While this might
decrease conclusion validity, our manual checks as well as the choice for analyzing the most recent time range
ensure that our conclusions are valid, at least, for the time ranges that are close to the last analyzed time ranges,
as the project workflows were mostly stable.

Whereas our conclusion that D,,;, is a sound approximation for the set of core developers is mainly derived
from the comparison with Dgo. (which is an official source of information), the comparison of D,,;, with the
classification outcomes of the state-of-the-art methods (which do not build on officially stated information)
provides corroborating evidence.

5.3 Internal Validity

We do not track non-source-code files such as documentation files in our commit data. This is intended, since we
aim at identifying core developers who work on the source code. Yet, non-source-code files usually amount only
to a small fraction of the files in a software repository.

When we identify developers, we rely on their names and e-mail addresses, to assign them commits and issue
events. This could be problematic if developers use different spelling variants for their names or different e-mail
addresses (e.g., when they have configured the name or e-mail address in their GitHub account other than in
their Git commit configuration). To address this threat, we use the disambiguation heuristic of Oliva et al. [69],
which has turned out to be reliable in empirical studies [96], to consider instances that use the same name or
the same e-mail address being the same developer, in combination with manual sanity checks. If GitHub users
keep their names and e-mail addresses private, we rely on their usernames and on the data that is stored in the
commits that are associated with the usernames.
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In a similar vein, the detection of bots is a non-trivial task. Therefore, we combine two approaches: We first use
the tool BODEGHA [40] to automatically detect bots based on their commenting behavior in issues, and then we
perform manual adjustments in which we also investigate “bot” substrings in usernames and bot marks visible on
GitHub. Nevertheless, even if there are bots that we did not detect, this does not threaten our results significantly.
The main incentive for detecting and removing bots is to get rid of the bots that are very active and, therefore,
distort the network structure or activity counts. If some bots remain in our data that are as active as a usual
developer, there is only a low probability that they would distort our results significantly, since we can handle
such bots as we handle real developers.

5.4 External Validity

As there are various project shapes, one cannot generalize our results arbitrarily to all OSS projects, at large.
Though, we analyzed the complete history of 25 subject projects (starting at the earliest point in time for which
all the data sources for a project were available). That is, summing up the investigated time periods of all our
25 projects, we analyzed the data of a combined history of about 160 months, which is a substantial amount of
data. Due to the high number of network-construction methods that we investigated (since there are 192 possible
combinations of the choices in Table 4), our comprehensive validation study was computationally expensive,
which was the reason for limiting the number of subject projects to 25. Albeit, we analyzed 25 projects of different
sizes, project domains, and programming languages, which provides already detailed insights.

The results of RQ; are potentially threatened by the fact that we were able to obtain the set of documented
developers Dy, only for 12 out of our 25 subject projects. That is, we validated the set of privileged developers
Dyriv only for these 12 projects with respect to a project-reported list of core developers. We deliberately decided
to keep the remaining 13 projects in our study, though, because, this way, we explicitly account for the fact that
there are also projects that do not provide such project-reported lists and that, for such projects, it would be
beneficial to automatically identify core developers. Nevertheless, using the 12 projects for which we obtained
Do already shows for a multitude of different projects that our approach of identifying core developers based
on privileged events is sound and promising. Note that, for answering RQ;and RQs, and for conducting the
experiment on supervised learning methods (which is part of our future perspective in Section 7), we used all
our 25 subject projects to base the corresponding results on a broader dataset. We did not detect any significant
differences in the results between the projects for which we were able to obtain Dy, and those for which we did
not, which also alleviates this threat.

Our method to construct the set of privileged developers D,,;, is not directly applicable to other platforms
than GitHub. Albeit, other platforms might use similar permissions, so the underlying idea of our method should
also be transferable.

6 DISCUSSION

As our results for RQ; indicate, privileged developers make use of their privileges very often, mostly multiple
times within a couple of weeks. Therefore, extracting privileged events within time ranges of several months is
sufficient to identify the set of privileged developers. Our results for RQ, demonstrate that the set of privileged
developers is a sound approximation for the set of core developers, which might not be complete, though, as there
can be core developers that do not make use of their privileges or that did not obtain the respective privileges. This
is the point at which our approach is stretched to its limits: We cannot identify core developers before they receive
privileges. Here, state-of-the-art classifications methods become necessary again, which is why we evaluated
their accuracy with respect to our approach, to provide researchers and practitioners the option for selecting
an appropriate method for their specific use case. Our results for RQ; indicate that unsupervised classification
methods that use commit data perform slightly better than methods that use issue data. This demonstrates that

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: April 2023.



22« Thomas Bock, Nils Alznauer, Mitchell Joblin, and Sven Apel

issue discussions are dominated by users who ask questions or use issues to retrieve knowledge about the project.
Using the commit count, which is known to provide only a limited view on organizational structure [48], seems
to perform similarly accurate for classifying core developers than various network-based classification methods.
This indicates that developers’ work on the source code (i.e., having a high coding activity) is, at least, as relevant
for becoming a core developer as their interaction with other people. We arrive at a similar conclusion when
looking at the used network-construction methods and classification metrics, since they do not make a substantial
difference. Sometimes, a more simple, local centrality metric (such as degree centrality) performs even better than
eigenvector centrality as a global centrality metric. Nevertheless, these classification metrics perform all pretty
similarly, and it is also project dependent as well as data-source dependent which one performs most accurate
with respect to the set of privileged developers. The fact that the different methods perform similarly well with
respect to our set of privileged developers also indicates that our approach of identifying privileged developers,
indeed, is a reasonable approximation for the set of core developers. All in all, instead of recommending a specific
method, our main goal is to inform researchers and practitioners about the accuracy of the state-of-the-art
unsupervised classification methods.

Our approach provides a viable basis for future research. On the one hand, since receiving a higher level of
permissions in a project is also a sign of trust within the community, using the set of privileged developers,
we can obtain more information about the characteristics that a developer needs to become a core developer.
In particular, we can identify in which time range developers have received their privileges (or, at least, when
they have used it for the first time) and search for relevant characteristics of these privileged developers (also
considering the role within the network and community structure) before becoming a privileged developer. Such
information can be used to improve the search for future candidates to take on more responsibility in the project.
In addition, we can also check how the relevant characteristics and the position in the network change after a
developer has become part of the set of privileged developers, allowing future researchers to investigate how the
activities of a core developer alter after moving up the ladder. This allows for improving community engagement,
identification of future project maintainers, and project stability and evolution.

On the other hand, our automatic approach to identify core developers could be used for the development of
supervised learning methods for identifying core developers. Up until today, to the best of our knowledge, the
lack of sufficient volumes of ground-truth data has prevented supervised learning methods from being developed.
Most of the developer-classification methods used in the literature are either unsupervised or have manually
configured thresholds. Hence, project data is only used for evaluation but not for model fitting. Yet, our automatic
approach to identify core developers based on privileged issue events could be used for supervised learning
methods. To demonstrate the possible benefit of our approach with respect to this research direction, we provide
a perspective on supervised classification in the following section by means of a small explorative experiment.

7 A PERSPECTIVE ON SUPERVISED CLASSIFICATION

As already explained in Section 6, state-of-the-art unsupervised developer-classification methods mostly rely on
manually configured thresholds or other manual steps. Although we devise an automatic approach to identify
core developers based on privileged issue events, it is not capable of identifying potential future core developers
before they get any privileges, and it is also not suitable for projects that do not use social coding platforms
such as GitHub. Hence, there is still a need for supervised classification methods. Therefore, using our automatic
approach to identify core developers based on privileged issue events opens the door for future research to
obtain a higher level of maturity when identifying core developers by automated means: Whereas manually
configuring the optimal classification thresholds would be a tedious task, supervised learning can be used to
automatically learn classification thresholds. Also, combining different classification methods (that use different
data and classification metrics) by hand would be impracticable. Instead, learning the weights for combining
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multiple methods and automatically detecting which combinations are beneficial and which ones not would be
possible in a holistic supervised-learning approach. To sketch out the possible benefit of using our automatic
core-developer identification approach as a foundation for future research in this direction, we conducted a small
explorative experiment on how to learn the classification threshold in a binary classification task for a single
project or for a set of projects, which we describe and report on in what follows.

Experiment setting: As a preliminary exploration of the potential that supervised learning offers, we pose the
problem of role identification as a binary classification task. Instead of using manually configured thresholds, our
idea is to learn a function f: d — {0, 1} that maps a developer d to the core or peripheral class. While some of
the classification methods that we used in our validation study are certainly better than others, it is plausible that
each of them captures a different dimension of developer roles. For this reason, we construct the input to the
classification model to be a combination of all data and metrics used in our validation study. We experimented
with several classification models but found that the random forest classifier [22] with a maximum depth of five
has the best generalization performance. Due to highly imbalanced classes, we augment the minority class in the
training dataset by created synthetic data points using the SMOTE technique [21]. To evaluate the generalization
performance of the model, we apply standard cross validation and split the data into separate training and testing
sets. We report results in terms of F1 score on the test set for the random forest classifier.

Prediction scenarios: We explore two different prediction scenarios. In the first scenario, we apply k-fold cross
validation by splitting the developers randomly into ten groups. We then train ten different models such that
each model is trained on nine groups and tested on remaining tenth group. The prediction performance is then
averaged over the ten models. This scenario tests how well the model can generalize to a new developer when
the model is able to learn from training examples of the roles from every project. For this purpose, we made sure
that the test set contains only developers that have not been part of the training set. In the second scenario, we
split the developers according to projects so that the training set consists of developers from all projects except
the one which forms the test set. In total, 25 models are trained, where each project appears once in the test set
and the prediction metrics are averaged. This scenario is more difficult because it tests the model’s ability to learn
general knowledge about roles in other projects.

Experiment results: For the first scenario, we get an F1 score of 0.73 for our combined model, whereas for
the unsupervised methods based on a single metric we get lower F1 scores (0.3-0.5). Similarly, for our second
scenario, our combined model (0.62) clearly outperforms each of the unsupervised methods (0.2-0.4). Thus, our
explorative small experiment indicates that combining various data sources and socio-technical metrics can help
learning promising classification models.

Summary: As our explorative experiment showed, our approach holds the potential to become a foundation for
future work on training supervised classification models for the identification of core developers. Consequently,
based on the outcomes of this experiment, we formulate two hypotheses that should serve as a starting point for
future research on this topic, to sum up our perspective on supervised classification:

Hypothesis 1: Developer classification models that leverage supervised learning are significantly more accurate
than state-of-the-art classification methods.

Hypothesis 2: Automatically combining data from different data sources (e.g., commits and issues) and different
classification metrics (e.g., the metrics described in Section 3.4) as well as learning appropriate weights for
combining multiple methods outperforms state-of-the-art classification methods.
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8 CONCLUSION

Identifying core developers in OSS projects is beneficial in various occasions: (1) in large-scale software projects, to
improve developer coordination and software quality by revealing who makes decisions and who has consolidated
project knowledge; (2) for newcomers and peripheral developers, to get in touch with maintainers and core
developers; (3) for companies, to decide whether and how to invest in a project or how to efficiently contribute to
an OSS project; (4) and for researchers, to obtain deeper insights into organizational structures of OSS projects
and their evolution. Identified core developers that are unknown yet to the project leaders may be candidates to
take on more responsibility in the project.

As explicit information on who is core developer is rarely available, we devise an automatic method for
identifying core developers in GitHub projects based on privileged issue events as well as an assessment of
the accuracy of state-of-the-art unsupervised classification methods. Even more than recommending a specific
method, we aim at informing researchers and practitioners about the performance of available methods. Our
empirical study on 25 GitHub projects reveals that the choice of data source (commit vs. issue data) matters more
than the actual classification metric (e.g., the centrality metric), which is a non-obvious result. Our results shall
guide practitioners and researchers to choose an appropriate unsupervised classification method and provide a
solid foundation for future supervised learning methods. For this purpose, we have formulated two hypotheses
that should serve as guidance for future work.

ACKNOWLEDGMENTS
This work was supported by the German Research Foundation (AP 206/14-1).

REFERENCES

[1] Bram Adams, Ryan Kavanagh, Ahmed E. Hassan, and Daniel M. German. 2016. An Empirical Study of Integration Activities in
Distributions of Open Source Software. Empirical Software Engineering 21, 3 (2016), 960-1001.

[2] Amritanshu Agrawal, Akond Rahman, Rahul Krishna, Alexander Sobran, and Tim Menzies. 2018. We Don’t Need Another Hero? The

Impact of “Heroes” on Software Development. In Proc. Int. Conf. Software Engineering: Software Engineering in Practice (ICSE-SEIP).

ACM, 245-253.

Ban Al-Ani, Matthew J. Bietz, Yi Wang, Erik Trainer, Benjamin Koehne, Sabrina Marczak, David Redmiles, and Rafael Prikladnicki. 2013.

Globally Distributed System Developers: Their Trust Expectations and Processes. In Proc. Int. Conf. Computer-Supported Cooperative

Work (CSCW). ACM, 563-574.

Mohamed A. Aljemabi and Zhongjie Wang. 2018. Empirical Study on the Evolution of Developer Social Networks. IEEE Access 6 (2018),

51049-51060.

Christian Bird. 2011. Sociotechnical Coordination and Collaboration in Open Source Software. In Proc. Int. Conf. Software Maintenance

(ICSM). IEEE, 568-573.

Christian Bird, Alex Gourley, Premkumar Devanbu, Michael Gertz, and Anand Swaminathan. 2006. Mining Email Social Networks. In

Proc. Int. Working Conf. Mining Software Repositories (MSR). ACM, 137-143.

Christian Bird, Alex Gourley, Premkumar Devanbu, Anand Swaminathan, and Greta Hsu. 2007. Open Borders? Immigration in Open

Source Projects. In Proc. Int. Working Conf. Mining Software Repositories (MSR). IEEE, 6-6.

Christian Bird, David Pattison, Raissa D’Souza, Vladimir Filkov, and Premkumar Devanbu. 2008. Latent Social Structure in Open Source

Projects. In Proc. Int. Sympos. on Foundations of Software Engineering (FSE). ACM, 24-35.

[9] Thomas Bock, Angelika Schmid, and Sven Apel. 2022. Measuring and Modeling Group Dynamics in Open-Source Software Development:

A Tensor Decomposition Approach. ACM Transactions on Software Engineering and Methodology (TOSEM) 31, 2 (2022), 19:1-19:50.

[10] Phillip Bonacich. 1972. Factoring and Weighting Approaches to Status Scores and Clique Identification. Journal of Mathematical
Sociology 2, 1 (1972), 113-120.

[11] Phillip Bonacich. 2007. Some Unique Properties of Eigenvector Centrality. Social Networks 29, 4 (2007), 555-564.

[12] Stephen P. Borgatti, Martin G. Everett, and Jeffrey C. Johnson. 2018. Analyzing Social Networks (2 ed.). Sage.

[13] Amiangshu Bosu and Jeffrey C. Carver. 2014. Impact of Developer Reputation on Code Review Outcomes in OSS Projects: An Empirical
Investigation. In Proc. Int. Sympos. Empirical Software Engineering and Measurement (ESEM). ACM, 1-10.

[14] Ulrik Brandes and Thomas Erlebach. 2005. Network Analysis: Methodological Foundations. Springer Science & Business Media.

[3

—

[4

[laaw}

[5

—

[6

—

[7

—

8

—

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: April 2023.



[15]

[16]

(17]

(18]

[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
(28]
[29]
[30]
[31]
[32]
(33]
(34]

[35]

[36]
[37]
(38]
[39]

[40]

Automatic Core-Developer Identification on GitHub: A Validation Study « 25

Chris Brown and Chris Parnin. 2019. Sorry to Bother You: Designing Bots for Effective Recommendations. In Int. Workshop on Bots in
Software Engineering (BotSE). IEEE, 54-58.

Simon Butler, Jonas Gamalielsson, Bjérn Lundell, Christoffer Brax, Johan Sjoberg, Anders Mattsson, Tomas Gustavsson, Jonas Feist,
and Erik Lonroth. 2021. On Company Contributions to Community Open Source Software Projects. IEEE Transactions on Software
Engineering (TSE) 47, 7 (2021), 1381-1401.

Fabio Calefato, Filippo Lanubile, and Nicole Novielli. 2017. A Preliminary Analysis on the Effects of Propensity to Trust in Distributed
Software Development. In Proc. Int. Conf. Global Software Engineering (ICGSE). IEEE, 56-60.

Edna D. Canedo, Rodrigo Bonifacio, Marcio V. Okimoto, Alexander Serebrenik, Gustavo Pinto, and Eduardo Monteiro. 2020. Work
Practices and Perceptions from Women Core Developers in OSS Communities. In Proc. Int. Sympos. Empirical Software Engineering and
Measurement (ESEM). ACM, 1-11.

Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto, and Sebastiano Panichella. 2012. Who is Going to Mentor Newcomers in
Open Source Projects?. In Proc. Int. Sympos. on Foundations of Software Engineering (FSE). ACM, 1-11.

Marcelo Cataldo and James D. Herbsleb. 2013. Coordination Breakdowns and Their Impact on Development Productivity and Software
Failures. IEEE Transactions on Software Engineering (TSE) 39, 3 (2013), 343-360.

Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer. 2002. SMOTE: Synthetic Minority Over-sampling
Technique. Journal of Artificial Intelligence Research (JAIR) 16 (2002), 321-357.

Tiangi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting System. In Proc. Int. Conf. Knowledge Discovery and Data
Mining (KDD). ACM, 785-794.

Can Cheng, Bing Li, Zeng-Yang Li, Yu-Qi Zhao, and Feng-Ling Liao. 2017. Developer Role Evolution in Open Source Software Ecosystem:
An Explanatory Study on GNOME. journal of Computer Science and Technology (JCST) 32, 2 (2017), 396-414.

Jailton Coelho, Marco T. Valente, Luciana L. Silva, and André Hora. 2018. Why We Engage in FLOSS: Answers from Core Developers.
In Proc. Int. Workshop on Cooperative and Human Aspects of Software Engineering (CHASE). ACM, 114-121.

Kattiana Constantino, Shurui Zhou, Mauricio Souza, Eduardo Figueiredo, and Christian Késtner. 2020. Understanding Collaborative
Software Development: An Interview Study. In Proc. Int. Conf. Global Software Engineering (ICGSE). ACM, 55-65.

Thomas D. Cook and Donald T. Campbell. 1979. Quasi-experimentation — Design and Analysis Issues for Field Settings. Houghton Mifflin
Company.

Kevin Crowston and James Howison. 2005. The Social Structure of Free and Open Source Software Development. First Monday 10, 2
(2005).

Kevin Crowston, Qing Li, Kangning Wei, U. Yeliz Eseryel, and James Howison. 2007. Self-Organization of Teams for Free/Libre Open
Source Software Development. Information and Software Technology (IST) 49, 6 (2007), 564-575.

Kevin Crowston and Ivan Shamshurin. 2017. Core-Periphery Communication and the Success of Free/Libre Open Source Software
Projects. Journal of Internet Services and Applications (FISA) 8, 1 (2017), 10:1-10:11.

Kevin Crowston, Kangning Wei, Qing Li, and James Howison. 2006. Core and Periphery in Free/Libre and Open Source Software Team
Communications. In Proc. Hawaii Int. Conf. System Sciences (HICSS). IEEE, 118a-118a.

Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. 2012. Social Coding in GitHub: Transparency and Collaboration in an
Open Software Repository. In Proc. Int. Conf. Computer-Supported Cooperative Work (CSCW). ACM, 1277-1286.

Cleidson De Souza, Jon Froehlich, and Paul Dourish. 2005. Seeking the Source: Software Source Code as a Social and Technical Artifact.
In Proc. Int. Conf. Supporting Group Work (GROUP). ACM, 197-206.

Luis Felipe Dias, Igor Steinmacher, and Gustavo Pinto. 2018. Who Drives Company-Owned OSS Projects: Internal or External Members?
Journal of the Brazilian Computer Society (FBCS) 24, 1 (2018), 1-17.

Trung T. Dinh-Trong and James M. Bieman. 2005. The FreeBSD Project: A Replication Case Study of Open Source Development. IEEE
Transactions on Software Engineering (ISE) 31, 6 (2005), 481-494.

Ikram El Asri, Noureddine Kerzazi, Lamia Benhiba, and Mohammed Janati. 2017. From Periphery to Core: A Temporal Analysis of
GitHub Contributors’ Collaboration Network. In Proc. Working Conf. Virtual Enterprises (PRO-VE): Collaboration in a Data-Rich World.
Springer, 217-229.

Mariam El Mezouar, Feng Zhang, and Ying Zou. 2019. An Empirical Study on the Teams Structures in Social Coding using GitHub
Projects. Empirical Software Engineering 24, 6 (2019), 3790-3823.

Fabio Ferreira, Luciana L. Silva, and Marco T. Valente. 2020. Turnover in Open-Source Projects: The Case of Core Developers. In Proc.
Brazilian Sympos. on Software Engineering (SBES). ACM, 447-456.

Harald Gall, Karin Hajek, and Mehdi Jazayeri. 1998. Detection of Logical Coupling based on Product Release History. In Proc. Int. Conf.
Software Maintenance (ICSM). IEEE, 190-198.

David Gibson, Jon Kleinberg, and Prabhakar Raghavan. 1998. Inferring Web Communities from Link Topology. In Proc. Int. Conf.
Hypertext and Hypermedia (HT). ACM, 225-234.

Mehdi Golzadeh, Alexandre Decan, Damien Legay, and Tom Mens. 2021. A Ground-Truth Dataset and Classification Model for
Detecting Bots in GitHub Issue and PR Comments. Journal of Systems and Software (JSS) 175 (2021), 110911.

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: April 2023.



26+ Thomas Bock, Nils Alznauer, Mitchell Joblin, and Sven Apel

[41] Mehdi Golzadeh, Damien Legay, Alexandre Decan, and Tom Mens. 2020. Bot or Not? Detecting Bots in GitHub Pull Request Activity
Based on Comment Similarity. In Proc. Int. Conf. Software Engineering Workshops (ICSEW). ACM, 31-35.

[42] Rajdeep Grewal, Gary L. Lilien, and Girish Mallapragada. 2006. Location, Location, Location: How Network Embeddedness Affects
Project Success in Open Source Systems. Management Science 52, 7 (2006), 1043-1056.

[43] Rebecca E. Grinter, James D. Herbsleb, and Dewayne E. Perry. 1999. The Geography of Coordination: Dealing with Distance in R&D
Work. In Proc. Int. Conf. Supporting Group Work (GROUP). ACM, 306-315.

[44] James D. Herbsleb, Audris Mockus, and Jeffrey A. Roberts. 2006. Collaboration in Software Engineering Projects: A Theory of
Coordination. In Proc. Int. Conf. Information Systems (ICIS). Association for Information Systems, 553-568.

[45] Qiaona Hong, Sunghun Kim, Shing Chi Cheung, and Christian Bird. 2011. Understanding a Developer Social Network and its Evolution.
In Proc. Int. Conf. Software Maintenance (ICSM). IEEE, 323-332.

[46] Corey Jergensen, Anita Sarma, and Patrick Wagstrom. 2011. The Onion Patch: Migration in Open Source Ecosystems. In Proc. Europ.
Software Engineering Conf. and the Int. Sympos. Foundations of Software Engineering (ESEC/FSE). ACM, 70-80.

[47] Andrejs Jermakovics, Alberto Sillitti, and Giancarlo Succi. 2011. Mining and Visualizing Developer Networks from Version Control
Systems. In Proc. Int. Workshop on Cooperative and Human Aspects of Software Engineering (CHASE). ACM, 24-31.

[48] Mitchell Joblin, Sven Apel, Claus Hunsen, and Wolfgang Mauerer. 2017. Classifying Developers into Core and Peripheral: An Empirical
Study on Count and Network Metrics. In Proc. Int. Conf. Software Engineering (ICSE). IEEE, 164-174.

[49] Mitchell Joblin, Sven Apel, and Wolfgang Mauerer. 2017. Evolutionary Trends of Developer Coordination: A Network Approach.
Empirical Software Engineering 22, 4 (2017), 2050~-2094.

[50] Mitchell Joblin, Barbara Eckl-Ganser, Thomas Bock, Angelika Schmid, Janet Siegmund, and Sven Apel. 2023. Hierarchical and Hybrid
Organizational Structures in Open-Source Software Projects: A Longitudinal Study. ACM Transactions on Software Engineering and
Methodology (TOSEM) (2023). Online first.

[51] Mitchell Joblin, Wolfgang Mauerer, Sven Apel, Janet Siegmund, and Dirk Riehle. 2015. From Developer Networks to Verified
Communities: A Fine-Grained Approach. In Proc. Int. Conf. Software Engineering (ICSE). IEEE, 563-573.

[52] Stefan Koch and Georg Schneider. 2002. Effort, Co-operation and Co-ordination in an Open Source Software Project: GNOME.
Information Systems Journal (ISJ) 12, 1 (2002), 27-42.

[53] Robert E. Kraut and Lynn A. Streeter. 1995. Coordination in Software Development. Communications of the ACM 38, 3 (1995), 69-82.

[54] Rajiv Krishnamurthy, Varghese Jacob, Suresh Radhakrishnan, and Kutsal Dogan. 2016. Peripheral Developer Participation in Open
Source Projects: An Empirical Analysis. ACM Transactions on Management Information Systems (TMIS) 6, 4 (2016), 1-31.

[55] Irwin Kwan, Adrian Schroter, and Daniela Damian. 2011. Does Socio-Technical Congruence Have an Effect on Software Build Success?
A Study of Coordination in a Software Project. IEEE Transactions on Software Engineering (TSE) 37, 3 (2011), 307-324.

[56] Amy N. Langville and Carl D. Meyer. 2006. Google’s PageRank and Beyond. Princeton University Press.

[57] Amanda Lee and Jeffrey C. Carver. 2017. Are One-Time Contributors Different? A Comparison to Core and Periphery Developers in
FLOSS Repositories. In Proc. Int. Sympos. Empirical Software Engineering and Measurement (ESEM). IEEE, 1-10.

[58] Amanda Lee, Jeffrey C. Carver, and Amiangshu Bosu. 2017. Understanding the Impressions, Motivations, and Barriers of One Time
Code Contributors to FLOSS Projects: A Survey. In Proc. Int. Conf. Software Engineering (ICSE). IEEE, 187-197.

[59] Sherlock A. Licorish and Stephen G. MacDonell. 2013. The True Role of Active Communicators: An Empirical Study of Jazz Core
Developers. In Evaluation and Assessment in Software Engineering (EASE). ACM, 228-239.

[60] Sherlock A. Licorish and Stephen G. MacDonell. 2014. Understanding the Attitudes, Knowledge Sharing Behaviors and Task Performance
of Core Developers: A Longitudinal Study. Information and Software Technology (IST) 56, 12 (2014), 1578-1596.

[61] Ju Long. 2006. Understanding the Role of Core Developers in Open Source Software Development. Journal of Information, Information
Technology, and Organizations (FIITO) 1, 1 (2006), 75-85.

[62] Yuan Long and Keng Siau. 2007. Social Network Structures in Open Source Software Development Teams. Journal of Database
Management (JDM) 18, 2 (2007), 25-40.

[63] Luis Lopez-Fernandez, Gregorio Robles, Jesus M. Gonzalez-Barahona, and Israel Herraiz. 2006. Applying Social Network Analysis
Techniques to Community-Driven Libre Software Projects. International Journal of Information Technology and Web Engineering
(IFITWE) 1 (2006), 28-50.

[64] Wolfgang Mauerer, Mitchell Joblin, Damian A. Tamburri, Carlos Paradis, Rick Kazman, and Sven Apel. 2022. In Search of Socio-Technical
Congruence: A Large-Scale Longitudinal Study. IEEE Transactions on Software Engineering (TSE) 48, 8 (2022), 3159-3184.

[65] Andrew Meneely and Laurie Williams. 2011. Socio-technical Developer Networks: Should We Trust Our Measurements?. In Proc. Int.
Conf. Software Engineering (ICSE). ACM, 281-290.

[66] Audris Mockus, Roy T. Fielding, and James D. Herbsleb. 2002. Two Case Studies of Open Source Software Development: Apache and
Mozilla. ACM Transactions on Software Engineering and Methodology (TOSEM) 11, 3 (2002), 309-346.

[67] Jodo E. Montandon, Marco T. Valente, and Luciana L. Silva. 2021. Mining the Technical Roles of GitHub Users. Information and Software
Technology (IST) 131 (2021), 106485.

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: April 2023.



[68]
[69]

[70]

[71]

[72]

[73]
[74]
[75]
[76]
[77]
(78]
[79]
(80]
(81]
(82]
(83]
[84]
(85]
[86]
(87]
(88]
(89]
[90]

[o1]

[92]

[93]

Automatic Core-Developer Identification on GitHub: A Validation Study « 27

Kumiyo Nakakoji, Yasuhiro Yamamoto, Yoshiyuki Nishinaka, Kouichi Kishida, and Yunwen Ye. 2002. Evolution Patterns of Open-Source
Software Systems and Communities. In Proc. Int. Workshop on Principles of Software Evolution (IWPSE). ACM, 76-85.

Gustavo A. Oliva, Francisco W. Santana, Kleverton C. M. de Oliveira, Cleidson R. B. de Souza, and Marco A. Gerosa. 2012. Characterizing
Key Developers: A Case Study With Apache Ant. In Proc. Int. Conf. Collaboration and Technology (CRIWG). Springer, 97-112.
Gustavo A. Oliva, José Teodoro da Silva, Marco A. Gerosa, Francisco W. S. Santana, Claudia M. L. Werner, Cleidson R. B. de Souza,
and Kleverton C. M. de Oliveira. 2015. Evolving the System’s Core: A Case Study on the Identification and Characterization of Key
Developers in Apache Ant. Computing and Informatics 34, 3 (2015), 678-724.

Fabio Palomba and Damian A. Tamburri. 2021. Predicting the Emergence of Community Smells Using Socio-Technical Metrics: A
Machine-Learning Approach. Journal of Systems and Software (7SS) 171 (2021), 110847.

Sebastiano Panichella, Gabriele Bavota, Massimiliano Di Penta, Gerardo Canfora, and Giuliano Antoniol. 2014. How Developers’
Collaborations Identified from Different Sources Tell us About Code Changes. In Proc. Int. Conf. Software Maintenance and Evolution
(ICSME). IEEE, 251-260.

Gustavo Pinto, Igor Steinmacher, and Marco A. Gerosa. 2016. More Common than You Think: An In-Depth Study of Casual Contributors.
In Int. Conf. Software Analysis, Evolution, and Reengineering (SANER). IEEE, 112-123.

Mathias Pohl and Stephan Diehl. 2008. What Dynamic Network Metrics Can Tell Us About Developer Roles. In Proc. Int. Workshop on
Cooperative and Human Aspects of Software Engineering (CHASE). ACM, 81-84.

Mehvish Rashid, Paul M. Clarke, and Rory V. O’Connor. 2019. A Systematic Examination of Knowledge Loss in Open Source Software
Projects. International Journal of Information Management (IfIM) 46 (2019), 104-123.

Erzsébet Ravasz and Albert-Laszl6 Barabasi. 2003. Hierarchical Organization in Complex Networks. Physical Review E 67, 2 (2003),
026112.

Peter C. Rigby and Ahmed E. Hassan. 2007. What Can OSS Mailing Lists Tell Us? A Preliminary Psychometric Text Analysis of the
Apache Developer Mailing List. In Proc. Int. Working Conf. Mining Software Repositories (MSR). IEEE, 23-23.

Peter C. Rigby, Yue Cai Zhu, Samuel M. Donadelli, and Audris Mockus. 2016. Quantifying and Mitigating Turnover-Induced Knowledge
Loss: Case Studies of Chrome and a Project at Avaya. In Proc. Int. Conf. Software Engineering (ICSE). IEEE, 1006-1016.

Gregorio Robles and Jesus M. Gonzalez-Barahona. 2006. Contributor Turnover in Libre Software Projects. In Int. Conf. Open Source
Systems (OSS). Springer, 273-286.

Gregorio Robles, Jesus M. Gonzalez-Barahona, and Israel Herraiz. 2009. Evolution of the Core Team of Developers in Libre Software
Projects. In Proc. Int. Working Conf. Mining Software Repositories (MSR). IEEE, 167-170.

Pankaj Setia, Balaji Rajagopalan, Vallabh Sambamurthy, and Roger Calantone. 2012. How Peripheral Developers Contribute to
Open-Source Software Development. Information Systems Research 23, 1 (2012), 144-163.

Pankajeshwara N. Sharma, Bastin T. R. Savarimuthu, and Nigel Stanger. 2017. Boundary Spanners in Open Source Software Development:
A Study of Python Email Archives. In Proc. Asia-Pacific Software Engineering Conf. (APSEC). IEEE, 308-317.

Vibha S. Sinha, Senthil Mani, and Saurabh Sinha. 2011. Entering the Circle of Trust: Developer Initiation as Committers in Open-Source
Projects. In Proc. Int. Working Conf. Mining Software Repositories (MSR). ACM, 133-142.

Igor Steinmacher, Christoph Treude, and Marco A. Gerosa. 2019. Let Me In: Guidelines for the Successful Onboarding of Newcomers to
Open Source Projects. IEEE Software 36, 4 (2019), 41-49.

Ashish Sureka, Atul Goyal, and Ayushi Rastogi. 2011. Using Social Network Analysis for Mining Collaboration Data in a Defect
Tracking System for Risk and Vulnerability Analysis. In Proc. India Software Engineering Conf. (ISEC). ACM, 195-204.

Damian A. Tamburri, Rick Kazman, and Hamed Fahimi. 2023. On the Relationship Between Organisational Structure Patterns and
Architecture in Agile Teams. IEEE Transactions on Software Engineering (ISE) 49, 1 (2023), 325-347.

Damian A. Tamburri, Patricia Lago, and Hans van Vliet. 2013. Organizational Social Structures for Software Engineering. ACM
Computing Surveys 46, 1 (2013), 1-35.

Damian A. Tamburri, Fabio Palomba, Alexander Serebrenik, and Andy Zaidman. 2019. Discovering Community Patterns in Open-Source:
A Systematic Approach and its Evaluation. Empirical Software Engineering 24, 3 (2019), 1369-1417.

Antonio Terceiro, Luiz Romario Rios, and Christina Chavez. 2010. An Empirical Study on the Structural Complexity Introduced by
Core and Peripheral Developers in Free Software Projects. In Proc. Brazilian Sympos. on Software Engineering (SBES). IEEE, 21-29.
Sergio L. Toral, M. Rocio Martinez-Torres, and Federico Barrero. 2010. Analysis of Virtual Communities Supporting OSS Projects Using
Social Network Analysis. Information and Software Technology (IST) 52, 3 (2010), 296-303.

Marat Valiev, Bogdan Vasilescu, and James D. Herbsleb. 2018. Ecosystem-Level Determinants of Sustained Activity in Open-Source
Projects: A Case Study of the PyPI Ecosystem. In Proc. Europ. Software Engineering Conf. and the Int. Sympos. Foundations of Software
Engineering (ESEC/FSE). ACM, 644-655.

Zhendong Wang, Yang Feng, Yi Wang, James A. Jones, and David Redmiles. 2020. Unveiling Elite Developers’ Activities in Open
Source Projects. IEEE Transactions on Software Engineering (TSE) 29, 3 (2020), 16:1-16:35.

Kangning Wei, Kevin Crowston, U. Yeliz Eseryel, and Robert Heckman. 2017. Roles and Politeness Behavior in Community-based
Free/Libre Open Source Software Development. Information & Management 54, 5 (2017), 573-582.

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: April 2023.



28 « Thomas Bock, Nils Alznauer, Mitchell Joblin, and Sven Apel

[94] Mairieli Wessel, Bruno Mendes de Souza, Igor Steinmacher, Igor S. Wiese, Ivanilton Polato, Ana P. Chaves, and Marco A. Gerosa. 2018.
The Power of Bots: Characterizing and Understanding Bots in OSS Projects. Proceedings of the ACM on Human-Computer Interaction
(HCI) 2, CSCW (2018), 1-19.

[95] Mairieli Wessel and Igor Steinmacher. 2020. The Inconvenient Side of Software Bots on Pull Requests. In Proc. Int. Conf. Software
Engineering Workshops (ICSEW). ACM, 51-55.

[96] Igor S. Wiese, José Teodoro da Silva, Igor Steinmacher, Christoph Treude, and Marco A. Gerosa. 2016. Who is Who in the Mailing List?
Comparing Six Disambiguation Heuristics to Identify Multiple Addresses of a Participant. In Proc. Int. Conf. Software Maintenance and
Evolution (ICSME). IEEE, 345-355.

[97] Claes Wohlin, Per Runeson, Martin Host, Magnus C. Ohlsson, Bjorn Regnell, and Anders Wesslén. 2012. Experimentation in Software
Engineering (2 ed.). Springer.

[98] Marvin Wyrich and Justus Bogner. 2019. Towards an Autonomous Bot for Automatic Source Code Refactoring. In Int. Workshop on
Bots in Software Engineering (BotSE). IEEE, 24-28.

[99] Bo Xu, Donald R. Jones, and Bingjia Shao. 2009. Volunteers’ Involvement in Online Community Based Software Development.
Information & Management 46, 3 (2009), 151-158.

[100] Jin Xu, Yongqin Gao, Scott Christley, and Gregory Madey. 2005. A Topological Analysis of the Open Source Software Development
Community. In Proc. Hawaii Int. Conf. System Sciences (HICSS). IEEE, 198a—-198a.

[101] Kazuhiro Yamashita, Shane McIntosh, Yasutaka Kamei, Ahmed E. Hassan, and Naoyasu Ubayashi. 2015. Revisiting the Applicability of
the Pareto Principle to Core Development Teams in Open Source Software Projects. In Proc. Int. Workshop on Principles of Software
Evolution (IWPSE). ACM, 46-55.

[102] Li Yan, Tan Chuan Hoo, and Teo Hock Hai. 2004. The Dynamic Transformation of an Open Source Software Project Leader: A
Microorganizational Behavioral Perspective. In Proc. Pacific Asia Conf. on Information Systems (PACIS). Association for Information
Systems, 2226-2232.

[103] Yunwen Ye and Kouichi Kishida. 2003. Toward an Understanding of the Motivation of Open Source Software Developers. In Proc. Int.
Conf. Software Engineering (ICSE). IEEE, 419-429.

[104] Liguo Yu. 2008. Self-Organization Process in Open-Source Software: An Empirical Study. Information and Software Technology (IST) 50,
5 (2008), 361-374.

[105] Wen Zhang, Ye Yang, and Qing Wang. 2011. Network Analysis of OSS Evolution: An Empirical Study on ArgoUML Project. In Proc. Int.
Workshop on Principles of Software Evolution and ERCIM Workshop on Software Evolution (IWPSE-EVOL). ACM, 71-80.

[106] Yuxia Zhang, Minghui Zhou, Audris Mockus, and Zhi Jin. 2019. Companies’ Participation in OSS Development — An Empirical Study
of OpenStack. IEEE Transactions on Software Engineering (TSE) 47, 10 (2019), 2242-2259.

[107] Minghui Zhou, Qingying Chen, Audris Mockus, and Fengguang Wu. 2017. On the Scalability of Linux Kernel Maintainers’ Work. In
Proc. Europ. Software Engineering Conf. and the Int. Sympos. Foundations of Software Engineering (ESEC/FSE). ACM, 27-37.

[108] Minghui Zhou and Audris Mockus. 2012. What Make Long Term Contributors: Willingness and Opportunity in OSS Community. In
Proc. Int. Conf. Software Engineering (ICSE). IEEE, 518-528.

[109] Minghui Zhou, Audris Mockus, Xiujuan Ma, Lu Zhang, and Hong Mei. 2016. Inflow and Retention in OSS Communities with Commercial
Involvement: A Case Study of Three Hybrid Projects. ACM Transactions on Software Engineering and Methodology (TOSEM) 25, 2 (2016),
1-29.

[110] Thomas Zimmermann, Andreas Zeller, Peter Weif3gerber, and Stephan Diehl. 2005. Mining Version Histories to Guide Software Changes.
IEEE Transactions on Software Engineering (TSE) 31, 6 (2005), 429-445.

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: April 2023.



	Abstract
	1 Introduction
	2 Background & Related Work
	2.1 Developer Roles
	2.2 User Permissions on GitHub
	2.3 Classification of Developer Roles

	3 Methodology
	3.1 Data Extraction
	3.2 Identifying Core Developers based on Issue Events
	3.3 Validating our Set of Core Developers
	3.4 Developer Classification
	3.5 Assessing the Classification Accuracy

	4 Validation Study
	4.1 Subject Projects
	4.2 Time Difference between Privileged Events
	4.3 Validity of the Set of Privileged Developers Dpriv
	4.4 Classification-Method Accuracy

	5 Threats to Validity
	5.1 Construct Validity
	5.2 Conclusion Validity
	5.3 Internal Validity
	5.4 External Validity

	6 Discussion
	7 A Perspective on Supervised Classification
	8 Conclusion
	Acknowledgments
	References

