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ABSTRACT
Software-merging techniques face the challenge of finding
a balance between precision and performance. In practice,
developers use unstructured-merge (i.e., line-based) tools,
which are fast but imprecise. In academia, many approaches
incorporate information on the structure of the artifacts be-
ing merged. While this increases precision in conflict detec-
tion and resolution, it can induce severe performance penal-
ties. Striving for a proper balance between precision and
performance, we propose a structured-merge approach with
auto-tuning. In a nutshell, we tune the merge process on-line
by switching between unstructured and structured merge,
depending on the presence of conflicts. We implemented
a corresponding merge tool for Java, called JDime. Our
experiments with 8 real-world Java projects, involving 72
merge scenarios with over 17 million lines of code, demon-
strate that our approach indeed hits a sweet spot: While
largely maintaining a precision that is superior to the one of
unstructured merge, structured merge with auto-tuning is
up to 12 times faster than purely structured merge, 5 times
on average.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Version control ; D.2.9 [Software En-
gineering]: Management—Software configuration manage-
ment

General Terms
Management, Measurement, Experimentation

Keywords
Version Control, Software Merging, Structured Merge, JDime

1. INTRODUCTION
Software-merging techniques are gaining momentum in

the practice and theory of software engineering. They are
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important tools for programmers and software engineers not
only in version control systems but also in product-line and
model-driven engineering.

Contemporary software-merging techniques can be clas-
sified into (1) syntactic approaches and (2) semantic ap-
proaches. The former include (a) unstructured approaches
that treat software artifacts as sequences of text lines and
(b) structured approaches that are based on the artifacts’
syntactic structure. In our attempt to push back the limits
of practical software merging, we concentrate on syntactic
approaches—semantic approaches are promising but still too
immature to be used in real-world software projects.

The state of the art is that the most widely-used software-
merging tools are unstructured; popular examples include
the tools diff and merge of Unix, used in version-control
systems such as CVS, Subversion, and Git. Unstructured
merge is very simple and general: every software artifact
that can be represented as text (i.e., as sequences of text
lines) can be processed. So, a single tool that treats all
software artifacts equally suffices. However, the downside
is that unstructured merge is rather weak when it comes
to expressing differences and handling merge conflicts: the
basic unit is the line—all structure, all knowledge of the
artifacts involved is lost [1, 16].

Previous work has shown that an exploitation of the syn-
tactic structure of the artifacts involved improves the merge
process in that differences between artifacts can be expressed
in terms of their structure [1, 5, 16, 20], which also opens
new opportunities for detecting and resolving merge con-
flicts [1]—one of the key problems in this field [16]. Unfor-
tunately, no practical structured-merge tools for mainstream
programming languages are available. Why?

A first problem is certainly that, when developing a struc-
tured tool, one must commit to a particular artifact language
and, as a consequence, develop and use a different tool per
language [1]. A second problem is that algorithms that take
the structure of the artifacts involved into account are typ-
ically at least cubic, if not even NP-complete—a major ob-
stacle to their practical application [16]. While the first
problem has been addressed, for example, by the technique
of semistructured merge [1] (parts of the artifacts are treated
as syntax trees and parts as plain text; see Sec. 5), we strive
here for a solution to the second problem. Can we develop
a merge approach that takes the structure of artifacts fully
into account and that is efficient enough to be useful in real-
world software projects?

We report on the development and application of a merge
approach that is based on tree matching and amalgamation.



It is more precise in calculating differences and merges than
an unstructured, lined-based approach, as it has more infor-
mation about the artifacts at its disposal. To cope with the
complexity of the tree-based merging operations involved,
we use an auto-tuning approach. The basic idea is that
the tool adjusts the precision of the merge operations (from
unstructured, lined-based to structured, tree-based) guided
by the conflicts detected in a software project. As long as
no conflicts are detected, the tool uses unstructured merge,
which is cheap in terms of performance. Once conflicts are
detected, the tool switches to structured merge to increase
the precision. So, the basic idea is simple: use the expensive
technique only when necessary, which is in line with Mens’
statement on the future of software-merge techniques:

An interesting avenue of research would be to
find out how to combine the virtues of different
merge techniques. For example, one could com-
bine textual merging with more formal syntactic
and semantic approaches in order to detect and
resolve merge conflicts up to the level of detail
required for each particular situation [16].

While an auto-tuning approach is not as precise as a purely
structured merge (the unstructured merge involved may miss
conflicts or may not be able to resolve certain conflicts), it
is likely faster and thus more practical in real-world soft-
ware engineering, especially, if one believes Mens’ conjecture
that unstructured merge suffices in 90 % of all merge scenar-
ios [16]. In fact, we strive for a solution that improves the
state of practice, namely getting away from the exclusive use
of unstructured-merge tools.

To demonstrate the practicality of our approach, we have
implemented a tool for Java, called JDime, that performs
structured merge (optionally) with auto-tuning. We used
JDime in 72 merge scenarios of 8 software projects, involv-
ing over 17 million lines of code. Specifically, we compared
the performance and the ability to resolve conflicts of un-
structured and structured merge (with and without auto-
tuning).

We found that purely structured merge is more precise
than unstructured merge: It is able to resolve many more
conflicts than unstructured merge but reveals also conflicts
not noticed by unstructured merge. However, as expected,
structured merge is slower by an order of magnitude, which
is due to the more complex differencing and merge tech-
nique. Remarkably, the auto-tuning approach diverges only
minimally from purely structured merge in terms of conflict
detection, but it is up to 12 times faster than purely struc-
tured merge, 5 times on average.

In summary, we make the following contributions:
• We present a structured-merge approach that is based

on tree matching and amalgamation, and that uses
auto-tuning to improve performance while largely main-
taining precision.
• We provide a practical implementation, called JDime,

of our approach for Java.
• We apply our tool to a substantial set of merge scenar-

ios and compare its performance and conflict-detection
capability (with and without auto-tuning) to that of
unstructured merge.

JDime as well as the sources of the merge scenarios and
the collected data of all experiments are available at a sup-
plementary Web site: http://fosd.net/JDime .

Version Base

class Bag {
int[] values;
Bag(int[] v) { values = v; }

}

Version Right

class Bag {
int[] values;
Bag(int[] v) { values = v; }
int size() {
return values.length;

}
}

Version Left

class Bag {
int[] values;
Bag(int[] v) { values = v; }
int[] get() {
return values;

}
}

Unstructured merge

class Bag {
int[] values;
Bag(int[] v) { values = v; }

<<<<<<< Left
int[] get() {
return values;

}
=======
int size() {
return values.length;

}
>>>>>>> Right
}

Structured merge

class Bag {
int[] values;
Bag(int[] v) { values = v; }
int[] get() {
return values;

}
int size() {
return values.length;

}
}

derive

merge

Figure 1: Conflict resolved with structured merge
but not with unstructured merge

2. SOFTWARE MERGE
In his seminal survey, Mens provides a comprehensive

overview of the field of software-merge techniques [16]. Here,
we concentrate on the popular scenario of a three-way merge,
which is used in every practical version control system. A
three-way merge aims at joining two independently devel-
oped versions based on their common ancestor (e.g., the
version from which both have been derived) by locating
their differences and selecting and applying corresponding
changes to the merged version. However, the merge may en-
counter conflicts when changes of the two versions are incon-
sistent (e.g., two versions apply mutually exclusive changes
at the same position) [16]. A major goal is to empower
merge tools to detect and resolve conflicts automatically.

As software projects grow, merge techniques have to scale.
In the remaining section, we discuss the principal properties
of unstructured and structure merge with regard to conflict
detection and resolution as well as performance.

2.1 Unstructured Merge
For illustration, we use a simple example: an implemen-

tation of a bag data structure that can store integer values.
In Figure 1 (top), we show the basic version, called Base,
which contains a Java class with a field and a constructor.

Based on version Base, two versions have been derived
independently (middle of Figure 1): Version Left adds a
method size and version Right adds a method get. Merging
Left and Right, based on their common ancestor Base, using
unstructured merge results in a conflict, as shown in Figure 1

http://fosd.net/JDime


(bottom left). The conflict cannot be resolved automatically
by any unstructured-merge tool and thus requires manual
intervention. The reason is that an unstructured-merge tool
is not able to recognize that the text is actually Java code
and that the versions can be merged safely: The declarations
of the methods get and size can be included in any order
because method declarations can be permuted safely in Java,
as illustrated in Figure 1 (bottom right).

In practice, most unstructured-merge tools compare and
merge versions based on largest common subsequences [3]
of text lines. This is not without benefits. The unstruc-
tured approach is applicable to a wide range of different
software artifacts and it is fast: quadratic in the length of
the artifacts involved. Mens conjectures that 90 % of all
merge scenarios require only unstructured merge; the other
10 % require more sophisticated solutions such as structured
merge, a fraction that is likely to grow with the popularity
of decentralized version control systems [16].

2.2 Structured Merge
Structured merge aims at alleviating the problems of un-

structured merge with regard to conflict detection and reso-
lution by exploiting the artifacts’ structure. Westfechtel and
Buffenbarger pioneered this field by using structural infor-
mation such as the context-free and context-sensitive syntax
during the merge process [5, 20]. Subsequently, researchers
proposed a wide variety of structural comparison and merge
tools including tools for Java [2] and C++ [7] (see Sec. 5).

The idea underlying structured-merge tools is to represent
the artifacts as trees (or graphs) and to merge them by tree
(or graph) matching and amalgamation. Additionally, the
merge process has all kinds of information on the language
at its disposal, including information on which program ele-
ments can be permuted safely—which has been proved very
useful in software merge [1]. This way, it is almost trivial to
merge the two versions of Figure 1 (bottom right).

Structured merge is not only superior in that certain con-
flicts can be resolved automatically. There are situations in
which unstructured merge misses conflicts that are detected
by structured merge. In Figure 2, we show again the ba-
sic version of the bag example (top), but two other versions
have been derived independently: Left’ and Right’, both of
which add a method getString (middle). Interestingly, un-
structured merge (bottom left) does not report any conflict
but results in a broken program that contains two methods
getString: one before the declaration of array values and con-
structor Bag, as in version Right’, and one after, as in version
Left’. In contrast, structured merge notices two versions of
method getString and their difference in the initialization of
the local variable sep, which results in a conflict reported to
the user (bottom right). Note that conflicting code may be
even well-typed and still misbehave.

On the downside, structured merge relies on information
on the syntax of the artifacts to be merged. In practice, this
means that one has to create one merge tool per artifact
type or language. Although the creation of a merge tool can
be automated to some extent, still manual effort is necessary
to provide the specific information of the particular kind of
artifact being processed [1]. Nevertheless, for languages that
are widely used such as Java, it is certainly useful to spend
the effort and to create and use a dedicated merge tool.

A more severe problem of structured merge —which we
want to address here— is the run-time complexity of the

Version Base

class Bag {
int[] values;
Bag(int[] v) { values = v; }

}

Version Right’

class Bag {
String getString() {
String res = ””;
String sep = ”;”;
for(int v : values) {
res += v + sep;

}
return res;

}
int[] values;
Bag(int[] v) { values = v; }

}

Version Left’

class Bag {
int[] values;
Bag(int[] v) { values = v; }
String getString() {
String res = ””;
String sep = ”,”;
for(int v : values) {
res += v + sep;

}
return res;

}
}

Unstructured merge

class Bag {
String getString() {
String res = ””;
String sep = ”;”;
for(int v : values) {
res += v + sep;

}
return res;

}
int[] values;
Bag(int[] v) {
values = v;

}
String getString() {
String res = ””;
String sep = ”,”;
for(int v : values) {
res += v + sep;

}
return res;

}
}

Structured merge

class Bag {
int[] values;
Bag(int[] v) { values = v; }
String getString() {
String res = ””;
String sep =

<<<<<<< Left’
”,”;

=======
”;”;

>>>>>>> Right’
for(int v : values) {
res += v + sep;

}
return res;

}
}

derive

merge

Figure 2: Conflict detected with structured merge
but not with unstructured merge

internal merge algorithm. Typically, it relies on trees or
graphs and corresponding matching and merging operations.
Although there is the possibility of adjusting the complex-
ity by considering only parts of the artifacts’ structure (e.g.,
context-free syntax only) or by using a less precise matching,
even these compromises result in at least cubic or even ex-
ponential time complexity. This inherent complexity seems
to be a major obstacle to a practical application. In the next
section, we present an approach based on tree matching and
amalgamation paired with an auto-tuning approach to push
back the limits of structured merge in this respect.

3. OUR APPROACH
Our approach has three ingredients:
• We represent artifacts as context-free syntax trees, in-

cluding information on which program elements can be
permuted safely.



• We use two tailored tree-matching algorithms, one for
unordered and one for ordered child nodes (the former
for program elements that can be permuted safely, the
latter for those that must not be permuted); the rules
for merge and conflict resolution are language-specific.
• We use the full power of structured merge only in sit-

uations in which unstructured merge reports conflicts.

3.1 Artifact Representation
We represent artifacts by terms of trees that reflect their

context-free syntax. An alternative would be to model also
the context-sensitive syntax, which would result in graphs
rather than trees [20]. Of course, the matching and merging
operations would be even more precise in this case, but also
computationally even more complex.

The problems illustrated in Figure 1 (inability to resolve
a conflict) and Figure 2 (inability to detect a conflict) arise
from the fact that unstructured-merge tools have no infor-
mation on which program elements can be permuted safely.
We include this information in our structured-merge ap-
proach. For every type of program element (e.g., class dec-
laration, method declaration, statement), the tool knows
whether the corresponding elements can be permuted, and
it uses this information during the matching and merge op-
erations.

3.2 Algorithms
The overall merge process involves three phases: (1) cal-

culating a matching between the trees of the input versions,
(2) amalgamating the trees based on the calculated match-
ing, and (3) resolving conflicts during the merge operation.
Next, we discuss all three phases in detail.

Tree Matching. Tree matching takes two trees, computes
the largest common subtree, and adds matching information
to them. Matching of nodes depends on their syntactic cat-
egory (e.g., two field declarations are considered equal if
their types and names match). Tree matching distinguishes
between ordered nodes (which must not be permuted) and
unordered nodes (which can be permuted safely).

For ordered nodes, we use a variation of Yang’s algo-
rithm [21]: We compute for all pairs (Ai, Bj) recursively the
number of matches (W ) and the maximum matching (M),
as shown in Algorithm 1. Note, the recursive call invokes
TreeMatching, which calls OrderedTreeMatching or
UnorderedTreeMatching (Algorithm 2), depending on
whether the nodes at this level are ordered or unordered.
The problem of finding the largest common subtree of or-
dered trees is quadratic in the number of nodes [21].

Algorithm 1 Ordered Tree Matching

function OrderedTreeMatching(Node A, Node B)
if A 6= B then return 0 . Nodes do not match
end if
m← number of children of A
n← number of children of B
Matrix M ← (m + 1)× (n + 1) . Initialize auxiliary matrix
for i← 1..m do

for j ← 1..n do
W [i, j]← TreeMatching(Ai, Bj) . Matching for children
M [i, j]← max(M [i, j−1],M [i−1, j],M [i−1, j−1] + W [i, j])

end for
end for
return M [m,n] + 1 . Return maximum number of matches

end function

For unordered nodes, we solve the problem using a linear-
programming approach, as shown in Algorithm 2. Again,
we compute for all pairs (Ai, Bj) the number of matches,
recursively. Finding the highest number of matches in the
resulting matrix M is equivalent to computing the maximum
number of matches in a weighted bipartite graph, which can
be solved in cubic time [17]. We express the problem as a
linear program and solve it using a linear-program solver,
which proved to be fast in our experiments. In Algorithm 2,
SolveLP creates the constraint matrix the input matrix,
invokes the solver, and returns the maximum number of
matches, of which we can compute the actual matching.

Algorithm 2 Unordered Tree Matching

function UnorderedTreeMatching(Node A, Node B)
if A 6= B then return 0 . Nodes do not match
end if
m← number of children of A
n← number of children of B
Matrix M ← (m)× (n) . Initialize auxiliary matrix
for i← 0..m do

for j ← 0..n do
M [i, j]← TreeMatching(Ai, Bj) . Matching for children

end for
end for
sum ← SolveLP(M) . Prepare and invoke LP solver
return sum + 1 . Return maximum number of matches

end function

Overall, we perform tree matching on each pair of trees:
(left, base), (right, base), (left, right). As a result, the nodes
of each tree are tagged with information on the nodes of the
other versions that they match.

Note that tree matching based on computing the largest
common subtree compares the input trees level-wise. Algo-
rithms that compare trees across levels are more precise but
also more complex, as we discuss in Section 6. We provide
more details on the two matching algorithms elsewhere [12].

Tree Amalgamation. Tree amalgamation takes the three
trees enriched with matching information (base, left, and
right tree) and creates a merged tree as result. To this end,
it distinguishes three kinds of nodes:
• Unchanged nodes that are contained in all three trees.
• Consistently changed or added nodes that are con-

tained in the left and the right tree, but not in the
base tree.
• Independently changed or added nodes that are con-

tained either in the left or the right tree, and not in
the base tree.

Based on this distinction, the algorithm fills the merged tree
in three steps, as shown in Algorithm 3.

Algorithm 3 Tree Amalgamation (Merge)

function Merge(Node left, Node base, Node right)
merged ← empty tree
unchanged ← {n |n ∈ base ∧ n ∈ left ∧ n ∈ right}
insert(unchanged,merged)
consistent ← {n |n /∈ base ∧ n ∈ left ∧ n ∈ right}
insert(consistent,merged)
lchanges ← {n |n ∈ left ∧ n /∈ merged ∧ n /∈ right ∧ n /∈ base}
rchanges ← {n |n ∈ right ∧ n /∈ merged ∧ n /∈ left ∧ n /∈ base}
DetectConflicts(lchanges, rchanges)
MergeChanges(merged, lchanges)
MergeChanges(merged, rchanges)

end function



Merging unchanged and consistently changed or added
nodes is rather simple, because the left and the right ver-
sion are not in conflict. (To perform two-way merges, the
first step, the insertion of unchanged nodes, is omitted.) The
challenge is to apply changes introduced by only one version.
Finding such independent changes is easy, using matching
information attached to the nodes. But, before we can ap-
ply the independent changes to the merge tree, we have to
check whether they conflict with changes of the other respec-
tive version. To this end, a list of all independent changes
of the left and right version is passed to the phase of conflict
detection and resolution.

Conflict Detection and Resolution. To detect possible
conflicts between two versions (left and right), each change
of a version is checked against each of the other version. For
brevity, we explain here only insertion conflicts; others, such
as deletion-insertion conflicts, are handled similarly [12].

An insertion conflict occurs potentially when two nodes
are inserted concurrently at the same parent node in the
merge tree. Here again, the algorithm has to distinguish be-
tween ordered and unordered nodes. For ordered nodes, the
insertion positions are decisive: if they overlap, the nodes are
flagged as conflicting. For example, including a statement s1
in a block at the first position does not conflict with another
statement s2 included later in the block; only if s1 and s2
are added to the same position, they are in conflict.

Whether unordered nodes are in conflict, depends on their
type. Some nodes must be unique in the scope of their par-
ent. So, two nodes added with the same name may be in
conflict, even though added in different positions. For exam-
ple, a class declaration must not contain multiple field decla-
rations with the same name; two independently added fields
with the same name raise a conflict. But a field does not con-
flict with a method. At this point, it becomes again apparent
that structured merge is not language-independent. Beside
information on which program elements can be permuted
safely, conflict detection depends highly on the language
specifics. Due to this fact and the sheer size, we cannot
show Algorithm DetectConflicts. Its implementation is
available on the supplementary Web site.

After conflict detection, the changes of both versions are
inserted into the merge tree, as we show in Algorithm 4.
Nodes not marked as conflicting are inserted straightfor-
wardly. A node flagged as conflicting contains a list of con-
flicting changes that belong to the other version and a list of
related changes that belong to its own version. Technically,
we use dummy nodes to store conflicting nodes; the pretty
printer displays conflicts according to this information.

Algorithm 4 Merge Changes

function MergeChanges(Tree merged, List changes)
for all Node n in changes do

if isconflict(n) ∧ ¬isprocessed(n) then
Node c← new dummy node
c.lvariant ← own(n) . Store own changes
c.rvariant ← other(n) . Store other changes
insert(c,merged)
for all Node m in own(n) ∪ other(n) do

markprocessed(m)
end for

else
insert(n,merged)

end if
end for

end function

3.3 Auto-Tuning
The algorithms presented in Section 3.2 are computation-

ally complex. In particular, computing the largest com-
mon subtree is cubic in the number of (unordered) pro-
gram elements [17]. This is a limitation of structured merge,
compared to the quadratic-time algorithm of unstructured
merge. But we do not want to abandon structured merge
entirely. Instead, we strive for a balance between employ-
ing syntactic information to detect and resolve conflicts and
attaining acceptable performance.

The idea is simple. We use unstructured merge as long as
no conflicts are detected. The rationale is that, in software
merge, usually only few parts of a program are changed and
even fewer participate in conflicts, as postulated by Mens’
90/10 rule [16]. So, for most parts of a program, we can
save the computation time for an expensive tree matching.
However, this way, we may also miss conflicts due to the im-
precision of unstructured merge. This is the price we pay for
improving performance, but our experiments suggest that
the price is acceptable, as we discuss in Section 4. Once un-
structured merge detects conflicts, we use structured merge
selectively on a per-file basis (i.e., for triples of file versions)
instead. This way, we take advantage of the capabilities of
structure merge to detect and resolve conflicts.

4. EVALUATION
To evaluate our approach, especially the balance between

precision and performance that we strive for with auto-
tuning, we implemented a prototype of a structured-merge
tool, called JDime, and we conducted a series of experiments
based on 8 real-world software projects. The tool as well as
all merge scenarios and experimental data are available at
the supplementary Web site.

4.1 Implementation
We have implemented JDime on top of the JastAddJ

compiler framework.1 The implementation was straightfor-
ward because JastAddJ provides excellent extension capa-
bilities. The foundation for our artifact representation are
the abstract-syntax trees generated by JastAddJ. For tech-
nical reasons, we had to build our own tree representation on
top of it. We implemented the matching and merging algo-
rithms straightforwardly by means of visitors and aspects.
For unordered tree matching, we used the GLPK solver.2

Information on which program elements can be reordered
safely was included based on the Java language specifica-
tion. We also took care of the fact that Java code usually
comes with comments: They are extracted during parsing
and put back in after the merge.

4.2 Hypotheses and Research Questions
To make our expectations precise, we pose four hypotheses

and a research question:
H1 The conflicts reported by unstructured merge differ from

the ones reported by structured merge in terms of fre-
quency, size, and kind.

H2 Unstructured merge is substantially faster than struc-
tured merge.

H3 Auto-tuning does not miss many conflicts detected by
purely structured merge.

1http://jastadd.org/web/jastaddj/
2http://www.gnu.org/software/glpk/

http://jastadd.org/web/jastaddj/
http://www.gnu.org/software/glpk/


Table 1: Overview of the sample projects (all from
http://sourceforge.net/)

Project Domain Merge Lines
scenarios of code

DrJava Development environment 9 89 K
FreeCol Turn-based strategy game 10 86 K
GenealogyJ Editor for genealogic data 10 56 K
iText PDF library 8 71 K
jEdit Programmer’s text editor 8 107 K
Jmol Molecule viewer 7 135 K
PMD Bug finder 10 71 K
SQuirrelSQL Graphical SQL client 10 218 K

H4 Auto-tuning is substantially faster than purely struc-
tured merge.

R1 What fraction of a merge scenario (in terms of files) can
be handled by unstructured merge in that no conflicts
are reported? In other words, can we confirm Mens’
postulate that 90 % of merge scenarios can be handled
properly with unstructured merge?

4.3 Sample Projects
We selected 8 open-source Java projects that we have used

in the past to assess and compare merge approaches [1].3

The projects are of reasonable but varying sizes, from dif-
ferent domains, and have a substantial version history. For
each project, there are multiple merge scenarios that give
rise to conflicts [1]. Technically, a merge scenario is a triple
consisting of a base, a left, and a right version, whereby the
base version is the common ancestor of the other two.

In Table 1, we list information on the sample projects
including name, domain, number of merge scenarios, and
number of lines of code. Each of the 8 projects comes with
7 to 10 merge scenarios. All 72 merge scenarios together
consist of more than 17 million lines of Java code. They are
available and documented at the supplementary Web site.

4.4 Methodology
Our method of evaluation was twofold. First, we com-

pared unstructured and structured merge (with and with-
out auto-tuning) with regard to conflict detection and per-
formance. Second, we analyzed a subset of conflicts man-
ually in order to learn more about the capabilities of un-
structured and structured merge. Overall, we applied our
merge tool to each of the 72 merge scenarios thrice: using
unstructured merge, purely structured merge, and struc-
tured merge with auto-tuning. For each merge pass, we
measured the execution time 10 times and computed the
median, and we counted the number of reported conflicts
and conflicting lines of code. We conducted all measure-
ments on a desktop machine (AMD Phenom II X6 1090T,
with 6 cores @3.2 GHz, and 16 GB RAM) with Gentoo
Linux (Kernel 3.2.7) and Oracle Java HotSpot 64-Bit Server
VM 1.6.0 31.

4.5 Results
In Figure 3, we depict the average number of conflicts

for each project as reported by unstructured merge, purely
structured merge, and structured merge with auto-tuning.

3We had to exclude 2 projects and 8 merge scenarios due to
technical problems with the JastAddJ implementation; the
problems are not related to our approach.
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Figure 3: Number of reported conflicts
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Figure 4: Number of conflicting lines of code
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Figure 5: Merging time in seconds

Similarly, in Figure 4, we depict the respective numbers of
lines of code involved in conflicts. Finally, in Figure 5, we
depict the times consumed by three merge approaches. Ta-
ble 2 shows the experimental data for all merge scenarios.
All raw data, on a per-file-scenario basis, are available at the
supplementary Web site.

At a glance, the numbers and sizes of conflicts reported
by unstructured merge differ significantly from the ones re-
ported by structured merge. In almost all projects, struc-
tured merge reports fewer and smaller conflicts. Interest-
ingly, purely structured merge and structured merge with
auto-tuning report almost similar numbers of conflicts, which
means that only few conflicts are missed due to the selec-
tive use of unstructured merge (apart from the fact that
the reported sets of conflicts are equal). With regard to
performance, structured merge is substantially slower than
unstructured merge: unstructured merge is up to 71 times

http://sourceforge.net/


faster, 15 times on average. But structured merge with auto-
tuning is up to 12 times faster than purely structured merge,
5 times on average.

4.6 Discussion

Hypotheses & research questions. Based on the results,
we can confirm hypothesis H1: The conflicts reported by
unstructured merge differ significantly in terms of number,
size, and kind from the ones reported by structured merge.
In all projects but iText, structured merge is able to resolve
more merge conflicts than unstructured merge. On average,
structured merge reports 39 % of the number of conflicts
and 24 % of the number of conflicting lines of unstructured
merge. Analyzing a random subset of conflicts, we found
that these numbers are mainly due to ordering conflicts that
cannot be handled properly in unstructured merge. Project
iText is an outlier in that structured merge reports signif-
icantly more conflicts. A manual inspection revealed that
this is due to a renaming in the directory structure in the
project. This leads the three-way merge to miss a version in
the triple, which results in one conflict per file with unstruc-
tured merge and many conflicts at the syntactic level with
structured merge. A similar problem occurs in FreeCol,
although less serious.

Interestingly, our experiments support hypothesis H3: The
conflicts reported by purely structured merge are largely
the same as the ones reported by using the auto-tuning ap-
proach. That is, the strategy to use unstructured merge as
long as no conflicts are detected, and to switch upon detec-
tion of a conflict to structured merge, seems to suffice. Not
many conflicts are being missed: up to 26 (in FreeCol)
and 2 on average. Considering the performance gains and
the state of the art, this seems acceptable.

Furthermore, our experiments confirm hypothesis H2: In
all projects, structured merge is substantially slower than
unstructured merge. Unstructured merge is up to 71 times
faster than structured merge, 15 times on average. This re-
sult does not need much interpretation. Although we could
optimize JDime further, we cannot escape the complexity
of the algorithms involved in the structured merge process.

Also, we can confirm hypothesis H4: structured merge
with auto-tuning is faster than purely structured merge in
almost all projects: up to 12 times and 5 times on average.
In the projects GenealogyJ, jEdit, PMD, and SQuir-
relSQL, it is even in the order of the time of using un-
structured merge. So, auto-tuning seems to be, at least,
promising to hit a sweet spot between precision and perfor-
mance. In Jmol and iText, very large files diminish the
relative benefit of auto-tuning (up to 36 000 nodes per file
and 1 000 nodes per level).

Finally, as for research question R1, we found that 21 %
of the changed files cannot be merged with unstructured
merge—twice as many files as predicted by Mens. With
structured merge, this fraction can be decreased to 15 %.
So, we cannot confirm that 90 % of merge scenarios can be
handled properly with unstructured merge.

Runtime complexity. In Figure 6, we compare the file size
in terms of lines of code (mean number of lines of code of
the file versions involved in a merge) and the time needed
for the merge of the file versions in question using unstruc-
tured and purely structured merge. Apart from two groups
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Figure 6: File size (in number of lines of code) versus
merge time (in milliseconds)
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Figure 7: Average number of nodes per syntax-tree
level versus merge time (in milliseconds)

of outliers at files sizes of 2 000 and of 6 000 lines of code,
the merge time grows smoothly with the file size. While
the group at 6 000 can be explained with the cubic runtime
complexity of the algorithms involved, we were curious as to
why there are so many outliers around file sizes of 2 000 lines
of code. An analysis revealed that these outliers stem from
merges that are actually two-way, mainly due to a renam-
ing in project iText (see above). So, two-way merges are
substantially more expensive than three-way merges, and
the corresponding merge time grows more quickly than for
three-way merges. Note that, in the color version of the
paper, data points related to two-way merges are displayed
with alternative colors.

In our quest of understanding the merits of structured
merge, we computed a number of further statistics such as
the average number of nodes, depths, and widths of the syn-
tax trees involved in a merge. We found that the number
of nodes per syntax-tree level is a more accurate measure
than lines of code: The merge time grows smoothly, poly-
nomially with the number of nodes per syntax-tree level, as
displayed in Figure 7. Notice that the outlier group of Fig-
ure 6 moved to the right, which demonstrates that small files
may be more complex to merge than large files (when there
are many nodes per level in the syntax trees).

Furthermore, we were interested in the role of conflicts
for the time needed for merging. Our analysis revealed that
almost all outliers of merge times (> 50 000 milliseconds)
stem from structured merges that reported conflicts. So,
the insight is that structured merge is able to resolve many
conflicts that unstructured merge is not able to handle, and



that structured merge is able to do so in acceptable time.
But, if structured merge encounters conflicts it cannot re-
solve, its time consumption increases substantially.

Further observations. To learn more about the capabili-
ties of structure merge, we inspected a subset of the conflicts
manually. Next, we report the most interesting observations.

Tree matching is at the heart of structured merge. Its pre-
cision is much higher than that of unstructured merge, but
it is not perfect. We found situations in which structured
merge was not able to resolve a conflict, even though it could
be resolved manually. The reason is that algorithms based
on computing largest common subtrees consider only corre-
sponding tree levels. To establish a matching across different
levels (e.g., to detect shifted code), one can use algorithms
that compute largest common embedded subtrees, but they
are generally APX -hard [22].4 It will be an interesting av-
enue of further research to incorporate even such complex
algorithms during auto-tuning, including approximations.

Furthermore, we found that most conflicts raised by un-
structured merge are related to the order of program ele-
ments. These conflicts can be handled by structured merge—
be it in terms of automatic conflict resolution, as in Figure 1,
or in terms of uncovering hidden conflicts, as in Figure 2. We
also found that conflicts reported by structured merge are
typically fine-grained and align with the syntactic program
structure. With unstructured merge, the conflicts are typi-
cally larger and often crosscut the syntactic program struc-
ture, which makes them harder to track and understand.
Project iText is an extreme case: due to a renaming in the
project’s directory structure, often one component of the
merge triple is missing. In such cases, the three-way merge
becomes actually a two-way merge. For unstructured merge,
we get a large conflict per file; for structured merge, we get
many small conflicts. So, two-way merges challenge struc-
tured merge, which shall be an avenue of further research.

4.7 Threats to Validity
In empirical research, a threat to internal validity is that

the data gathered may be influenced by (hidden) variables—
in our case, variables other than the kind of merge. Due to
the simplicity of our setting, we can largely rule out such
confounding variables. We applied unstructured and struc-
tured merge to the same set of merge scenarios and counted
the number of conflicts and lines of conflicting code that oc-
curred in the merged code. We performed all performance
measurements repeatedly in order to minimize measurement
bias. Furthermore, we used a comparatively large sample to
rule out confounding variables such as programming experi-
ence and style.

A common issue is whether we can generalize our con-
clusions to other projects, of other domains and written in
other languages. To increase external validity, we collected
a substantial number of projects and merge scenarios. We
argue that the simplicity of our setting as well as the ran-
domized sample allow us to draw conclusions beyond the
projects we looked at. Our findings should even apply to
languages that are similar to Java (e.g., C#).

4The set of APX problems is a subset of NP optimiza-
tion problems for which polynomial-time approximation al-
gorithms can be found.

5. RELATED WORK

Structured Merge. After the seminal work of Westfech-
tel [20] and Buffenbarger [5], many proposals of structured-
merge techniques have been made. On the one hand, there
are proposals for structured-merge tools that are specific to
mainstream programming languages such as Java [2] and
C++ [7]. On the other hand, there are many proposals
of structured two-way and three-way merge techniques for
modeling artifacts [11,15,19]—a comprehensive bibliography
is available on the Web.5 The approaches are mostly based
on graphs, which allow precise merging but harm scalabil-
ity. So, it is unclear how they perform on projects of the size
of our case studies. Although aiming at modeling, the dif-
ferent representations and merge algorithms are promising
input for our auto-tuning approach. Additionally, renaming
analysis could be integrated to further improve the precision
of tree matching [8].

Semistructured Merge. Semistructured merge aims at an-
other sweet spot: one between precision in conflict handling
and generality in the sense that many artifact types can
be processed [1]. Much like structured merge, semistruc-
tured merge represents artifacts as trees. But an artifact is
only partly exposed in the tree, the rest is treated as plain
text—that is why it is called ‘semistructured’. This way,
a certain degree of language independence can be achieved
by a generic merge algorithm that merges artifacts by tree
superimposition and that concentrates on ordering conflicts.
Language-specific information is fed into the merge engine
via a plugin mechanism. Semistructured merge is less pre-
cise than structured merge because only parts of an artifact
are treated structurally. For example, bodies of Java meth-
ods are treated as plain text and merged using a line-based
approach. Our experiments with an existing implementa-
tion of semistructured merge6 confirm it to perform between
structured and unstructured merge in terms of conflict hand-
ling (it is able to resolve only 50 % of conflicts, compared to
structured merge), but even significantly slower than struc-
tured merge (on average, 5 times slower in our sample merge
scenarios). At first sight, the latter finding is surprising, but
semistructured merge was not designed with performance in
mind and, possibly, the language independence attained by
the plugin mechanism has to be paid for in terms of perfor-
mance penalties. Finally, auto-tuning was not considered in
semistructured merge, but could be combined with it.

Other Approaches. A trace of which change operations
gave rise to the different versions to be merged can help
in the detection and resolution of conflicts [6, 10, 13, 18].
However, such an operation-based approach is not applicable
when tracing information is not available, which is common
in practice. Other approaches require that the documents
to be merged come with a formal semantics [4, 9], which is
rarely feasible in practice; even for mainstream languages
such as Java, there is no formal semantics available. Fi-
nally, approaches that rely on model finders and checkers
for semantic merge have serious limitations with regard to
scalability [14].

5http://pi.informatik.uni-siegen.de/CVSM/
6http://http://fosd.net/SSMerge

http://pi.informatik.uni-siegen.de/CVSM/
http://http://fosd.net/SSMerge


6. CONCLUSION
We offer an approach to software merging that aims at a

proper balance between precision and performance. First,
it represents software artifacts as trees and merges them us-
ing tree matching and amalgamation. Second, it relies on
auto-tuning to improve the performance. The idea is to use
unstructured merge as long as no conflicts occur, and to
switch to the more precise structured merge when conflicts
are detected. This way, expensive differencing and merge
operations are used only in relevant situations. The auto-
tuning approach may miss critical conflicts due to the impre-
cision of the unstructured merge involved, but experiments
suggest that this happens only to an acceptable degree.

We developed the tool JDime, which implements our ap-
proach for Java, and applied it in a series of experiments
on 8 real-world projects, including 72 merge scenarios with
over 17 million lines of code. We found that, in almost all
projects, structured merge reports fewer and smaller con-
flicts than unstructured merge, and structured merge is sub-
stantially slower. Interestingly, purely structured merge and
structured merge with auto-tuning report almost similar sets
of conflicts, but the auto-tuning approach is up to 12 times
faster, 5 times on average.

Our results give us confidence that auto-tuning is a viable
approach to balancing precision and performance in software
merging. However, we explored only a subset of possible op-
tions. For example, we base our approach on syntax trees
and algorithms that compute largest common subtrees. But
other representations and algorithms are possible. Several
approaches —especially, in the modeling community [11,
19]— represent software artifacts as graphs, for example, in-
corporating the context-sensitive syntax [20]. While graph
algorithms are computationally more complex than corre-
sponding tree algorithms, they are also more precise. An
interesting issue is how we can exploit the wealth of rep-
resentations and algorithms during the merge process. We
believe that, with the auto-tuning approach, we have made
a step in the right direction. Future approaches of auto-
tuning shall be more flexible in adjusting precision. The
choice of the amount of information used as well as of the
algorithms involved could be guided by knowledge collected
on-line during the merge process. For example, it is promis-
ing to selectively use graph-based algorithms to resolve con-
flicts that tree-based algorithms cannot resolve, or to try
to detect abnormal situations such as the many two-way
merges in iText and to react on-the-fly by selecting a more
suitable algorithm.
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Table 2: Experimental data (LOC: lines of code; UM: unstructured merge; SM: purely structured merge;
AT: structured merge with auto-tuning)

Project Revision # LOC # Files # Conflicts # Conflicting lines Merge time in milliseconds

UM SM AT UM SM AT UM SM AT

DrJava rev3734-3786 104652 676 17 6 6 99 163 163 5556 95582 39398
DrJava rev3734-3788 106196 680 18 6 6 131 163 163 5557 100648 44350
DrJava rev3734-3807 104218 671 28 4 4 876 73 73 5663 69549 11692
DrJava rev4989-5004 134137 697 10 12 11 499 125 95 6029 95760 22869
DrJava rev4989-5019 147840 727 27 1 1 160 2 2 6186 83276 13749
DrJava rev4989-5044 169262 798 48 1 0 265 2 0 6278 81310 16619
DrJava rev4989-5058 152126 748 13 1 0 133 4 0 6163 81592 14812
DrJava rev5319-5330 111496 614 15 4 4 236 10 10 6158 145662 68712
DrJava rev5319-5332 111336 613 11 3 3 165 8 8 6150 145734 70869
FreeCol rev5884-5962 133201 587 5 7 6 363 17 15 5160 74649 7307
FreeCol rev5884-6055 150074 637 14 8 8 1094 328 328 5285 75085 9579
FreeCol rev5884-6110 151883 645 18 9 9 1121 621 621 5276 75268 9600
FreeCol rev5884-6265 162731 682 30 15 14 1766 684 680 5355 75738 10803
FreeCol rev5884-6362 169143 701 42 45 24 2630 863 806 5458 78238 13333
FreeCol rev5884-6440 195346 833 257 243 223 5784 2383 2330 5924 87671 34643
FreeCol rev5884-6616 205104 897 480 403 383 6358 2788 2735 6157 89137 47010
FreeCol rev5884-6672 208381 925 488 404 384 6884 3044 2991 6205 90245 48095
FreeCol rev5884-6742 211313 943 497 431 405 7985 3230 3162 6220 91477 48572
FreeCol rev5884-6843 214783 990 511 438 412 9229 3494 3426 6219 87880 49211
GenealogyJ rev5531-5561 80131 654 1 0 0 3 0 0 4017 54710 4513
GenealogyJ rev5531-5725 95691 752 15 5 5 89 75 75 3950 52353 4728
GenealogyJ rev5537-5610 84207 640 68 23 23 556 188 188 4108 54049 9364
GenealogyJ rev5537-5673 84207 640 68 23 23 556 188 188 4032 52881 9402
GenealogyJ rev5676-6013 88515 688 1 0 0 3 0 0 3929 52942 4310
GenealogyJ rev5676-6125 92715 704 1 0 0 3 0 0 3848 52995 4323
GenealogyJ rev6127-6244 75394 555 2 1 1 30 16 16 4445 61138 5955
GenealogyJ rev6127-6310 79542 578 5 2 2 56 38 38 4455 61860 6218
GenealogyJ rev6127-6410 81868 592 5 1 1 94 22 22 4504 61223 5794
GenealogyJ rev6127-6531 85887 620 6 1 1 106 22 22 4451 59632 6546
iText rev2818-3036 178300 687 55 65 60 2897 569 451 4501 105082 18275
iText rev2818-3191 192288 841 178 1834 1834 115577 6284 6284 5949 135344 130619
iText rev2818-3306 204662 929 234 2097 2097 133913 6943 6943 7206 366823 345364
iText rev2818-3392 210521 966 249 2263 2263 138768 7791 7791 7851 406303 389471
iText rev2818-3560 220093 1007 261 2098 2098 142685 7391 7391 7984 430900 426416
iText rev2818-3625 219242 1033 264 2358 2358 136078 7825 7825 7929 411803 404812
iText rev2818-3988 222996 1067 252 2059 2059 135368 7794 7794 7790 387069 404926
iText rev2818-4022 222640 1055 235 2005 2005 132585 7067 7067 8091 463090 407869
jEdit rev4676-4998 147473 614 3 0 0 28 0 0 3584 49316 4033
jEdit rev16588-16755 136345 579 2 2 2 9 7 7 5405 76507 6840
jEdit rev16588-16883 141584 585 2 1 1 9 2 2 5411 75910 6811
jEdit rev16588-17060 144900 596 3 2 2 24 4 4 5420 76301 6921
jEdit rev16588-17316 148189 613 3 2 2 20 4 4 5377 75085 6926
jEdit rev16588-17492 151264 628 3 2 2 20 4 4 5375 76129 6876
jEdit rev16588-17551 155592 644 3 2 2 20 4 4 5381 77070 6932
jEdit rev16883-16964 116297 545 20 7 7 192 100 100 5435 73973 7359
Jmol rev11338-11438 221293 546 9 3 2 350 20 10 4721 299620 211114
Jmol rev11338-11538 235825 570 25 12 11 521 67 57 4786 297964 213165
Jmol rev11338-11638 258871 646 35 17 16 667 78 68 4893 288328 208357
Jmol rev11338-11738 273340 701 57 35 34 1070 203 193 4970 281843 203392
Jmol rev11338-11838 283246 781 78 46 45 1637 333 323 5068 329436 270839
Jmol rev11338-11938 286014 795 87 48 47 1703 344 334 5080 344811 277888
Jmol rev11338-12038 292234 826 100 53 53 1869 593 593 5041 355751 289234
PMD rev5929-6010 111295 1257 1 0 0 5 0 0 4155 42865 4371
PMD rev5929-6135 125151 1298 3 2 2 22 17 17 4136 43667 4875
PMD rev5929-6198 129201 1360 12 4 4 784 342 342 3407 34931 4635
PMD rev5929-6296 132680 1391 14 6 6 734 349 349 3360 33896 4833
PMD rev5929-6425 145903 1495 14 6 6 727 349 349 2842 29597 4640
PMD rev5929-6595 149713 1555 20 12 12 670 462 462 2814 29879 5373
PMD rev5929-6700 150883 1556 24 15 15 1003 539 539 2836 30182 5507
PMD rev5929-6835 153686 1629 21 16 16 939 506 506 2775 30094 5419
PMD rev5929-7018 156538 1651 27 18 18 1053 510 510 2793 28456 6169
PMD rev5929-7073 158929 1674 32 19 19 977 498 498 2817 30117 6400
SQuirrelSQL rev4007-4051 169033 1734 1 0 0 4 0 0 16938 215394 18358
SQuirrelSQL rev4007-4103 187571 1827 7 1 1 299 7 7 16968 222290 19273
SQuirrelSQL rev4007-4212 216842 1997 22 8 8 1384 108 108 16831 213916 21380
SQuirrelSQL rev4007-4321 237495 2089 31 9 9 3862 164 164 16906 216931 23217
SQuirrelSQL rev4007-4394 254834 2182 36 12 12 4218 357 357 16902 212638 23996
SQuirrelSQL rev4007-4516 266666 2292 42 15 15 4258 414 414 16955 224109 25483
SQuirrelSQL rev4007-4908 309397 2880 50 18 18 6111 420 420 16644 208173 26564
SQuirrelSQL rev4007-5081 314760 2916 52 20 20 4574 615 615 16524 209951 26406
SQuirrelSQL rev5082-5155 231115 2398 3 1 1 17 50 50 23351 286927 25940
SQuirrelSQL rev5082-5351 270787 2620 7 3 3 194 9 9 23275 292464 27264


