Eye-Tracking Insights into the Effects of Type Annotations and
Identifier Naming

Nils Alznauer Norman Peitek Youssef Abdelsalam
University of Bern Saarland University Saarland University
Switzerland Germany Germany
Annabelle Bergum Marvin Wyrich Sven Apel
Saarland University, Graduate School Saarland University Saarland University
of Computer Science Germany Germany

Germany

Abstract

Understanding and modifying source code is a cognitively demand-
ing task shaped by how the code is structured and presented. Prior
work has shown that both identifier naming and type annotations
can influence program comprehension, yet findings on their in-
dividual effects remain mixed. This study focuses on how these
two aspects interact in influencing program comprehension, visual
attention, and subjective perceptions of code comprehensibility.

We conducted a controlled eye-tracking experiment with 40 par-
ticipants who were asked to understand 20 Python code snippets.
Our results reveal an interesting dichotomy between objective
and subjective findings. Objectively, type annotations slightly slow
down developers, but otherwise have almost no statistically signifi-
cant effect on behavior, visual attention, or subjective perceptions,
even when combining them with the meaningfulness of identifier
naming. Subjectively, however, nearly all participants felt that type
annotations helped with program comprehension.

Overall, our findings suggest that type annotations—and their
interaction with identifier names—do not generally introduce mea-
surable overhead, but depending on the code snippet and individual
participant, may increase developers’ sense of certainty and clarity.

CCS Concepts

« Human-centered computing — Empirical studies in HCI; HCI
design and evaluation methods; « Software and its engineering;

Keywords

program comprehension, type annotations, identifier naming, eye
tracking, controlled experiment

ACM Reference Format:

Nils Alznauer, Norman Peitek, Youssef Abdelsalam, Annabelle Bergum,
Marvin Wyrich, and Sven Apel. 2026. Eye-Tracking Insights into the Effects
of Type Annotations and Identifier Naming. In 34th IEEE/ACM International
Conference on Program Comprehension (ICPC °26), April 12-13, 2026, Rio de
Janeiro, Brazil. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/
3794763.3794801

This work is licensed under a Creative Commons Attribution 4.0 International License.
ICPC 26, Rio de Janeiro, Brazil

© 2026 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2482-4/2026/04

https://doi.org/10.1145/3794763.3794801

1 Introduction

Imagine spending over half your working day trying to understand

code—this is the reality for most developers, with around 58%-70%

of their time dedicated to code comprehension activities [22, 49].

Despite this, and although research into program comprehension

has existed for decades [48], we still know surprisingly little about

the cognitive processes involved during code comprehension [42].
This lack of understanding is particularly evident regarding

which aspects of the code influence a developer’s understanding.
In the past, the software engineering community suspected type
annotations to influence program comprehension [6, 18, 46]. Fur-
thermore, research suggests that meaningful identifier names posi-
tively influence program comprehension [11, 13, 19, 35, 39]. What
remains unclear is how the interplay of meaningful identifier names
and type annotations affects program comprehension.

To shed light on this issue, we conducted an eye-tracking exper-
iment that complements conventional behavioral measures with
visual and subjective data, offering a comprehensive view of devel-
opers’ comprehension processes [40]. We explore how the presence
or absence of type annotations influences program comprehension
and what role meaningful identifier names play. Our study involved
40 participants whose visual attention and comprehension strate-
gies we analyzed, focusing on reading order and viewing behavior
while understanding code snippets.

Our findings reveal that type annotations slightly slow develop-
ers, yet have little measurable influence on program comprehension—
either alone or in combination with identifier names. Surprisingly,
participants nevertheless favored the presence of type annotations,
perceiving them as helpful despite their limited effects. An analysis
of fixation patterns further reveals that attention to type annota-
tions varies considerably across both snippets and participants,
hinting at additional factors shaping their perceived usefulness.
In summary, we make the following contributions:

e We design and conduct a multi-modal experiment that inves-
tigates how type annotations and meaningful identifier names
individually and jointly influence program comprehension.

e We provide empirical evidence that both factors have limited
measurable effects on comprehension, yet are perceived by de-
velopers as helpful and important.

e We share a complete online replication package! containing the
experiment design, raw data, and analysis scripts.

!https://github.com/brains-on-code/effect- of-type-annotations

https://orcid.org/0009-0008-2724-1708
https://orcid.org/0000-0001-7828-4558
https://orcid.org/0009-0009-4444-765X
https://orcid.org/0000-0002-9953-4904
https://orcid.org/0000-0001-8506-3294
https://orcid.org/0000-0003-3687-2233
https://doi.org/10.1145/3794763.3794801
https://doi.org/10.1145/3794763.3794801
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3794763.3794801
https://github.com/brains-on-code/effect-of-type-annotations

ICPC 26, April 12-13, 2026, Rio de Janeiro, Brazil

2 Background and Related Work

In this section, we introduce the concepts that frame our study—
program comprehension, eye tracking, and type annotations—and
discuss prior work that informs our investigation.

2.1 Program Comprehension

Program comprehension is central to software engineering, since it
takes up most of the development time spent on code [22, 49]. Pro-
gram comprehension is essential for various tasks, such as adding
new features, testing, and fixing bugs. Measuring program com-
prehension is inherently difficult, as it is an internal cognitive pro-
cess [40]. Eye tracking, therefore, has become an established method
to study program comprehension [25, 38] providing observable in-
sights into developers’ cognitive processes [1].

According to Peitek [27] and based on the work of Exton [16],
program comprehension “describes the transition in which a pro-
grammer understands an existing implementation formed in source
code and constructs an analogous mental model”. In other terms,
it “describes a person’s intentional act and degree of accomplish-
ment in inferring the meaning of source code” [47]. The two main
program comprehension strategies developers use are bottom-up
comprehension and top-down comprehension. Bottom-up compre-
hension is the fundamental program comprehension strategy [32].
In bottom-up comprehension, developers read code line by line,
forming a mental model from combining and abstracting from the
details. This method is thorough but time-consuming and cogni-
tively demanding [43]. In contrast, during top-down comprehen-
sion, developers use their domain and contextual knowledge to
infer the code’s intent [43], allowing them to skip irrelevant parts.
This strategy is faster and less cognitively taxing than bottom-up
comprehension, but requires semantic cues in the code and domain
knowledge [7].

A critical component of whether developers can use top-down
comprehension or have to fall back to bottom-up comprehension are
identifier names. Casalnuovo et al. [13] observed that programmers
prefer predictable and sensible identifier names, indicating better
program comprehension with such names. Hofmeister et al. [19]
reported that using whole words as identifier names improves pro-
gram comprehension by 19%, reducing the cognitive load, especially
with type annotations. Siegmund et al. [43] observed higher neural
efficiency during top-down comprehension when compared with
bottom-up comprehension. Scanniello et al. [34] noted that this
benefit does not extend to bug fixing, though. In the same vein,
Schankin et al. [35] found that descriptive names help identify se-
mantic defects 14% faster but offer no advantage for syntax error
detection. In this paper, we aim to trigger both comprehension
strategies in separate conditions to understand the effect of type
annotations.

2.2 Eye Tracking in Program Comprehension

Eye tracking measures visual attention by observing eye move-
ments and is widely used in many research fields [12]. It is beneficial
in program comprehension research since visual attention activates
cognitive processes essential for program comprehension [1, 37].
Eye tracking helps measure cognitive load, processes, and strategies
developers use to understand code [1, 2, 9, 10, 31].

Nils Alznauer, Norman Peitek, Youssef Abdelsalam, Annabelle Bergum, Marvin Wyrich, and Sven Apel

Eye tracking provides rich data that can be analyzed at multiple
abstraction levels [37]. First-order data comprise raw measurements
such as gaze coordinates, duration, and pupil size. From these,
researchers derive second-order data like fixations and saccades [12],
and third-order data such as their counts and durations. These
measures are typically aggregated over predefined code regions,
referred to as Areas of Interest (AOls). Finally, fourth-order data
combine AOI-derived measures into more complex analyses, such
as scan paths and transition matrices.

Several eye-tracking studies on program comprehension are re-
lated to our work. In particular, Peitek et al. [30] investigated the
reading order of programmers based on the linearity of code snip-
pets. They observed that non-linear source code causes unneces-
sary eye movements, slowing down programmers. Recent research
by Andaloussi et al. [1] used eye tracking to enhance cognitive load
estimation through machine learning, identifying pupil-based and
saccade-based measures as most significant.

2.3 Type Annotations

The type of a variable is fundamental in many traditional program-
ming languages for error checking and optimization. The constrain-
ing of variables to specific types may also benefit the developers,
as it is hypothesized to aid their understanding and effectively
minimize errors [6, 18].

There are two main approaches to type annotations. In statically
typed languages (e.g., Java or C++), type annotations are mandatory,
and variable types are checked at compile time, allowing errors
to be detected before running the program. In dynamically typed
languages (e.g., Python or JavaScript), type annotations are not
required, and variable types are checked at runtime, providing
greater flexibility but potentially risking runtime errors.

Notably, Python allows optional type annotations, which was
introduced in version 3.52. These optional type annotations allow
developers to add type information where helpful, without sacrific-
ing the benefits of dynamic typing. Type information can be used
in Python for variables, function parameters and return types, and
classes.

Several studies have investigated the effect of type annotations
on program comprehension. Specifically, Hanenberg et al. [18] ex-
amined whether static type systems aid in program comprehension.
They observed programmers fixing bugs and found mixed results.
While type errors were easier to fix with static type systems, there
was no significant improvement in fixing semantic errors. Bogner
and Merkel [6] compared JavaScript and TypeScript noting better
code quality in TypeScript without a clear impact on either bug
proneness or bug resolution. Research has been focused on the use
of static type systems, which motivated Okon and Hanenberg [26]
to designing a study that biased the tasks toward dynamic type sys-
tems. Notably, despite the purposefully introduced bias, their results
were mixed, with half of the tasks showing static type systems to be
beneficial. Spiza and Hanenberg [46] investigated whether type an-
notations alone improved the usability of APIs without static type
checking. They observed that, while type names generally helped,

2PEP 484, https://peps.python.org/pep-0484/

https://peps.python.org/pep-0484/

Eye-Tracking Insights into the Effects of Type Annotations and Identifier Naming

incorrect type names significantly hindered comprehension, indi-
cating that type annotations are important for understanding and
that inaccurate information can mislead programmers.

In a nutshell, while there are several indicators that type annota-
tions can be helpful for program comprehension, in some contexts
on a behavioral level, it is still unclear why the effect is different in
different scenarios. In this paper, we specifically address this knowl-
edge gap by investigating not only the effect of type annotations on
a behavioral level, but also observing how it changes programmers’
visual attention in addition to their subjective viewpoints.

3 Study Design

In this section, we describe the design of our study investigating the
effect of type annotations and the combination of type annotations
and identifier names on program comprehension.

3.1 Research Goals

Our primary focus is on answering the following research question:

How do type annotations influence program compre-

RQ hension?

Since type annotations may have less of an influence on program
comprehension in a well-documented and well-structured code
base, we first explore the extent to which type annotations help
with program comprehension. To this end, we create a set of code
snippets that forces the participant to understand the code bottom-
up, instead of providing much contextual information, such as is
the case with meaningful variable names and code comments.

To obtain a more comprehensive understanding, we also investi-
gate how the presence of type annotations and meaningful identifier
names jointly affect program comprehension:

How does the combination of type annotations and
identifier names influence program comprehension?

RQ2

We chose a two-by-two factorial design as illustrated in Figure 1.
For both research questions, we measure program comprehension
in terms of a participant’s behavioral responses (correctness and
time), their visual attention through linearity metrics, and their sub-
jective rating of the code’s difficulty. We describe the operational-
ization of all constructs in more detail in the following Section 3.2.

3.2 Study Plan

We opted for a mixed-subject design using both a within-subject and
between-subject approach. The within-subject design is chosen for
the independent variable type annotation to obtain a better under-
standing of how type annotations influence each participant’s pro-
gram comprehension. A participant, who might have been slower
before, might become faster with type annotations and vice versa.
The between-subject design is chosen for the independent variable
identifier names. In simple terms, all participants have seen code
with and without type annotations. Additionally, some of the partic-
ipants always saw obfuscated identifier names, while others always
saw meaningful identifier names (randomized group assignment).
This design allows us to investigate how the participants’ program
comprehension is influenced by the type annotations when either
the variables are meaningful or not.

ICPC °26, April 12-13, 2026, Rio de Janeiro, Brazil

3.2.1 Independent Variables. The two independent variables, type
annotations and identifier names, each have two levels: type an-
notations can either be present or not, and the choice of variable
name can either be meaningful or obfuscated.

Type Annotations. We limit type annotations to simple data
types: int, float, str, bool,and list.For list, all possi-
ble combinations with the other simple types are considered (e.g.,
list[int]). Type annotations are used for variables, the function
return type, and the parameter input types. In the condition of type
annotations being available, we always added type annotations to
all present variables. We did not include complex or composite
types as they typically require more complex code snippets, which
would have introduced numerous additional confounding factors.

Identifier Names. In our operationalization, identifier names can
either be meaningful or obfuscated. We define meaningful iden-
tifier names as names that consist of words found in a dictio-
nary and properly explain the usage of the identifier while at the
same time not giving away the whole function’s purpose (e. g.,
array_to_sort). This way, the participant is provided with con-
text about the identifier’s intended usage and functionality. When
an identifier name did not provide sufficient information, we ex-
tended it to add more context by using underscores as suggested
by Binkley et al. [5].

We define an obfuscated identifier as consisting only of letters
in their alphabetical order without any underscores. To make the
code snippets comparable using eye-tracking measures between ob-
fuscated and meaningful identifier names, all obfuscated identifier
names are the same length as the meaningful ones. Furthermore,
we aimed to make all identifiers easily distinguishable to the par-
ticipant [19]. For this reason, we created the obfuscated identifier
names by starting with the first identifier name, taking its length x
in its meaningful form, and using the first x letters of the alphabet
to create the obfuscated identifier name. For example, the first ob-
fuscated variable with a length of 6 characters would be abcdef.
The next identifier name is taking the next number of letters from
the alphabet. When we reached the end of the alphabet, we started
again at the beginning. This way, we ensure that no two identifier
names are the same or look similar.

3.2.2 Dependent Variables. The dependent variables are the mea-
sures used to evaluate the influence of both independent variables.
We measure program comprehension with behavioral, visual atten-
tion, and subjective measures.

Behavioral Measures. Our basic measures of program compre-
hension are the response time and the correctness since they can
be objectively and quantifiably observed and thus easily compared
and evaluated. The response time is a general indicator of how dif-
ficult the code snippets are. We measure response time from the
moment the code snippet appeared on the screen until the question
was displayed. Similarly, the correctness is also critically important,
since it shows whether the participant fully comprehended the code
snippets. Correct code snippets measures the number of correctly
solved code snippets for each participant.

Even though these measures are high-level, we can already ob-
tain a basic understanding of the individual difficulty of the code
snippets and the overall participant behavior in the four conditions.

ICPC 26, April 12-13, 2026, Rio de Janeiro, Brazil

without type annotations
meaningful =~ def compute(input):
identifier names

obfuscated @ def compute(abcde):

identifier names

Setting: on-site, Python code on screen (2560 x 1440px)
Measures: response time, correctness, visual attention, subjective ratings

Eye tracker: Tobii X60 (60 Hz)

Nils Alznauer, Norman Peitek, Youssef Abdelsalam, Annabelle Bergum, Marvin Wyrich, and Sven Apel

with type annotations

def compute(input:str) -> str:

def compute(abcde:str) -> str:

Snippets: each participant saw 20 out of 80 variants

Figure 1: Overview of the main characteristics of our 2x2 factorial, mixed-experiment design

Behavioral measures, however, cannot tell why a participant made
mistakes in a given task.

Linearity of Reading Order. For our second measure of program
comprehension, we measure the participants’ visual attention. Specif-
ically, we measure whether they read the code snippets linearly in
execution order, or whether their gaze is jumping around within
the code snippets. A more linear reading order suggests that par-
ticipants did not have to backtrack as much as others. This can
especially be influenced by adding type annotations to the code
snippets, since this creates more information in each line which
might lead to less backtracking. To measure the linearity of reading
order, we employ the eye-tracking measures developed by Busjahn
et al. [8], which have been used in several studies [29]. We define all
measures in Table 3. In line with Busjahn et al. [8], we also compute
the story order with the Needleman-Wunsch alignment score [23]
by comparing the fixation order with the linear text reading order.

Complementary to the general visual attention, we aim to mea-
sure whether participants paid attention to the type annotations.
For this purpose, we measure the number of fixations on the type
annotations, both in terms of absolute fixations and also the relative
attention in contrast to the entire snippet.

3.2.3 Subjective Measures. Our final measure of program compre-
hension is how participants subjectively rate the code snippets.
This provides us with a complementary view of how difficult the
code snippets were individually for the participants. We asked par-
ticipants at the end of the study to rate each code snippet on a scale
from 1 (very easy) to 5 (very hard). We also allowed open-ended
comments for each code snippet.

3.3 Code Snippets

To obtain a sizable set of code snippets, we collected code snippets
from related eye-tracking studies [4, 28, 44]. We then created addi-
tional code snippets that were similar in complexity. To remove as
many confounding factors from the code as possible, we removed
all comments, applied consistent indentation, and changed all func-
tion names to compute. We adapted all snippets to Python since
Python supports executable code with and without type annota-
tions. Furthermore, we changed all variable names to fit Python’s
naming convention, and we followed the recommendation to use

1 def compute(array: list[int], key: int) -> int:
2 index1: int = @

3 index2: int = len(array) - 1

4 while index1 <= index2:

5 m: int = (index1 + index2) // 2

6 if key < array[m]:

7 index2 = m - 1

8 elif key > array[m]:

9 index1 =m + 1

10 else:
11 return m
12 return -1

Listing 1: Binary search code snippet with meaningful iden-
tifier names and included type annotations.

1 def compute(abcde, fgh):

2 ijklmn = @

3 opgrst = len(abcde) - 1

4 while ijklmn <= opgrst:

5 u = (ijklmn + opqrst) // 2
6 if fgh < abcdel[u]:

7 opgrst = u - 1

8 elif fgh > abcdel[u]:

9 ijklmn = u + 1
10 else:

1 return u

12 return -1

Listing 2: Binary search code snippet with obfuscated identi-
fier names and without type annotations.

underscores to separate words in identifier names [5]. These require-
ments led to an initial pool of 44 code snippets. We then selected
code snippets where adding type annotations was a sensible option,
which led to a set of 27 code snippets, which we evaluated in a
pilot study with 4 participants and selected our final set of code
snippets based on the response time and the subjective complexity.

For our final set of 20 code snippets, we created four versions,
one for each field in the 2x2 factorial design. Specifically, we cre-
ated each code snippet with and without type annotations and
with meaningful and obfuscated identifier names (i.e., 80 different
code snippets). We show examples in Listing 1 (type annotations,
meaningful identifier names) and Listing 2 (no type annotations,
obfuscated identifier names).

Eye-Tracking Insights into the Effects of Type Annotations and Identifier Naming

3.4 Pre-Questionnaire

Our pre-questionnaire consisted of demographic questions and
programming experience questions (adapted from Siegmund et al.
[41]). For most answers, the participants were only able to choose
one of the given answer options. For the self-assessment and the
programming languages, participants could fill in open fields.

3.5 Experiment Task

During the main experiment, we presented a code snippet to the
participants. In line with other program-comprehension studies [4,
28, 44], we operationalized program comprehension by asking par-
ticipants to select the correct output from four answer options to a
given input for each presented code snippet.

3.6 Post-Questionnaire

We conducted the post-questionnaire as a semi-structured interview
after the main study. The post-questionnaire consists of general
questions regarding the subjective difficulty of the code snippets,
the participants’ energy level after the study, their subjective ex-
periences with the presented code snippets, and how helpful they
consider type annotations for the snippets in our experiment and in
general. For each open-ended question, the study conductor noted
the answer in a summarized and abbreviated form.

All snippets and the complete pre- and post-questionnaire can
be found in the replication package. Our study was approved by the
ethical review board of the faculty of Mathematics and Computer
Science at Saarland University (approval number 23-11-07).

3.7 Eye-Tracking Software and Hardware

We used the Tobii X60 eye tracker with a sampling rate of 60 Hz.
The used monitor has a resolution of 2560 by 1440 pixels. We used
a custom script that gathers the responses to the pre-questionnaire,
calibrates the eye tracker with the participant’s help, and displays
the code snippets and tasks. To obtain high-quality data, we seated
the participants in a fixed chair and instructed them to keep their
heads still.

3.8 Participants

For our study, we invited participants based on three criteria. First,
we required participants to be enrolled in a degree related to com-
puter science to ensure a basic level of programming knowledge,
programming languages, and the concepts of computer science. We
limited our set of participants to students to ensure that all par-
ticipants have a similar level of experience in both programming
and computer science, which is a sensible choice to obtain a more
homogeneous participant group [44]. Second, each participant must
be able to comprehend small programs in Python, which we tested
via a self-assessment.

We recruited 40 participants at Saarland University via e-mail
lists and flyers. We incentivized participation with a small number
of sweets, a soft drink, and the chance to win one of two Ama-
zon vouchers worth 25 € each. Five participants reported having
impaired eyesight, but they all had corrective glasses.

We completely removed five participants who failed to solve
more than half of the presented tasks. After this filtering, 35 par-
ticipants remained in our initial dataset. We provide demographic

ICPC °26, April 12-13, 2026, Rio de Janeiro, Brazil

Table 1: Demographic and experience data of our participants
and included data points per group.

Meaningful Obfuscated
Male 16 (84%) 17 (81%)
Female 2 (11%) 4 (19%)
Prefer not to say 1(5%) -
Age (in Years) 22.74 + 442 22.95 + 2.80
Semester 5.53 + 2.57 4.81 +3.01
Years of Programming 4.63 + 2.56 533 +£3.21

Measured Participants
Incl. Eye-Tracking Data

19 Participants 21 Participants
14 Participants 17 Participants

Incl. Eye-Tracking Trials 238 Trials 259 Trials

data in Table 1. Overall, we would classify our participants as in-
termediate programmers according to Dreyfus’ taxonomy of skill
acquisition [15, 21].

3.9 Deviations

During the study, some deviations occurred. Due to a problem with
the timer, the first participant took a whole hour to finish all the
snippets. To avoid any fatigue issues, we removed the snippets com-
pleted after 45 minutes from the data analysis. The 27th participant
found a small bug in the code snippet capitalizeFirstLetter
when type annotations are provided. The type annotation in Line 2
should be list[str], rather than list[int]. We presume that
this did not have a substantial impact on the data, especially, since
no other participant detected it.

4 Data Analysis

We analyzed the collected data in three steps: First, we cleaned the
data, then we pre-processed it, and finally, we computed the results
via descriptive and inferential statistics.

4.1 Data Cleaning

While most of the included 35 participants finished all 20 code
snippets within the targeted 45 minutes, 4 did not finish all tasks,
missing at most three code snippets.

Eye-Tracking Data. We smoothed the raw eye gaze data using
a Savitzky-Golay filter (window size: 5, polynomial order: 3 [24]).
Next, we applied a velocity-based algorithm to detect fixations and
saccades (threshold of 150 pixels in 100 milliseconds). If the velocity
was below this threshold, it was considered a fixation, otherwise it
was considered a saccade [20].

For 3 of the 35 participants from the initial dataset we did not
obtain any eye-tracking data. This was due to a technical error of
the eye tracker. In addition, some participants moved too much for
the eye tracker, which led to a significant signal loss. To ensure
an eye-tracking dataset of high quality, we removed a total of 86
individual trials (from 583 total trials) based on the following not
mutually exclusive criteria:

ICPC 26, April 12-13, 2026, Rio de Janeiro, Brazil

o Total fixation count. Trials were excluded if the total number
of fixations was either (i) implausibly low (< 10; 12 trials), or
(ii) outside 1.5 IQR from the mean (> 641 fixations; 26 trials).

e Fixation rate (fixations per second). Trials were excluded if the
fixation rate was (i) below 0.5 fixations/s (18 trials), or (ii) outside
1.5 IQR from the mean (< 0.97 or > 6.3 fixations/s; 47 trials).

o Spatial validity. Trials with fewer than 70% of fixations within
the code area were excluded (22 trials).

Additionally, within the trial data, we excluded all eye-tracking

data points within 140 pixels of the bottom of the screen where the

“continue” button was located.

4.2 Eye-Tracking Measures

To quantify the visual attention in terms of specific measures, we
defined several AQIs for each code snippet. We created an AOI for
each line, for the whole code snippets, and for the type annotations
(if they were present). To mitigate potential minor inaccuracies
in the eye-tracking data affecting the AOI-based analysis [14], we
followed Peitek et al. [31] and added 5 pixels to all sides of each
AOL Furthermore, following Busjahn et al. [8], all fixations that
are within 100 pixels horizontally of an AOI are considered to be
part of that AOL otherwise, smaller AOIs could be easily missed. A
visualization of all AQOIs is part of the replication package.

Based on the preprocessing and the AOL we computed the linear-
ity measures for each participant and each code snippet, which is
in line with Busjahn et al. [8] and Peitek et al. [30]. We additionally
computed the fixation statistics in terms of absolute and relative
number of fixations for the AOI covering the type annotations.

4.3 Statistical Tests

For the statistical analysis, we first tested for normality with a

Shapiro-Wilk Test and for homogeneity in the variance with Lev-
ene’s Test. If the data were not normally distributed (p<0.001), we

applied the non-parametric Mann-Whitney U test, otherwise the

Chi-Square Test of Independence. For comparing two independent

variables in RQj, we use a mixed linear regression model to account

for the different independent variables and then apply the Wald
Chi-Square test. We generally consider a significance threshold of
a < 0.05. Due to the number of eye-tracking measures, we apply
a false-discovery rate (FDR) correction based on the Benjamini-
Hochberg procedure to correct for multiple testing [3]. We com-
puted all statistical tests with statsmodels (Version 0.14.2, [36]).
The entire executable script is part of the replication package.

5 Results

In this section, we present the results of the study.

5.1 RQ;: Type Annotations

We analyze the effect of the annotations in regard to 1) behavioral
measures, 2) visual attention, and 3) subjective difficulty.

5.1.1 Behavioral Measures. The average response time for snippets
with type annotations was longer (67.2 + 36.0 seconds) than for
snippets without type annotations (61.0 + 37.2 seconds), which

is statistically significant (Mann-Whitney U: p = 0.02, U = 27255).

Nils Alznauer, Norman Peitek, Youssef Abdelsalam, Annabelle Bergum, Marvin Wyrich, and Sven Apel

Table 2: The 2x2 matrix for the mean and standard deviation
of response time in seconds and correctness.

Meaningful Obfuscated ‘ >
with type 64.4s + 36.4s 70.7s £ 35.0s | 67.2s + 36.0s
annotations 88% (143/163) 85% (165/195) | 84% (215/255)
without type 60.7s + 31.9s 62.2s + 37.2s 61.0s + 37.2s
annotations 89% (142/160) 88% (133/151) | 88% (214/242)
5y 63.0s £ 36.6s 65.3s + 36.8s 64.2s + 36.7s

87% (207/238) 86% (222/259) | 86% (429/497)

N
(63}

N
o

Fixation % on Type Annotations
>

10
5
0
58 ST ES QL Q9O »OOLE FDLPTOET
<]] 2 5] 5]
SS 2o 020 8G 055K
X oOgoaooDTFgescsDFTco0s5R S
CREFS IS LE3938°5R8584 ¢
= = c O
T T 2P ES53TSE 5 T o= 3 009
gggﬁ,m(?m:@@: §L @m@g 9359
FEQRLICZLS £5 B &3
=T =<9 T 5 £) 5] o]
= 5 S S E £
3§ = 0§ = 8 °
S © 3

Figure 2: Percentage of fixations on type annotations of over-
all fixations, separated by snippet. Each dot represents one
participant trial.

This means that type annotations actually slow down the measured
comprehension process.

Regarding correctness, we found a slight trend towards the non-
annotated snippets. The overall correctness of 86% (429 / 497) is
divided in 84% for the annotated code snippets and 88% for the
non-annotated code snippets, but without a statistically significant
difference (Chi-Square Test of Independence p = 0.23, y? = 1.45). We
provide a detailed overview in Table 2.

5.1.2 Eye-Tracking: Linearity Measures. To obtain a comprehensive
overview of the participants’ visual attention between annotated
and non-annotated code snippets, we used the eye-tracking mea-
sures of Busjahn et al. [9] that indicate the linearity of reading order.
We find that the presence of type annotations does not substan-
tially change the programmers’ reading order, since only two of
the measures yielded a statistically significant difference (saccade
length and naive story order, cf. Table 3).

5.1.3 Eye-Tracking: AOI-Based Analysis of Type Annotations. To
understand whether the type annotations are actually incorporated
in the comprehension process, we checked whether they were
fixated on based on the number of fixations on the type annotations

Eye-Tracking Insights into the Effects of Type Annotations and Identifier Naming

ICPC °26, April 12-13, 2026, Rio de Janeiro, Brazil

Table 3: Description of all linearity measures and the results of the statistical tests after FDR correction.

Linearity Measure

Definition

Type Annotations”

Combination of Type Annotat-
ions and Identifier Names**

% of forward saccades that either stay on the

Vertical Next . . p =0.57 p=0.57
same line or move one line down
= Vertical Later % of fgrward saccades that either stay on .the p=013 p=013
2 same line or move down any number of lines
= Horizontal Later % of forward saccades within a line p=0.23 p=0.15
Regression Rate % of backward saccades of any length p =053 p=0.13
Line Regression Rate % of backward saccades within a line p=0.18 p =053
Saccade Length Average' Eucl%dean dist'ance between every =002 =020
successive pair of fixations
= Story Order (Naive) Needleman—Wunsch alignr.nent score of fixation = 0.04 =063
< order with linear text reading order
S Story Order (Dynamic) Needleman-Wunsch alignment score of fixation p=031 =097

order that tolerates multiple reads

* Mann-Whitney U Tests

in contrast to the total number of fixations when comprehending a
snippet. Interestingly, we find that a substantial number of fixations
are on type annotations, but it differs across snippets (see Figure 2).

5.1.4 Subjective Difficulty. Finally, we determined the participants’
subjective perception of difficulty for each snippet. The majority
(70%) of the code snippets were rated as Very Easy or Easy. Code
snippets with type annotations were slightly more often rated as
Very Easy than the non-annotated ones. However, they were also
more often rated as Difficult. None of these trends are statistically
significant (Chi-Square Test of Independence: p = 0.86).

We find that type annotations slightly influence pro-
gram comprehension for our code snippets in terms
of behavior (increasing response time), shifting visual
attention, but not affecting subjective difficulty.

RQ;

5.2 RQ,: Type Annotations & Identifier Names

RQ; is concerned with whether there is an interplay between
the meaningfulness of identifier names and type annotations. We
present the results of RQ2 in the same structure as RQ;.

5.2.1 Behavioral Measures. The average response time for the ob-
fuscated group (70.7 + 35.0 seconds) is longer than for the mean-
ingfulgroup (64.4+ 36.4 seconds), as presented in Table 2. Thus, the
response time is statistically significantly influenced by identifier
names (Wald Chi-Square test: p = 0.007), but not influenced by type
annotations (p = 0.43) or the combination of both (p = 0.67).

Similarly, we find no notable difference in the correctness be-
tween the two groups (86% vs. 89%), which reveals no significant
influence by the type annotations (Wald Chi-Square test: p = 0.86),
the identifier names (p = 0.64), or their combination (p = 0.63).

** Linear Mixed Model with Wald Chi-Square Test

5.2.2 Eye-Tracking: Linearity Measures. When considering the dif-
ference in meaningfulness of variable names, we find no significant
eye-tracking measure for linearity of reading order (cf. Table 3).

5.2.3 Eye-Tracking: AOI-Based Analysis of Type Annotations. In Sec-
tion 5.1.3, we established that the fixations on type annotations
appear to be different depending on the snippet. When considering
the difference in meaningfulness of identifier names, we do not find
a clear difference between participant groups. However, there is a
difference in how much individual programmers fixate on identifier
names (cf. Figure 3).

5.2.4 Subjective Difficulty. The majority (70%) of the meaning-
ful code snippets were rated as Very Easy or Easy. Interestingly,
meaningful code snippets with type annotations have a high num-
ber of Very Easy ratings and only one Very Difficult rating. Contrary
to the meaningful and obfuscated group, where the number of Diffi-
cult and Very Difficult ratings is higher. Nevertheless, the subjective
difficulty is not significantly influenced by the type annotations
(Wald Chi-Square test: p = 0.78), the identifier names (p = 0.55),
or their combination (p = 0.65).

We find that meaningful identifier names significantly
reduce response time, but otherwise there is no inter-
play with type annotations as none of our behavioral,
visual attention, or subjective measures reveal statis-
tically significant differences.

RQ2

5.3 Insights from Post-Questionnaire

At the end of the study, we asked participants about the perceived
helpfulness of type annotations in two ways: first specifically for
each presented code snippet, and second, regarding type anno-
tations in general. In contrast to our results from RQ; and RQj,
participants reported type annotations as helpful, both for the ex-
periment (85%) and in general (91%). They explained that type

ICPC 26, April 12-13, 2026, Rio de Janeiro, Brazil

Meaningful

Nils Alznauer, Norman Peitek, Youssef Abdelsalam, Annabelle Bergum, Marvin Wyrich, and Sven Apel

Obfuscated

30

25

20

15

10

Fixation % on Type Annotations

I XA O N OO > A DN A DD
SR A I NN NV

NO D O O 0 9D 0 9NN D %m0 O N
S A E NNV VY VYV

Participant

Figure 3: Percentage of fixations on type annotations of overall fixations, separated for each participant and grouped by the

meaningful and obfuscated condition.

85% find type annotations helpful for the
snippets in our study, and 91% in general.

meaningful identifiers (n=17)

obfuscated identifiers (n=18)

Figure 4: Reported frequency of participants’ perceived help-
fulness of type annotations in this study and in general

annotations serve as reminders of what the code is intended to do,
provide additional information when types are not immediately
obvious, and are particularly useful for new, complex, or unfamiliar
code. Only a few participants did not find the type annotations
helpful for the experiment snippets or in general, often because
they considered them unnecessary or distracting for familiar or
simple code. We elaborate on this observation in the discussion.

In stark contrast to our experiment results, the vast majority
of our participants reported type annotations to be helpful dur-
ing program comprehension—within our study and in general
programming,.

6 Discussion

Our findings provide new insights into how type annotations and
identifier names shape program comprehension, revealing how
these factors relate to behavioral performance, visual attention
patterns, and developers’ subjective perceptions, which we discuss
next.

6.1 Type Annotations (RQq)

Based on the literature, we expected that the participants would
be faster and more correct when type annotations are present,
irrespective of whether the identifier names were obfuscated or
meaningful. However, our study revealed that, on average, the
annotated code snippets took longer to comprehend than the non-
annotated ones, and the correctness does not change significantly.

Note, that a prior study found that the correctness of program
comprehension is not significantly different when changing the
difficulty of the code snippets [29]. This suggests that the partici-
pants only answered the code snippets’ question when they were
ready and understood the code independently of the difficulty of the
underlying code. This should result in a higher average time taken
for the code snippets. While we can see this trend in the data, this
is not statistically significant. It is possible that our code snippets
or the task design were too easy for our participants. For example,
in the study by Peitek et al. [29], the participants were asked to
answer each question in a free-text field, which is arguably more
difficult than answering a multiple-choice question. We decided
against this approach to obtain clear-cut answers that are not open
to interpretation, which resulted in high correctness values.

One important consideration is that the annotated snippets con-
tain substantially more text. That is, participants have to process
more information when type annotations are present. From this
perspective, it is understandable that participants need more time
to comprehend the entire snippets. It is possible that the cost of
reading additional text is offset by the informative value of the type
annotations, as the overall response time increases less than the
increase in characters.

We further expected that the presence of type annotations re-
sults in a more linear reading order because the type annotations
provide additional information supporting program comprehen-
sion. Specifically, we expected lower regression scores both within
a line and between lines of code. However, our study showed that
the presence of type annotations did not substantially result in a

Eye-Tracking Insights into the Effects of Type Annotations and Identifier Naming

more linear reading order or fewer regressions, but only in shorter
saccades. It is possible that, given the complexity of our code snip-
pets, the additional information provided by simple types was less
significant than anticipated. We deliberately chose simple types
and manageable snippet complexity so that the code would fit on
the screen, allowing eye tracking to be conducted without scrolling.

Interestingly, we observed that the share of attention paid to
type annotations strongly depends on the snippet (cf. Figure 2),
which indicates that our study trying to cover a variety of snippets
and type annotations may be too general to differentiate in which
context type annotations are helpful for program comprehension.

Finally, we expected that participants would report a greater sub-
jective difficulty when code snippets were not annotated. However,
this was not the case. It is important to highlight that the reported
difficulty was overwhelmingly (> 70%) considered to be Easy or
Very Easy. This may explain why participants did not report greater
difficulty when the code snippets were not annotated, which sug-
gests that the code snippets in our study were too easy to reveal a
meaningful difference.

Our behavioral results stand in contrast to the finding that nearly
all participants spend a substantial amount of visual attention on
the type annotations and reported that the type annotations helped
comprehend the code snippets. Most participants said that type an-
notations were a good reminder of what the code was supposed to
do and that they received additional information, especially when
they were not able to immediately infer the types from the state-
ments. They also mentioned that the type annotations were helpful
when the code was new to them. In contrast, some participants
declined that the type annotations were helpful and stated that
type annotations do not provide any accurate new information
and that they were more of a distraction than a help, yet they still
substantially focused on them. This is supported by the observa-
tion that 91% of the participants found type annotations generally
helpful for understanding code. One of participants who declined
explained that they view type annotations as necessary only when
learning a new language and not yet fully understanding code.
Another participant stated that they find type annotations helpful
only when accompanied by a comment, particularly in the case of
Python. Other participants who generally found type annotations
helpful explained that they are especially helpful when working
with code that is not their own or when more complex types are
involved, as it is not always possible to infer what an object can do.
They also noted that type annotations are helpful when the code is
poorly documented or part of a larger code base. This suggests that,
despite our quantitative results, type annotations can be a valu-
able tool for helping developers gain confidence in their program
comprehension.

6.2 Type Annotations & Identifier Names (RQ.)

As in RQq, we expected participants to be faster and more cor-
rect when working with meaningful identifier names compared to
obfuscated ones, and with annotated code snippets compared to
non-annotated ones. The combination of both independent vari-
ables providing all information should have the largest explanatory
potential. However, this is not be supported by the collected data.
The response time is significantly longer for obfuscated identifier

ICPC °26, April 12-13, 2026, Rio de Janeiro, Brazil

names, which is in line with prior literature [43]. However, the
combination of both independent variables did not result in a sig-
nificant difference in response time. This suggests that even if the
participants are forced to rely more on bottom-up comprehension
instead of top-down comprehension and are suspected to receive
information through the type annotations, the completion time is
not significantly influenced.

Similar to the first research question, we expected for the second
a more linear reading flow triggered by the present type annota-
tions and meaningful identifier names. However, we observe no
statistically significant differences. A possible reason for this is that
the participants were not challenged enough by the code snippets
and that the type annotations were not as helpful as they could
have been, which was partially by design.

We expected that participants would report a higher difficulty
when working with meaningful identifier names compared to ob-
fuscated ones, and with annotated code snippets compared to non-
annotated ones. Our data did not confirm these expectations. How-
ever, we observed that the reported difficulty was overwhelmingly
(> 70%) considered to be Very Easy or Easy for the meaningful
identifier names. At the same time, for obfuscated identifier names,
slightly over 60% of participants rated the difficulty as Very Easy
or Easy. The categories Difficult and Very Difficult accounted for
10% of the reported difficulties in non-annotated code snippets and
20% in annotated code snippets. This indicates that the perceived
difficulty of the code snippets is influenced by type annotations,
which may make the code snippets harder to comprehend when
identifier names are obfuscated; however, this effect is not statisti-
cally significant. One possible reason is that, especially in the longer
snippets, the type annotations may have been distracting, making
comprehension more difficult.

6.3 Overall Findings

From the results for both research questions, we conclude that
type annotations are not as influential for developers. For our eye-
tracking study, the code snippets had to be relatively simple and
short to fit on a single screen. In this constrained setting, type
annotations may not be as helpful as suggested in previous liter-
ature [6, 18, 26, 46]. This perspective, however, is supported by
participants’ subjective responses, with the overwhelming major-
ity strongly expressing a strong preference for type annotations,
stating that they make code easier to comprehend and help them
keep track of what specific parts of the code do.

To ensure the code snippets were not too easy, we conducted
a pilot study in which all participants were able to approach the
snippets, albeit at different speeds. In the main study, participants’
mean completion time was 64.2 seconds (SD = 36.7), indicating a
diverse range of difficulty across the snippets. Despite this, partici-
pants reported that over 70% of the snippets were Very Easy or Easy.
This suggests that the code snippets were not challenging enough,
highlighting the need to replicate the study with more complex
snippets in the future.

Considering that the participants were students, the high easy
ratings are somewhat surprising. Revisiting the participant’s demo-
graphics provides a possible explanation: on average, participants
were in their 5.15 semester (SD = 3.61) and had been programming

ICPC 26, April 12-13, 2026, Rio de Janeiro, Brazil

for 5.00 years (SD = 2.91). Additionally, 29% of participants consid-
ered themselves more experienced than their classmates, while 82%
rated themselves as at least average or above in their experience.
Since self-assessment can be more informative than years of expe-
rience [29], this suggests that our participants were generally more
experienced than the average student.

7 Threats to Validity

In this section, we discuss possible threats to validity and explain
how we designed our study to minimize them.

7.1 Construct Validity

Construct validity is concerned with how accurately the study mea-
sures what it is supposed to. In this study, one threat to construct
validity arises from matching fixations to the correct line of code.
This is problematic when participants use peripheral vision and
thus do not focus directly on the line of code. Similar to Peitek
et al. [30], we mitigated this threat by considering fixations to be
on the same line of code if they were less than 100 pixels apart
horizontally. Another threat concerns the clarity of the task. To
reduce this threat, we used a multiple-choice task. To further pre-
vent misunderstandings, we included a warm-up code snippet with
a comparable type of question. Furthermore, the study conductor
was present to answer questions, without interfering with the data
collection or the execution of the study.

7.2 Internal Validity

Internal validity concerns the extent to which the observed effect
can be attributed to the independent variables rather than other
factors. To eliminate a bias by the selection of the code snippets, we
selected code snippets from a large pool and tested their feasibility
with a pilot study. Furthermore, each participant was randomly
assigned to one group of identifier names and then provided with
all 20 code snippets in a fully randomized order, with each code
snippet shown exactly once. Each code snippet was also randomly
assigned to either include or omit type annotations, while the task
remained the same for all variants.

For our study, we created a controlled environment by using a
quiet room without distractions. We closed the blinds and turned
on the lights to ensure a consistent environment for the eye tracker.
We also minimized fatigue by limiting the study to 45minutes. Ad-
ditionally, we carefully instructed all participants on how to sit and
how to look at the screen.

Participants might have a considerable difference in their pro-
gramming knowledge. To reduce this threat, we only allowed stu-
dents with comparable knowledge to participate, ensuring a similar
skill level across participants. We assume that all participants had a
certain base level of programming knowledge while not yet being
at the level of most professional developers.

7.3 External Validity

External validity is concerned with the generalizability of the results.
When conducting empirical studies, one must consider the trade-off
between enhancing internal or external validity [45]. Our goal for
this study was to robustly pinpoint the effect of type annotations on
program comprehension and, thus, we targeted internal validity.

Nils Alznauer, Norman Peitek, Youssef Abdelsalam, Annabelle Bergum, Marvin Wyrich, and Sven Apel

Our study exhibits the same threats to external validity as com-
parable studies using students as participants [17, 33] and small
code snippets to test program comprehension. This includes that
the code snippets are generally algorithmic and mono-method and
do not necessarily compare to more complex real-world projects.
Further, our task of understanding code may not be representa-
tive for all programming tasks. Furthermore, the code snippets are
all written in Python, limiting the generalizability to other pro-
gramming languages. Our participants were all students enrolled in
degrees related to computer science and can thus only to a limited
extent be generalized to professional developers.

8 Conclusion

In an eye-tracking study with 35 included participants, we investi-
gated the effect of type annotations and identifier names on pro-
gram comprehension. We found that for comparatively simple code
snippets type annotations of primitive types slow developers down,
but otherwise do not strongly affect behavioral measures, visual at-
tention, or subjective difficulty. We obtained the same results when
combining type annotations and identifier names. In contrast, the
vast majority of participants reported that type annotations helped
with program comprehension within this study and in general. This
indicates that type annotations might positively affect certain di-
mensions of program comprehension but that the effect was not
fully quantifiable in our study setup. In a nutshell, type information
may not be universally useful for program comprehension in all
circumstances and is context-dependent.

In future studies, we aim to investigate the more nuanced ef-
fects of type annotations on program comprehension in a more
ecologically valid setting. This includes opening up the study to
a broader population to more easily generalize the study’s find-
ings. Furthermore, future studies shall investigate code snippets
closer to real-world projects with larger code snippets including
complex types and composite types to use the full range of type
annotations. This could also entail that researchers create simple
code snippets based on a real-life code base with and without type
annotations. This would allow us to investigate the effect of type
annotations on program comprehension in the context of a com-
plex code base. Ultimately, this paper contributes a reference study
for eye-tracking research in software engineering, providing in-
sights into how type annotations influence program comprehension
and supporting future investigations into their strategic use in the
software development process.

Acknowledgments

We thank all participants of our study. This work has been sup-
ported by ERC Advanced Grant 101052182 as well as DFG Grant
389792660 as part of TRR 248 — CPEC.

References

[1] Amine Abbad Andaloussi, Thierry Sorg, and Barbara Weber. 2022. Estimating
Developers’ Cognitive Load at a Fine-Grained Level Using Eye-Tracking Measures.
In Proc. Int’l Conf. Program Comprehension (ICPC). ACM, 111-121.

[2] Roman Bednarik and Markku Tukiainen. 2006. An Eye-Tracking Methodology
for Characterizing Program Comprehension Processes. In Proc. Eye Tracking
Research & Application Symposium (ETRA). ACM, 125-132.

[3] Yoav Benjamini and Yosef Hochberg. 1995. Controlling the False Discovery Rate:
A Practical and Powerful Approach to Multiple Testing. Journal of the Royal

Eye-Tracking Insights into the Effects of Type Annotations and Identifier Naming

[4

[10

[11

[12

[13

[14

[15

[16

(17

[18

[19

[21

[22

[23

=

]

]

]

]

]

]

[24]

[25

[26

[27

]

Statistical Society: Series B (Methodological) 57, 1 (1995), 289-300.

Annabelle Bergum, Norman Peitek, Maurice Rekrut, Janet Siegmund, and Sven
Apel. 2025. On the Influence of the Baseline in Neuroimaging Experiments on
Program Comprehension. ACM Trans. Softw. Eng. Methodol. (June 2025).

David Binkley, Marcia Davis, Dawn Lawrie, and Christopher Morrell. 2009. To
Camelcase or Under_score. In Int’l Conf. Program Comprehension (ICPC). IEEE,
158-167.

Justus Bogner and Manuel Merkel. 2022. To Type or Not to Type? A Systematic
Comparison of the Software Quality of JavaScript and TypeScript Applications on
GitHub. In Int’l Conf. Mining Software Repositories (MSR). IEEE/ACM, 658-669.
Ruven Brooks. 1978. Using a Behavioral Theory of Program Comprehension
in Software Engineering. In Proc. Int’l Conf. Software Engineering (ICSE). IEEE,
196-201.

Teresa Busjahn, Roman Bednarik, Andrew Begel, Martha Crosby, James H. Pater-
son, Carsten Schulte, Bonita Sharif, and Sascha Tamm. 2015. Eye Movements in
Code Reading: Relaxing the Linear Order. In Int’l Conf. Program Comprehension
(ICPC). IEEE, 255-265.

Teresa Busjahn, Roman Bednarik, and Carsten Schulte. 2014. What Influences
Dwell Time During Source Code Reading? Analysis of Element Type and Fre-
quency as Factors. In Eye Tracking Research and Applications (ETRA). ACM,
335-338.

Teresa Busjahn, Carsten Schulte, Bonita Sharif, Simon, Andrew Begel, Michael
Hansen, Roman Bednarik, Paul Orlov, Petri Ihantola, Galina Shchekotova, and
Maria Antropova. 2014. Eye tracking in computing education. In Int’l Computing
Education Research Conf. (ICER). ACM, 3-10.

Simon Butler, Michel Wermelinger, Yijun Yu, and Helen Sharp. 2010. Exploring
the Influence of Identifier Names on Code Quality: An Empirical Study. In Europ.
Conf. on Software Maintenance and Reengineering (CSMR), Rafael Capilla, Rudolf
Ferenc, and Juan C. Dueiias (Eds.). IEEE Computer Society, 156-165.

Benjamin Carter and Steven Luke. 2020. Best Practices in Eye Tracking Research.
Int’l Journal of Psychophysiology 155 (Sept. 2020), 49-62.

Casey Casalnuovo, Kevin Lee, Hulin Wang, Prem Devanbu, and Emily Morgan.
2020. Do Programmers Prefer Predictable Expressions in Code? Cogn. Sci. 44, 12
(2020).

Fabian Deitelhoff, Andreas Harrer, and Andrea Kienle. 2019. The Influence of
Different AOI Models in Source Code Comprehension Analysis. In Int’l Workshop
on Eye Movements in Programming (EMIP). IEEE, 10-17.

Hubert L. Dreyfus, Stuart E. Drey-fus, and Lotfi A. Zadeh. 1987. Mind over
Machine: The Power of Human Intuition and Expertise in the Era of the Computer.
IEEE Expert 2, 2 (June 1987), 110-111.

Christopher Exton. 2002. Constructivism and Program Comprehension Strategies.
In Int’l Workshop Program Comprehension (IWPC). IEEE Computer Society, 281—
284.

Robert Feldt, Thomas Zimmermann, Gunnar R Bergersen, Davide Falessi, Andreas
Jedlitschka, Natalia Juristo, Jirgen Miinch, Markku Oivo, Per Runeson, Martin
Shepperd, et al. 2018. Four Commentaries on the Use of Students and Professionals
in Empirical Software Engineering Experiments. Empirical Software Engineering
23, 6 (2018), 3801-3820.

Stefan Hanenberg, Sebastian Kleinschmager, Romain Robbes, Eric Tanter, and
Andreas Stefik. 2014. An Empirical Study on the Impact of Static Typing on
Software Maintainability. Emp. Softw. Eng. 19, 5 (2014), 1335-1382.

Johannes C. Hofmeister, Janet Siegmund, and Daniel V. Holt. 2019. Shorter
Identifier Names Take Longer to Comprehend. Emp. Softw. Eng. 24, 1 (Feb 2019),
417-443.

Kenneth Holmqvist. 2011. Eye Tracking: A Comprehensive Guide to Methods and
Measures. Oxford University Press.

Jerry Mead, Simon Gray, John Hamer, Richard James, Juha Sorva, Caroline St.
Clair, and Lynda Thomas. 2006. A Cognitive Approach to Identifying Measurable
Milestones for Programming Skill Acquisition. SIGCSE Bull. 38, 4 (jun 2006),
182-194.

Roberto Minelli, Andrea Mocci, and Michele Lanza. 2015. I Know What You Did
Last Summer-An Investigation of How Developers Spend Their Time. In Int’l
Conf. on Program Comprehension. IEEE, IEEE, 25-35.

Saul Needleman and Christian Wunsch. 1970. A General Method Applicable to
the Search for Similarities in the Amino Acid Sequence of Two Proteins. journal
of Molecular Biology 48, 3 (1970), 443-453.

Marcus Nystrém and Kenneth Holmqvist. 2010. An Adaptive Algorithm for
Fixation, Saccade, and Glissade Detection in Eyetracking Data. Behavior Research
Methods 42, 1 (2010), 188-204.

Unaizah Obaidellah, Mohammed Al Haek, and Peter C.-H. Cheng. 2018. A Survey
on the Usage of Eye-Tracking in Computer Programming. ACM Comput. Surv.
51, 1, Article 5 (Jan. 2018), 58 pages.

Sebastian Okon and Stefan Hanenberg. 2016. Can We Enforce a Benefit for
Dynamically Typed Languages in Comparison to Statically Typed Ones? A Con-
trolled Experiment. In Int’l Conf. Program Comprehension (ICPC). IEEE, 1-10.
Norman Peitek. 2022. A Neuro-Cognitive Perspective of Program Comprehension.
Ph. D. Dissertation. Chemnitz University of Technology, Germany.

[28

[29

[30

(32]

[33

[34

@
2

[36

[37

[38

[39

[41

[42]

[43

[44

[45]

[46

[47

ICPC °26, April 12-13, 2026, Rio de Janeiro, Brazil

Norman Peitek, Sven Apel, Chris Parnin, André Brechmann, and Janet Siegmund.
2021. Program Comprehension and Code Complexity Metrics: An fMRI Study.
In Proc. Int’l Conf. Software Engineering (ICSE). IEEE, 524-536.

Norman Peitek, Annabelle Bergum, Maurice Rekrut, Jonas Mucke, Matthias
Nadig, Chris Parnin, Janet Siegmund, and Sven Apel. 2022. Correlates of pro-
grammer efficacy and their link to experience: a combined EEG and eye-tracking
study. In Proc. Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE). ACM, 120-131.

Norman Peitek, Janet Siegmund, and Sven Apel. 2020. What Drives the Reading
Order of Programmers? An Eye Tracking Study. In Proc. Int’l Conf. Program
Comprehension (ICPC). ACM, 342-353.

Norman Peitek, Janet Siegmund, Chris Parnin, Sven Apel, Johannes C. Hofmeister,
and André Brechmann. 2018. Simultaneous Measurement of Program Compre-
hension with FMRI and Eye Tracking: A Case Study. In Proc. Int’l Symposium
on Empirical Software Engineering and Measurement (ESEM). ACM, Article 24,
10 pages.

Nancy Pennington. 1987. Stimulus structures and mental representations in
expert comprehension of computer programs. Cognitive Psychology 19, 3 (1987),
295-341.

Iflaah Salman, Ayse Tosun Misirli, and Natalia Juristo. 2015. Are Students Repre-
sentatives of Professionals in Software Engineering Experiments?. In International
Conference on Software Engineering, Vol. 1. 666—676.

Giuseppe Scanniello, Michele Risi, Porfirio Tramontana, and Simone Romano.
2017. Fixing Faults in C and Java Source Code: Abbreviated vs. Full-Word Identifier
Names. ACM Trans. Softw. Eng. Methodol. 26, 2 (2017), 6:1-6:43.

Andrea Schankin, Annika Berger, Daniel V. Holt, Johannes C. Hofmeister, Till
Riedel, and Michael Beigl. 2018. Descriptive Compound Identifier Names Improve
Source Code Comprehension. In Proc. Conf. Program Comprehension (ICPC). IEEE,
31-40.

Skipper Seabold and Josef Perktold. 2010. statsmodels: Econometric and Statistical
Modeling with Python. In 9th Python in Science Conference.

Zohreh Sharafi, Bonita Sharif, Yann-Gaél Guéhéneuc, Andrew Begel, Roman
Bednarik, and Martha E. Crosby. 2020. A Practical Guide on Conducting Eye
Tracking Studies in Software Engineering. Emp. Softw. Eng. 25, 5 (2020), 3128-
3174.

Zohreh Sharafi, Zéphyrin Soh, and Yann-Gaél Guéhéneuc. 2015. A System-
atic Literature Review on the Usage of Eye-Tracking in Software Engineering.
Information and Software Technology 67 (Nov. 2015), 79-107.

Bonita Sharif and Jonathan I. Maletic. 2010. An Eye Tracking Study on camelCase
and under_score Identifier Styles. In Int’l Conf. Program Comprehension (ICPC).
IEEE Computer Society, 196-205.

Janet Siegmund. 2016. Program Comprehension: Past, Present, and Future. In
Int’l Conf. Software Analysis, Evolution, and Reengineering (SANER), Vol. 5. IEEE,
13-20.

Janet Siegmund, Christian Késtner, Sven Apel, Chris Parnin, Anja Bethmann,
Thomas Leich, Gunter Saake, and André Brechmann. 2014. Understanding
Understanding Source Code with Functional Magnetic Resonance Imaging. In
Proc. Int’l Conf. Software Engineering (ICSE). ACM, 378-389.

Janet Siegmund, Norman Peitek, André Brechmann, Chris Parnin, and Sven Apel.
2020. Studying Programming in the Neuroage: Just a Crazy Idea? Commun. ACM
63, 6 (2020), 30-34.

Janet Siegmund, Norman Peitek, Chris Parnin, Sven Apel, Johannes Hofmeister,
Christian Késtner, Andrew Begel, Anja Bethmann, and André Brechmann. 2017.
Measuring Neural Efficiency of Program Comprehension. In Proc. Joint Meeting
on Foundations of Software Engineering (ESEC/FSE 2017). ACM, 140-150.

Janet Siegmund and Jana Schumann. 2015. Confounding Parameters on Program
Comprehension: A Literature Survey. Emp. Softw. Eng. 20, 4 (Aug 2015), 1159—
1192.

Janet Siegmund, Norbert Siegmund, and Sven Apel. 2015. Views on Internal
and External Validity in Empirical Software Engineering. In Proc. Int’l Conf. on
Software Engineering, Vol. 1. IEEE, 9-19.

Samuel Spiza and Stefan Hanenberg. 2014. Type Names Without Static Type
Checking Already Improve the Usability of APIs (As Long as the Type Names Are
Correct): An Empirical Study. In Int’l Conf. Modularity (MODULARITY). 99-108.
Marvin Wyrich. 2023. Source Code Comprehension: A Contemporary Definition
and Conceptual Model for Empirical Investigation. CoRR abs/2310.11301 (2023).
https://doi.org/10.48550/arXiv.2310.11301

Marvin Wyrich, Justus Bogner, and Stefan Wagner. 2023. 40 Years of Designing
Code Comprehension Experiments: A Systematic Mapping Study. Comput.
Surveys 56, 4 (2023), 1-42.

Xin Xia, Lingfeng Bao, David Lo, Zhenchang Xing, Ahmed E. Hassan, and Shan-
ping Li. 2018. Measuring Program Comprehension: A Large-Scale Field Study
with Professionals. In Proc. Int’l Conf. Software Engineering (ICSE). ACM, 584.

https://doi.org/10.48550/arXiv.2310.11301

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Program Comprehension
	2.2 Eye Tracking in Program Comprehension
	2.3 Type Annotations

	3 Study Design
	3.1 Research Goals
	3.2 Study Plan
	3.3 Code Snippets
	3.4 Pre-Questionnaire
	3.5 Experiment Task
	3.6 Post-Questionnaire
	3.7 Eye-Tracking Software and Hardware
	3.8 Participants
	3.9 Deviations

	4 Data Analysis
	4.1 Data Cleaning
	4.2 Eye-Tracking Measures
	4.3 Statistical Tests

	5 Results
	5.1 RQ1: Type Annotations
	5.2 RQ2: Type Annotations & Identifier Names
	5.3 Insights from Post-Questionnaire

	6 Discussion
	6.1 Type Annotations (RQ1)
	6.2 Type Annotations & Identifier Names (RQ2)
	6.3 Overall Findings

	7 Threats to Validity
	7.1 Construct Validity
	7.2 Internal Validity
	7.3 External Validity

	8 Conclusion
	Acknowledgments
	References

