
On the Necessity of Empirical Studies in the Assessment of Modularization

Mechanisms for Crosscutting Concerns

Sven Apel, Christian Kästner

University of Magdeburg

{apel, kaestner}@iti.cs.uni-magdeburg.de

Salvador Trujillo

University of the Basque Country

struji@ehu.es

Abstract

Collaborations are a frequently occurring class of cross-

cutting concerns. Prior work has argued that collabo-

rations are better implemented using Collaboration Lan-

guages (CLs) rather than AspectJ-like Languages (ALs).

The main argument is that aspects flatten the object-

oriented structure of a collaboration, and introduce more

complexity rather than benefits – in other words, CLs and

ALs differ with regard to program comprehension. To ex-

plore the effects of CL and AL modularization mechanisms

on program comprehension, we propose to conduct a series

of experiments. We present ideas on how to arrange such

experiments that should serve as a starting point and foster

a discussion with other researchers.

1. Introduction

As well-established programming paradigms such as

object-oriented programming (OOP) fail to modularize

crosscutting concerns appropriately a plethora of new mod-

ularization mechanisms emerges. Unfortunately, recent ad-

vances have been made along different lines of research and

the lack of a uniform taxonomy contributed to a general

confusion about crosscutting concerns and their relationship

to collaborations, which we address here.

In prior work we [2,4,23] and others [11,26] helped to al-

leviate this situation by categorizing crosscutting concerns.

We identified two main classes of crosscutting concerns:

while collaborations are sets of changes applied to multiple

classes that introduce new classes, new members to classes,

and that extend existing methods, advanced aspects apply

either homogeneous changes (applying the same changes to

multiple points in a program) or dynamic changes (applying

changes depending on the runtime control flow or the value

of runtime variables).

Furthermore, we suggested programming guidelines that

assist programmers in deciding when to use what modu-

larization mechanism [2, 4]. We inferred these guidelines

from the individual strengths and weaknesses of contempo-

rary CLs and ALs: (1) use collaboration languages (CLs),

e.g., Jak [6], Jx [27], Classbox/J [7], Scala [28], for col-

laborations and (2) use AspectJ-like languages (ALs), e.g.,

AspectJ [18], AspectC++ [36], Eos [29], for advanced as-

pects.1

While these programming guidelines could be evaluated

successfully by means of a non-trivial case study [3], a cou-

ple of open issues remains. Some conclusions incorporated

were based on arguments that are controversial [30,37]. For

example, the claim that a collaboration should be explicit

instead of merged into an aspect is reasonable but not sup-

ported well. There are many such arguments in favor of

CLs or of ALs. We realized that the discussion is often

driven by personal preferences and plausibility arguments,

often leading to entrenched positions. So we ask, is there

any way to support or even prove such claims? Are CLs

or ALs equally suited to implement collaborations or is one

superior? These issues are important because prior studies

indicated that collaborations occur frequently in contempo-

rary programs [2, 3].

In this paper we illustrate the commonalities and sub-

tle differences of implementing collaborations via CLs and

ALs. We conclude that CLs and ALs are very similar in

this matter. CLs and ALs differ only in the arrangement

and interplay of language constructs and their concrete syn-

tax. While these differences cannot be quantified by code

metrics, they are significant for program comprehension es-

pecially for large-scale collaborations [35]. In the end, it

is the programmer who has to understand the resulting soft-

ware. Thus, we argue that empirical studies that incorporate

programmers are the key to decide between CLs and ALs.

The aim of this paper is to sensitize researchers to the

necessity for empirical studies in this field. We outline our

first ideas on how to arrange empirical studies that should

serve as a starting point for further discussion.

1For simplicity, we do not consider languages that can be assigned to

both, CLs and ALs, e.g., CaesarJ [26], FeatureC++ [5], Hyper/J [40]

2. Background

We begin with the introduction of the concept of a col-

laboration and how it can be implemented using CLs and

ALs. Note that we do not consider crosscutting concerns

that demand capabilities of advanced aspects, i.e., pattern

matching or control flow quantification. For those, ALs

clearly provide better language support [2, 3, 26].

2.1. Collaborations

An object in OOP is a self-contained entity that encap-

sulates data and a set of accompanying operations. In order

to complete a task, objects need to cooperate with other ob-

jects. Such intended interactions are also called collabora-

tions. A collaboration is a set of objects and a protocol to

communicate with one another [6, 12, 13, 21, 26, 28, 31, 35,

42]. While in a dynamic interpretation objects are the rel-

evant entities, we favor a static view which emphasizes the

interactions given by their classes [35]. Hence, the protocol

is fixed at compile time and defines how objects interact.

Classes play different roles in different collabora-

tions [42]. A role encapsulates the behavior or functionality

that a class provides when a corresponding collaboration

with other classes is established. That is, a role is that part

of a class that implements the communication protocol with

other classes participating in a particular collaboration.

In Figure 1 we show four classes participating in three

collaborations. For example, class A participates in collab-

oration I and II, i.e., two distinct roles implement the com-

munication protocol necessary for these collaborations.

collaboration II

collaboration I

collaboration III

class A class B class C class D

Figure 1. Collaboration-based design.

Usually when added to a program, a collaboration adds

several new classes and applies several new roles to existing

classes simultaneously. A role applied to a class may add

new elements to a class and may extend existing elements,

such as methods. Hence, a collaboration cuts across several

places in a base program.

In prior work we noticed the close relationship to cross-

cutting concerns [3,4,23]. We defined collaborations as one

of two fundamental categories of crosscutting concerns –

the other category consists of advanced aspects, which use

mechanism for pattern-matching and control flow quantifi-

cation. Since a role adds new elements to a single class and

extends methods only, there is no need for advanced aspect

mechanisms.

In Figure 2 we depict the collaboration-based design of

a simple program that deals with graph data structures. The

diagram uses the UML notation [9] with some extensions:

white boxes represent classes or roles; gray boxes denote

collaborations; solid arrows denote the application of a new

role to a class.

EIGHT

class Weight

class Node

void print();

GRAPHBASIC

W
<< role >>

Edge add(Node, Node);

void print();

Edge add(Node, Node, Weight);

void print();

Weight weight;

class Graph

Node a, b;

void print();

void print();

class Edge

<< role >>

Figure 2. Graph example.

The collaboration BASICGRAPH consists of the classes

Graph, Node, and Edge that together provide function-

ality to construct and display graph structures2. The col-

laboration WEIGHT adds a role to Graph and to Edge as

well as a class Weight, which all together implement a

weighted graph.

2.2. Implementation

We discuss two alternative ways to implement

collaboration-based designs.

Collaboration Languages. To illustrate how CLs imple-

ment collaborations we choose Jak3 as an archetype [6]. Jak

extends Java by a special language construct to apply roles

to classes, called refinements. Classes in Jak are imple-

mented as standard Java classes. In Figure 3 we depict our

collaboration BASICGRAPH implemented in Jak. It consists

of the classes Graph (Lines 1–14), Node (Lines 15–19),

and Edge (Lines 20–27).

A refinement in Jak implements a role intended for a

class. It is declared by the keyword refines. It can add

new members to a class and extend existing methods, which

is called a method extension. A method extension is im-

plemented by method overriding and calling the overridden

method via the keyword Super.

2In this paper we write collaboration names in SMALL CAPS and

names of classes, methods, and fields in Typewriter.
3http://www.cs.utexas.edu/users/schwartz/ATS.html

1 c l a s s Graph {

2 Vector nodes = new Vector();

3 Vector edges = new Vector();

4 Edge add(Node n, Node m) {

5 Edge e = new Edge(n, m);

6 nodes.add(n); nodes.add(m); edges.add(e);

7 re turn e;

8 }

9 vo id print() {

10 f o r(i n t i = 0; i < edges.size(); i++) {

11 ((Edge)edges.get(i)).print();

12 }

13 }

14 }

15 c l a s s Node {

16 i n t id = 0;

17 Node(i n t _id) { id = _id; }

18 vo id print() { System.out.print(id); }

19 }

20 c l a s s Edge {

21 Node a, b;

22 Edge(Node _a, Node _b) { a = _a; b = _b; }

23 vo id print() {

24 a.print(); System.out.print(", ");

25 b.print(); System.out.print("; ");

26 }

27 }

Figure 3. A simple graph (BASICGRAPH).

In Figure 4 we depict the collaboration WEIGHT imple-

mented in Jak. It introduces a new class Weight that rep-

resents the weight of an edge (Lines 19) and refines (ap-

plies a role to) the class Graph (Lines 1–10) by introduc-

ing a new method add that assigns a given weight value to

an edge (Lines 2–5) and by extending the existing method

add to assign a default weight value (Lines 6–9). Further-

more, it refines the class Edge (Lines 11–18) by adding a

field (Line 12) and a method for assigning the weight value

(Line 13) and by extending the print method to display

the weight (Lines 14–17).

1 r e f i n e s c l a s s Graph {

2 Edge add(Node n, Node m, Weight w) {

3 Edge res = Super.add(n, m);

4 res.setWeight(w); re turn res;

5 }

6 Edge add(Node n, Node m) {

7 Edge res = Super.add(n, m);

8 res.setWeight(new Weight(0)); re turn res;

9 }

10 }

11 r e f i n e s c l a s s Edge {

12 Weight weight;

13 vo id setWeight(Weight _w) { w = _w; }

14 vo id print() {

15 Super.print();

16 weight.print();

17 }

18 }

19 c l a s s Weight { /∗ . . . ∗ / }

Figure 4. A weighted graph (WEIGHT).

In Jak a collaboration of roles and classes is represented

by a containment hierarchy [6], which is a directory that

contains all software artifacts that implement a program fea-

ture. Thus, it has no textual representation at the code level

but is explicit for the programmer. The artifacts found in-

side a containment hierarchy are the classes and roles of the

enclosing collaboration.

AspectJ-like Languages. The same collaboration can be

implemented with ALs. We use AspectJ4 for illustra-

tion. As with CLs, BASICGRAPH is implemented by three

classes (cf. Fig. 3). What differs is the way to apply a

new collaboration to an existing program and to apply new

roles to existing classes. There are two alternative ways to

achieve this.

One approach is to introduce an aspect that bundles a

set of inter-type declarations and pieces of advice. In Fig-

ure 5 we show an aspect for WEIGHT that introduces the

method add (Lines 2–5), the field weight (Line 10), and

the method setWeight (Line 11) via inter-type declara-

tions and extends the method add (Lines 6–9) and print

method via advice (Lines 12–15). The class Weight is de-

fined as static inner class (Line 16).

1 a s p e c t AddWeight {

2 Edge Graph.add(Node n, Node m, Weight w) {

3 Edge res = add(n, m);

4 res.setWeight(w); re turn res;

5 }

6 a f t e r() re turning (Edge res) :

7 e x e c u t i o n(Edge Graph.add(Node, Node)) {

8 res.setWeight(new Weight(0));

9 }

10 Weight Edge.weight;

11 vo id Edge.setWeight(Weight _w) { w = _w; }

12 a f t e r(Edge e) :

13 e x e c u t i o n(vo id Edge.print()) && t h i s(e) {

14 e.weight.print();

15 }

16 p u b l i c s t a t i c c l a s s Weight { /∗ . . . ∗ / }

17 }

Figure 5. One aspect per collaboration.

Another approach to implement a collaboration is to im-

plement each role by a distinct aspect [15, 17, 34]. In our

example we would implement the roles applied to Graph

and Edge as two distinct aspects and the class Weight as

top-level class, as shown in Figure 6.

3. Discussion

Table 1 lists the mechanisms of CLs and ALs for im-

plementing collaborations and their roles; there seem to be

only a few differences between CLs and ALs:

1. With CLs we can add an encapsulated set of classes

and roles. While an aspect can implement and encap-

sulate a set of roles it cannot introduce new classes by

4http://www.eclipse.org/aspectj/

1 a s p e c t AddWeightGraph {

2 Edge Graph.add(Node n, Node m, Weight w) {

3 Edge res = add(n, m);

4 res.weight = w; re turn res;

5 }

6 a f t e r() re turning (Edge res) :

7 e x e c u t i o n(Edge Graph.add(Node, Node)) {

8 res.setWeight(new Weight(0));

9 }

10 }

11 a s p e c t AddWeightEdge {

12 Weight Edge.weight;

13 vo id Edge.setWeight(Weight _w) { w = _w; }

14 a f t e r(Edge e) :

15 e x e c u t i o n(vo id Edge.print()) && t h i s(e) {

16 e.weight.print();

17 }

18 }

19 c l a s s Weight { /∗ . . . ∗ / }

Figure 6. One aspect per role.

roles collaborations

AL one aspect per role or one

aspect per multiple roles

one aspect per collabora-

tion or multiple aspects per

collaboration

CL one refinement per role a set of refinements per

collaboration

Table 1. Implementation mechanisms.

itself [25]. Hunleth et al. have shown that for man-

aging collaborations a programmer needs to supply a

non-trivial infrastructure, e.g., adjusting the build path,

file system management, feature registry [16]. Group-

ing aspects and classes within packages or as inner

elements hinders composing collaborations and using

classes from outside [3].

2. While CLs represent roles as class-like entities that

have the same name as the classes they extend, with

ALs (1) the constituent parts of different roles are

merged in one aspect, without direct mapping to the

classes to be extended, or (2) each role is represented

by a distinct aspect.

3. The syntax of defining roles differs significantly be-

tween CLs and ALs. While defining a role with a CL

enables to access all members of the extended class

(“first-person perspective”), with an AL a role has

to declare explicitly what context is exposed (“third-

person perspective”), e.g., by using pointcuts like

args, this, and target.

Even though these differences have never been made ex-

plicit several researchers argued in favor or against CLs and

ALs. The main argument pushed forward is the effect on

program comprehension, which has a most significant im-

pact on software development. In the remaining section we

review some arguments.

3.1. Explicitness and Scalability

It has been noticed that not expressing a collaboration

in terms of object-oriented design (i.e., roles implemented

as refinements) decreases program comprehensibility [3,26,

38], although this is not generally accepted [17,30]. Detach-

ing roles from classes is problematic because programmers

cannot recognize the original structure of the base program

within a subsequently applied collaboration – in our exam-

ple the structuring in Graph, Node, and Edge. Especially,

the direct and intuitive mapping between roles and classes

and its hierarchical character is supposed to simplify pro-

gram comprehension.

For our simple example, it does not really matter whether

a programmer uses Jak or AspectJ. The difference between

CLs and ALs becomes more obvious when considering col-

laborations at a larger scale. Suppose a base program con-

sists of many classes (say 15) and a collaboration extends

most of them (say 12). With CLs the programmer defines,

per class to be extended, a new role with the same name

(Fig. 7). This way the programmer is able to retrieve the

program structure within the new collaboration. There is a

one-to-one mapping between the structural elements of the

base program and the elements of the collaboration to be

applied; base program and new collaboration are merged

recursively by name and type [6, 28, 35]. Roles are inher-

ently object-oriented and CLs make them explicit [37].

collaboration

base

Jak

program

Figure 7. N refinements per collaboration.

One aspect per collaboration. The primary argument

against aspects is their lack of scalability with respect to

an increasing number of roles [2]. In an AL solution all

participating roles of a collaboration are merged into one

aspect (Fig. 8). While this is possible, it flattens the inher-

ent object-oriented structure of the collaboration and makes

it hard to trace the mapping between the base program and

the collaboration [26, 38]. Note that the difference between

both solutions, as shown in the Figures 7 and 8, is not only a

matter of visualization. The point is that the inner structure

of the aspect does not reflect the structure of the base pro-

gram; the mapping between structural elements of the base

program and the collaboration is complex since the roles

are not explicit and their constituents are scattered over the

entire aspect in an arbitrary order. The programmer has to

translate constantly between base program and collabora-

tion. This is difficult and does not scale with large collabo-

rations, which do occur [6, 41]

base

aspect

program

Figure 8. One aspect per collaboration.

One aspect per role. Implementing each role as a distinct

aspect [15,17,30,34] would enable to establish a one-to-one

mapping between the elements of the base program and the

elements of the collaboration (provided reasonable naming

conventions). Thereby, an AL solution would be very simi-

lar to a CL solution. However, the mapping between classes

and roles is not enforced by the programming language and

thus left to the discipline of the programmer.

Furthermore, the way inheritance and roles are replaced

by aspect weaving does not provide any additional bene-

fit. It has been argued that such a replacement of object-

oriented techniques without any benefit is questionable [20,

26, 38], especially with respect to the additional program

complexity introduced by aspects [1, 39].

3.2. Conciseness of Syntax

A further argument aims at the expressive but complex

syntax of ALs such as AspectJ and at the different per-

spectives a role has on a class (first-person vs. third-person

perspective). An argument in favor of ALs is that a pro-

gram can be extended at many points by using sophisti-

cated mechanisms for pattern matching and dynamic cross-

cutting. However, in a collaboration (in the sense of our

definition) these are not necessary because they unnecessar-

ily complicate the expression of a role. For example, when

extending a method via advice we need 4 pointcut designa-

tors5 and their arguments are repeated and bound in a non-

trivial way. This is because of the third-person perspective

of ALs. Due to the first-person perspective, the Jak solution

appears simpler, as illustrated in Figure 9.

5within prevents advising methods of subclasses.

1 r e f i n e s c l a s s Edge {

2 i n t compare(Edge e) {

3 i n t res = Super.compare(e); /∗ . . . ∗ /

4 }

5 }

1 a s p e c t CompareAspect {

2 i n t around(Edge t, Edge e) : t h i s(t) && args(e) &&

3 e x e c u t i o n(i n t Edge.compare(Edge)) && with in(Edge) {

4 i n t res = proceed(t, e); /∗ . . . ∗ /

5 }

6 }

Figure 9. Method extension (Jak vs. AspectJ).

4. An Empirical Approach

The discussion about the differences between CLs and

ALs suggests that CLs are better suited for implementing

collaborations than ALs and that ALs bear even the poten-

tial to introduce more problems than solutions. However,

the arguments pushed forward are mainly plausibility ar-

guments, even though reasonable. Furthermore, the entire

discussion could be biased by personal preferences.

Nevertheless, this discussion is very important since col-

laborations occur frequently and this topic is still controver-

sial. Previous studies could not prove that one solution (CL

or AL) is superior, especially with regard to program com-

prehension. Thus, we need an empirical methodology. The

programmer and his connection to the program code is in

the heart of this discussion. Consequently, we believe that

empirical studies help to find a definitive answer.

In the remaining paper we address the issue of how

to conduct and arrange such studies. Our considerations

should be regarded as a first step and are intended to serve

as a starting point for discussion with other researchers.

4.1. The Cognitive Distance

The appropriateness of a modularization mechanism to

implement a design or implementation problem can be eval-

uated in terms of the intellectual effort required to use and

understand it [19]. The cognitive distance is an intuitive

gage that helps to assess modularization mechanism, espe-

cially when other metrics fail. It is defined as the amount of

intellectual effort that a programmer must expend to under-

stand and use a modularization mechanism [19].

Applied to our problem the cognitive distance is exactly

the way of comparing CLs and ALs we are looking for.

However, the cognitive distance is not a formal measure-

ment that can be quantified by numbers. It is rather an in-

tuitive measure that gages the effort to use and understand

a mechanism and the resulting program. But if the cogni-

tive distance is not a formal metric how can we measure

it? The answer has been given many times in other fields

of computer science and other sciences. If human beings

are involved, empirical studies that observe and interview

programmers can help. Regarding our problem we need to

make experiments that allow to draw conclusions about the

programmer’s ability to understand a program.

4.2. Experiments

As methodology for the envisioned experiments we sug-

gest an ethnographic approach [14]. In an ethnographic ap-

proach the researchers participate themselves in the experi-

ments; they join conversations, attend meetings, and read

documents. It minimizes preconceptions of experts and

novices by considering all activities as “strange”. There is

no fixed set of data being observed during the experiments.

Every theme that occurs during discussion is challenged.

Any data occurs naturally by deriving it from the observa-

tion of the participants that gave no a priori significance to

any particular issue. Ethnographic studies have been proven

useful for empirical software engineering [8, 10, 32, 33].

We plan to conduct an ethnographic study to collect data

about the differences of CLs and ALs with regard to pro-

gram comprehension. There are many ways to organize

such a study and here we outline first ideas.

An experiment that is part of a study confronts the

programmer with program text. There are two ways to

do so: (1) the programmer gets the task to implement

a collaboration-based design from a specification; (2) the

programmer has to derive the meaning (specification) of a

collaboration-based design from a given implementation. In

both ways either the programmers have to perform the task

with an CL and AL or a group of programmer perform the

task with an CL and another group with an AL.

Since we suggest an ethnographic approach the experi-

ments are discussed afterward with the other programmers

and the researchers that conduct the study. Of course,

themes like the complexity of the program structure and the

time the programmer needed for the task are the first themes

of the discussion. Therefrom new themes will emerge that

can shed a new light on this matter. For example, it might

be that a programmer gets quicker to a preliminary result

but the debugging effort is high; or a programmer believed

quickly to understand a given collaboration-based design

but he missed important points. These emergent themes are

difficult to predict and in fact a goal of this study.

Having said this, it is important to discuss how a reason-

able collaboration-based design (i.e., specification and im-

plementation) should look like. Certainly, it is not enough

to chose a design arbitrarily. We identified two parameters

of collaboration-based design that can help to distinguish

CLs and ALs: scale and role mapping.

Scalability is the main argument against using ALs. Ex-

periments should vary the size of the base program, the

number of collaborations, the number of roles per collab-

oration, and the size and complexity of the individual roles

in terms of added and extended elements.

The direct mapping between a role and its class seems

to be significant for the programmer to recognize this con-

nection. While CLs enforce a strict, simple, and explicit

mapping, with ALs it is left to the programmer but grants

for flexibility. Varying the arrangement of roles in an as-

pect can reveal the impact of the clear mapping on program

comprehension, compared to a strict CL solution.

Varying the scale and role mapping allows us to compare

the effort programmers have to spend when writing and un-

derstanding CL and AL programs. Subsequent discussions

might reveal new issues that emerge from the discussion of

the influence of the different parameters.

For the purpose of this position paper we envision a first

collaboration-based design. For a first series of experiments

we suggest to use the graph example outlined in this paper.

Even though the presented excerpt of the graph example

is rather small, there already exists an collaboration-based

design of an extended version. It consists of 441 lines of

code implementing 13 collaborations that crosscut 19 Java

classes, and there are already reference implementations in

Jak and AspectJ available. Though this would be a first

example it is still comparatively small. However, larger

collaboration-based designs and their implementations are

available [3, 22, 24, 41, 43].

5. Conclusion

Collaborations are frequently occurring design and im-

plementation problems. In this paper we illustrated that

collaborations can be implemented either by using CLs or

ALs. Currently, there is a lively discussion about the pros

and cons of CL and ALs but most arguments are based on

plausibility and personal preferences. We illustrated that

beside analytical methods the programmer is a key factor

and needs to be considered when comparing CLs and ALs.

We presented rationale to believe that CLs lead to more

comprehensible programs than ALs. Consequently, we pro-

pose an empirical methodology to support our claim. A

main subject to measure is the cognitive distance between

programmer and program code. Since this is an informal

measure we need to make several experiments varying cer-

tain parameters, e.g., scale and role mapping. We suggest

an ethnographic approach for experiments to minimize the

effect of expertise and preconceptions of programmer and

to examine which issues are relevant for program compre-

hension.

Acknowledgements. We thank Don Batory for his fruit-

ful comments on earlier drafts of this paper. Sven Apel

is sponsored by the German Research Foundation (DFG),

project number SA 465/32-1.

References

[1] R. Alexander. The Real Costs of Aspect-Oriented Program-

ming. IEEE Software, 20(6), 2003.

[2] S. Apel. The Role of Features and Aspects in Software De-

velopment. PhD thesis, School of Computer Science, Uni-

versity of Magdeburg, 2007.

[3] S. Apel and D. Batory. When to Use Features and Aspects?

A Case Study. In Proc. of GPCE, 2006.

[4] S. Apel, T. Leich, and G. Saake. Aspectual Mixin Layers:

Aspects and Features in Concert. In Proc. of ICSE, 2006.

[5] S. Apel, M. Rosenmüller, T. Leich, and G. Saake. Fea-

tureC++: On the Symbiosis of Feature-Oriented and Aspect-

Oriented Programming. In Proc. of GPCE, 2005.

[6] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling Step-

Wise Refinement. IEEE TSE, 30(6), 2004.

[7] A. Bergel, S. Ducasse, and O. Nierstrasz. Classbox/J: Con-

trolling the Scope of Change in Java. In Proc. of OOPSLA,

2005.

[8] P. Beynon-Davies, D. Tudhope, and H. Mackay. Informa-

tion Systems Prototyping in Practice. Journal of Information

Technology, 14(1), 1999.

[9] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Mod-

eling Language User Guide. Addison Wesley Professional,

2005.

[10] G. Button and W. Sharrock. Project Work: The Organisa-

tion of Collaborative Design and Development in Software

Engineering. Computer Supported Cooperative Work, 5(4),

1996.

[11] A. Colyer, A. Rashid, and G. Blair. On the Separation of

Concerns in Program Families. Technical report, Computing

Department, Lancaster University, 2004.

[12] E. Ernst. Family Polymorphism. In Proc. of ECOOP, 2001.

[13] E. Ernst. Higher-Order Hierarchies. In Proc. of ECOOP,

2003.

[14] M. Hammersley and P. Atkinson. Ethnography: Principles

in Practice. London: Tavistock, 1983.

[15] S. Hanenberg and R. Unland. Roles and Aspects: Similari-

ties, Differences, and Synergetic Potential. In Proc. of OOIS,

2002.

[16] F. Hunleth and R. Cytron. Footprint and Feature Manage-

ment Using Aspect-Oriented Programming Techniques. In

Proc. of LCTES/SCOPES, 2002.

[17] E. A. Kendall. Role Model Designs and Implementations

with Aspect-Oriented Programming. In Proc. of OOPSLA,

1999.

[18] G. Kiczales et al. An Overview of AspectJ. In Proc. of

ECOOP, 2001.

[19] C. W. Krueger. Software Reuse. ACM CSUR, 24(2), 1992.

[20] K. Lieberherr. Controlling the Complexity of Software De-

signs. In Proc. of ICSE, 2004.

[21] K. J. Lieberherr, D. Lorenz, and J. Ovlinger. Aspectual Col-

laborations – Combining Modules and Aspects. The Com-

puter Journal, 46(5), 2003.

[22] J. Liu, D. Batory, and C. Lengauer. Feature-Oriented Refac-

toring of Legacy Applications. In Proc. of ICSE, 2006.

[23] R. Lopez-Herrejon and S. Apel. Measuring and Characteriz-

ing Crosscutting in Aspect-Based Programs: Basic Metrics

and Case Studies. In Proc. of FASE, 2007.

[24] R. Lopez-Herrejon and D. Batory. From Crosscutting Con-

cerns to Product Lines: A Function Composition Approach.

Technical Report TR-06-24, Department of Computer Sci-

ences, The University of Texas at Austin, 2006.

[25] R. Lopez-Herrejon, D. Batory, and W. R. Cook. Evaluating

Support for Features in Advanced Modularization Technolo-

gies. In Proc. of ECOOP, 2005.

[26] M. Mezini and K. Ostermann. Variability Management with

Feature-Oriented Programming and Aspects. Proc. of FSE,

2004.

[27] N. Nystrom, S. Chong, and A. C. Myers. Scalable Extensi-

bility via Nested Inheritance. In Proc. of OOPSLA, 2004.

[28] M. Odersky and M. Zenger. Scalable Component Abstrac-

tions. In Proc. of OOPSLA, 2005.

[29] H. Rajan and K. J. Sullivan. Classpects: Unifying Aspect-

and Object-Oriented Language Design. In Proc. of ICSE,

2005.

[30] A. Rashid and A. Moreira. Domain Models Are NOT Aspect

Free. In Proc. of MoDELS/UML, 2006.

[31] T. Reenskaug et al. OORASS: Seamless Support for the Cre-

ation and Maintenance of Object-Oriented Systems. Journal

of Object-Oriented Programming, 5(6), 1992.

[32] H. Sharp and H. Robinson. An Ethnographic Study of XP

Practice. Empirical Software Engineering, 9(4), 2004.

[33] H. Sharp, H. Robinson, and M. Woodman. Software En-

gineering: Community and Culture. IEEE Software, 17(1),

2000.

[34] M. Sihman and S. Katz. Superimpositions and Aspect-

Oriented Programming. The Computer Journal, 46(5),

2003.

[35] Y. Smaragdakis and D. Batory. Mixin Layers: An Object-

Oriented Implementation Technique for Refinements and

Collaboration-Based Designs. ACM TOSEM, 11(2), 2002.

[36] O. Spinczyk, D. Lohmann, and M. Urban. AspectC++: An

AOP Extension for C++. Software Developer’s Journal,

2005.

[37] F. Steimann. On the Representation of Roles in Object-

Oriented and Conceptual Modeling. Data and Knowledge

Engineering, 35(1), 2000.

[38] F. Steimann. Domain Models are Aspect Free. In Proc. of

MoDELS/UML, 2005.

[39] F. Steimann. The Paradoxical Success of Aspect-Oriented

Programming. In Proc. of OOPSLA, 2006.

[40] P. Tarr et al. N Degrees of Separation: Multi-Dimensional

Separation of Concerns. In Proc. of ICSE, 1999.

[41] S. Trujillo, D. Batory, and O. Diaz. Feature Refactoring a

Multi-Representation Program into a Product Line. In Proc.

of GPCE, 2006.

[42] M. VanHilst and D. Notkin. Using Role Components in Im-

plement Collaboration-based Designs. In Proc. of OOPSLA,

1996.

[43] B. Xin, S. McDirmid, E. Eide, and W. C. Hsieh. A Compar-

ison of Jiazzi and AspectJ for Feature-Wise Decomposition.

Technical Report UUCS-04-001, School of Computing, The

University of Utah, 2004.

