
On the Duality of Aspect-Oriented and
Feature-Oriented Design Patterns

Martin Kuhlemann,
Marko Rosenmüller, Sven Apel

School of Computer Science,
University of Magdeburg

P.O. Box 4120
39016 Magdeburg, Germany

{kuhlemann,rosenmueller,apel}@iti.cs.uni-
magdeburg.de

Thomas Leich
METOP Research Institute

Sandtorstrasse 23
39106 Magdeburg, Germany
thomas.leich@metop.de

ABSTRACT
Design patterns aim at improving reusability and variabil-
ity of object-oriented software. Despite a notable success,
aspect-oriented programming (AOP) has been discussed re-
cently to improve the design pattern implementations. In
another line of research it has been noticed that feature-
oriented programming (FOP) is related closely to AOP and
that FOP suffices in many situations where AOP is com-
monly used. In this paper we explore the assumed duality
between AOP and FOP mechanisms. As a case study we
use the aspect-oriented design pattern implementations of
Hannemann and Kiczales. We observe that almost all of
the 23 aspect-oriented design pattern implementations can
be transformed straightforwardly into equivalent feature-
oriented design patterns. For further investigations we pro-
vide a set of general rules how to transform aspect-oriented
programs into feature-oriented programs.

General Terms
DESIGN, LANGUAGES

Categories and Subject Descriptors
D.1.5 [PROGRAMMING TECHNIQUES]: Object-oriented
Programming; D.3.3 [Language Constructs and Fea-
tures]: Patterns

Keywords
Design patterns, object-oriented programming, aspect-oriented
programming, feature-oriented programming

1. INTRODUCTION
Design patterns are a well known and accepted approach

to implement variable and reusable software with object-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Workshop ACP4IS ’07 March 12-13, 2007 Vancouver, British Columbia,
Canada
Copyright 2007 ACM 1-59593-657-8/07/03 ...$5.00.

oriented programming (OOP) [9]. Despite its success in
software development Hannemann et al. observed a lack of
modularity, composability and reusability in the respective
object-oriented designs [14]. They trace this lack to the
presence of crosscutting concerns. Crosscutting concerns are
design and implementation problems that result in code tan-
gling, scattering, and replication of code when a software is
decomposed along one dimension [24], e.g., the decompo-
sition into classes and objects in OOP. To overcome this
limitation several advanced modularization techniques have
been proposed, amongst others aspect-oriented programming
(AOP) [17] and feature-oriented programming (FOP) [21, 7].
Both paradigms provide mechanisms to modularize cross-
cutting concerns. While AOP is based on aspects, advice
and inter-type declarations, FOP is based on collaboration
design and refinements.

Although there are several success stories of AOP in gen-
eral [11, 15, 12, 28] and of aspect-oriented design patterns [14,
8], there are many voices that criticize certain modular-
ization mechanisms of AOP [1]. For example, Steimann
observed the lack of modularity in aspect-oriented designs
due to missing interfaces [23]. Tourwé et al. discovered
that AOP prevents the reapplication of aspects to a soft-
ware thus causing an evolution paradox [25]. Another ex-
ample is the arranged pattern problem described by Gy-
bels and Brichau [13]. FOP is known to avoid these prob-
lems because FOP mechanisms (e.g., mixin composition and
collaboration-based design [22, 26]) are more simple and suf-
fice in many situations [2, 3, 19, 18, 4, 6]. Hence, we want
to explore if AOP programs can be transformed into FOP
programs and if there are benefits regarding complexity.

We show that AOP and FOP address similar issues of
software development (i.e., crosscutting concerns) but in dif-
ferent ways.
We do not focus on the evaluation of AOP and FOP with
respect to OOP nor do we focus on the complexity of spe-
cific designs using metrics but we show the duality of AOP
and FOP mechanisms.
We use the implementation of the GoF design patterns as
a case study. Hannemann et al. showed that an aspect-
oriented design of the 23 Gang-of-Four design patterns [9]
improves modularity, composability, and reusability [14]. They
detached code belonging to crosscutting concerns and encap-
sulated it into aspects.

In this paper we demonstrate the possibility to implement
the aspect-oriented design patterns of Hannemann et al. in a
collaboration-based and feature-oriented fashion. Due to the
duality of some aspect-oriented and feature-oriented modu-
larization mechanisms we were able to transform the im-
plementations for 19 of the 23 aspect-oriented design pat-
terns straightforwardly into feature-oriented counterparts.
We discuss our experiences regarding this transformation
and illustrate the similarities and differences of the aspect-
oriented and feature-oriented solutions.

2. BACKGROUND
In this section we introduce the analyzed techniques AOP

and FOP.

2.1 Aspect-Oriented Programming
The purpose of AOP is to modularize software regarding

different and independent concerns simultaneously [17].
In AOP the code of crosscutting concerns of an underly-
ing object-oriented structure is encapsulated into aspects.
AspectJ is a popular AOP language. We explain its mecha-
nisms in the following paragraphs.

Pointcut and Advice.
The primary mechanism of AOP is the extension of events

occuring at runtime, so-called join points [20]. The static
representation of a runtime event is called join point shadow.
Join point shadows are for example statements of method
calls, object creation, or member access. A pointcut defines
a set of join points to be advised.

An example for pointcut and advice (PCA) is given in
Figure 1. The aspect MyAspect (Lines 11–22) extends the
classes Label and Button. The pointcut LabelChangeCall

(Line 12) refers to all statements calling methods of the class
Label (call pointcut), e.g., call statements for the method
setText. Hence, the according piece of advice of Line 14
(before advice) is introduced into the method click of the
class Button before the method Label.setText is invoked
(Line 7). Advice can also be applied after (after advice) or
around (around advice) a join point.
The advice of the pointcut LabelChangeExec (Line 15) refers
to the body (execution advice) of the method setText, i.e.,
the advice is introduced into the method setText of class
Label (Line 2).
While pieces of call advice, e.g., LabelChangeCall, are in-
voked only for referred calls of the method, execution advice,
e.g., LabelChangeExec, is applied every time the method is
called.

Inter Type Declaration.
Inter type declarations (ITD) are methods or fields that

are inserted into OOP classes by an aspect and thus become
members of these classes. Additionally, interfaces can be
extended with methods and fields. Contrary to Java con-
ventions, AspectJ allows to introduce methods including a
method body into interfaces.
In our example of Figure 1 the aspect MyAspect defines two
ITD to insert the field Name (Line 17) and the new method
printName (Line 18) into a class Creator.

Aspect Fields and Methods.
Aspects can contain members similar to members of a

1 public class Label {
2 public void setText (){/∗ . . . ∗/}
3 }

4 public class Button {
5 public void click (){
6 /∗ . . . ∗/
7 myLabel.setText("Button clicked")
8 /∗ . . . ∗/
9 }

10 }

11 public aspect MyAspect {
12 protected pointcut LabelChangeCall (): call (*

Label .*(..));
13 protected pointcut LabelChangeExec (): execution(*

Label .*(..));
14 before():LabelChangeCall (){/∗ . . . ∗/}
15 before():LabelChangeExec (){/∗ . . . ∗/}
16

17 public String Creator.Name;
18 public void Creator.printName (){/∗ . . . ∗/}
19

20 public HashMap printer;
21 public void getPrinter (){/∗ . . . ∗/}
22 }

Figure 1: Application of call and execution advice
in AOP.

class, i.e., aspects can contain methods, fields, or inner classes
and interfaces. These aspect members can be invoked from
code inside the aspect, e.g., by advice, but also from exter-
nal classes. The aspect MyAspect includes one aspect field
and one aspect method (Fig. 1, Lines 20–21).
If aspect fields and methods (AFM) are invoked from ad-
vice, ITD, or from the classes (using the aspect method
aspectOf), and no extra declarations are declared (e.g., per-
cflow), then every reference to aspect members refers to the
same single aspect instance, thus the aspect is instantiated
once.

Parent Declaration.
Aspects can declare a class to implement additional in-

terfaces. Furthermore, aspects can declare a class to inherit
from additional classes.

Other AOP.
If a user defined constraint is violated by the classes, the

aspect weaver can be instructed to invoke compiler warnings
or compiler errors.
Precedence declarations define the ordering of advice if join
point shadows are advised by more than one aspect.

2.2 Feature-Oriented Programming
FOP aims at feature modularity in software product lines

where features are increments in program functionality [21,
7]. Typically, features are not implemented through one sin-
gle class but through different classes [21]. To add a feature
subsequently means to introduce code into existing classes.
Code of different classes associated to one feature are merged
into one feature module.
Feature modules refine other feature modules in a stepwise
manner, that is, each refinement superimposes the feature
modules already assembled [7].

1 // feature module BASE
2 public class Label {
3 public void setText (){/∗ . . . ∗/}
4 }

5 // feature module EXTENSION
6 refines class Label {
7 public void setText (){
8 Super(). setText ();
9 }

10 public void getText (){/∗ . . . ∗/}
11 }

Figure 2: Refinement of a method by a FOP refine-
ment.

We systematize the mechanisms of the AHEAD Tool Suite1,
a popular FOP language extension for Java, into the cate-
gories of Mixins, Method Extensions, and Other FOP. Ad-
ditionally, we will describe the OOP technique of Singleton
classes as a category since we used singleton classes to trans-
form AFM into FOP.

Mixins.
Feature modules may manipulate properties of classes,

e.g., introduce new methods or fields. In Figure 2 the new
method getText is introduced by the feature module Ex-

tension (Line 10).

Method Extension.
FOP allows to extend methods of classes by overriding.

An example is depicted in Figure 2. The feature module
Base (Lines 1–4) includes a class Label that is extended
by the refinement Extension (Lines 5–11), i.e., the refine-
ment Extension superimposes the method setText of the
class Label. The method setText of the feature module Ex-

tension extends the setText method of the feature module
Base by invoking this superimposed method (using Super,
Line 8).

Singleton.
A singleton class is an idiom to limit the number of objects

of a class. The singleton class is instantiated once and all
subsequent requests to this class are forwarded to the unique
object [9].

Other FOP.
All classes, that are not nested in other classes are encap-

sulated in feature modules. The ordering of feature modules
defines the ordering of refinements for one single method.
Class members qualified as limited visible, e.g., protected,
cannot be accessed from classes others than the subclasses
of the encapsulating class.

3. DUALITY OF AOP AND FOP
MECHANISMS

In our analysis we observed that different mechanisms
available in AOP and FOP are similar although looking dif-
ferently:

• The AOP mechanism of ITD is equivalent to the FOP

1http://www.cs.utexas.edu/users/schwartz/ATS.html

mechanism of Mixins. Both mechanisms extend OOP
classes with additional methods and fields.

• The AOP mechanism of execution advice is equivalent
to the FOP mechanism of Method Extension. Both
mechanisms extend the body of a method for all sub-
sequent calls.

• The mechanism of Parent Declaration is representable
straightforwardly by the Mixin mechanism due to the
possibility of mixins to manipulate the inheritance hi-
erarchy of refined classes.

• Aspects can be instantiated and referred to from the
OOP classes they extend. The method aspectOf of an
aspect allows to manipulate one instance of the aspect,
i.e., different methods referring to one aspect using
aspectOf work on the same aspect instance.
This mechanism is representable straightforwardly by
the OOP Singleton design pattern [9].

We want to explore the duality of AOP and FOP to get
more insight into the used implementation mechanisms. It
has been observed that FOP mechanisms suffice frequently
while AOP introduce additional complexity [2, 3, 19, 18,
4, 6, 27]. Thus we present a set of rules that reflect the
duality and describe how to get from an AOP to an FOP
implementation and vice versa.

4. TRANSFORMATION METHODOLOGY
In this section we give 7 rules to transform AOP programs

into FOP programs.

PCA into Method Extensions.
We propose to transform execution advice into method

extensions. If the pointcut of a call advice is not restricted
and does not refer to the calling object we propose to trans-
form the call advice into a method extension of the called
method. This is possible because this call pointcut is equiv-
alent to an execution pointcut.
For the transformation of PCA, the position of the invo-
cation of the extended method in FOP (Super statement)
depends on the kind of advice:

• A before advice demands for the invocation of the re-
fined method to be the last statement of the refining
method in FOP.

• After advice has to be transformed into method exten-
sions while the invocation of the superimposed method
is the first statement of the superimposing method.

• Around advice defines the invocation of the superim-
posed method (using a proceed statement) in the AOP
implementation. This statement has to be transformed
into the Super statement of FOP, i.e., into the invoca-
tion of the superimposed method.

For example, since the call pointcut LabelChangeCall (Fig.
3, Line 2) is not restricted and does not refer to the object
calling the method setText, we propose to transform the
according advice (Line 3) into a FOP method extension of
the called method setText (Lines 6–9).

If one call statement is the only statement of a method
(e.g., setText is the only statement of the method click;

1 public aspect MyAspect {
2 protected pointcut

LabelChangeCall (): call (*
Label.setText (..));

3 before():LabelChangeCall (){/∗
. . . ∗/}

4 }

5 refines class

Label{
6 void setText{
7 /∗ . . . ∗/
8 Super().setText ();
9 }}

Figure 3: Refactoring simple PCA into method ex-
tensions.

1 public class Button {
2 Label myLabel;
3 public void click(){
4 myLabel.setText("Button clicked");
5 }
6 }

7 public aspect MyAspect {
8 protected pointcut LabelChange3(Button button):

call (boolean Label.setText ()) && this(button);
9 before(Button button):LabelChange3(button){/∗ . . . ∗/}}

10 refines class Button {
11 public void click(){
12 /∗ . . . ∗/
13 Super().click();
14 }}

Figure 4: Refactoring complex PCA.

Figure 4, Line 4), then extending the calling method (click)
is equivalent to the extension of the method call (Line 4)
within. In this case, advice that refers to the calling ob-
ject by its pointcut expression, e.g., labelChange3 (Fig. 4,
Line 9), has to be transformed into a method extension of
the calling method (click, Lines 10–14).

If the calling statement is situated within a complex method,
i.e., it is not the only statement of the method, FOP fails to
implement this call advice without code replication of the
calling method.

ITD into Mixins.
If an aspect defines ITD we propose to transform these

declarations into mixins of the respective class in FOP. For
instance, the ITD printName (Fig. 5, Line 2) has to be trans-
formed into the mixin of Line 4.

AFM into Other FOP.
Nested classes and interfaces of aspects have to be ex-

tracted into top level classes in FOP implementations.

AFM into Singleton Members.
If AFM are referred to by advice, ITD, or by invoking

the method aspectOf from the OOP classes, we propose

1 public aspect MyAspect {
2 public void Creator.

printName (){/∗ . . . ∗/}}

3 refines class Creator
{

4 public void printName
(){/∗ . . . ∗/}}

Figure 5: Refactoring aspect method into mixin.

1 public aspect Mediator{
2 private Mediator

getMediator (){/∗ . . . ∗/
}

3 after (): (call (* Label
.*()){

4 getMediator ();
5 }}

6 public class Mediator{
7 static Mediator

_instance;
8 static Mediator

getInst (){/∗ . . . ∗/
}

9 public Mediator
getMediator(
Colleague
colleague){/∗ . . .
∗/}

10 }

Figure 6: Refactoring aspect method into singleton.

to transform the aspect with its fields and methods into a
singleton class. Since advice and ITD are assigned to the
respective classes, the members of the new singleton class
have to be qualified as public to be accessable.

The aspect Mediator of Figure 6 includes one aspect met-
hod (Line 2) that is invoked from an advice (Lines 3–5).
Since the advice refers to a non static method getMediator

of the aspect Mediator, this aspect has to be transformed
into the singleton class Mediator (Lines 6–10). Subsequently,
the method getMediator is invoked from a different class
(Label) and thus has to be qualified as public.

AFM into Mixins.
Members of an aspect, e.g., methods, that are used in

conjunction with one class only, shall be added to that class
using mixins.

Parent Declarations into Mixins.
Parent declarations shall be transformed into FOP class

refinements. The (empty) class refinement introduces the
subtype declaration regarding the new interface and inherits
the new superclass respectively. Thus, FOP manipulates the
inheritance hierarchy of OOP classes.

Other AOP into Other FOP.
Compiler errors, that are declared to be thrown if a mem-

ber of a class is referred to from outside the class have to
be transformed into visibility declarations for the respective
class members in FOP, e.g., using private or protected

qualifier.
An example is depicted in Figure 7. The aspect CreatorImpl
includes an error declaration (Lines 3–7) to limit access
to the introduced member representation (Line 2). The
equivalent FOP implementation is depicted below (Lines 9–
11), i.e., we introduced the member representation but
qualified it to be protected.

The declaration of precedence for AOP advice of different
aspects, i.e., the ordering of advice for join point shadows
that are extended by different aspects, is implemented im-
plicitly in FOP by different orderings of feature modules
applied.

PCA into Mixins.
We transformed one PCA into a mixin because this advice

replaces a method that is introduced by the same aspect.
Hence, we only introduce the replacing advice as mixin. This
is no general rule, because it does not seem sensible to re-
place an ITD within the same aspect using around advice.

1 public aspect CreatorImplementation {
2 public String Creator.representation;
3 declare error: (set(public String

Creator +. representation)
4 || get(public String Creator +. representation))
5 && ! (within(Creator +)
6 || within(CreatorImplementation)):
7 "variable result is aspect protected. Use

getResult () to access it";
8 }

9 refines class Creator{
10 protected String representation;
11 }

Figure 7: Member protection in AOP and FOP im-
plementations.

AOP
PCA ITD AFM Parent

Decl.
Other
AOP

Mixin 1 40 11 34 0
Method
Ext.

15 0 0 0 0

F
O

P

Other
FOP

0 0 22 0 2

Singleton 0 0 44 0 0
not transformed 3 3 2 0 1

Table 1: Number of transformations applied for
AOP mechanisms (cols) into FOP mechanisms
(rows).

5. CASE STUDY
Since design patterns solve recurring and diverse problems

of software development and incorporate crosscutting con-
cerns [14] they qualify best as a case study for exploring the
duality of AOP and FOP as well as for our transformation
rules.

To verify our transformation rules, we manually applied
them to refactor the AspectJ design pattern implementa-
tions by Hannemann et al. into AHEAD counterparts. We
executed the transformed FOP code and compared it to the
AOP implementation. Despite few exceptions (that we will
discuss later) all FOP implementations behave equivalently
to their AOP originals.

In summary, 37 of 41 aspects (19 of 23 design patterns)
could be transformed straightforwardly using our transfor-
mation rules. Some aspects could not be transformed as we
will explain soon. Furthermore, the most of the aspect spe-
cific mechanisms of pointcuts (13 of 19) can be transformed
into method extensions. Two of the remaining six pointcuts
referring to the calling object point to methods that are only
forwarding requests, as described above.

Table 1 depicts how often we applied a specific transfor-
mation to obtain a FOP counterpart. The last row shows,
that only 9 out of 178 AOP elements were not transformed
into FOP.

Figure 8 shows the different AOP mechanisms used in the
case study of Hannemann et al. AFM, ITD, and Parent Dec-
larations were applied most frequently – in sum 84% (151 of
178 AOP elements). Since we showed that these mechanisms

PCA

ITD

AFM

Parent

Declarations
Other AOP

Figure 8: AOP mechanisms used.

are equivalent to FOP mechanisms (Mixins and Singleton)
we argue that AOP and FOP provide similar means in many
situations for solving recurring problems of software devel-
opment.

We observed, that only about 50% of the mechanisms and
keywords available in AspectJ (19 of 40) were actually used
in the case study of Hannemann et al. [16].

Now we want to explain why we were not able to transform
all aspects:

PCA.
We could not transform two pointcuts with pieces of ad-

vice, because the pointcuts were declared only and advice
has not been applied.
One aspect in the AOP implementations advises constructor
calls that occur within a complex method. (The extension
of the constructor of the respective class does not allow to
exchange the returned object and thus FOP does not allow
to prevent the creation and use of a new object.)

AFM.
Two aspect fields and methods referred to advice that we

were not able to transform (see PCA above). Since the ad-
vice cannot be implemented, we could omit these associated
members of the aspect.

ITD.
AspectJ allows to extend interfaces using method defini-

tions. If a class implements different interfaces, that are ex-
tended by aspects using method definitions, multiple inher-
itance is introduced. Multiple inheritance is not supported
in Java and AHEAD. Therefore, we were not able to add
three methods to the aimed interfaces.

Other AOP.
One declare warning statement could not be transformed

since FOP does not affect the compilation process and can-
not define compiler warnings.

5.1 Limitations of the Transformation Rules
As depicted by several studies both, AOP and FOP, can

be used to encapsulate crosscutting concerns. Neverthe-
less FOP lacks implementing some AOP mechanisms, e.g.,
the lack of FOP for extending method calls within com-
plex methods (see above). Figure 9 depicts advice (adopted
from [3]) that is applied at join point shadows defined by
a non trivial pointcut. This pointcut refers to the dynamic

1 after(MessageSender sender , Message msg , PeerId id):
target(sender) && args(msg , id) && call (*
MessageSender.send(Message , PeerId)) &&
cflow(execution(* Forwarding.forward (..))) &&
i f (msg instanceof QueryRequestMessage)

2 { /∗ . . . ∗/ }

Figure 9: Complex pointcut that can not be trans-
formed into FOP directly.

control flow of the program (cflow) which causes the fail-
ure of the transformation into FOP, because the points of
extension are not evaluable statically.

Furthermore, FOP lacks appropriate implementation of
homogeneous crosscutting concerns, i.e., the extension of dif-
ferent join point shadows with identic code [5]. In this case
FOP introduces code replication which decreases maintain-
ability. It has been observed that homogeneous pointcuts
occur very rare in medium sized software projects [3] – in
our case study only 2 of 23 design pattern implementations
include homogeneous crosscutting concerns.

In this section we showed that FOP can not implement
all sophisticated AOP mechanisms. But this does not mean
the failure of FOP. If problems occur where AOP fits best
instead of FOP we refer to aspectual mixin layers (AML), an
integration of AOP mechanisms into FOP [5]. AML preserve
the advantages of FOP and prevent the difficulties associ-
ated to AOP (see above).

6. RELATED WORK
Hannemann et al. [14] and Garcia et al. [10] transformed

OOP implementations into AOP implementations to discuss
the advantages of AOP mechanisms with respect to OOP.
We extend their transformation to FOP and furthermore
showed the duality of AOP and FOP mechanisms. While
they focus on OOP and AOP, where AOP can be seen as a
superset of OOP, we focus on AOP and FOP, two advanced
and concurrent programming techniques.
Apel et al. performed a qualitative case study of AOP and
FOP and did not aim to show the duality of AOP and FOP
mechanisms [3]. They did not present any possible transi-
tion rules. Apel et al. used AOP and FOP to cope with
different kinds of problems; we analyzed the duality of AOP
and FOP mechanisms by implementing the same problems
using both techniques – AOP and FOP.

7. CONCLUSION AND PERSPECTIVE
In this paper we analyzed the duality of AOP and FOP

mechanisms in the context of design patterns. We defined
a set of rules to transform AOP implementations into FOP
implementations. We verified these rules by transforming
the 23 aspect-oriented design pattern implementations of
Hannemann et al. into feature-oriented counterparts. We
have seen that advanced AOP mechanisms that are unique
are not used frequently in aspect-oriented design patterns,
which is in line with other studies on the comparison of AOP
and FOP [2, 3, 19, 18, 4, 6, 27]. We were able to transform
84% of the code base of a case study of aspect-oriented
design patterns straightforwardly into feature-oriented code.

In further work we want to explore if and how maximizing
the use of AOP and FOP mechanisms affects the program

structure and modularity. We will investigate to find the
most superior mechanisms with respect to modularity and
understandability. To preserve comprehensibility for this
comparison of the programming techniques AOP and FOP
we need to transform AOP implementations into equivalent
FOP implementations. This has not been studied so far.
Furthermore, we will apply different software metrics and
performance measurements to compare AOP and FOP in
this direction in detail.

8. REFERENCES
[1] R. Alexander. The Real Costs of Aspect-Oriented

Programming. IEEE Software, 20(6):92–93, 2003.

[2] S. Apel. The Role of Features and Aspects in Software
Development. PhD thesis, School of Computer
Science, University of Magdeburg, 2007.

[3] S. Apel and D. Batory. When to Use Features and
Aspects?: A Case Study. In Proceedings of the
International Conference on Generative Programming
and Component Engineering (GPCE), pages 59 – 68,
2006.

[4] S. Apel, D. Batory, and M. Rosenmüller. On the
Structure of Crosscutting Concerns: Using Aspects or
Collaborations? In GPCE Workshop on
Aspect-Oriented Product Line Engineering (AOPLE),
2006. Published at the workshop Web site:
http://www.softeng.ox.ac.uk/aople/.

[5] S. Apel, T. Leich, and G. Saake. Aspect Refinement
and Bounding Quantification in Incremental Designs.
In Proceedings of the Asia-Pacific Software
Engineering Conference (APSEC), pages 796–804,
2005.

[6] S. Apel, T. Leich, and G. Saake. Aspectual Mixin
Layers: Aspects and Features in Concert. In
Proceedings of the International Conference on
Software Engineering (ICSE), pages 122–131, 2006.

[7] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling
Step-Wise Refinement. IEEE Transactions on
Software Engineering (TSE), 30(6):355–371, 2004.

[8] N. Cacho, C. Sant’Anna, E. Figueiredo, A. Garcia,
T. Batista, and C. Lucena. Composing Design
Patterns: A Scalability Study of Aspect-Oriented
Programming. In Proceedings of the International
Conference on Aspect-Oriented Software Development
(AOSD), pages 109 – 121, 2006.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

[10] A. Garcia, C. Sant’Anna, E. Figueiredo, U. Kulesza,
C. Lucena, and A. v. Staa. Modularizing Design
Patterns with Aspects: A Quantitative Study. In
Proceedings of the International Conference on
Aspect-Oriented Software Development (AOSD), pages
3–14, 2005.

[11] I. Godil and H.-A. Jacobsen. Horizontal
Decomposition of Prevayler. In Proceedings of the
International Conference of the Centre for Advanced
Studies on Collaborative Research (CASCON), pages
83–100, 2005.

[12] W. G. Griswold, K. Sullivan, Y. Song, M. Shonle,
N. Tewari, Y. Cai, and H. Rajan. Modular Software
Design with Crosscutting Interfaces. IEEE Software,

23(1):51–60, 2006.

[13] K. Gybels and J. Brichau. Arranging Language
Features for More Robust Pattern-Based Crosscuts. In
Proceedings of the International Conference on
Aspect-Oriented Software Development (AOSD), pages
60–69, 2003.

[14] J. Hannemann and G. Kiczales. Design Pattern
Implementation in Java and AspectJ. In Proceedings
of the International Conference on Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA), pages 161–173, 2002.

[15] F. Hunleth and R. Cytron. Footprint and Feature
Management Using Aspect-Oriented Programming
Techniques. In Proceedings of Joint Conference on
Languages, Compilers, and Tools for Embedded
Systems & Software and Compilers for Embedded
Systems (LCTES/SCOPES), pages 38–45, 2002.

[16] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An Overview of
AspectJ. In Proceedings of the European Conference
on Object-Oriented Programming (ECOOP), pages
327 – 353, 2001.

[17] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. V. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-Oriented Programming. In Proceedings of the
European Conference on Object-Oriented
Programming (ECOOP), pages 220–242, 1997.

[18] R. Lopez-Herrejon. Understanding Feature Modularity.
PhD thesis, Department of Computer Sciences, The
University of Texas at Austin, 2006.

[19] R. Lopez-Herrejon and S. Apel. Measuring and
Characterizing Crosscutting in Aspect-Based
Programs: Basic Metrics and Case Studies. In
Proceedings of the International Conference on
Fundamental Approaches to Software Engineering
(FASE). Springer, 2007. to appear.

[20] H. Masuhara, G. Kiczales, and C. Dutchyn. A
Compilation and Optimization Model for
Aspect-Oriented Programs. In Proceedings of
International Conference on Compiler Construction
(CC), pages 46–60, 2003.

[21] C. Prehofer. Feature-Oriented Programming: A Fresh
Look at Objects. In Proceedings of the European
Conference on Object-Oriented Programming
(ECOOP), pages 419–443, 1997.

[22] Y. Smaragdakis and D. Batory. Mixin Layers: An
Object-Oriented Implementation Technique for
Refinements and Collaboration-Based Designs. ACM
Transactions on Software Engineering and
Methodology (TOSEM), 11(2):215–255, 2002.

[23] F. Steimann. The Paradoxical Success of
Aspect-Oriented Programming. In Companion of the
International Conference on Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA), pages 481–497, 2006.

[24] P. Tarr, H. Ossher, W. Harrison, and J. S. M. Sutton.
N Degrees of Separation: Multi-Dimensional
Separation of Concerns. In Proceedings of the
International Conference on Software Engineering
(ICSE), pages 107–119, 1999.

[25] T. Tourwé, J. Brichau, and K. Gybels. On the
Existence of the AOSD-Evolution Paradox. In

Workshop on Software-Engineering Properties of
Languages for Aspect Technologies (SPLAT), 2003.

[26] M. VanHilst and D. Notkin. Using C++ Templates to
Implement Role-Based Designs. In JSSST
International Symposium on Object Technologies for
Advanced Software (ISOTAS), pages 22–37, 1996.

[27] B. Xin, S. McDirmid, E. Eide, and W. C. Hsieh. A
Comparison of Jiazzi and AspectJ for Feature-Wise
Decomposition. Technical Report UUCS-04-001,
School of Computing, The University of Utah, 2004.

[28] C. Zhang and H.-A. Jacobsen. Resolving Feature
Convolution in Middleware Systems. In Proceedings of
the International Conference on Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA), pages 188–205. ACM Press, 2004.

	Introduction
	Background
	Aspect-Oriented Programming
	Feature-Oriented Programming

	Duality of AOP and FOPMechanisms
	Transformation Methodology
	Case Study
	Limitations of the Transformation Rules

	Related Work
	Conclusion and Perspective
	References

