
Evidence Profiles for Validity Threats in Program
Comprehension Experiments

Marvin Muñoz Barón, Marvin Wyrich, Daniel Graziotin and Stefan Wagner
Institute of Software Engineering, University of Stuttgart

Stuttgart, Germany

{firstname.lastname}@iste.uni-stuttgart.de

Abstract—Searching for clues, gathering evidence, and review-
ing case files are all techniques used by criminal investigators
to draw sound conclusions and avoid wrongful convictions.
Medicine, too, has a long tradition of evidence-based practice, in
which administering a treatment without evidence of its efficacy
is considered malpractice. Similarly, in software engineering (SE)
research, we can develop sound methodologies and mitigate
threats to validity by basing study design decisions on evidence.
Echoing a recent call for the empirical evaluation of design

decisions in program comprehension experiments, we conducted
a 2-phases study consisting of systematic literature searches,
snowballing, and thematic synthesis. We found out (1) which
validity threat categories are most often discussed in primary
studies of code comprehension, and we collected evidence to build
(2) the evidence profiles for the three most commonly reported
threats to validity.
We discovered that few mentions of validity threats in primary

studies (31 of 409) included a reference to supporting evidence.
For the three most commonly mentioned threats, namely the
influence of programming experience, program length, and the
selected comprehension measures, almost all cited studies (17 of
18) did not meet our criteria for evidence. We show that for many
threats to validity that are currently assumed to be influential
across all studies, their actual impact may depend on the design
and context of each specific study.
Researchers should discuss threats to validity within the con-

text of their particular study and support their discussions with
evidence. The present paper can be one resource for evidence, and
we call for more meta-studies of this type to be conducted, which
will then inform design decisions in primary studies. Further,
although we have applied our methodology in the context of
program comprehension, our approach can also be used in other
SE research areas to enable evidence-based experiment design
decisions and meaningful discussions of threats to validity.

Index Terms—program comprehension, threats to validity,
empirical software engineering

I. INTRODUCTION

Between 2008 and 2013, drivers on German highways had

reasons to be concerned. Criminal investigators were on the

trail of The Highway Shooter, as the media called them. Over

the years, the Highway Shooter had fired a gun at passenger

cars more than 700 times, with a predilection for trucks [1].

As it became clear that the shooter was mobile and that cases

had spread across the country, the German Federal Criminal

Police Office took over.

Several attempts were made to apprehend the criminal,

most of which were covered intensively by the media. These

attempts culminated in a public manhunt with a reward of

100 000 C. In the end, however, what led to success was a

combination of two measures: firstly, carriers were sensitized

to immediately report bullet holes in their vehicles. Secondly,

several license plate recording devices were set up along the

highways. April 2013 was a hectic month: six shootings were

reported within five days. The culprit’s route started showing

patterns. These patterns, crossed with the captured license

plate numbers, ultimately resulted in a single revealing license

plate number. The final evidence led to the arrest of The

Highway Shooter in June 2013.

In the same year that the criminal was caught, Wohlin

published a paper on evidence profiles for software engineer-

ing research and practice [2]. The overlap in time is likely

coincidental, but some parallels between the case and Wohlin’s

proposed methodology are not.

Wohlin [2] motivates the work with the increasing impor-

tance of evidence-based software engineering (EBSE). For

example, critical decisions such as the introduction of a new

tool that could affect software quality or developer productivity

should be based on scientific evidence. Wohlin proposes a

model by which evidence from different studies could be

evaluated in a manner similar to criminal law investigations.

Practical conclusions could be drawn by putting the individual

pieces together in an evidence profile. Just as with license

plates and reports from drivers in the case of The Highway

Shooter, we can more effectively provide evidence in software

engineering investigations.

Just as investigators were left in the dark for several

years in the case of The Highway Shooter, researchers have

been uncertain about the consequences of design decisions

in code comprehension experiments. In the corresponding

papers, researchers regularly discuss and speculate about the

threats to validity of their experiments. Two meta-studies

have categorized these threats, coming up with more than 50

different threat categories [3], [4]. Moreover, papers that do not

discuss threats to validity in code comprehension experiments

are rather the exception today [4], [5]. At the same time, hardly

anyone is sure about the actual extent of the discussed threats,

and almost no paper cites evidence on the assumed threats [4].

This makes it difficult to evaluate study designs in an evidence-

based manner. Researchers have to decide which of the more

than 50 potential threats do, in fact, threaten the validity of

a study design, execution, and interpretation, and to which

extent they should be disclosed and elaborated on.

In this paper, we apply Wohlin’s methodology of evidence

1907

2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE)

1558-1225/23/$31.00 ©2023 IEEE
DOI 10.1109/ICSE48619.2023.00162

20
23

 IE
EE

/A
CM

 4
5t

h 
In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 S
of

tw
ar

e 
En

gi
ne

er
in

g 
(IC

SE
) |

 9
78

-1
-6

65
4-

57
01

-9
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
IC

SE
48

61
9.

20
23

.0
01

62

Authorized licensed use limited to: Saarl Universitaets. Downloaded on February 20,2024 at 10:11:34 UTC from IEEE Xplore.  Restrictions apply. 



profiles. We echo a recent call by Wyrich et al. [4] to

provide more evidence in the design of empirical program

comprehension studies. To that end, we examined the threats

to validity in program comprehension experiments to collect

evidence of their existence, to understand the context and

nature in which they occur, and to ultimately assist researchers

in designing controlled experiments with high validity. Specif-

ically, we extracted the threats to validity reported in 95 code

comprehension experiments through thematic synthesis. Then,

focusing on the three most frequently mentioned threat cate-

gories, we collected evidence that contradicted or supported

the influence of the threat, using systematic literature searches

and snowballing. Finally, we individually scored the evidence

that passed our filtering criteria to create an evidence profile,

serving as an overview of the evidence for each of the three

threat categories.

Our work shows that the extent of commonly assumed

threats to validity can be very dependent on the particular

design and context factors of a primary study. Nevertheless,

certain threats have so far been generalized to all code

comprehension experiments without restriction. With three

evidence profiles, we show how evidence-based experiment

design decisions can be made and discussed. We will illustrate,

throughout the paper, how such an approach can improve the

validity of experiments even beyond the context of program

comprehension for many other experiments in software engi-

neering.

The paper is structured as follows. In Section II, we define

the context of our investigation regarding the current handling

of threats to validity in software engineering research and

explain their specific meaning in the program comprehension

field. In Section III, we introduce concrete research questions

based on the introductory motivation and describe in detail

our methodological approach to answer these questions. In

Section IV, we present the results of this work and discuss

them in Section V, before concluding the paper in Section VI.

II. BACKGROUND AND RELATED WORK

Medicine has a long tradition of evidence-based practice,

in which administering a treatment without evidence of its

efficacy is considered malpractice. Sackett et al. describe

evidence-based medicine as “the conscientious, explicit, and

judicious use of current best evidence in making decisions

about the care of individual patients” [6, p. 71].

In software engineering, attempts have been made to estab-

lish similar approaches to help practitioners make informed

decisions in their daily work [7]. Proponents of evidence-

based methods emphasize the importance of using evidence

when adopting new technologies and when understanding

and identifying problems in existing development processes.

Making uninformed decisions may lead practitioners to favor

ineffective solutions over better alternatives, resulting in finan-

cial losses or even human costs. We consider evidence to be

the available body of empirical knowledge “indicating whether

a belief or proposition is true or valid” [8, p. 607]. Throughout

our work, this definition and our refinement of the term with

different levels of evidence strength in Section III-C guided

us in identifying how empirical knowledge is documented and

how we can use it to assist researchers.

Since the first calls for evidence-based software engineering

in the early 2000s [7], [9], investigative methods from EBSE

have found widespread usage. There has been a significant

increase in the number of secondary software engineering

studies [10], [11] and educators are actively incorporating

EBSE in their university curricula [12]–[14]. However, recent

discussions highlight difficulties in the application of evidence

gained from primary and secondary research [15], [16]. In

response, more tools and structured approaches are being intro-

duced in an attempt to address the slow transfer of knowledge

from research to practice (e.g., evidence profiles [2], evidence

briefings [17], and rapid reviews [18]).

While evidence-based approaches may assist practitioners

in making decisions, Kitchenham et al. [9] also describe how

these approaches place additional requirements on researchers

when developing experimental protocols. Ideally, researchers

can maximize the range of application of a study’s results

while minimizing potential threats to validity.

Validity refers to the degree to which we can trust the

results of an empirical study [19]. In our study, a threat to

validity refers to deliberate design decisions and uncontrolled

extraneous factors that may impair the validity of experimental

results. When readers are explicitly informed about validity

threats, they can better assess the context in which experiment

results may be applied. Consequently, they are empowered to

understand what difficulties may arise when they attempt to

replicate the study design or plan a similar study of their own.

There have been several meta-studies to summarize and

categorize common threats to validity in software engineering

research. Petersen and Gencel [20] compared validity threats

with different worldviews. They assumed that researchers have

a subconscious tendency to choose methods based on their

worldview. Likewise, Devanbu et al. [21] found in a case

study that programmers tend to hold strong beliefs based on

personal experience rather than empirical evidence. The main

implication of these studies is that researchers and practitioners

make biased decisions based on their intuition, which is at

odds with the main goals of evidence-based methods. Rather,

they should address the discrepancy between the evidence and

their perceptions and reconsider their decisions accordingly.

Peterson and Gencel [20] suggest that the literature needs

to be further analyzed regarding the threats and mitigation

techniques mentioned therein and that inquiries need to be

made into what worldviews dominate in the various sub-

disciplines of software engineering.

Biffl et al. [22] followed this suggestion and created a

knowledge base of threats to validity in software engineering

experiments to assist researchers in planning their studies.

They found that only a small fraction of validity threats are

reported in most studies and that, instead, the vast majority of

threats are too specific to be generalized outside the particular

research area they occur in. These findings highlight the

complexity of managing threats to validity, as even switch-

1908

Authorized licensed use limited to: Saarl Universitaets. Downloaded on February 20,2024 at 10:11:34 UTC from IEEE Xplore.  Restrictions apply. 



ing between different sub-disciplines of software engineering

introduces a whole new set of potential threats that must be

considered. They conclude that there is a need for an overview

of threats to validity as they are reported in specific areas of

software engineering research.

Managing threats to validity is particularly difficult in code

comprehension experiments, where researchers seek to un-

cover the underlying processes of how developers understand

code and evaluate ways to support that comprehension process

scientifically [23]. This complexity is reflected in the wide

variety of different methodologies researchers use to address

the potential validity threats in their experiments [4].

For example, Siegmund and Schumann [3] surveyed the

literature to obtain information on confounding parameters in

studies of program comprehension. The main insights they

gained were that each paper reported only a small subset of

all confounding factors, and that researchers used different

methods to mitigate the same factors. They recommend that

other researchers include the identification of confounding

parameters in their experimental design and explicitly report

the relevant parameters and how their influence is controlled.

Building on the findings of Siegmund and Schumann,

Wyrich et al. [4] analyzed the characteristics of 95 source

code comprehension experiments and identified several short-

comings and inconsistencies in their experimental designs and

in how they reported the threats to validity. They noted that,

currently, researchers tend to rely on intuition when designing

their experiments because of how difficult it is to reliably

measure a person’s understanding of code. Researchers have to

deal with potential threats to validity from over 50 categories

and sometimes question whether their measure of understand-

ing is adequate at all [4].

These meta-studies illustrate the complexity of designing

valid code comprehension experiments, considering potential

confounding factors and other threats to validity [3], [4].

Rather than choosing methods based on intuition, we argue

that researchers should make informed decisions based on

empirical evidence. Previous research has outlined a need for

common knowledge bases of validity threats and collections

of evidence backing up both the existence of threats and the

effectiveness of their mitigation techniques. The first step in

solving these issues is to identify where evidence is lacking.

Surveying the evidence landscape on any particular issue

can be quite daunting. For this purpose, Wohlin [2] proposes

the creation of evidence profiles to gain an overview of both

the amount and the direction of evidence. By scoring each

individual piece of evidence in the context of an explicit

research question, researchers are assisted in identifying suf-

ficient or missing evidence. This approach shares similarities

with other meta-studies, such as meta-analyses, in that it aims

to summarize and combine the results of multiple studies.

Evidence profiles differ in their method of synthesis, as meta-

analyses take a quantitative approach in composing effect

sizes, whereas evidence profiles use multiple reviewers to

qualitatively evaluate the studies by scoring them.

III. METHOD

We first investigate which threats to validity are most fre-

quently discussed in program comprehension literature (III-A).

The frequency of discussion, however, should only be con-

sidered as an indicator of what researchers are most often

concerned about, not of the threats’ evidence. Therefore, in a

second step, we will examine the scientific evidence for the

most frequently discussed threats (III-B and III-C).

Fig. 1 provides a schematic overview of the research method-

ology. The research questions that guided us in our endeavor

are as follows:

RQ1 Which validity threat categories are most often dis-

cussed in primary studies of code comprehension?

RQ2 What are the evidence profiles for the three most

commonly reported threats to validity in code compre-

hension experiments?

A. Scoping the Relevant Threats

To answer RQ1, we surveyed existing studies of code com-

prehension and identified which threats were most frequently

mentioned by researchers. In particular, we extracted the

threats to validity reported in 95 source code comprehension

experiments found in the openly available dataset by Wyrich

et al. [24]. Their systematic search protocol included empirical

studies of bottom-up code comprehension with human partic-

ipants, published in a peer-reviewed journal, conference, or

workshop before 2020. While Wyrich et al. [4] reviewed the

threats to validity to some extent, we opted to repeat the coding

and categorization activities to enable a more fine-grained

classification of threats with the explicit goal of gaining

insights into the reporting of validity threats as a whole.

Moreover, we performed this bottom-up coding activity to stay

closer to the data, building a foundation for the subsequent

evidence searches.

We examined the list of primary papers, categorizing and

summarizing each threat to validity reported in the full text.

Specifically, we adopted a thematic synthesis [25] approach

to identify the individual threats to validity and, if given, the

mitigation techniques mentioned by the study. For this, we

extracted relevant text areas using inductive coding [26] to

find and describe the passage. In inductive coding, codes are

formulated during the review process as the corresponding

concepts become evident. Throughout the coding process,

these codes are refined and reapplied, improving their quality

through iteration. Upon the completion of code assignment,

we categorized threat codes into high-level categories and

themes. Further, in some cases, papers already contained

evidence of a threat in the form of references to other studies

and consequently, those were also documented. Finally, we

counted the number of papers that cite a threat for each

threat category, resulting in an overview of the most frequently

discussed threat categories.

1909

Authorized licensed use limited to: Saarl Universitaets. Downloaded on February 20,2024 at 10:11:34 UTC from IEEE Xplore.  Restrictions apply. 



!

extracting individual threats all threats95 primary
studies [4]

!

!

! code length

comprehension measures

programming experience

collecting evidence

threat categories

! ! !

evaluating each evidence evidence profiles

strong
evidence! I agree!

confirming contradicting

!

Fig. 1. Schematic representation of the research methodology.

In summary, reviewing threats reported in primary studies

consisted of the following individual steps:

1) Extraction of relevant text passages on threats to validity,

mitigation techniques, and evidence.

2) Inductive coding, in which each threat is assigned a

descriptive code.

3) Categorization of threat codes and composition into

higher-order themes.

4) Counting the number of papers mentioning each threat

category.

B. Evidence Collection

At this point, we had a list of threat categories, how

frequently they were reported, and in some cases, a pool of

starting evidence. Due to the large number of different threat

categories, we could not collect evidence for each individual

one. Instead, we focused on the three categories that were

mentioned most frequently. These threat categories were the

level of programming experience of participants, the length of

the programs used in the experiment, and the measures that

were used as a proxy for the concept of comprehension.

To answer RQ2, we conducted systematic searches for

each of the three threat categories, collecting evidence on

their influence. The steps described in this section and in

Section III-C were repeated for each individual category.

Search Protocol: Our search protocol utilized four different

sources to search for potentially relevant papers. We describe

each of these sources and list the filtering criteria applied to the

literature found within them. Furthermore, we describe how

we used snowballing [27] as a technique to further extend the

search. Backward snowballing in this context means including

the reference list of a paper, while forward snowballing means

including papers that cite the paper in question.

a) Primary Papers: The 95 papers with primary research

on program comprehension may already examine the threat in

question as part of their study. Consequently, we evaluated

them as potential evidence. Forward snowballing was less

likely to yield relevant results, as investigating the threat in

question was not the main focus of these papers. Unless the

threat was the main subject of a primary study, other studies

examining the threat are unlikely to cite the primary study in

the context of discussing the threat. Backward snowballing for

this set of papers was not required because the evidence cited

in the primary papers was already a separate source, as we

describe in the next paragraph.

b) Evidence Cited in the Primary Papers: As part of

the analysis described in Section III-A, we identified and

documented all references in the primary papers that were

cited to support assertions made about a threat to validity.

We analyzed and filtered this list of references in the same

manner as the primary papers. The evidence from this source

did not necessarily focus on the threat as their primary object

of research. Forward snowballing was therefore not used,

as it was less likely to yield relevant results. However, we

performed backward snowballing, as the papers may refer

to similar evidence when comparing their results with other

works.

c) Evidence Found Through the Title Search: To further

enrich the dataset with research from sources independent of

the primary papers, we also conducted additional systematic

searches. While the literature search by Wyrich et al. [4]

already captured code comprehension experiments up to 2020,

we were able to extend the range of our search to additionally

include literature published between 2020 and 2022. Further-

more, we focused this search on studies that mention the

particular threat to validity in their title using the following

search strings in Google Scholar:

1910

Authorized licensed use limited to: Saarl Universitaets. Downloaded on February 20,2024 at 10:11:34 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I
TYPES OF EVIDENCE ACCORDING TO THE EVIDENCE PROFILE.

HIGHER VALUES MEAN STRONGER EVIDENCE. POSITIVE VALUES SUPPORT THE THREAT, NEGATIVE VALUES CONTRADICT IT.

Score Level of Strength Description

+5/-5 Strong evidence Studies that focused on the threat in question as the main subject of their investigation or conducted an in-
depth analysis of the threat as part of their overall approach and show significant results. Systematic reviews that
examined the threat in question and provided a conclusion.

+4/-4 Evidence Studies that did not have the threat as their main focus but still included it in their analysis. These studies may have
more uncontrolled confounding factors, which is why they should be considered separate from strong evidence.

+3/-3 Circumstantial evidence Similar to evidence, studies that are considered circumstantial evidence did not have the threat as the main focus
of their study. Furthermore, they showed additional methodological shortcomings that reduced the reliability of
the study and decreased its strength as evidence in our evaluation.

+2/-2 Third-party claim Studies that made claims about the threat in question but only provided a slim level of empirical backing for said
claim. They may have deferred to other sources of information or given general impressions about the influence
of the threat in their study, but provided no dedicated statistical analysis of their own to support their claims.

+1/-1 First- or second-party
claim

Studies that made a claim about the threat in question but did not provide any empirical backing. This could have
been, for example, references to “common knowledge” or speculation.

• Programming Experience - allintitle: (experience OR

novice OR expert) (code OR software OR program) (un-

derstandability OR comprehension OR comprehensibility

OR readability OR analyzability OR “cognitive load”)

• Program Length - allintitle: (size OR length OR short

OR long OR LOC OR ”lines of code”) (code OR software

OR program) (understandability OR comprehension OR

comprehensibility OR readability OR analyzability OR

“cognitive load”)

• Comprehension Measures - allintitle: (measure OR

measures OR measurement) (code OR software OR pro-

gram) (understandability OR comprehension OR compre-

hensibility OR readability OR analyzability OR “cogni-

tive load”)

Each search string was composed by combining terms de-

scribing a threat (e.g. experience, novice, expert) with terms

related to program comprehension experiments (e.g. code,

understandability, comprehension). We used both backward

and forward snowballing, as the studies found in the title

search were likely to have the threat in question as the main

subject of their research.

d) Evidence Found Through Snowballing: By exploiting

clusters of related research, snowballing can identify relevant

literature with high precision, but tends to miss some pa-

pers [28]. Therefore, we use a hybrid approach to complement

disadvantages of snowballing with a database search and vice

versa. Backward snowballing was applied to the evidence

cited in the primary papers, while backward and forward

snowballing were used on the evidence from the title search.

In all three cases, we did one iteration of snowballing.

All papers found in the sources a) to d) were filtered

according to the following four inclusion criteria and were

only included when all of them were fulfilled:

• The paper reports a primary study measuring program

comprehension.

• The paper reports an analysis of the threat in question.

• The paper is published in a peer-reviewed journal or

conference proceeding.

• The paper’s full text is available in English.

C. Evidence Profiles

After collecting all available evidence of a particular threat,

we evaluated the evidence itself. To this end, we employed

the evidence profile proposed by Wohlin [2]. This profile is a

model for evaluating evidence based on criminal law. Each

piece of evidence is judged individually and rated with a

corresponding level of strength, from 1 (lowest) to 5 (highest).

This way, evidence strength is represented by an ordinal scale

with no zero. In addition, the profile distinguishes between

positive and negative evidence, with positive evidence support-

ing the theory in question and negative evidence contradicting

it. It is important to stress that evidence of low quality is not

synonymous with negative evidence. Negative evidence can

be of high quality, but it opposes the notion that a threat has

an influence on the validity of a primary study. For example,

negative evidence with a score of -5 has the same evidence

strength as positive evidence with a score of 5. Thus, a score

close to zero indicates the strength of a piece of evidence is

low, while a negative or positive score indicates the outcome

of the study.

Table I describes the different levels of strength for ev-

idence. Due to the flexible nature of the evidence profile,

the descriptions do not match the ones provided by Wohlin

word-for-word. Wohlin emphasizes that the evidence profile

should be adapted to the context in which it is used. For

example, quality aspects such as vested interest and the aging
of evidence do not play a major role when collecting evidence

on threats to validity, unless the threat pertains to a specific

technology or approach that may influence experiment results.

By contrast, the methodological rigor captured in the quality
of evidence as well as the relevance of the evidence is of

utmost importance and strongly influenced the descriptions of

the different levels of evidence strength.

The placement of a study on a particular level is based

on its adherence to the factors described in the level descrip-

tion, as well as on the previously mentioned quality aspects.

Therefore, a study may be placed in a lower category if it has

significant shortcomings regarding any of the quality aspects.

The concrete definitions of what each level of strength means

1911

Authorized licensed use limited to: Saarl Universitaets. Downloaded on February 20,2024 at 10:11:34 UTC from IEEE Xplore.  Restrictions apply. 



were established before the evaluation process began. Because

the evaluation of evidence is a largely subjective process, we

involved two researchers in this step. Once both researchers

had scored a piece of evidence, they compared their scores

and discussed possible disagreements. In these discussions,

each researcher explained their reasoning for their score, and,

together, they decided on a single final score. Where the initial

scores were identical, the final score was set to the same value

without discussion. We documented the score of each study

and the motivation behind its placement, which can be used

to paint an overall picture of the evidence landscape for each

threat. We documented scoring and agreement in our replica-

tion package (Section VII). Based on each evidence profile,

we provide conclusive recommendations to researchers.

IV. RESULTS

We first present the results of extracting and categorizing

validity threats from 95 primary studies. This provides us with

an answer to RQ1. We then answer RQ2 by presenting the

evidence profiles for the three most frequently reported threats

to validity in code comprehension experiments.

RQ1 Which validity threat categories are most often discussed

in primary studies of code comprehension?

Among the 95 papers, 81 (85%) mentioned at least one threat

to validity, with 45 (47%) reporting them in a dedicated

section and 33 (35%) differentiating between different types

of validity, such as internal or external validity. The largest

concentration of studies was published in the period from 2012

to 2019, with a total of 63 of the 95 studies (66%), while only

covering 7 years (18%) of the entire 40-year span. The first

study in our set of papers to include a dedicated “threats to

validity” section was a study published in 2005 [29].
In total, we found 409 individual threat mentions. Out of the

409 threat mentions, 198 (48%) included an explanation of a

possible mitigation technique, but only 31 (8%) were reported

with supporting evidence. The 31 references to supporting

evidence were found in 20 out of 95 studies (21%). The 409

threat mentions were then assigned 215 unique threat codes,

which captured the different nuances of how a threat was

mentioned in a study. Multiple threat mentions could receive

the same code, which is why the number of unique codes

is lower than the number of total threat mentions. To better

analyze related threat codes, we additionally categorized them,

which resulted in 81 unique threat categories. For example,

the threat category Programming Experience included threat

codes such as “Missing diversity in participants’ programming

experience leads to limited generalizability” and the oppo-

site code “Diversity in participants’ programming experience

confounds treatment effects.” The two individual threat codes

differed in nuance, but they both emphasized the importance

of programming experience as a threat to validity. When we

counted the number of threat mentions to prioritize the three

most common threat categories, each occurrence of either

threat code would increase the category’s count.
Table II highlights the threat categories with more than

five reported threat mentions and shows the themes to which

TABLE II
NUMBER OF THREAT MENTIONS PER THEME AND CATEGORY FOR

CATEGORIES WITH MORE THAN FIVE THREAT MENTIONS.

Theme and Category Count

Theme: Code Snippets 112
Program Length 26
Complexity 16
Code Selection 13
Programming Language 9
Synthetic Samples 9
Familiarity 6
Other Categories 33

Theme: Participant Factors 101
Programming Experience 44
Number of Participants 16
Programming Skills 10
Other Categories 31

Theme: Experimentation 89
Learning Effect 18
Lab Experiment 11
Fatigue 9
Code Presentation 7
Cheating 6
Other Categories 38

Theme: Measurement 67
Comprehension Measures 22
Eye-Tracking 20
Instrumentation 9
Other Categories 16

Theme: Comprehension Tasks 21
Type of Comprehension Task 7
Task Difficulty 6
Other Categories 8

Theme: Data Analysis 14
Statistics 10
Other Categories 4

Theme: Other 5
Total 409

the categories were assigned. Both categories and themes

are presented with the total number of threat mentions. All

mentions from categories with less than five mentions are

counted in “Other Categories” under their respective themes.

“Theme: Other” contains mentions for threat codes that did

not fit into any given theme. The three most common threat

categories (i.e., Programming Experience, Program Length,
and Comprehension Measures) are highlighted in blue. Over-

all, most threats were related to the characteristics of the code

snippets, the individual factors of the participants, or general

threats in experimentation.

RQ1: Main Findings

• 85% of code comprehension experiments report at

least one threat to validity.

• Only 8% of threat mentions are supported with

referenced evidence.

• The three most commonly reported threat categories

are programming experience, program length,

and comprehension measures.

1912

Authorized licensed use limited to: Saarl Universitaets. Downloaded on February 20,2024 at 10:11:34 UTC from IEEE Xplore.  Restrictions apply. 



TABLE III
OVERVIEW OF THE EVIDENCE ANALYZED AND FILTERED IN EACH STEP OF

THE EVIDENCE COLLECTION FOR PROGRAMMING EXPERIENCE.

Source Analyzed Excluded Final

a) Primary Papers 95 -52 43
b) Cited in Primary Papers 13 -12 1
c) Title Search 54 -52 2
d) Snowballing 276 -262 14

Evidence Profile 60 -11 49
Total 438 -389 49

Fig. 2. Evidence Profile 1: Programming experience influences code com-
prehension.

RQ2 What are the evidence profiles for the three most com-

monly reported threats to validity in code comprehen-

sion experiments?

We selected the three threat categories that were most fre-

quently reported and collected evidence on their influence on

different facets of validity. We provide the complete evidence

lists, including rationales for the placement of studies in the

different evidence categories of an evidence profile, in our

replication package (Section VII).

1) Programming Experience: In this analysis, we exam-

ine the effect a participant’s programming experience has

on their code understanding in comprehension experiments.

We collected evidence in the form of studies that measured

the programming experience of participants and determined

whether it had a significant influence on program comprehen-

sion. Table III shows how many papers we found in each step

of the evidence collection and how many we excluded because

they did not meet the inclusion criteria. Overall, most evidence

was found in the primary papers, followed by snowballing. We

excluded 12 out of 13 (92%) documents cited in the references

of the primary papers, as they did not meet the filtering criteria.

The reasons for exclusion varied and are described in more

detail in Section V.

After filtering, 60 papers remained and were evaluated as

potential pieces of evidence to be used in the evidence profile.

TABLE IV
OVERVIEW OF THE EVIDENCE ANALYZED AND FILTERED IN EACH STEP OF

THE EVIDENCE COLLECTION FOR PROGRAM LENGTH.

Source Analyzed Excluded Final

a) Primary Papers 95 -78 17
b) Cited in Primary Papers 3 -3 0
c) Title Search 29 -29 0
d) Snowballing 0 0 0

Evidence Profile 17 -4 13
Total 127 -114 13

Fig. 3. Evidence Profile 2: Program length influences code comprehension.

In this evaluation, 11 additional papers were discarded as

they did not meet the criteria to be considered evidence. For

example, one paper was excluded because it was not peer-

reviewed and multiple papers were excluded because they

either did not measure programming experience or they did

not use the collected experience data in their analysis. Fig. 2

presents the final evidence profile. The result largely indicates

that programming experience influences code comprehension.

In total, 37 (76%) pieces of evidence were rated as positive

evidence and 12 (24%) were rated as negative evidence.

Furthermore, there were 11 pieces of strong positive evidence

and no strong negative evidence.

2) Program Length: In this analysis, we examine how the

length of a program affects program comprehension. We gather

evidence in the form of studies that measure the length of a

program and examine its impact on program comprehension.

Table IV shows how many papers we found in each step of

the evidence collection and how many we excluded because

they did not meet the inclusion criteria. The only evidence

was found in the list of primary papers. All documents cited

in the references of the primary papers were excluded as they

did not meet the filtering criteria. Moreover, as we found no

relevant papers in b) and c), no snowballing was performed.

After filtering, 17 papers remained and were evaluated as

potential evidence using the evidence profile. In this evalua-

tion, 4 more papers were discarded as they did not meet the

1913

Authorized licensed use limited to: Saarl Universitaets. Downloaded on February 20,2024 at 10:11:34 UTC from IEEE Xplore.  Restrictions apply. 



TABLE V
OVERVIEW OF THE EVIDENCE ANALYZED AND FILTERED IN EACH STEP OF

THE EVIDENCE COLLECTION FOR COMPREHENSION MEASURES.

Source Analyzed Excluded Final

a) Primary Papers 95 -88 7
b) Cited in Primary Papers 3 -3 0
c) Title Search 53 -51 2
d) Snowballing 134 -131 3

Evidence Profile 12 -5 7
Total 285 -278 7

Fig. 4. Evidence Profile 3: Different comprehension measures do not correlate
with each other.

criteria to be considered evidence. The final evidence profile

is shown in Fig. 3. We found conflicting results regarding

the influence of program length on program comprehension:

6 (46%) pieces of evidence were rated as positive evidence and

7 (54%) were rated as negative evidence. There were 2 pieces

of strong positive evidence and no strong negative evidence.

3) Comprehension Measures: Finally, we examine whether

common comprehension measures are associated with dis-

tinct aspects of comprehension. We gather evidence in the

form of comparative studies that analyze correlations between

commonly used comprehension measures. Positive evidence

describes that different comprehension measures are not cor-

related and if different measures were used in a primary study,

one may arrive at a different conclusion. Table V shows how

many papers were found in each step of the evidence collection

and how many were excluded because they did not meet the

inclusion criteria. Overall, we found most evidence in the

primary papers, with slightly less evidence found in both the

title search and through snowballing. All documents cited in

the references of the primary papers were excluded as they

did not meet the filtering criteria.

After filtering, 12 papers remained and were evaluated as

potential pieces of evidence using the evidence profile. In

this evaluation, 5 more papers were discarded as they did not

meet the criteria to be considered evidence. The final evidence

profile is shown in Fig. 4. Most evidence supported that the

commonly used comprehension measures do measure distinct

aspects of program comprehension and are not correlated. But

overall, only a small amount of evidence was found: 5 (71%)

pieces of evidence were rated as positive evidence and 2 (29%)

were rated as negative evidence. We found 3 pieces of strong

positive evidence, but no strong negative evidence.

RQ2: Main Findings

• Programming experience:
37 positive and 12 negative evidence

• Program length:

6 positive and 7 negative evidence

• Comprehension measures:
5 positive and 2 negative evidence

• 94% of cited evidence in the primary papers did not

meet our criteria for evidence and was excluded.

• No evidence was categorized as strong negative

evidence (-5).

V. DISCUSSION

We will first consider the results of the evidence profiles on

the three most frequently discussed threats to validity.
Overall, the first evidence profile confirms that, often,

programming experience does influence the comprehension

performance of programmers. In multiple cases, experienced

programmers showed different comprehension behavior when

compared to novices [30], [31] and this difference could

be measured in their performance [32]–[34]. In contrast,

however, we also found credible evidence contradicting those

assertions. Twelve studies reached the conclusion that pro-

gramming experience does not influence code comprehension.

One explanation for this contradiction could be the specific

contextual factors of each study. Siegmund et al. [35] found

that depending on how programming experience is measured

and operationalized, its predictive power varies. Moreover,

some negative evidence still found correlations with very

specific types of experience measures such as self-estimated

Java knowledge [36] or correlations for only specific compre-

hension measures such as the number of eye fixations [37].

In other cases, the range of programming experience was

quite limited, for example due to only including students as

participants [36], [38]. These results imply that mentioning

programming experience as potential threat alone is insuffi-

cient when publishing experiment results. Researchers should

instead discuss the threat within the context of their study and

discuss how and why they adapted procedures, measures, and

artifacts to mitigate it.
The second evidence profile indicates that an influence of

program length on code comprehension behavior or perfor-

mance should not be assumed blindly in every context. We

found conflicting evidence for this potential threat to validity.

Ribeiro et al. [39] discuss similarly conflicting evidence on

program length in their study. Even after conducting a follow-

up study, they were unable to reach a clear conclusion. Novices

1914

Authorized licensed use limited to: Saarl Universitaets. Downloaded on February 20,2024 at 10:11:34 UTC from IEEE Xplore.  Restrictions apply. 



and experts had differing opinions regarding program length

and its influence on comprehensibility and readability. They

also mention that differences in the procedures and tools

used to measure lines of code may affect the comparability

of results from different studies. While the overall number

of samples is small, we can identify some patterns when

comparing positive and negative evidence. All studies rated as

positive evidence included students as participants, and one of

them included both students and experts. Every study that only

included experts was rated negative. This pattern suggests that

while program length may influence the comprehension per-

formance of novices, experts appear to perform consistently,

regardless of program length.

The results of the third evidence profile mostly support the

notion that the commonly reported comprehension measures

are not correlated. The three supporting pieces of evidence

found no correlations between the time and accuracy of com-

prehension task performances, suggesting that they measure

different effects, aspects, or dimensions of comprehension

task difficulty [40]–[42]. However, both pieces of negative

evidence found correlations between the time and accuracy of

comprehension tasks [43], [44]. Furthermore, the two studies

that compared physiological measures with other measures

found no correlation with subjective ratings [45] and time and

accuracy of comprehension tasks [45], [46]. The significance

of this finding becomes more apparent when one considers that

of the 95 primary papers, more than one third (37) used only

a single measure to assess the comprehension performance of

participants. Depending on the study context, this may cause

them to miss aspects of code understanding that would have

been uncovered if they had analyzed more than one measure. If

different proxy measures are associated with different aspects

of program comprehension, this poses further difficulties for

meta-studies of comprehension experiments. For example, two

studies might obtain different results because they measured

comprehension performance in different ways and not due to

other intrinsic factors. Using the results from this work, we

were unable to identify concrete patterns in the context factors

which would suggest why comprehension measures correlate

in some instances and not in others. A dedicated follow-up

study, solely focused on comparing different comprehension

measures, may shed more light on this question. For now,

combining studies with different comprehension measures

should be done with care until we better understand the way

they measure different aspects of comprehension.

When compared, we found much less evidence overall for

the influence of program length and the comparability of com-

prehension measures than for the influence of programming

experience. Even though program length and comprehension

measures are the second and third most discussed threats to

validity in code comprehension experiments, there are few

studies examining their influence. With the little evidence we

found, we nevertheless arrived at similar results to the first

evidence search: The extent of all three validity threats is

context-dependent. The influence of a validity threat varies for

each individual study and must, as such, be interpreted in the

light of the contextual factors surrounding it. When seeking

patterns to explain the contradiction of evidence, we found

that the way a threat impacts the result of a study can depend

on how a confounding factor is measured, what the sample

population is, and how the experiment is designed in general.

While this conclusion might sound obvious at first, we often

find generic statements about a potential threat in primary

studies. For example, a study might solely mention that their

experiment sample consisted of students without further elab-

oration. Discussing a study characteristic this way, however,

does not clarify why that design decision might constitute

a threat to the validity of that specific study. This issue is

problematic regardless of whether references are used to back

up assumptions, as generic threats are used in place of more

nuanced discussions that take the study-specific context factors

into account. Evidence should be cited as an additional layer

to further support the explanations. For example, Jbara and

Feitelson [47] show how evidence from past studies can be

used when discussing the threats to validity of their study.

They describe how their use of undergraduate students was

adequate because the students were at a high enough skill

level to complete the experimental task and cite evidence to

support their assertion. In this way, they use evidence to guide

the threat discussion within the context of their study.

Minor Observations

Besides this main finding, we also made some further

observations. First, the studies used in the primary papers

to support claims about threats to validity were, with one

exception, almost entirely dismissed as evidence. Studies were

mostly excluded because they either did not relate to program

comprehension, solely cited another mention of the threat, or

they were not relevant at all. This pattern was consistent over

all three evidence searches.

Second, the results of our review of how threats to validity

are reported match the investigation by Wyrich et al. [4].

In general, researchers in program comprehension tend to

focus on threats relating to the code snippets and the study

participants the most. The factors we investigated in our

evidence search, programming experience, program length,

and comprehension measures are among the most frequently

mentioned threats in both studies. The terms used to describe

these threats differ between the works. For example, the

category named “comprehension measures” can be found in

the category “instrumentation” in Wyrich et al. and “program

length” is named “program size”. Looking at the bigger

picture, the results for program comprehension studies are in

line with reporting in SE in general. Siegmund et al. found that

in SE, 51% (47% in our study) of papers discussed threats to

validity in a dedicated section and 23% (35% in our study)

differentiated between different types of validity [48].

Third, we found that, overall, there was less evidence for

less common threats to validity. This is in line with what

would be expected intuitively, if fewer researchers deem that a

threat poses a danger to a study’s validity then corollary, fewer

will investigate whether that assumption holds. Meta-studies

1915

Authorized licensed use limited to: Saarl Universitaets. Downloaded on February 20,2024 at 10:11:34 UTC from IEEE Xplore.  Restrictions apply. 



such as this one can highlight which threats are less frequently

examined and provide directions for further experimentation.

Fourth, we observed that throughout the entire evidence

collection process, not a single study was classified as a

“-5”, which would represent strong negative evidence. While

we do not have a conclusive reason for this, it is common

for researchers to experience difficulties publishing negative

results. Obtaining negative results can be disheartening, but

publishing them is nonetheless crucial and provides value to

the scientific community [49]–[51].

A. On the Desire for Evidence

Looking back at The Highway Shooter case, we also want

to acknowledge some key differences between the criminal

case and a scientific experiment. First, in the media coverage

following the case, the recording and usage of license plates

as evidence was criticized as a breach of privacy. In the

context of academic research, similar issues with data privacy

mainly arise when collecting data for primary research. When

synthesizing results of different independent studies, how-

ever, applying their research findings as evidence with proper

citation is usually encouraged. Furthermore, when creating

evidence profiles, synthesis is even possible without disclosing

the data sets of the studies. The information contained in

the paper itself is often sufficient to assess its weight as

evidence. Another important difference is that there was only

one perpetrator responsible for the crimes, whereas in any

given experiment, there may be more than one validity threat.

When designing an experiment, it is infeasible to conduct

systematic reviews to collect evidence for each of the dozens

of potential threats. Rather, researchers may look into existing

research summarizing evidence and then contextualize it by

comparing the underlying studies with the characteristics of

their own methodology. The present paper can be one such re-

source for evidence collection, future meta-studies on common

research questions another. Evidence is then used both during

the design stages of an experiment and when interpreting and

discussing its results.

Conversely, one may discuss the nature and role of the

threats to validity section in scientific literature itself. While

we examined and reported on various descriptive aspects of

the threats reported in existing papers, we did not inquire into

why researchers chose to report and discuss specific threats

in a certain way. Furthermore, our research does not provide

explicit guidance on how a paper author ought to write a

threats to validity section. While the position presented in this

paper suggests that reported threats should be supported with

evidence whenever possible, this is not necessarily a sentiment

shared by all members of the scientific community. A section

on validity threats may also be a place where researchers

should be able to speculate without concrete evidence and

point out potential shortcomings as directions for future re-

search. This debate should be conducted within the respective

research communities, and agreements should then be recorded

and incorporated into existing guidelines for the reporting of

validity threats.

B. Implications

The results presented in this work lead us to concrete

suggestions for the larger research community. First, threats to

validity are dependent on individual context factors of a study.

Researchers should therefore explicitly discuss the influence

of each threat within the context of their study. Merely listing

off potential threats alone is not sufficient. Second, context

discussions for validity threats should be supported by existing

evidence, rather than relying on intuition or speculation. Meta-

studies provide the appropriate evidence base for this endeavor,

as they analyze the influence of a threat in multiple different

study contexts.

C. Limitations

Evidence profiles are created by qualitative evidence eval-

uation from human reviewers, and thus may contain bias. To

mitigate this threat, two researchers independently rated the

evidence and then compared their results to reach an agree-

ment. The threat extraction, categorization, and subsequent

evidence collection was done by only one researcher, which

again might incur a bias and threaten the internal validity

of our study. However, when comparing the threat categories

and number of occurrences with a previous systematic review

on confounding factors in program comprehension studies by

Siegmund and Schumann [3], we find mostly similar results

regarding threat codes and their frequencies.

Throughout this work, we used the terms program compre-

hension and code comprehension interchangeably for compre-

hension of source code, as is currently the norm. However,

in principle, we agree with Wyrich et al.’s observation that

code comprehension studies form a subset of program com-

prehension studies [4]. The list of primary papers we built

on was a result of a previous search by Wyrich et al. and

its search parameters were not fully aligned to the goals of

our work. In their study, Wyrich et al. focused on a subset of

program comprehension experiments, namely experiments on

bottom-up code comprehension. This means that one might

obtain a different ranking for the most common threats in the

broader area of program comprehension experiments, limiting

the external validity of our results. In the evidence collection,

this limitation was mitigated as we added additional search

sources.

When analyzing our data, we also found a rather strong

bias in the number of studies with quantitative data from

experiments over qualitative data. Even though we did not

explicitly exclude any papers in the evidence search on the

grounds of them being a qualitative study, the results still

heavily favored controlled experiments. In numbers, 68 out

of 69 (99%) pieces of evidence in the evidence profiles were

from experiments. To avoid such bias in future studies, we

recommend formulating descriptions of evidence profiles in a

more method-neutral terminology (e.g., avoiding terms such

as confounding factors, which are primarily indicative of

experiments). On a related note, new evidence profiles for

validity threats from code comprehension studies using other

research methodologies than experimentation can, provided

1916

Authorized licensed use limited to: Saarl Universitaets. Downloaded on February 20,2024 at 10:11:34 UTC from IEEE Xplore.  Restrictions apply. 



equal or similar epistemological stances, help similarly well

in making informed design decisions. It depends on one’s

epistemological standpoint and understanding of the concept

of evidence to determine whether it is appropriate to use

evidence in the design of non-experimental studies.

When developing the evidence profiles, we decided to focus

on threat categories instead of individual codes. For example,

rather than searching for evidence of programming experience

as threat to internal or external validity, we combined the

two into the category of programming experience. A finer

distinction was not necessary for our purpose, as evidence for

the influence of programming experience on code comprehen-

sion is equally relevant for all validity types. Further, a finer

distinction would have been difficult to make. As previously

noted, validity threats in primary studies are currently not

discussed in a way that makes clear what type of validity the

authors believe their study characteristics would affect.

Another limitation in the external validity of our study is

that due to the amount of effort required to systematically

collect evidence, we were only able to analyze three of

dozens of different validity threats. We focused on the most

frequently mentioned threats, as we expected them to provide

the most value for the widest range of program comprehension

studies. It is possible that repeating the same methods for the

remaining threats will uncover new idiosyncrasies of program

comprehension. As such, generalizing the results obtained in

this work to other threats should be done with care.

VI. CONCLUSION

In this work, we investigated threats to validity in program

comprehension experiments. First, we analyzed the state of the

art by reviewing the reported validity threats in 95 papers of

primary research. We found that while most studies mentioned

threats to validity, few supported them with corresponding

evidence. Furthermore, only in one case did the cited evidence

support the validity of a threat and meet our quality criteria

to be included in an evidence profile. Next, we searched for

evidence regarding the three most frequently mentioned threat

categories. Our evidence collection yielded both positive and

negative evidence for each threat category, seemingly leading

to divergent results.

After looking closer into the collected evidence and compar-

ing the characteristics of the different studies, we concluded

that validity threats are highly context-dependent. Even the

threats that are intuitively expected to affect program compre-

hension, such as programming experience, depend on how they

are measured, the sample population, comprehension tasks,

and other context factors. Therefore, we must consider all

individual characteristics of a study when assessing potential

validity threats to develop methodologies that use evidence as

a basis for implementing appropriate mitigation techniques.

Furthermore, discussions of validity threats in papers need to

explicitly address context factors and researchers should use

evidence to support these discussions. Finally, we encourage

the usage of threat catalogs and recommend the adherence

to reporting guidelines for threats to validity to improve the

reproducibility and comparability of study results.

Structured guidelines for reporting threats to validity need

to be established further to inform researchers on how they

can incorporate evidence into their validity assessments. We

need more knowledge documentation on which threats exist,

the evidence supporting them, the context in which they

occur, and which mitigation techniques can be used to address

them. Previous works laid the groundwork in this endeavor

by documenting threats in software engineering studies in a

knowledge base and providing guidelines for controlling the

influence of confounding factors in program comprehension

experiments, respectively [3], [22]. These works can be further

extended by incorporating evidence and documenting threats

to validity in a common database.

We envision a future in which scientists regularly apply

our methodology to collect and summarize the evidence for

additional threats to validity and for experiments far beyond

code comprehension. Even when looking at just three of the

most common threats, we found less evidence for less popular

threats, which might indicate even bigger gaps in evidence

for those threats that have yet to be analyzed. Moreover, our

approach may be applied to other domains to investigate how

threats to validity affect experiments there.

Taking a final look back at the past, in 2014, The Highway

Shooter was sentenced to 10 years in prison. Good investiga-

tive work led to the necessary evidence and ultimately to the

apprehension of the criminal. Evidence profiles in software

engineering research equally lead to necessary data points, not

to catch criminals, but, in our case, to gain more certainty

about the actual impact of threats to validity in program

comprehension experiments.

VII. DATA AVAILABILITY

We publish our dataset on Zenodo for transparency and re-

producibility of our approach [52]. The dataset comprises data

that emerged in intermediate steps of the validity threat anal-

ysis. This includes extracted text passages from the primary

studies and complete lists of threat codes, threat categories and

threat themes. Further, the dataset contains artifacts produced

during the evidence search and the creation of the evidence

profiles. We document comprehensibly, for example, how

individual reviewers evaluated individual pieces of evidence

and reached a final agreement. Finally, R scripts are included,

that mainly deal with quantitative analyses and plotting.

ACKNOWLEDGMENTS

We thank members of the German Federal Criminal Police

Office (BKA), who wish to remain anonymous, for their

information and guidance on The Highway Shooter case,

which inspired us when presenting our findings. We are very

grateful to three anonymous reviewers, whose feedback helped

to improve the paper. We also thank Katharina Plett for

proofreading to enhance the text quality.

1917

Authorized licensed use limited to: Saarl Universitaets. Downloaded on February 20,2024 at 10:11:34 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] Pressestelle des Bundesgerichtshofs, “Press release of the
federal court of justice of october 8, 2015,” 2015.
[Online]. Available: https://www.bundesgerichtshof.de/SharedDocs/
Pressemitteilungen/DE/2015/2015171.html

[2] C. Wohlin, An Evidence Profile for Software Engineering Research and
Practice. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp.
145–157.

[3] J. Siegmund and J. Schumann, “Confounding parameters on program
comprehension: a literature survey,” Empirical Software Engineering,
vol. 20, no. 4, pp. 1159–1192, 2015.

[4] M. Wyrich, J. Bogner, and S. Wagner, “40 years of designing code
comprehension experiments: A systematic mapping study,” arXiv, 2022.
[Online]. Available: https://arxiv.org/abs/2206.11102

[5] I. Schröter, J. Krüger, J. Siegmund, and T. Leich, “Comprehending stud-
ies on program comprehension,” in 2017 IEEE/ACM 25th International
Conference on Program Comprehension (ICPC), 2017, pp. 308–311.

[6] D. L. Sackett, W. M. Rosenberg, J. M. Gray, R. B. Haynes, and W. S.
Richardson, “Evidence based medicine: what it is and what it isn’t,” pp.
71–72, 1996.

[7] T. Dyba, B. A. Kitchenham, and M. Jorgensen, “Evidence-based soft-
ware engineering for practitioners,” IEEE software, vol. 22, no. 1, pp.
58–65, 2005.

[8] A. Stevenson, Oxford dictionary of English, 3rd ed. Oxford University
Press, USA, 2010.

[9] B. A. Kitchenham, T. Dyba, and M. Jorgensen, “Evidence-based soft-
ware engineering,” in Proceedings. 26th International Conference on
Software Engineering. IEEE, 2004, pp. 273–281.

[10] B. Kitchenham, R. Pretorius, D. Budgen, O. P. Brereton, M. Turner,
M. Niazi, and S. Linkman, “Systematic literature reviews in software
engineering–a tertiary study,” Information and software technology,
vol. 52, no. 8, pp. 792–805, 2010.

[11] D. Budgen and P. Brereton, “Evolution of secondary studies in software
engineering,” Information and Software Technology, vol. 145, p. 106840,
2022.

[12] M. Jorgensen, T. Dyba, and B. Kitchenham, “Teaching evidence-based
software engineering to university students,” in 11th IEEE International
Software Metrics Symposium (METRICS’05). IEEE, 2005, pp. 8–pp.

[13] A. Rainer and S. Beecham, “A follow-up empirical evaluation of
evidence based software engineering by undergraduate students,” in 12th
International Conference on Evaluation and Assessment in Software
Engineering (EASE) 12, 2008, pp. 1–10.

[14] B. J. Oates and G. Capper, “Using systematic reviews and evidence-
based software engineering with masters students,” in Proceedings of the
13th international conference on Evaluation and Assessment in Software
Engineering. BCS Learning & Development Ltd., 2009, pp. 79–87.

[15] E. Hassler, J. C. Carver, N. A. Kraft, and D. Hale, “Outcomes
of a community workshop to identify and rank barriers to
the systematic literature review process,” in Proceedings of the
18th International Conference on Evaluation and Assessment in
Software Engineering, ser. EASE ’14. New York, NY, USA:
Association for Computing Machinery, 2014. [Online]. Available:
https://doi.org/10.1145/2601248.2601274

[16] R. E. Santos and F. Q. d. Silva, “Motivation to perform systematic
reviews and their impact on software engineering practice,” in 2013 ACM
/ IEEE International Symposium on Empirical Software Engineering and
Measurement, 2013, pp. 292–295.

[17] B. Cartaxo, G. Pinto, E. Vieira, and S. Soares, “Evidence
briefings: Towards a medium to transfer knowledge from systematic
reviews to practitioners,” in Proceedings of the 10th ACM/IEEE
International Symposium on Empirical Software Engineering
and Measurement, ser. ESEM ’16. New York, NY, USA:
Association for Computing Machinery, 2016. [Online]. Available:
https://doi.org/10.1145/2961111.2962603

[18] B. Cartaxo, G. Pinto, and S. Soares, “Rapid reviews in software engi-
neering,” in Contemporary Empirical Methods in Software Engineering.
Springer, 2020, pp. 357–384.

[19] B. A. Kitchenham, Evidence-Based Software Engineering and System-
atic Reviews, ser. Chapman & Hall / CRC Innovations in Software
Engineering and Software Development Series. Boca Raton: CRC
Press, 2015, vol. v.4.

[20] K. Petersen and C. Gencel, “Worldviews, research methods, and their
relationship to validity in empirical software engineering research,” in
2013 Joint Conference of the 23rd International Workshop on Software
Measurement and the 8th International Conference on Software Process
and Product Measurement, 2013, pp. 81–89.

[21] P. Devanbu, T. Zimmermann, and C. Bird, “Belief & evidence in
empirical software engineering,” in 2016 IEEE/ACM 38th International
Conference on Software Engineering (ICSE), 2016, pp. 108–119.

[22] S. Biffl, M. Kalinowski, F. Ekaputra, A. A. Neto, T. Conte, and
D. Winkler, “Towards a semantic knowledge base on threats to validity
and control actions in controlled experiments,” in Proceedings of the 8th
ACMIEEE International Symposium on Empirical Software Engineering
and Measurement, ser. ACM Digital Library, M. Morisio, Ed. New
York, NY: ACM, 2014, pp. 1–4.

[23] V. Rajlich and G. Cowan, “Towards standard for experiments in pro-
gram comprehension,” in Proceedings Fifth International Workshop on
Program Comprehension. IWPC’97, 1997, pp. 160–161.

[24] M. Wyrich, J. Bogner, and S. Wagner, “Replication package:
40 Years of Designing Code Comprehension Experiments: A
Systematic Mapping Study (v1.0),” Jun. 2022. [Online]. Available:
https://doi.org/10.5281/zenodo.6657640

[25] D. S. Cruzes and T. Dyba, “Recommended steps for thematic synthesis
in software engineering,” in 2011 International Symposium on Empirical
Software Engineering and Measurement. IEEE, 2011, pp. 275–284.

[26] J. Corbin and A. Strauss, Basics of Qualitative Research (3rd ed.):
Techniques and Procedures for Developing Grounded Theory. 2455
Teller Road, Thousand Oaks California 91320 United States: SAGE
Publications, Inc, 2008.

[27] C. Wohlin, “Guidelines for snowballing in systematic literature studies
and a replication in software engineering,” in Proceedings of the 18th
International Conference on Evaluation and Assessment in Software
Engineering - EASE ’14. ACM Press, 2014.

[28] D. Badampudi, C. Wohlin, and K. Petersen, “Experiences from using
snowballing and database searches in systematic literature studies,” in
Proceedings of the 19th International Conference on Evaluation and
Assessment in Software Engineering. ACM, 2015.

[29] B. Du Bois, S. Demeyer, and J. Verelst, “Does the ”refactor to under-
stand” reverse engineering pattern improve program comprehension?”
in Ninth European Conference on Software Maintenance and Reengi-
neering. IEEE, 2005, pp. 334–343.

[30] B. Adelson, “When novices surpass experts: The difficulty of a task may
increase with expertise,” Journal of Experimental Psychology: Learning,
Memory, and Cognition, vol. 10, no. 3, pp. 483–495, 1984.

[31] C. S. Yu, C. Treude, and M. Aniche, “Comprehending test code: An
empirical study,” in 2019 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 2019, pp. 501–512.

[32] S. Wiedenbeck, “Novice/expert differences in programming skills,”
International Journal of Man-Machine Studies, vol. 23, no. 4, pp. 383–
390, 1985.

[33] P. A. Orlov and R. Bednarik, “The role of extrafoveal vision in source
code comprehension,” Perception, vol. 46, no. 5, pp. 541–565, 2017.

[34] F. Medeiros, G. Lima, G. Amaral, S. Apel, C. Kästner, M. Ribeiro,
and R. Gheyi, “An investigation of misunderstanding code patterns in c
open-source software projects,” Empirical Software Engineering, vol. 24,
no. 4, pp. 1693–1726, 2019.

[35] J. Siegmund, C. Kästner, J. Liebig, S. Apel, and S. Hanenberg, “Mea-
suring and modeling programming experience,” Empirical Software
Engineering, vol. 19, no. 5, pp. 1299–1334, 2014.

[36] N. Peitek, J. Siegmund, S. Apel, C. Kastner, C. Parnin, A. Bethmann,
T. Leich, G. Saake, and A. Brechmann, “A look into programmers’
heads,” IEEE Transactions on Software Engineering, vol. 46, no. 4, pp.
442–462, 2020.

[37] S. Jessup, S. M. Willis, G. Alarcon, and M. Lee, “Using eye-tracking
data to compare differences in code comprehension and code perceptions
between expert and novice programmers,” in Proceedings of the 54th
Hawaii International Conference on System Sciences, ser. Proceedings
of the Annual Hawaii International Conference on System Sciences,
T. Bui, Ed. Hawaii International Conference on System Sciences, 2021.

[38] D. Hendrix, J. H. Cross, and S. Maghsoodloo, “The effectiveness of
control structure diagrams in source code comprehension activities,”
IEEE Transactions on Software Engineering, vol. 28, no. 5, pp. 463–477,
2002.

1918

Authorized licensed use limited to: Saarl Universitaets. Downloaded on February 20,2024 at 10:11:34 UTC from IEEE Xplore.  Restrictions apply. 



[39] T. V. Ribeiro and G. H. Travassos, “Attributes influencing the reading
and comprehension of source code – discussing contradictory evidence,”
CLEI Electronic Journal, vol. 21, no. 1, 2018.

[40] E. R. Iselin, “Conditional statements, looping constructs, and program
comprehension: an experimental study,” International Journal of Man-
Machine Studies, vol. 28, no. 1, pp. 45–66, 1988.

[41] D. Binkley, D. Lawrie, S. Maex, and C. Morrell, “Identifier length
and limited programmer memory,” Science of Computer Programming,
vol. 74, no. 7, pp. 430–445, 2009.

[42] S. Ajami, Y. Woodbridge, and D. G. Feitelson, “Syntax, predicates,
idioms — what really affects code complexity?” Empirical Software
Engineering, vol. 24, no. 1, pp. 287–328, 2019.

[43] D. J. Gilmore and T. Green, “Comprehension and recall of miniature
programs,” International Journal of Man-Machine Studies, vol. 21, no. 1,
pp. 31–48, 1984.

[44] W. E. Hall and S. H. Zweben, “The cloze procedure and software
comprehensibility measurement,” IEEE Transactions on Software En-
gineering, vol. SE-12, no. 5, pp. 608–623, 1986.

[45] M. K.-C. Yeh, Y. Yan, Y. Zhuang, and L. A. DeLong, “Identifying pro-
gram confusion using electroencephalogram measurements,” Behaviour
& Information Technology, pp. 1–18, 2021.

[46] S. Fakhoury, D. Roy, Y. Ma, V. Arnaoudova, and O. Adesope, “Measur-
ing the impact of lexical and structural inconsistencies on developers’
cognitive load during bug localization,” Empirical Software Engineering,
vol. 25, no. 3, pp. 2140–2178, 2020.

[47] A. Jbara and D. G. Feitelson, “How programmers read regular code:
a controlled experiment using eye tracking,” Empirical Software Engi-
neering, vol. 22, no. 3, pp. 1440–1477, 2017.

[48] J. Siegmund, N. Siegmund, and S. Apel, “Views on internal and external
validity in empirical software engineering,” in 2015 IEEE/ACM 37th
IEEE International Conference on Software Engineering. IEEE, 2015,
pp. 9–19.

[49] P. G. Weintraub, “The importance of publishing negative results,”
Journal of Insect Science, vol. 16, no. 1, p. 109, 2016.

[50] R. F. Paige, J. Cabot, and N. A. Ernst, “Foreword to the special
section on negative results in software engineering,” Empirical Software
Engineering, vol. 22, no. 5, pp. 2453–2456, 2017.

[51] A. Borji, “Negative results in computer vision: A perspective,” Image
and Vision Computing, vol. 69, pp. 1–8, 2018.

[52] M. M. Barón, M. Wyrich, D. Graziotin, and S. Wagner,
“Replication package: Evidence Profiles for Validity Threats in
Program Comprehension Experiments,” Aug. 2022. [Online]. Available:
https://doi.org/10.5281/zenodo.7038907

1919

Authorized licensed use limited to: Saarl Universitaets. Downloaded on February 20,2024 at 10:11:34 UTC from IEEE Xplore.  Restrictions apply. 


