
Semistructured Merge:
Rethinking Merge in Revision Control Systems

Sven Apel, Jörg Liebig,
Benjamin Brandl, Christian Lengauer

University of Passau, Germany

Christian Kästner
Philipps University Marburg, Germany

ABSTRACT
An ongoing problem in revision control systems is how to resolve
conflicts in a merge of independently developed revisions. Un-
structured revision control systems are purely text-based and solve
conflicts based on textual similarity. Structured revision control
systems are tailored to specific languages and use language-specific
knowledge for conflict resolution. We propose semistructured revi-
sion control systems that inherit the strengths of both: the generality
of unstructured systems and the expressiveness of structured sys-
tems. The idea is to provide structural information of the underlying
software artifacts — declaratively, in the form of annotated gram-
mars. This way, a wide variety of languages can be supported and
the information provided can assist the automatic resolution of two
classes of conflicts: ordering conflicts and semantic conflicts. The
former can be resolved independently of the language and the latter
using specific conflict handlers. We have been developing a tool that
supports semistructured merge and conducted an empirical study on
24 software projects developed in Java, C#, and Python comprising
180 merge scenarios. We found that semistructured merge reduces
the number of conflicts in 60 % of the sample merge scenarios by,
on average, 34 %, compared to unstructured merge. We found also
that renaming is challenging in that it can increase the number of
conflicts during semistructured merge, and that a combination of
unstructured and semistructured merge is a pragmatic way to go.

1. INTRODUCTION
Revision control systems (a.k.a. version control systems) have

a long tradition in software engineering and are a major means
to manage revisions and variants of today’s software systems [11,
13, 17]. A programmer creates a revision of a software system by
deriving it from the base system or from another revision; a revision
can be developed and evolve in isolation; and it can be merged
again with the base system or another revision. A major problem
of revision control is how to resolve merge conflicts that are caused
by concurrent changes (e.g., when two developers independently
change the same method) [16]. Zimmermann found in an empirical
study on four large projects that 23 % to 46 % of all merge scenarios
exhibit conflicts [20].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

In recent years, two classes of revision control systems have
emerged: (1) revision control systems that operate on plain text
and (2) revision control systems that operate on more abstract and
structured document representations. The first class is being used
widely in practice because such systems are typically language-
independent. Popular systems of this class are CVS,1 Subversion,2

and Git.3 Henceforth, we call them unstructured revision control
systems. A problem of unstructured revision control systems is
that, when conflicts occur, no knowledge of the structure of the
underlying software artifacts is available. This makes it difficult to
resolve certain kinds of conflicts, as we will illustrate.

The second class of revision control systems is explored mainly in
academia with the goal of solving the conflict-resolution problems
of unstructured revision control systems [10, 19]. The idea is to use
the structure and semantics of the software artifacts being processed
to resolve merge conflicts automatically [16]. These systems operate
on abstract syntax trees or similar representations, rather than on
plain program text, and incorporate all kinds of information on the
underlying language. A drawback is that, relying on a particular lan-
guage’s syntax or semantics, they sacrifice language independence.
Henceforth, we call them structured revision control systems.

There is a trade-off between generality and expressiveness of
revision control systems [13]. A revision control system is general
if it works with many different kinds of software artifacts. It is
expressive if it is able to handle many merge conflicts automatically.
Inspired by this trade-off, we propose a new class of revision con-
trol systems, called semistructured revision control systems, which
inherit the strengths but not the weaknesses of unstructured and struc-
tured revision control systems. The idea is to increase the amount
of information that a revision control system has at its disposal to
resolve conflicts, while maintaining generality by supporting many
languages. In particular, we concentrate on the merge process, so
we speak of semistructured merge.

Our proposal is inspired by previous work on language-indepen-
dent software composition in product-line engineering [4]. We
noticed a similarity between software composition tools and soft-
ware merging techniques used in revision control systems, which
we exploit in our approach. In a nutshell, we developed a generic
engine, called FSTMERGE, that merges different revisions of a soft-
ware system based on the structure of the software artifacts involved.
Users can plug a new language into FSTMERGE by providing a
declarative specification of their language’s syntax (i.e., a grammar)
enriched with information for conflict resolution. While this ap-
proach is not entirely language-independent, it is still quite general.
First, it enables to resolve conflicts that are caused by differing or-

1http://www.cvshome.org/eng/
2http://subversion.tigris.org/
3http://git-scm.com/

1

http://www.cvshome.org/eng/
http://subversion.tigris.org/
http://git-scm.com/

derings of program elements independently of the language. Second,
it allows the user to plug in dedicated conflict handlers to define
further (language-dependent) resolution strategies. If, for whatever
reason, there is no grammar available for a certain language, FST-
MERGE can use a fallback solution to parse software artifacts line
by line, which makes it equivalent to the unstructured approach.

Our hypothesis is that semistructured merge — despite its sim-
plicity — can play to its strengths in practice.

Overall, we make the following contributions:
• Based on an analysis of the trade-off between generality and

expressiveness, we propose the concept of semistructured
merge, which combines the strengths of unstructured and
structured merge. It is able to resolve ordering conflicts inde-
pendently of the language, and it can be extended by conflict
resolution handlers to define additional (language-dependent)
conflict resolution strategies.
• We provide the tool FSTMERGE for semistructured merge

as an extension of the FEATUREHOUSE tool infrastructure
for software composition [4]. By using FSTMERGE on ar-
tifacts written in Java, C#, and Python, we demonstrate its
applicability and generality.
• We conduct an empirical study on 24 software projects to

quantify the benefits of semistructured merge and to identify
open issues. In a nutshell, we found that semistructured
merge can reduce the number of conflicts in 60 % of the
sample merge scenarios by 34±21 %.4 Furthermore, our
study reveals that renaming is a challenge for semistructured
merge that can increase the number of conflicts (in 26 % of the
sample merge scenarios by 109±170 %), which we discuss.
• A combination of unstructured and semistructured merge re-

duces the number of conflicts in our study by 35 % compared
to pure unstructured merge.

Especially, the latter three contributions are novel compared to an
earlier workshop version of this paper [6]. The key contribution is
the empirical study whose goal is to explore how far we can get with
an approach that is centered around ordering conflicts and conflict
handlers — the results are encouraging, as we will discuss.

2. CONFLICTS IN REVISION CONTROL:
BACKGROUND AND RELATED WORK

There is a large body of work on revision control systems [11, 13,
17] and conflict resolution in software merging [16]. We concentrate
on aspects relevant for our proposal. The purpose of a revision
control system is to manage different revisions of a software system.
Usually, revisions are derived from a base program or from other
revisions. Users can check out revisions from the repository, make
asynchronous changes, and check them in again. By branching the
main development line (or trunk), a programmer can create inde-
pendent revisions, which can be changed and evolve independently
(e.g., to add and test new features). Independent revisions can be
merged back with the base program or with other revisions, which
may have been changed in the meantime.

The key issue we address in our work is merge conflict resolution.
Conflicts may occur while merging independent changes. A major
goal of research on this problem is to empower revision control
systems to resolve merge conflicts automatically, that is, to reduce
the number of conflicts that have to be resolved otherwise manually
by the user [16]. First, we illustrate the problem of conflict resolution
in unstructured merge. Then, we illustrate the ability of structured
merge to resolve conflicts better than unstructured merge.
4We write m± s as an abbreviation for the mean value m of a data
set and its standard deviation s.

Base Program STACK

1 import java.util.LinkedList;
2 public class Stack<T> implements Cloneable {
3 private LinkedList<T> items = new LinkedList<T>();
4 public void push(T item) {
5 items.addFirst(item);
6 }
7 public T pop() {
8 if(items.size() > 0) return items.removeFirst();
9 else return null;

10 }
11 }

Revision TOP

1 import java.util.LinkedList;
2 public class Stack<T>

implements Cloneable {
3 private LinkedList<T> items =

new LinkedList<T>();
4 public void push(T item) {
5 items.addFirst(item);
6 }
7 public T top() {
8 return items.getFirst();
9 }

10 public T pop() {
11 if(items.size() > 0) return

items.removeFirst();
12 else return null;
13 }
14 }

Revision SIZE

1 import java.util.LinkedList;
2 public class Stack<T>

implements Cloneable {
3 private LinkedList<T> items =

new LinkedList<T>();
4 public void push(T item) {
5 items.addFirst(item);
6 }
7 public int size() {
8 return items.size();
9 }

10 public T pop() {
11 if(items.size() > 0) return

items.removeFirst();
12 else return null;
13 }
14 }

mergeunstructured (TOP, STACK, SIZE)

1 import java.util.LinkedList;
2 public class Stack<T> implements Cloneable {
3 private LinkedList<T> items = new LinkedList<T>();
4 public void push(T item) {
5 items.addFirst(item);
6 }
7 <<<<<<< Top/Stack.java
8 public T top() {
9 return items.getFirst();

10 }
11 =======
12 public int size() {
13 return items.size();
14 }
15 >>>>>>> Size/Stack.java
16 public T pop() {
17 if(items.size() > 0) return items.removeFirst();
18 else return null;
19 }
20 }

branch

merge

Figure 1: Merging the independently developed revisions SIZE
and TOP with unstructured merge.

2.1 Unstructured Merge
To illustrate the conflict resolution problem, we use the running

example of a simple stack implementation, as shown in Figure 1
(top). Henceforth, we call this program the base program or simply
STACK. It contains a class Stack that implements interface Cloneable
and that contains a field items and the two methods push and pop.

Now, suppose a programmer would like to add a new method top
to Stack, but would like to develop this feature in its own branch,
independently of the main branch (i.e., the base program). To this
end, the programmer creates a branch with a new revision TOP.

2

Furthermore, suppose another programmer adds subsequently a
method size directly to the main branch by creating revision SIZE
of the base program. Figure 1 (middle) presents code for the two
revisions, each of which adds a new method to class Stack. Finally,
suppose that, at some point in time, the two branches are merged
again to combine both revisions including the new methods.

Merging the two branches involves merging the two revisions
TOP and SIZE on the basis of the common ancestor, the base pro-
gram STACK. This process is also called a three-way merge because
it involves three revisions [17]. In our example, the merge process
reports a conflict that cannot be resolved automatically with unstruc-
tured merge. Figure 1 (bottom) contains the output of the merge
tool of CVS for this example. The output shows that the tool is not
able to merge the two new methods top and size, such that both can
be present in the merged program, because it cannot determine the
desired order of both methods. Similar conflicts are reported by
the merge tools of Subversion and Git — the user has to merge the
revisions manually.

This example is very simple but it suffices to illustrate the prob-
lems of unstructured merge. An unstructured merge tool operates
solely on the basis of text lines or tokens. It identifies new text
fragments with regard to the common ancestor (base program) and
stores the common fragments before and after the new fragments. If
the two revisions change or extend text in the same region, the sys-
tem reports a conflict. That is, it is not able to decide how to merge
the changes or extensions. In our example, the merge tool knows
that two independent text fragments (which actually implement the
two methods top and size) are added to the same location of the base
program (which is enclosed by the two fragments that implement
the methods push and pop). The problem is that the unstructured
merge tool does not know that these fragments are Java methods
and that a merge of the two is actually straightforward because their
order within their enclosing class can be permuted safely. If the tool
knew this, it would be able to solve the conflict automatically. There
are actually two solutions: include method top first and then method
size, or vice versa.

2.2 Structured Merge
In the past, many tools have been proposed that leverage infor-

mation on the artifact language to resolve as many conflicts as
possible [16]. Westfechtel and Buffenbarger pioneered this field
by proposing tools that incorporate structural information such
as the context-free and context-sensitive syntax in the merge pro-
cess [10, 19]. Researchers proposed a wide variety of structural
comparison and merge tools including tools specific to Java [7] and
C++ [14]. Some tools even consult additionally semantic informa-
tion of the language [9].

Let us illustrate the abilities of structured merge by a further ex-
ample in Figure 2. Suppose we have the base stack implementation
and we create two independent revisions, one that enables stack
objects to be serialized (revision SERIALIZABLE) and another that
allows programmers to flush the elements of the stack to a data
stream (revision FLUSHABLE). Figure 2 depicts excerpts of the
revisions. Merging the two revisions with the base program using
unstructured merge causes two conflicts. First, the system is not
able to merge the two new import statements and, second, it is not
able to merge the implements clauses of the two revisions. Figure 2
(bottom) shows the conflicts as reported by the merge tool of CVS.

In contrast, a structured revision control system that knows that
the base program and the revisions are written in Java is able to
resolve such conflicts automatically. It knows that the order of
imports does not matter and that, in this case, implements clauses
can be combined by union.

Base Program STACK

1 import java.util.LinkedList;
2 public class Stack<T> implements Cloneable {
3 ...
4 }

Revision SERIALIZABLE

1 import java.util.LinkedList;
2 import java.io.Serializable;
3 public class Stack<T>

implements Cloneable,
Serializable {

4 private static final long
serialVersionUID = 42;

5 ...
6 }

Revision FLUSHABLE

1 import java.util.LinkedList;
2 import java.io.Flushable;
3 public class Stack<T>

implements Cloneable,
Flushable {

4 ...
5 public void flush() { ... }
6 }

mergeunstructured (SERIALIZABLE, STACK, FLUSHABLE)

1 import java.util.LinkedList;
2 <<<<<<< Serializable/Stack.java
3 import java.io.Serializable;
4 =======
5 import java.io.Flushable;
6 >>>>>>> Flushable/Stack.java
7 <<<<<<< Serializable/Stack.java
8 public class Stack<T> implements Cloneable, Serializable {
9 private static final long serialVersionUID = 42;

10 =======
11 public class Stack<T> implements Cloneable, Flushable {
12 >>>>>>> Flushable/Stack.java
13 private LinkedList<T> items = new LinkedList<T>();
14 public void push(T item) {
15 items.addFirst(item);
16 }
17 public T pop() {
18 if(items.size() > 0) return items.removeFirst();
19 else return null;
20 }
21 public void flush() { ... }
22 }

branch

merge

Figure 2: Merging the independently developed revisions
FLUSHABLE and SERIALIZABLE with unstructured merge.

Beside the types of conflicts we have seen so far, there are other
types of conflicts that can be resolved by structured revision control
systems on the basis of language-specific knowledge. For example,
a for loop in Java consists of a head and a body, and the head consists
of three parts. This information is useful when two revisions modify
disjoint parts of the head. Even if a structured merge cannot merge
a conflict automatically, it may have information that assists the
programmer in resolving the conflict (e.g., even if the heads of two
for loops cannot be merged, a structured merge tool knows that the
conflict occurs in a loop head and not in an arbitrary line of text).

2.3 Generality vs. Expressiveness
The previous discussion reveals that there is a trade-off between

generality and expressiveness of revision control systems, as has
been observed before [13]. Unstructured revision control systems
are very general. They can be used with every kind of (textual)
software artifact. However, they are not able to resolve conflicts
that require knowledge on the language of the artifacts involved. In
contrast, a structured revision control system is typically tailored
to a particular language. So, it would be possible to build a revi-

3

sion control system for Java that can resolve the conflicts we have
discussed so far and, in addition, many other conflicts. However,
such a system would be less useful in a setting in which a software
system consists of artifacts written in many different languages (e.g.,
Java, JSP, Python, SQL, and Ant in a Web application).

This trade-off motivates us to explore the space between unstruc-
tured and structured revision control systems. Can we invent a
system that is able to handle a wide variety of software artifacts and
that has enough information on these artifacts to resolve a reasonable
number of conflicts automatically? A trivial solution would be to
develop one structured revision control system for every artifact type
that occurs in a software project, respectively. A problem with this
naive approach is that it is very tedious and error-prone. Moreover,
in many cases, not all artifact types can be anticipated.

Previous attempts to find a proper balance between structured
and unstructured merge have some limitations. For example, the
approach of Dig et al. assumes a setting in which refactorings of
the documents under revision control are recorded and replayed
on demand [12]. That is, their approach is not applicable to sce-
narios in which this additional information is not available, which
appears to be the rule rather than the exception in practice. Other
approaches require that the documents to be merged come with a
formal semantics [8, 15], which is not always feasible in practice
because, even for mainstream languages such as C++, there is no
formal semantics available. We explore whether we can reduce the
number of conflicts without these limitations.

3. SEMISTRUCTURED MERGE

3.1 Overview

Program Structure Trees. The basic idea of semistructured
revision control systems is to represent software artifacts as trees
and to provide information on how the nodes of a certain type
(e.g., methods or classes) and their subtrees are merged. We call
such a tree, which is essentially a parse tree, a program structure
tree (or feature structure tree [4]). In Figure 3 (a), we show a
simplified program structure tree of the base program STACK and,
in Figures 3 (b) and 3 (c), simplified program structure trees of
revisions TOP and SIZE. It is important to note that not all structural
information is represented in the tree. For example, there are no
nodes that represent statements or expressions. But this information
is not lost; it is contained as plain text in the leaves (not shown).
So a program structure tree is not necessarily a full parse tree; it
abstracts from some details and contains them as text. In our setting,
the order of child nodes of a common parent is arbitrary. That is, it
may change without affecting the program semantics. This is a key
property when resolving conflicts that rely on the element order, as
we will explain shortly.

The choice of which kind of structural element is represented by a
distinct node depends on the expressiveness which we want to attain
with semistructured merge. Let us explain this choice by means of
the stack example. Taking the three program structure trees as input,
a merge tool can produce the desired output without conflict only by
superimposing the trees, as shown in Figure 3 (d).5 Why does this
algorithm work? It works because the order of method declarations
in Java does not matter, so superimposing the trees just adds the
two new methods top and size in any possible order. If the two
revisions added methods with identical signatures, the tool would
have to merge the statements of their bodies. This would be more

5Superimposition merges trees recursively, beginning from the root,
based on structural and nominal similarities [4].

items push pop

Stack<T>

Stack

items push pop

Stack<T>

Stack

size

items push top pop

Stack<T>

Stack

items push top pop

Stack<T>

Stack

size

(b)

(d)

(a)

(c)

Figure 3: Different revisions of the stack example represented
as program structure trees.

difficult since their order matters (and statements do not have unique
names) [1, 5]. Even with all the knowledge on the Java language
at our disposal, there remain cases in which we cannot say how to
merge sequences of statements. This is the reason why we choose
to represent methods as opaque leaves and their statements as text
content; in other languages, we may choose a different granularity.

Conflict Types. The ability of semistructured merge to resolve
certain conflicts is based on the observation that the order of certain
elements (e.g., of classes, interfaces, methods, fields, imports, and
so on) does not matter. We call such conflicts ordering conflicts. A
merge algorithm that resolves just ordering conflicts automatically
is simpler to define than a fully structured merge. A semistructured
merge uses an abstraction of the structure of the document, which
provides just enough information to identify ordered items.

Furthermore, in the example of Figure 2, we see that unstructured
merge is not able to combine the differing implements clauses of
two revisions of a class. With semistructured (and structured) merge,
we are able to achieve this because we know that lists of types can be
unified in this case. The routine that resolves conflicts of a special
kind is called a conflict handler. To distinguish conflicts for which
we use special conflict handlers from the conflicts that occur due to
ordering issues, we call the former semantic conflicts and the latter,
as before, ordering conflicts. We do not claim that it is possible to
define a conflict handler for every situation. However, at least, a
conflict handler can assist the developer in identifying and resolving
conflicts.

But what do we do with program elements which we do not
know how to merge, such as method bodies with statements? The
answer is simple: we represent the elements as plain text and use
conventional unstructured merge. That is, if a conflict occurs inside
a method body, we do not attempt to resolve it automatically —
much like in unstructured merge.

Note that superimposition alone is not sufficient to implement
semistructured merge because revisions may remove program ele-
ments. For example, one or both revisions of STACK may remove
method push. The result should be a stack without this method.
To this end, the merge algorithm has to check whether one or both
revisions remove elements, and so on. In our tool, we implemented
a set of standard rules for removing elements (following CVS’s
merge), whose description we omit here because they do not add
anything to the discussion.

4

1 @FSTNonTerminal(name="{Type}")
2 ClassDecl : "class" Type ImplList "{"
3 (FieldDecl)∗ (ClassConstr)∗ (MethodDecl)∗
4 "}";
5 ...
6 @FSTTerminal(name="Impl", merge="ImplUnion")
7 ImplList : "implements" Type ("," Type)∗
8 @FSTTerminal(name="{ID}({Params})",
9 merge="LineBasedMerge")

10 MethodDeclaration :
11 Type ID "(" (Params)? ")" "{"
12 (Statement)∗;
13 "}";
14 ...

Figure 4: An excerpt of a simplified Java grammar with anno-
tations.

3.2 System Architecture and Annotations
Our system consists of two parts: (1) a generic engine that knows

how to identify and resolve certain conflicts and (2) a small abstract
specification — for each artifact type — of the program’s or docu-
ment’s elements whose order does not matter or for which special
conflict handlers are available. The abstract specification of a docu-
ment structure is given by an annotated grammar of the language.
Most of the difficult work is done by the generic merge engine, using
the grammar as a guide. This architecture makes it relatively easy to
include new languages by providing proper abstract specifications,
compared to implementing a complete structured merge tool from
scratch.

To illustrate the role of annotations, consider the excerpt of a sim-
plified Java grammar in Figure 4. It contains a set of production rules.
For example, rule ClassDecl defines the structure of classes con-
taining fields (FieldDecl), constructors (ClassConstr), and methods
(MethodDecl). Production rules may be annotated with @FSTNon-
Terminal and @FSTTerminal. The former annotation defines that
elements corresponding to the rule are represented as nodes in the
corresponding program structure tree, there may be subnodes, and
the order of elements or nodes is arbitrary. In our example, we anno-
tate the rule for class declarations with @FSTNonTerminal because
classes may contain further classes, methods, and so on, and the
order of classes in a file or package may vary. The annotation param-
eter name is used to assign a name to the corresponding node in the
program structure tree. Annotation @FSTTerminal is like annotation
@FSTNonTerminal except that subelements are represented as plain
text and that the developer can decide how code corresponding to
the element in question is merged. For example, we annotate the
rule for method declarations with @FSTTerminal to represent their
inner statements by plain text, as explained before. Annotation
parameter merge defines that the method’s content is merged by a
classic line-based merge algorithm, as used in unstructured merge.

A further interesting example is the rule for describing the syntax
of implements lists (Fig. 4, Lines 6–7). This rule is annotated with
@FSTTerminal, so the subelements (i.e., list of type names) are rep-
resented as plain text. But, in contrast to method declarations, we
state that implements lists are merged by a special conflict handler
that combines them by union (merge="ImplUnion"). This conflict
handler is specific to Java’s implements list and provided as a plugin
for FSTMERGE (via FEATUREHOUSE’s plugin mechanism). In Fig-
ure 5, we show an excerpt of a possible implementation in our tool.
Note that the name of the handler, defined in constant HANDLER
(Line 2), matches the name of the selected handler in the annotated
grammar (Fig. 4, Line 6).

The example of Figure 5 illustrates the simplicity of defining

1 public class ImplUnion {
2 public final static String HANDLER = "ImplUnion";
3 public static void compose(FSTTerminal a, FSTTerminal b,

FSTTerminal comp, FSTNonTerminal parent) {
4 String ifcA = a.getBody();
5 String ifcB = b.getBody();
6 String ifcComp = ifcB + ifcA;
7 ...
8 }
9 }

Figure 5: An excerpt of a simplified conflict handler for merg-
ing implements lists in Java.

conflict handlers. It is important to note that conflict handlers are
not language-independent but optional (if not provided, unstructured
merge is used). Conflict handlers can be used not only to resolve
conflicts, but also to provide structured and language-specific in-
formation on the kind of conflict and potential conflict resolution
strategies, in the case a conflict cannot be resolved automatically us-
ing the information available. For example, we could use a conflict
handler to specify how the parts of a for loop head are merged and,
if this is not possible, to provide information on the kind and cause
of the conflict.

3.3 Balancing Generality and Expressiveness
Semistructured merge is a combination of unstructured merge and

structured merge. Elements whose order is arbitrary are represented
by nodes and can be merged by superimposition. Elements whose
order is not arbitrary are represented by text and merged either by
unstructured merge or by special conflict handlers. That is, we
have a choice per language of which elements are to be represented
by nodes and which by text and which elements are treated by
conflict handlers. With a coarse granularity, we have simple program
structure trees (e.g., with Java classes as leaves) but cannot resolve
conflicts at the method level. That is, the expressiveness of the
merge algorithm is limited. Making the granularity finer, results in
more complex trees (e.g., with Java fields and methods as leaves) but
also allows a merge tool to resolve ordering conflicts automatically
(or via conflict handlers). The result is a higher expressiveness of
the merge algorithm.

As we have illustrated, an annotated grammar contains sufficient
information to guide a revision control system in merging Java arti-
facts. But how does this approach facilitate generality? Indeed, for a
language to be supported, we need some information in the form of
an annotated grammar and, if desired, special conflict handlers, so
the tool is not entirely language-independent. But such a grammar is
easily provided, since standard grammars in Backus-Naur-Form are
available on the Web for many languages, and adding annotations
is a matter of hours, at most. Also, implementing special conflict
handlers in the form of Java code is a matter of hours (e.g., for con-
catenating implements list, a few lines of Java code are sufficient).

3.4 Summary
To summarize, semistructured merge is more expressive than

unstructured merge, since certain conflicts can be resolved auto-
matically based on information on the underlying languages. And
semistructured merge is more general than structured merge, since
a wide variety of languages can be supported on the basis of an
annotated grammar, which needs to be provided only once per lan-
guage. If, for whatever reason, no information on a given language
is available, semistructured merge behaves exactly like unstructured
merge, parsing the corresponding software artifact line by line.

5

4. IMPLEMENTATION
To demonstrate the feasibility of our approach, we implemented

a semistructured merge tool and used it to merge artifacts written in
Java, C#, and Python.

4.1 Generic Merge Engine
We have implemented a first prototype of a semistructured merge

tool, called FSTMERGE, which is able to resolve ordering con-
flicts and which can be extended with special conflict handlers.
FSTMERGE and the sample programs of our empirical study are
publicly available as part of the FEATUREHOUSE distribution.6

FSTMERGE takes advantage of the existing tool infrastructure
FEATUREHOUSE [4], as illustrated in Figure 6. The tool FST-
GENERATOR generates almost all code that is necessary for the
integration of a new language into FSTMERGE. FSTGENERATOR
expects the grammar of the language in a proprietary format, called
FEATUREBNF, of which we have already shown an example in
Figure 4. We have extended FSTGENERATOR and FEATUREBNF
to support annotations relevant to semistructured merge.

Using a grammar written in FEATUREBNF, FSTGENERATOR
generates an LL(k) parser (that produces program structure trees)
and a corresponding pretty printer, both of which are then integrated
into FSTMERGE. Furthermore, developers have the opportunity to
plug in special conflict handlers and to activate them in the grammar
(using annotation parameter merge). After the generation step,
FSTMERGE proceeds as follows: the generated parser takes the
base program and two revisions written in the target language and
produces a program structure tree for each program; FSTMERGE
performs the semistructured merge as explained before (the trees are
superimposed, deletions are handled separately, and special conflict
handlers or a conventional unstructured merge are applied to the
leaves); the generated pretty printer writes the merged revisions to
disk.

Generator

CJava ...C# Haskell JavaCC Python

special conflict handlers

and line−based merge

MergeParser

and revisions
base program

structure tree revisions
merged

Pretty Printer

FSTMerge

FSTGenerator

FeatureBNF

structure trees
program program

Figure 6: The architecture of FEATUREHOUSE.

4.2 Language Plugins
We have tested FSTMERGE with three languages: Java, C#, and

Python. All three languages are common in projects that use revision
control systems and all are sufficiently complex and differ from each
other to demonstrate the practicality and generality of our approach.
As a basis, we used publicly available grammars that we adapted and
annotated for our purposes. Beside technical problems with the C#
grammar (we had to upgrade a C# 2.0 grammar to C# 4.0) and the
Python grammar (we had to integrate support for grammars that rely
on indentation), plugging the three languages into FEATUREHOUSE
and FSTMERGE was easy. Annotating and testing them was a
6http://www.fosd.de/fh/

matter of a few hours. Furthermore, we implemented special conflict
handlers for merging implements, extends, and throws lists and
for modifiers, mainly for displaying information on the conflicts.
Typically, the implementation of a conflict handler is only a few
lines of well-separated Java code and follows the pattern of the
handler shown in Figure 5.

5. EMPIRICAL STUDY
To quantify the benefits of our approach and to discover open

issues, we conducted an empirical study on merging and conflict
resolution in a number of software projects.

5.1 Motivation & Methodology
Due to our experience with using FEATUREHOUSE in software

product-line engineering [2–4], we expect that integrating further
languages is easy. The interesting issue is whether, in its current
form, semistructured merge can play to its strengths in real software
projects. The point is that concentrating on ordering and certain se-
mantic conflicts is a fairly simple approach. By means of examples,
we have demonstrated that semistructured merge is able to resolve
conflicts that cannot be resolved with unstructured merge. But how
frequently do such conflicts occur in real software projects? How
far can we get with such a simple approach? So, we formulate the
following research hypothesis:

Hypothesis: Many of the conflicts that occur in merging revisions
are ordering conflicts, which can be resolved automatically with
semistructured merge. An additional fraction of conflicts can be
resolved with language-specific conflict handlers.

Although there is some evidence that revisions often involve ad-
ditions of larger structures such as entire functions [18], we need a
substantial set of data to answer the question systematically. To this
end, we used both semistructured merge and unstructured merge in
a number of merge scenarios and compared the resulting numbers
of conflicts, lines of conflicting code, and conflicting files. Unfortu-
nately, we could not compare semistructured merge with structured
merge because there are simply no practical tools available, least
of all for Java, C#, and Python.7 This situation indicates that the
threshold for using structured merge in practice is high. Also we
could not compare our approach with tools that build on formal
semantics [8, 15] or on refactoring replaying [12] because our ap-
proach aims at a broader scenario in which this information is not
available.

Beside the quantitative analysis, we looked at selected samples
of merged code in order to learn about the influence of the merge
approach on the resulting code structure. We found a number of
differences that may have an impact on code comprehension, which
we discuss in Section 5.4.

5.2 Sample Projects

Criteria. An important issue is how to select merge and conflict
scenarios in a comparison of semistructured and unstructured merge.
Developing our own case study would leave too much room for
bias. Using only one or two scenarios would threaten external
validity (i.e., we would not be able to generalize our findings). Thus,
we decided to base our study on a substantial number of open-
source projects developed by practitioners for real applications.
We explored SourceForge, a popular open-source software portal,
7We are aware only of the academic prototypes for C of Westfechtel
and Buffenbarger. These tools are not able to resolve ordering
conflicts (personal communication with Westfechtel). However, in
principle, they would have enough information to do so.

6

http://www.fosd.de/fh/

for candidates. We had two criteria: (1) the projects must be of
reasonable but varying sizes and (2) either semistructured merge
or unstructured merge must produce at least one conflict. To this
end, we analyzed the revision history of the candidates including
logs for real and realistic merges, which we call henceforth merge
scenarios. Technically, we used Subversion to browse the revision
histories and to check out revisions. In principle, we could have
used any other state-of-the-art revision control system, but we were
most familiar with Subversion.

Identifying Merge Scenarios. We have been considering two
kinds of merge scenarios: (1) merges that have actually been per-
formed in the revision history of a project and (2) merges that are
realistic considering the revision history of a project.

Based on the logs, we were able to extract information on merges
that actually have been performed by the developers and to obtain
the revisions involved. Since Subversion has no standard log entry
type for merges,8 we used comments of the developers that point
clearly to merges.

Beside merges that actually happened, we searched for merges
that could have been performed (the logs are not clear about this)
or that are realistic considering the revision history — to increase
the sample size. One kind of indicator is a sequence of multiple,
alternating changes in different branches (e.g., trunk→ branch→
trunk). This pattern indicates concurrent development and points
to potential conflict scenarios (as long as the changes in different
branches are not identical). A second indication is that developers
evolve only a single branch in many revisions or the branch ends
abruptly. Merging the branch back to the trunk is a classic scenario
in revision control (e.g., to merge new features that have been added
and tested with the trunk) and is likely to produce conflicts when
the trunk has changed in between (typically, the more changes, the
more conflicts).

Technically, a merge scenario is a triple consisting of a base
revision, a left branch, and a right branch. The base revision marks
the point in time in which the left or right branch was copied from
the other. This way, we ensure that both branches have a common
ancestor, which is necessary for a three-way merge. Furthermore,
we check the two independently evolved branches out at the same
point in the revision history, which is a prerequisite for merging
them in practice.

In Table 1, we list information on the sample projects including
name, domain, number of lines of code, number of merge scenarios,
and programming language. Since Java is widely used, we were able
to locate ten projects with ten conflict scenarios each. For C# and
Python, we located fewer candidates with fewer conflict scenarios.
Overall, our sample consists of 24 projects with, in summary, 180
merge scenarios comprising, summed over all scenarios, 50 million
lines of code. All merge scenarios are available and documented on
the project’s website: http://www.fosd.de/SSMerge/ .

5.3 Results
In Table 2, we depict the results of our analysis in terms of the

numbers of conflicts, conflicting lines of code, conflicting files, and
semantic conflicts. For the purpose of the study, we defined conflict
handlers for 54 structural elements of Java, C#, and Python (imple-
ments lists, modifiers, and so on). Typically, the handlers are very
simple and only flag a semantic conflict. So, we did not implement
specific resolution strategies but we just counted situations in which
they can be applied, which is sufficient for the quantitative analysis.

8This entry type is available since version 1.5, but all sample projects
use earlier versions or did not take full advantage of this feature.

Project Domain LOC MS Lang.

AutoWikiBrowser semi-autom. Wikipedia editor 63 K 9 C#
BitPim mobile phone synchronization 180 K 7 Python
CruiseControl.NET continuous integration server 148 K 9 C#
DrJava development environment 89 K 10 Java
emesene instant messaging client 29 K 1 Python
Eraser secure data removal tool 18 K 6 C#
eXe eLearning XHTML editor 98 K 9 Python
FreeCol turn-based strategy game 86 K 10 Java
FireIRC IRC client 17 K 1 C#
GenealogyJ editor for genealogic data 56 K 10 Java
iFolder directory synchronization 68 K 4 C#
iText PDF library 71 K 10 Java
JabRef BibTeX entry manager 75 K 10 Java
jEdit programmer’s text editor 107 K 10 Java
JFreeChart chart library 149 K 10 Java
Jmol viewer for chemical structures 135 K 10 Java
matplotlib plotting library 86 K 10 Python
NASA WorldWind virtual globe 193 K 8 C#
PMD bug finder 71 K 10 Java
Process Hacker process viewer 99 K 1 C#
RSS Bandit news feeds reader 116 K 4 C#
SpamBayes Bayesian anti-spam classifier 47 K 6 Python
SQuirrelSQL graphical SQL client 218 K 10 Java
Wicd network manager for Linux 5 K 5 Python

Table 1: Overview of the sample projects (all available on
http://sourceforge.net/); LOC: lines of code; MS:
number of merge scenarios.

Due to the sheer amount of data, we provide for each project
mean values over all merge scenarios. Detailed information on each
merge scenario (including the number of conflicts, conflicting lines
of code, conflicting files, and semantic conflicts per file and per
merge scenario in the form of tables and diagrams) are available on
the project’s website.

Based on the results, we classify the projects into two categories,
according to which numbers are reduced by semistructured merge
compared to unstructured merge:

1. The number of conflicts, conflicting lines of code, and con-
flicting files are reduced or on the same order of magnitude.

2. The number of conflicts or conflicting lines is significantly
increased (highlighted in Tab. 2), but other numbers are re-
duced.

We have highlighted projects that fall into the second category with
gray background color in Table 2.

Compared to unstructured merge, semistructured merge (includ-
ing conflict handlers) can reduce the number of conflicts in 60 % of
the sample merge scenarios by 34±21 % (the number of conflicting
lines of code is reduced in 82 % of the sample merge scenarios by
61±22 %; the number of conflicting files is reduced in 72 % of the
sample merge scenarios by 28±12 %).

Remarkably, in 26 % (46 of 180) of the sample merge scenar-
ios, semistructured merge increases the number of conflicts by
109±170 %. We found this result counter-intuitive at first: Why
should additional information incur additional conflicts? In Sec-
tion 5.4, we explain that renaming is the reason for the increased
number of conflicts (and conflicting lines of code) in the projects of
the second category.

To present more than just mean values and to explore the reasons
for the differences of the individual projects, we had a closer look at
some representatives. In Figure 7, we display the numbers of con-
flicts and conflicting lines of code of all merge scenarios of CruiseC-

7

http://www.fosd.de/SSMerge/
http://sourceforge.net/

conflicts confl. LOC confl. files sem. confl.

Project UM SM UM SM UM SM UM SM

AutoWikiBrowser 20 17 418 362 6 6 – 0
BitPim 29 25 5240 471 6 3 – 4
CruiseControl.NET 26 16 1133 279 14 8 – 5
DrJava 20 16 293 210 7 7 – 0
emesene 7 4 400 17 7 4 – 17
Eraser 24 24 2146 637 12 11 – 0
eXe 5 3 112 35 4 2 – 2
FireIRC IRC Client 5 3 36 23 3 2 – 0
FreeCol 237 213 4606 3265 63 58 – 1
GenealogyJ 19 9 489 146 9 6 – 0
iFolder 44 10 228 156 6 4 – 34
iText 219 706 113757 35109 216 179 – 262
JabRef 75 49 1701 1782 28 24 – 2
jEdit 7 6 105 80 3 3 – 0
JFreeChart 560 361 18142 5500 193 109 – 21
Jmol 94 112 20094 6869 40 33 – 4
matplotlib 57 15 500 466 13 9 – 16
NASA WorldWind 23 36 5946 2328 12 9 – 10
PMD 55 371 18469 6596 48 36 – 17
Process Hacker 1 1 4 4 1 1 – 1
RSS Bandit 65 51 4086 1478 12 8 – 32
SpamBayes 25 22 1166 343 10 7 – 2
SQuirrelSQL 26 24 2620 579 16 13 – 1
Wicd 10 9 1267 218 4 3 – 2

Table 2: Mean conflicts per scenario: numbers of conflicts, con-
flicting lines of code, conflicting files, and semantic conflicts for
semistructured merge (SM) and unstructured merge (UM).

ontrol.NET (first category).9 The numbers show that semistructured
merge can play to its strengths in CruiseControl.NET; the same
applies to 18 other projects of our sample (all projects without gray
cells in Table 2).

In Figure 8, we display the numbers of NASA WorldWind (sec-
ond category). Interestingly, semistructured merge produces more
conflicts than unstructured merge, which we did not expect initially.
However, the number of conflicting lines of code is reduced sig-
nificantly. This is similar for all projects in which the number of
conflicts is increased. In Section 5.4, we discuss reasons for the
diverging numbers.

Finally, we were surprised that the numbers of semantic conflicts
are rather low compared to the number of ordering conflicts, espe-
cially when considering the quite high number of 54 elements that
we handle with a special conflict handler. A notable difference is
iText, which we discuss in Section 5.4.

5.4 Discussion
We found many scenarios in which semistructured merge is supe-

rior to unstructured merge because it reduces the number of conflicts,
conflicting lines of code, and conflicting files. So, we can confirm
our hypothesis: Many of the conflicts that occur in merging revisions
are ordering conflicts, which can be resolved automatically with
semistructured merge. We also found that an additional fraction of
conflicts can be potentially resolved with language-specific conflict
handlers. Nevertheless, the fact that, in some cases, semistructured
merge increases the number of conflicts or conflicting lines of code
surprised us. We had expected semistructured merge to be at least as
9The name of a merge scenario is composed of the revision number
of the base revision and the revision number of the left and right
branch (which are equal, as explained in Sec. 5.2). For example,
rev0815-4711 denotes a merge of the left and right branch of revision
4711 based on the base revision 0851.

Figure 7: Results for CruiseControl.NET (first category)

Figure 8: Results for NASA WorldWind (second category)

8

Base Program STACK

1 public class Stack<T> {
2 public void push(T item) {
3 items.addFirst(item);
4 }
5 }

Revision SOMECHANGE

1 public class Stack<T> {
2 public void push(T item) {
3 int count = 0;
4 items.addFirst(item);
5 }
6 }

Revision RENAMING

1 public class RenamedStack<T>{
2 public void push(T item) {
3 items.addFirst(item);
4 }
5 }

mergesemistructured (SOMECHANGE, STACK, RENAMING)

1 public class RenamedStack <T> {
2 public void push(T item) {
3 items.addFirst(item);
4 }
5 }
6 class Stack <T> {
7 <<<<<<< SomeChange/Stack.java
8 public void push(T item) {
9 int count = 0;

10 items.addFirst(item);
11 }
12 =======
13 >>>>>>> Renamed/Stack.java
14 }

branch

merge

Figure 9: Semistructured merge may produce conflicts in the
presence of renaming.

good as unstructured merge. To address this issue and to learn more
about the nature of semistructured merge, we reviewed the merged
revisions of all projects manually. Next, we provide a summary of
our findings.

Renaming. An analysis of the projects of the second category
revealed that renaming poses a challenge for semistructured merge.
The point is that semistructured merge uses superimposition to
merge revisions. If a program element is renamed in one revision (in
one of the branches), the merge algorithm is not aware of this fact
and cannot map the renamed element to its previous version. This
results in a situation in which we have in one branch an empty or
non-existent element. In Figure 9, we illustrate a situation in which
semistructured merge produces more conflicts and conflicting lines
than unstructured merge. In the base revision, we have a simple
stack. In revision SOMECHANGE, method push of Stack has been
changed. In revision RENAMING, class Stack has been renamed to
RenamedStack. Unstructured merge does not produce any conflicts
because the changes to the method and the class name are located
in different lines. Semistructured merge identifies merge partners
by name, so it treats class Stack and class RenamedStack as distinct
elements. The result of semistructured merge is shown at the bottom
of in Figure 9. It contains a conflict comprising four lines of code.

The worst case is that a directory is renamed — instead of a class,
as in the stack example. This happened, for instance, in PMD and
Jmol. In this case, unstructured merge reports, for each file of the
directory, a large conflict because it cannot map the files of the
renamed directory to the corresponding files of the other branch and

uses empty files instead. In semistructured merge, the same happens
except that the conflicts are not reported per file but per method or
constructor in the file. This results in more conflicts but the overall
number of conflicting lines is smaller than in unstructured merge.
The reason is that unstructured merge flags entire files as conflicts
and semistructured merge only individual structural elements such as
methods. We discuss how to handle renaming better in Section 5.6.

Semantic Conflicts. We did not find many semantic conflicts,
compared to other conflicts. An exception is iText. Examining
iText’s source code, we found that, at some point, the developers
switched from Java 1.4 to Java 1.5. This transition involved re-
naming a large number of raw types to generic types (e.g., from
LinkedList to LinkedList<String>). Thus, the cause for the exception-
ally high number of semantics conflicts is again a form of renaming.

Structural Boundaries. An observation we made when exam-
ining the results of unstructured and semistructured merge is that
semistructured merge, due to its structure-driven and fine-grained
nature, leads always to conflicts that respect boundaries of classes,
methods, and other structural elements. This is not the case for
unstructured merge. We found that respecting structural boundaries
(i.e., aligning the merge with the program structure) is beneficial,
because, this way, we could understand conflicts in terms of the
underlying structure, even though this may result in more conflicts
(e.g., one per method instead of one per file).

Automation. A goal of research on software merging is to mini-
mize the number of conflicts that require manual intervention to be
resolved [16]. However, an automatic resolution of conflicts has to
be taken with a grain of salt. For example, if two developers add
independently two methods that are intended to be the same, but
the conflict resolution recognizes them as different, this mismatch
goes unnoticed. This can happen in unstructured, structured, and
semistructured merge. It is desirable to minimize the amount of
manual intervention, but it is useful to keep information on conflict
resolutions. Semistructured merge has benefits in this regard as it
knows about the structural elements involved, not only about text.

5.5 Threats to Validity

Construct Validity. The construct validity of our study relies
on the correctness of the measures and measurement procedure.
The only issue is the influence of renaming on construct validity.
Although the output of semistructured merge in the presence of
renaming is not satisfactory (cf. Fig. 9), it still allows us to detect
conflicts properly and to incorporate them in our data. A problem
is that the number of conflicting lines of code may be estimated
too low, because the renamed element is not considered (cf. Fig. 9).
However, after code inspection we found that this fact is negligible
for our conclusions.

Internal Validity. A threat to internal validity is that the results
we obtained are influenced by (hidden) variables other than the kind
of merge (which is the independent variable). Due to the simplicity
of our setting, we can largely rule out such confounding variables.
We applied semistructured and unstructured merge to the same set of
merge scenarios and counted the number of conflicts subsequently
on the merged code. Furthermore, we used a comparatively large
sample (24 projects, 180 merge scenarios, 50 million lines of code)
to rule out confounding variables such as programming experience,
programming style, and the difference between domains.

9

A potential threat to internal (and external) validity is our ap-
proach of selecting conflict scenarios. The problem is that none of
the projects we found contains explicit information on merges in
its logs. So, we had to search the logs for comments that indicate
merge scenarios (such comments are fortunately quite common).
To increase the number of conflict scenarios, we considered further
merge scenarios based on a number of patterns in the revision hierar-
chy (e.g., small alternating changes in two independent branches or
branches that end abruptly) — see Section 5.2. Overall, we are con-
fident that the conflict scenarios we selected reflect a broad spectrum
of the current practice in revision control (due to the large sample)
and thus our results are reliable in this respect.

One can speculate about the influence of the merge approach on
patterns of concurrent development. Developers may avoid certain
programming and change patterns in order not to run into conflicts
when using unstructured merge. The availability of semistructured
may influence developers in the choice of their patterns because
with semistructured merge more conflicts can be resolved.

Even though it is well beyond the scope of the paper to do a
comprehensive analysis of code quality, examining samples of
merged code makes us confident that the resulting code structure
of semistructured merge can aid code comprehension as the merge
process follows the structural boundaries of the artifacts involved.
However, a series of controlled experiments is necessary to answer
this question definitely.

External Validity. A common issue is to what extent the exter-
nal validity of our study relies on the selection of samples. Can we
generalize to other projects in other domain and written in other
languages? To increase external validity, we collected a substantial
number of projects and merge scenarios written in different lan-
guages and of different domains. This does not guarantee that we
will arrive at the same picture in other projects, domains, and lan-
guages, but we are confident that we have covered a broad spectrum
of merge scenarios of revision control.

5.6 Open Issues & Perspectives
We see some interesting open issues of our approach. A first issue

is the role of refactoring. So far, we have not addressed changes,
such as the renaming of methods or classes, systematically. In our
study, we found that renaming can increase the number of conflicts
substantially, compared to unstructured merge. The reason is that
superimposition relies on nominal equality. We see two ways to
deal with this problem. First, we could use unstructured merge
instead of semistructured merge for files that contain renamings. A
merge tool can simply compare the numbers of conflicts produced
by semistructured merge and by unstructured merge on a per-file
basis and choose the better alternative. Since merging is done in
linear time, the overhead should be acceptable. For our sample, the
combination of unstructured and semistructured merge reduces the
number of conflicts, in sum, by 35 % compared to pure unstructured
merge (and by 50 % compared to pure semistructured merge). A
merge in our setting takes about 15 min, but compared to the time
for resolving conflicts manually, the overhead for applying both
kinds of merge can be safely neglected.

Additionally, like in the approach of Dig et al. [12], we could
trace renamings and pass this information to the revision control sub-
system. This way, pairs of corresponding elements can be matched,
even though they have different names, and the conflict of Figure 9
can be resolved automatically. This would further decrease the
number of conflicts but is only applicable in specific scenarios.

Beside renaming, a further issue is that semistructured merge
(much like structured merge) relies on structural information, so the

revisions must be syntactically correct. Whereas it is best practice
to commit only correct programs or documents, which has been
confirmed by our study (we found only one Python project with a
few problematic revisions), this is not a strict requirement of today’s
(unstructured) revision control systems. In such cases, the artifacts
involved have to be parsed as plain text such that semistructured
merge behaves exactly like unstructured merge. It is interesting to
explore whether, in such cases, syntactically correct fragments can
be represented by program structure trees and only the incorrect
fragments as plain text.

In discussions at VAMOS’10 [6], some people asked how, in
particular, resolving ordering conflicts influences program compre-
hension. The background is that, in our approach, the merge tool
decides the order (e.g., of method declarations in a class). An empir-
ical assessment of this issue is well beyond the scope of this paper
but an interesting avenue of further work. However, examinations
of sample code make us believe that semistructured merge can aid
program comprehension as it follows the structural boundaries of
the artifacts involved in the merge process.

6. CONCLUSION
Both unstructured and structured revision control systems have

strengths and weaknesses. The former are very general but cannot
resolve certain kinds of conflicts. The latter are typically tailored to
specific languages and thus can resolve conflicts better than the for-
mer. To reap the benefits of both worlds, we propose semistructured
merge. Developers provide information on the artifact languages
declaratively in the form of annotated grammars as well as in the
form of pluggable conflict handlers. This way, a wide variety of
different languages can be supported while taking advantage of the
information provided during the merge process. We have imple-
mented a tool for semistructured merge and plugged in support for
Java, C#, and Python. In an empirical study, we found that semistruc-
tured merge can substantially reduce the number and size of conflicts
that occur during merges, be it in terms of the number of conflicts
(34±21 %), the number of conflicting lines of code (61±22 %), and
the number of conflicting files (28±12 %). We also found situations
in which semistructured merge increases the number of conflicts or
the number of conflicting lines of code. But, in every case, either
the number of conflicting lines of code or the number of conflicts
decreases. In the presence of renaming, semistructured merge pro-
duces more but often smaller conflicts than unstructured merge. In
general, semistructured merge is finer-grained than unstructured
merge and disallows conflicts across class or method boundaries.

Interestingly, we found that a combination of unstructured and
semistructured merge can further reduce the number of conflicts
(by 35 % compared to pure unstructured merge). In the future, we
would like to explore whether it is possible to trace renaming and to
use this information during the merge process.

7. ACKNOWLEDGMENTS
We thank Don Batory and William Cook (who was also an author

of the workshop paper on which this paper is based) for fruitful
discussions on the potential of semistructured merge. We thank Jens
Dörre for preparing the grammars for FSTMERGE. Apel’s work is
supported in part by the German Research Foundation (DFG — AP
206/2-1 and AP 206/4-1). Kästner’s work is supported in part by
the European Research Council (ERC grant ScalPL #203099).

10

8. REFERENCES
[1] S. Apel and D. Hutchins. A Calculus for Uniform Feature

Composition. ACM Trans. Programming Languages and
Systems (TOPLAS), 32(5):Article 19, 2010.

[2] S. Apel, F. Janda, S. Trujillo, and C. Kästner. Model
Superimposition in Software Product Lines. In Proc. Int. Conf.
Model Transformation (ICMT), volume 5563 of LNCS, pages
4–19. Springer-Verlag, 2009.

[3] S. Apel, C. Kästner, A. Größlinger, and C. Lengauer. Feature
(De)composition in Functional Programming. In Proc. Int.
Conf. Software Composition (SoftComp), volume 5634 of
LNCS, pages 9–26. Springer-Verlag, 2009.

[4] S. Apel, C. Kästner, and C. Lengauer. FeatureHouse:
Language-Independent, Automated Software Composition. In
Proc. Int. Conf. Software Engineering (ICSE), pages 221–231.
IEEE CS, 2009.

[5] S. Apel, C. Lengauer, B. Möller, and C. Kästner. An Algebraic
Foundation for Automatic Feature-Based Program Synthesis.
Science of Computer Programming, 75(11):1022–1047, 2010.

[6] S. Apel, J. Liebig, C. Lengauer, C. Kästner, and W. Cook.
Semistructured Merge in Revision Control Systems. In Proc.
Int. Workshop Variability Modelling of Software-intensive
Systems (VaMoS), pages 13–19. University of Duisburg-Essen,
2010.

[7] T. Apiwattanapong, A. Orso, and M. Harrold. JDiff: A
Differencing Technique and Tool for Object-Oriented
Programs. Automated Software Engineering, 14(1):3–36,
2007.

[8] V. Berzins. Software Merge: Semantics of Combining
Changes to Programs. ACM Trans. Programming Languages
and Systems (TOPLAS), 16(6):1875–1903, 1994.

[9] D. Binkley, S. Horwitz, and T. Reps. Program Integration for
Languages with Procedure Calls. ACM Trans. Software
Engineering and Methodology (TOSEM), 4(1):3–35, 1995.

[10] J. Buffenbarger. Syntactic Software Merging. In Selected
Papers from the ICSE SCM-4 and SCM-5 Workshops on
Software Configuration Management, volume 1005 of LNCS,
pages 153–172. Springer-Verlag, 1995.

[11] R. Conradi and B. Westfechtel. Version Models for Software
Configuration Management. ACM Computing Surveys
(CSUR), 30(2):232–282, 1998.

[12] D. Dig, K. Manzoor, R. Johnson, and T. Nguyen.
Refactoring-Aware Configuration Management for
Object-Oriented Programs. In Proc. Int. Conf. Software
Engineering (ICSE), pages 427–436. IEEE CS, 2007.

[13] J. Estublier, D. Leblang, A. van der Hoek, R. Conradi,
G. Clemm, W. Tichy, and D. Wiborg-Weber. Impact of
Software Engineering Research on the Practice of Software
Configuration Management. ACM Trans. Software
Engineering and Methodology (TOSEM), 14(4):383–430,
2005.

[14] J. Grass. Cdiff: A Syntax Directed Differencer for C++
Programs. In Proc. USENIX C++ Conference, pages 181–193.
USENIX Association, 1992.

[15] D. Jackson and D. Ladd. Semantic Diff: A Tool for
Summarizing the Effects of Modifications. In Proc. Int. Conf.
Software Maintenance (ICSM), pages 243–252. IEEE CS,
1994.

[16] T. Mens. A State-of-the-Art Survey on Software Merging.
IEEE Trans. Software Engineering (TSE), 28(5):449–462,
2002.

[17] Bryan O’Sullivan. Making Sense of Revision-Control

Systems. Comm. ACM (CACM), 52(9):56–62, 2009.
[18] G. Stoyle, M. Hicks, G. Bierman, P. Sewell, and I. Neamtiu.

Mutatis Mutandis: Safe and Predictable Dynamic Software
Updating. In Proc. Int. Symp. Principles of Programming
Languages (POPL), pages 183–194. ACM Press, 2005.

[19] B. Westfechtel. Structure-Oriented Merging of Revisions of
Software Documents. In Proc. Int. Workshop Software
Configuration Management (SCM), pages 68–79. ACM Press,
1991.

[20] T. Zimmermann. Mining Workspace Updates in CVS. In Proc.
Int. Workshop on Mining Software Repositories (MSR),
page 11. IEEE CS, 2007.

11

	Introduction
	Conflicts in Revision Control: Background and Related Work
	Unstructured Merge
	Structured Merge
	Generality vs. Expressiveness

	Semistructured Merge
	Overview
	System Architecture and Annotations
	Balancing Generality and Expressiveness
	Summary

	Implementation
	Generic Merge Engine
	Language Plugins

	Empirical Study
	Motivation & Methodology
	Sample Projects
	Results
	Discussion
	Threats to Validity
	Open Issues & Perspectives

	Conclusion
	Acknowledgments
	References

