
Automated Software Engineering

98
13th IEEE International Conference

Doctoral Symposium Proceedings

October 13, 1998

Sheraton Princess Kaiulani
Honolulu, Hawaii, USA

Contents

About the Doctoral Symposium ...3

Doctoral Symposium Program...4

Software Understanding through Automated Visual Presentations, ...5
Rogelio Adobbati,
Computer Science Department / Information Sciences Institute, University of Southern California,
USA

Odyssey: A Reuse Environment Based on Domain Models, ...9
Regina M. M. Braga,
Computer Science Department- COPPE/UFRJ, Federal University of Rio de Janeiro, Brazil

Integrating Automated Verification into Interactive Systems Development,13
José C. Campos,
Department of Computer Science, University of York, UK

Automated Modeling of Real-Time Implementation, ...17
Peter Krogsgaard Jensen,
Department of Computer Science, Aalborg University, Denmark

Tool Support for Requirement Level Change Management and Impact Analysis,21
Simon Lock,
Lancaster University, UK.

Towards an Explicit Intentional Semantics for Evolving Software, ..25
Kim Mens,
Programming Technology Lab (PROG), Vrije Universiteit Brussel, Belgium

Real-Time Reactive System Development –A Formal Approach Based on UML and PVS,29
Darmalingum Muthiayen,
Department of Computer Science, Concordia University, Montréal, Canada

Automating migration of Fortran programs, ...33
Christophe Roudet,
INRIA Sophia Antipolis, France

UML Formalization and Transformation, . ..39
Jeffrey E. Smith,
Northeastern University, Boston, USA

Dependence Analysis for Software Architectures, ...43
Judith A. Stafford,
Department of Computer Science, University of Colorado, USA.

Dynamic Modeling in Forward and Reverse Engineering of Object-Oriented Software Systems,47
Tarja Systä,
Department of Computer Science, University of Tampere, Finland

Vorlon: A Visual Object-Oriented Approach to Parallel Application Development,51
Jim Webber,
Department of Computing Science, University of Newcastle upon Tyne, UK

Improving Reusability in the Process of Method Engineering, ..55
Zheying Zhang,
Department of Computer Science and Information Systems, University of Jyväskylä, Finland

About the Doctoral Symposium

The Doctoral Symposium at ASE’98 is intended to bring together PhD students working on foundations,
techniques, tools and applications of automated software engineering technology and give them the
opportunity to present and to discuss their research in a constructive and international atmosphere. The
goals of the symposium are:

• To provide a setting for mutual feedback on participants’ current research, and guidance on future
research directions

• To develop a supportive community of scholars and a spirit of collaborative research
• To contribute to the conference goals through interaction with other researchers and conference events.

The main part of the Doctoral Symposium was held on October 13, 1998, the day before the main
conference. This day took the form of a one day workshop, in which selected students each presented their
work, with constructive feedback from one another, and from a panel of advisors. The workshop also
included two invited talks on topics relevant to the process of completing a PhD and writing a thesis. In
addition to the one-day workshop, participants of the Doctoral Symposium were encouraged to present
their work as posters.

Twenty PhD students from nine different countries submitted papers to the symposium. The submissions
were all of an excellent quality. Of these, seven students were invited to present their work at the
symposium. Due to the high quality of all the submissions, all twenty students were invited to participate in
the symposium and have their paper printed in the proceedings, whether they were presenting or not. By
including all the students, we hope to foster a community of research students, and to continue interaction
beyond the conference itself.

I would like to thank the members of the doctoral symposium panel for their work in reviewing the students
abstracts, and for participating in the symposium and providing feedback to the students. The panel
members were Perry Alexander (University of Cincinnati), John Penix (NASA Ames), Michael Lowry
(NASA Ames), and Louis Hoebel (GE Research & Development Center).

Steve Easterbrook
Doctoral Symposium Chair

October 6, 1998

Doctoral Symposium Program

8:30 Welcome and introductions

9:00 Rogelio Adobbati, “Software Understanding through Automated Visual
Presentations”

9:40 Peter Krogsgaard Jenson, “Automated Modeling of Real-Time Implementation”

10:20 Break

10:40 Kim Mens, “Towards an Explicit Intentional Semantics for Evolving Software”

11:20 Reflections from a recent PhD “if only I had known...” – by Dr John Penix

12:00 Lunch

13:00 Jeffrey Smith, “UML Formalization and Transformation”

13:40 “How to write a PhD thesis” – by Dr Steve Easterbrook

14:20 Discussion Session.

15:00 Break

15:20 Judy Stafford, “Dependence Analysis for Software Architectures”

16:00 Tarja Systa, “Dynamic Modeling in Forward and Reverse Engineering of Object-
Oriented Software Systems”

16:40 Discussion and Wrap-up Session

17:00 Close

Software Understanding through Automated Visual Presentations

Rogelio Adobbati
Computer Science Department / Information Sciences Institute

University of Southern California
4676 Admiralty Way

Marina del Rey, CA 90292-6695
+1 310 822 1511
rogelio@isi.edu

Abstract
It is well known that visual presentations can facilitate the
understanding of software. However, effective visual
presentations can be difficult to generate and maintain. In
this paper I describe my work on PESCE [Presentation
Engine for Software Comprehension and Explanation], a
system that addresses this problem via automatic
generation of visual explanations of software. The system
uses a model of what the user knows about the system, the
user’s task, and a set of visualization rules to build
consistent visual presentations about software objects.

1. Introduction

The importance of visual representations in
understanding complex systems has been well established
[19]. In the particular case of software systems, conceptual
visualization becomes critical due to the absence of
physical parts. As such systems grow in complexity,
textual explanations get more difficult to understand; here
is where graphical representations prove their worth.

Static, predefined diagrams have been used as
documentation for complex software systems. The
dynamic nature of software, and the different
characteristics of users trying to perform software
understanding conspire to lessen the utility of static
diagrams. Dynamically generated presentations are
therefore highly desirable.

2. The problem

The task of generating presentations can roughly be
broken down into two steps: select what information to
show (content selection), and how to show it (presentation
generation) [22]. The focus of my work is the latter step; I
am not investigating the content selection problem, but

instead make use of content selection developed by other
members of our research project at ISI.

Dynamically generating presentations for software
artifacts represents a difficult challenge. First of all,
software artifacts are complex objects of arbitrary
dimension [18], and software understanding requires the
ability to understand these objects from different views
and the ability to map between these views (multiple
dimensionality) [12,15]. Moreover, any selected
information about these artifacts needs to be tailored to fit
different user levels of expertise and tasks [10]. The visual
component adds extra complexity to the problem since the
mechanisms for conceptual comprehension of graphical
depictions are not well understood [17]. In addition,
visually displaying the information introduces extra
implementation constraints due to the limited amount of
graphical resources available at any given time [11].

To address these problems, I have identified certain
key components to automatically generate visual
explanations of software systems [1]. These are:

- Relevant information about software objects
- A model of user knowledge of the system and current

user task
- A repository of visual presentation methods
- A presentation engine/planner to coherently apply

those methods
- Heuristics and rules for the layout of visual

presentations
In order to generate a presentation for a particular user,

the problem has been divided in two main stages:
- Spatial layout of the presentation (the diagram itself)
- Temporal layout (the animation and diagram view

transitions)
The resulting presentation must show the information

relevant to the user in a series of steps in correct logical
order. Furthermore, it needs to comply with pedagogical
prerequisites and user model restrictions, to achieve a
series of communicative goals.

3. Related work

Several systems have been developed that address the
problem of automatically generating visual presentations.
Some of these systems deal with the visualization of
mainly quantitative information in the form of tables,
graphs, etc. (e.g. SAGE [13], BOZ [5]). These scientific
visualization systems do not provide the adequate
techniques to represent abstract relationships between
concepts, a feature that proves critical in software
understanding.

 Other systems generate planned multimodal
presentations from some underlying representation (e.g.
WIP [3], COMET [8]). These systems have been
successfully used to generate instructions for technical
devices, a task that is similar to the explanation of
software artifacts. On the other hand, they have not been
used in the domain of software engineering, and it is not
clear that they could provide the multiple integrated views
needed for a clear understanding of conceptual relations
between software objects.

 Stasko’s work to visualize program execution through
automated animations provides tools for understanding
and debugging programs (LENS[14], GROOVE[9]).
Nonetheless, the presentations generated are designed
towards program debugging; their focus has not been to
provide high-level, abstract visualization of the different
components of a complex software system.

Another example is the RIGI system [15], a visual
software understanding tool that provides different
conceptual views of complex software systems. It does
not, however, allow different conceptual views of a
complex system to be shown at the same time and, more
importantly, does not provide the display over time of
multiple diagrams and animated presentations.

Zhou and Feiner’s IMPROVISE [23] is a knowledge-
based system that can automatically generate coherent
visual discourse using a top-down, hierarchical-
decomposition, partial-order planner. Their approach
seems to be suitable to be applied to the software
understanding problem, even though they have not tried
such an application.

4. Direction of my work

To provide a solution for the presentation generation
problem, I am currently working on PESCE (Presentation
Engine for Software Comprehension and Explanation).
PESCE is a component of MediaDoc [7], a software
engineering tool being developed at ISI that uses both
textual and graphical presentations for software
explanation. I have completed a first implementation of

PESCE that includes a few simple visualization rules and
presentation methods to generate software explanations for
different users.

I am also developing a formal framework for solving
the spatial and temporal problems mentioned in section 2.
For that purpose, I am investigating what characteristics
make a visual presentation clear and useful; this is a
difficult task since visual representation has been
traditionally more of an art than a science. Nevertheless, I
have been testing different rules for proper presentation
generation based on the work of Tufte [19, 20, 21], Albers
[2], and Bertin [4], and specific methods for graph layout
inspired by [16, 6].

5. Current implementation of PESCE

The core components of PESCE are a repository of
visualization rules for software objects and relationships, a
presentation engine that applies those rules to generate
visual directives to display some given information about
a software system, and a diagram generator that realizes
those directives on the user’s screen (see figure 1).

5.1 The presentation engine

The main component of PESCE is the presentation
engine; its first implementation is written in Perl. This
module receives relevant content information from
MediaDoc’s explanation engine in response to a particular
user query. That information is in a SGML-like format
that can be easily parsed into individual objects and
relationships; it also has the advantage of making it easier
to interface PESCE to other software engineering systems
besides MediaDoc.

Figure 1: The MediaDoc Architecture

From the information given, PESCE builds a data
structure that will be searched to solve the presentation
problem. For each object (or relationship) type, a list of

visualization methods and their constraints is retrieved
from the rule repository. An element is added to a working
memory structure containing descriptive information about
the object, the list of methods that may be used to
visualize it, and the constraints inherent to each of the
methods.

Besides constraints related to presentation methods,
PESCE relies on several global constraints to tailor a
visual presentation to the current user. MediaDoc’s user
model is accessed by PESCE and the appropriate global
constraints are pushed into a constraint stack, e.g., color-
based coding should be avoided when generating diagrams
for color-blind people, etc. The user model stores a set of
global constraints for each particular type of user and task;
this information is represented in an SGML-like format,
giving PESCE the potential to be easily interfaced to
different user models outside of MediaDoc.

Once this linked data structure is completed, it has to
be traversed to generate the visualization of all its
components, paying special attention to their constraints.
This is done through a forward-chaining mechanism that
backtracks when a method sets a conflicting constraint.
After all the elements in the structure are realized
successfully, the resulting set of visual directives is
specially formatted and sent to a diagram generator
(Diagen) for graphical display.

In choosing a traversal sequence, a heuristic is needed
to try to minimize backtracking. I have chosen a heuristic
based on the complexity of the data elements and their
connections; in my experience, more densely connected
objects will lead to more spatial constraints, which are
difficult to resolve once other constraints related to several
simpler objects have been instantiated. By instantiating the
more complex objects first, the level of backtracking is
reduced up to the simpler ones. The content selection
system can override this heuristic by providing a particular
order of rethorical importance for the software objects to
be visualized, in which case the given order is used to
guide the search.

5.2 The visualization rules

Visual rules are used by the presentation engine to
generate graphical representations of an object or
relationship (figure 2). Each rule has 3 main components:

- The object/relationship type it realizes
- The presentation method to be called in order to

display the object/relationship (including any
required arguments)

- One or more links to spatial (size, position), temporal
(order, duration), or style constraints for the
presentation method

Methods that have been implemented already or that
are in the process of being implemented include: null(),

circular_node(), square_node(), star(), arrows(),
network(), state_machine(), venn_diagram(), top_down(),
animated_message(), nested(), and animated_sequence().
A fair amount of software explanations can be generated
from this set of methods, including data flows, control
flows, software dependencies, general architecture of a
system or part of it, functional diagrams, message passing
between objects, state diagrams, object and class
hierarchies, etc.

Figure 2: PESCE’s internal representation of the Part-of
relationship and two of its visualization rules

Rules and constraints have values related to them to
help in the traversal and backtracking process. Rules for a
particular object type are ranked by some arbitrary style
preference; during the forward chaining, rules are tried in
the order assigned. Constraints have an associated
importance value to select which one to relax when a
conflict arises; it ranges from 0 (irrelevant constraint) to 1
(mandatory constraint). I currently treat that value as a
binary (1.0 is mandatory, anything else is non-mandatory),
since I am still investigating a principled way to assign the
right values to non-mandatory constraints.

5.3 The diagram generator

The Diagram Generator, or Diagen, is a Java applet
that represents objects and relationships through a
graphical layout on a web page. Diagen is used to provide
a graphical element to MediaDoc through PESCE, but has
also been interfaced to several other packages.

The diagram is generated from an SGML-like
description (MAP – Markup language for Authoring
Presentations-) provided by the applet server's machine.
The applet requests the file from the server (PESCE in
MediaDoc) and interprets the MAP description to create
and display the diagram at the client site. Foreground
objects and actions can be specified on top of the graph to
create time-sequenced animations; the user can

interactively control these animations.

6. Future work and conclusions

I am building a system that automatically generates a
series of visual representations to form a coherent
explanation about the components of a software system
and their underlying relationships. For that purpose, I
have integrated into the system a user model and a
diagram visualization tool, both developed for MediaDoc,
a set of visual rules derived from current literature, and an
algorithm to instantiate these rules and check their
inherent constraints. I have been testing several examples
of visual presentations in response of user queries about a
software system.

Currently, I am working on defining a larger, more
general set of visual rules to address a wider range of
software visualization cases, and on testing different
heuristics to efficiently instantiate those presentation rules
and their corresponding constraints for every object and
relationship. I am also trying to define an evaluation plan
to measure the usability of the visualization rules, and the
scalability of the presentation generation algorithm.

References

1. R. Adobbati, Towards the Automated Generation of User-
Tailored Visual Representation of Complex Software
Systems. Poster Presented at the California Software
Symposium, University of California, Irvine, CA (1997).

2. E J. Albers, Interaction of Color. Yale University Press,
New Haven, CT (1975).

3. E. Andre, W. Finkler, W. Graf,, T. Rist, A. Schauder and
W. Wahlster, WIP: The Automatic Synthesis of Multimodal
Presentations. M. Maybury, ed., Intelligent Multimedia
Interfaces, AAAI Press, Cambridge, MA (1993) 75-93.

4. J. Bertin, Semiology of Graphics. University of Wisconsin
Press, Madison, WI (1983).

5. S.M. Casner, A Task-analytic Approach to the Automated
Design of Graphic Presentations. ACM Transactions on
Graphics 10(2), (1991) 111-151.

6. G.Di Battista, P. Eades, R. Tamassia, I. G. Tollis,
Algorithms for Drawing Graphs: an Annotated Bibliography.
Journal of Computational Geometry (1994).

7. A.Erdem, W.L.Johnson and Stacy Marsella, Task Oriented
Software Understanding. To be presented at ASE98, Hawaii
(1998).

8. S. Feiner and K. McKeown, Automating the Generation of
Coordinated Multimedia Explanations. IEEE Computer
24(10), (1991) 33-41.

9. D. Jerding, J. Stasko, and T. Ball, Visualizing Interactions
in Program Executions. Proceedings of the 1997

International Conference on Software Engineering (ICSE-
97), Boston, MA, May 1997, pp. 360-370.

10. W.L.Johnson and A.Erdem, Interactive Explanation of
Software Systems. Automated Software Engineering 4,
(1997) 53-75.

11. Z. Kulpa, Diagrammatic Representation and Reasoning.
Machine GRAPHICS & VISION 3(1-2), (1994) 77-103.

12. Lakhotia, Understanding Someone Else’s Code: Analysis of
experiences. Journal of Systems and Software 20, (1993) 93-
100.

13. V. Mittal, S. Roth, J. Moore, J. Mattis and G. Carenini,
Generating Explanatory Captions for Information Graphics.
Proc. of the Fourteenth IJCAI, Montreal, Canada (1995).

14. Mukherjea, Sougata and J. Stasko, Toward Visual
Debugging: Integrating Algorithm Animation Capabilities
within a Source Level Debugger. ACM Transactions on
Computer-Human Interaction 1(3), (1994) 215-244.

15. H. Muller, K. Wong And S. Tilley, Understanding Software
Systems Using Reverse Engineering Technology.
Colloquium on Object Orientation in Databases and
Software engineering, The 62nd Congress of “L’Association
Canadienne Francaise pour l’Avancement des Sciences”,
Montreal, Canada (1994).

16. K. Ryall, J. Marks, and S. Shieber, An Interactive
Constraint-Based System for Drawing Graphs. Proc. of
UIST 97, Banff, Alberta (1997) 97-104.

17. M. Scaife and Y. Rogers, External Cognition: How Do
Graphical Representations Work? Int. Journal on Human-
Computer Studies 45, Academic Press Limited (1996) 185-
213.

18. M. Petre, A.F. Blackwell and T.R.G. Green, Cognitive
Questions in Software Visualization. J.Stasko, J.
Dominguez, B. Price and M. Brown, eds. Software
Visualization: Programming as a Multi-Media Experience,
MIT Press (1997).

19. E.R. Tufte, The Visual Display of Quantitative Information.
Graphics Press, Cheshire, CT (1983).

20. E.R. Tufte, Envisioning Information. Graphics Press,
Cheshire, CT (1990).

21. E.R. Tufte, Visual Explanations. Graphics Press, Cheshire,
CT (1997).

22. M. Vossers, Automatic Generation of Formatted Text and
Line Drawings. Master’s Thesis, University of Nijmegen,
The Netherlands (1991).

23. M.X. Zhou, and S.K. Feiner, The Representation and Usage
of a Visual Lexicon for Automated Graphics Generation.
Proc. IJCAI '97 (1997 Int. Joint Conf. on AI), Nagoya,
Japan, (1997).

Odyssey: A Reuse Environment Based on Domain Models

Regina M. M. Braga Cláudia M. L. Werner Marta Mattoso
{regina, werner, marta}@cos.ufrj.br

Computer Science Department- COPPE/UFRJ
Federal University of Rio de Janeiro – Brazil

KeyWords: Reuse Software Development Environments,
Component-based development, Domain Analysis, Object-
Orientation, Software Architecture, Frameworks, Patterns,
Mediators.
1. Introduction

Reuse is a promising way to help improving
software development. One of the most encouraging reuse
techniques available is the component-based software
development. The component-based software development
employs interrelations between preexisting components and
the reuse of components that have been exhaustively tested
to reduce complexity and costs of software development
[10].

To meet this requirement, reuse must be applied to
all phases during the development process. Therefore, the
domain concepts that were considered as reusable in the
initial development phases must be closely related to the
code components that will be used during application
implementation. A reuse environment based on abstract
domain concepts can help in the effective application of
reuse during software development, since it can provide
methods, tools and procedures for the specification of
domain models and applications. There is no environment
to our knowledge that is capable of addressing all these
aspects together. The works found in the technical literature
[9], [12], [13], generally concentrate on one aspect or
another.

In order to increase the productivity and reduce the
cost of software development, we propose a reuse
environment, named Odyssey [17]. The main feature of
Odyssey is its ability to encompass the whole cycle from
conceptual models to component implementation.

The main contribution of the Odyssey environment
is the combination of concepts found in component-based
development and domain engineering.
2. An Overview of Odyssey

The main goal of Odyssey is to provide
mechanisms for software development based on the concept
of reuse. To attain this goal, Odyssey has been conceived as
a framework where conceptual models, software
architectures and implementation models are specified for
previously selected application domains. These domain
models are specified and further modified according to the
activities defined in the DE method, based on the DE

process. To accomplish this, we use domain agent tools and
domain models specification and evolution tools for
specification and knowledge evolution of domains. The
domain models are presented to users using a hypermedia
interface. Also, all domain models should be stored in a
distributed and heterogeneous way using the mediation
technology.

The main users of the environment are the domain
engineer, the domain specialist and the software engineer
responsible for the development of applications within that
domain. The domain engineer and the specialist use the
environment mainly to specify and enlarge the concepts of
the domain. The software engineer uses it to gain an
understanding of the application domain and to reuse this
understanding in the specification of his/her application.
The software engineer interacts with Odyssey through the
Information Agent − that aids the him/her while getting
familiar with the domain − and through the Architectural
Transformation Agent − which allows the transformation of
the initial domain concepts, selected by the information
agent, to a specific architectural model. These tools use the
services of the mediation layer to access the domain models
stored at the domain sources. The mediation layer plays a
key feature in this environment since it provides a uniform
representation and manipulation for all the domains,
therefore facilitating the encompassment of the whole
development cycle. The main objective of this layer is to
allow the integration of information from various domains
that are stored in heterogeneous and distributed data
sources, in a way that the user of this information has
access to it in a transparent and uniform way. In this aspect,
Odyssey presents an advantage when compared to similar
structures, such as KBSs, that generally use file systems to
store data, resulting in redundant information storage and
poor performance.
3. Representation of Domain Models
3.1 - Representation of conceptual models

In the representation of conceptual models, we must
pay special attention to the understanding and recognition
of concepts and functionalities by the Odyssey users. Thus,
the form of expressing the domain concepts and
functionalities are important. The functionalities are
important because they are the base for reusable
components creation. The domain concepts are equally

important since they provide users with an understanding of
the domain as a whole, besides facilitating the
understanding of the interaction between reusable
components internal types1. The main conceptual models
used by Odyssey are:
• Domain Context Diagram: The context diagram

situates the domain in relation to its scope, limits,
relationships with other domains and main actors
involved. Its objective is to provide a general overview
of the domain and situate it in the organization context;

• Domain Use Cases and related OO models: Shows how
the domain concepts are represented in domain
applications. Use Cases are used mainly to capture the
main functionalities of the domain in a way that should
be possible to derive other OO models. Use Cases can
also help in the identification of the reusable
components that are described in more detail in other
OO models (class diagrams, interaction diagrams, etc).
Several use cases are created in a domain, some are
generic enough and others are specific to certain
domain applications, many are very similar to each
other, other may have some inconsistencies. So, it is
necessary to abstract and merge these use cases,
generating the domain use cases.

• Feature Diagram: presents, in an abstract level, the
relationships among the functionalities and concepts of
the domain, trying to explain what are the meanings of
the main concepts of the domain and its relationships,
that facilitates the understanding of the domain as a
whole, because the OO (types) models related to
domain use cases don’t provide this general vision. It
only provides a snapshot of the domain. However, for a
complete understanding of the domain concepts, its
synonyms, restrictions, among others, the feature
model by itself is not enough. Thus, it is necessary that
we have some construction that permits the linking of
these terms and other related issues. This complete
understanding is an essential characteristic to the
development of domain applications. In Odyssey we
use, for this detailed description of the domain
concepts, a structured template that describes the
domain concepts in more detail. This structure is
denominated Ontological Pattern. It is also important to
point out that all these models are connected through a
trace relationship, i.e., if the user is examining a certain
model, this model has connections with the other
models that describe the same subject, thus the user can
examine the other related models. Odyssey provides
automated support for this " traceability ".

 3.2 - Representation of architectural models
 We also use the concept of patterns in the

1 We used the type notion, as it is proposed by the OMG and ODMG
models, as a reference to an object or class of an OO model. The type is
the object in a high abstraction level.

representation of architectural models. The generic
architectures − the architectural styles that are relevant for
the domain − are represented by structures similar to
Bushmann’s [2] architectural patterns and also by Gamma’s
design patterns [7].

 Based on the conceptual domain use cases, OO
models, and on the advice given by the architectural and
design patterns, the architectural diagrams are composed.
The main characteristic of this model is that it is partitioned
by components. Each component specifies a domain task
and how this task can be architected. The connections
between the components are also described. So, the main
architectural models are:
• Services (interfaces) Model of the components: This

model presents each component as a type that
possesses a series of services that are visible by the
other components.

• Architectural Collaboration Model between domain
components and support components: This model is
mainly worried with the definition of a global
architecture of the domain, including the interaction
among the components of the domain and support
components that deal with issues such as persistence,
distribution, parallelism, among others. These support
components can be acquired by vendors and could be
shared by several applications of several domains.

• Classes model and state diagram for each participant
type of components: the definition of the internal
component design deals with the definition, in greater
detail, of the internal structure of each component. All
the conceptual collaboration models related to the
component are refined. This stage tries "to improve"
the conceptual collaboration models in the architectural
sense, taking into consideration performance and
optimization issues, among others. For that, new types
can be added to the components and the modeling of
the types can also be modified for the production of
more robust, flexible and extensible models. For this, a
base of design patterns can be consulted " to improve”
the modeling of component internal types. In Odyssey,
a tool that uses Case-Based Reasoning (CBR) to aid in
this activity is used.

3.3 - Representation of implementation models
This model is formed by a set of code components

that are related based on a CORBA protocol. The
components are more general, but they can be specialized
by using techniques such as parametrization, class
specialization, etc. We use a CORBA protocol for the
interoperability between components. For that, we have two
strategies that can be followed: i) codification of
components in an OO programming language; ii) use of
legacy components.
4. Specification and Use of Domain Models (Domain
Engineering)

Along with the representation of domain models,

Odyssey must provide tools that allow users to specify and
use these domain models. In this sense, tools for eliciting
requirements, pattern management, reusable components
management and others should be provided.

We briefly describe below each tool used in Odyssey:
• The pattern and component management system are

generic tools that are responsible for the creation, deletion
and modification of the pattern and components. The
components could also be generated by some type of
automatic code generators.

• Requirements Elicitation Tool: This tool is responsible
for the acquisition of domain information. The
information can be knowledge of domain expert, domain
documentation and domain applications (legacy domain
applications must first be submitted to a reengineering
process). The main model that is used in the acquisition
process is the use case model. The use case template will
guide the acquisition, helping in the organization of the
other models. The domain engineer helps organizing the
information in a better way.

• Information Agent Tool: This tool serves as a guide to
the search for specific domain information. The models
are interrelated as a hypermedia web. When the user
notifies some interest in a concept, the tool seeks the
related concepts and other related information such as use
cases, OO models, etc. Thus, besides using a hypermedia
interface, there should be a way to dynamically guide the
navigation. This guidance should show the best paths for
navigating and the type of knowledge that better suits the
needs of the user. It should be based on the initial
requirements of the user2. This tool uses the concept of
intelligent link, where invoking the link provides
additional knowledge (as in rule-based expert systems or
a set of related cases) embedded within the information
space to guide the selection of destination data. New data
can be added to the domain repository and the intelligent
link will be capable of referencing the new data. In
addition, the intelligent links can be invoked based on the
user objectives.

• Architectural Transformation Tool: This tool,
considering the advice of architectural and design
patterns, helps in the transformation of the conceptual
models to architectural components models. Once more,
the technique used is CBR. Despite of CBR use, the
software engineer has an active role in the transformation,
since this is not a trivial taks.

5. Using a Mediator Layer to Store Domain Models
One of the key questions in our project is how to

enable the management of domain models, according to the
activities defined in the DE method, in an integrated and
efficient way. Therefore, for the effective implementation
of the technologies involved in the specification of
Odyssey, we need a component that allows for the

2Since this kind of guidance is directed to application developers.

integration of concepts, preserving the semantics. However,
what we can notice is that, in general, the information is
stored in a great variety of data sources, using the most
varied data models, access mechanisms and platforms.
Further, most times, the domain information is distant
geographically, resulting in a difficulty on its manipulation.

Thus, a possible solution of access to the domain
information is the use of a software layer that allows the
integration of different domain databases (distributed
and/or heterogeneous). A mediation technique [2] may be
used in this case. Mediators are programs that make the
connection between distributed data bases, heterogeneous
data models, and the users of these data, providing the
information in an adequate format to the user.

In the context of Odyssey, where the access to domain
information is an essential requirement, the use of
mediators allows that this access to information can be
carried independent of the format and the operational
platform where this information is stored.

Another interesting feature of the mediators use in
Odyssey is that the reusable information is naturally
divided by domain, which facilitates the search for domain
concepts, since only the domain data will be accessed in a
search. Moreover, the use of mediators in the environment
context allows the aggregation of information already
stored in legacy databases, without the necessity of
transformations in the original database format. In order to
facilitate the correct choice of mediators for a given
domain, the Odyssey mediation layer provides specific
ontologies for each domain. These ontologies are specified
by domain specialists [18], facilitating thus the searching
for specific components, since the ontology definition is
directly connected to domain specific concepts. This
structure conforms to the Wiederhold latest idea of
intelligent mediators partitioned by domains [2].
6. Related Works

Related works can be found in the technical
literature that have something in common with ours.
Nonetheless, most of them deals with only a few aspects of
Odyssey. None of them treats with the same emphasis each
one of the several activities and technologies that are
important for the development of component-based
software, as we do in our work.

Regarding the specification of environments to
support component-based software development, there are
some interesting approaches. The domain modeling in [5]
uses AI techniques. By comparing this work with Odyssey,
we observe that it is mostly concerned with the
representation of conceptual models. However, no attention
is paid to the description of a detailed method for
structuring its knowledge base. Moreover, all the design
environments reported until now are specific to predefined
domains, and cannot be used to store knowledge about
other application domains.

The work of Gomaa et al [9] focus on the creation

of a reuse environment based on the automation of its DE
method, the EDLC (Evolutionary Domain Life Cycle), thus
creating a generic environment named KBSEE (Knowledge
Based Software Engineering Environment). KBSEE has
some points in common with our work, such as: the
adoption of a method to systematize the domain
engineering; and the specification of domain models in
various abstraction levels, using mainly the object-oriented
paradigm. However, when we consider the aspect of data
storage, KBSEE requires transformations between different
representations and databases. This results in redundant
information storage and poor performance. Moreover, the
semantic gap is increased. In this aspect, our proposal
differs from Gomaa’s, since it is based on the use of a
generic and standard model to store domain models. This
standard is compatible with UML, using the structure of
mediation layer, that leads to a better performance.
7. Final Considerations

In this work, we presented some requirements to
support CBD, through the specification of a reuse
environment based on domain models (Odyssey).

The implementation of Odyssey environment is a
great effort. Therefore, there are several people who are
involved in this project (i.e., two PHD students, three
master students, and one undergraduate student). Currently
we have an operational prototype of the environment that
provides some basic functionalities, such as an OO diagram
editor, designed specifically to deal with Odyssey models
and their traceability, and a tool that helps to configure DE
acquisition process to specific projects. The mediation layer
is under development and the information agent tool is also
being specified.

Odyssey environment brings some interesting
contributions, mainly in the following points:
• Identification of technologies and specification of

components capable of addressing various stages
involved in CBD;

• A DE method to support all phases of the process,
including a viability analysis stage, the purpose of which
is to validate the viability of applying model oriented
reuse in that domain;

• Systematic use of high-level OO constructs, such as
patterns, and its insertion into a DE method;

• Systematization of the transition between conceptual and
architectural models.

Approaches that are similar to ours [5] [9] [8] [12],
although presenting concrete results, do not specify all the
aspects addressed by Odyssey when supporting the
component-based development. Such proposals present
results in certain aspects of the component-based
development, but these results are isolated from a wider
context. The innovative approach of Odyssey reduces the
semantic gap between the specification and the software
development. Therefore, with the help of Odyssey, the
software developer is able to apply reuse techniques from

the early stages of the application development process.
The other approaches instead, generally put emphasis on
just one of the phases of the process.
References
[1] Bosh, J. - Reusable Specification of Architectural Fragments -

University of Karlskrona/Ronneby, Sweden, 1997- at
http://www.pt.hk-r.se/~bosh

[2] Buschmann F. et al - Pattern-Oriented Software Architecture - A
system of patterns - John Wiley, 1996

[3] Cohen, S; ”Feature-Oriented Domain Analysis: Domain
Modeling”, Tutorial Notes; 3rd Int. Conference on Software
Reuse, Rio de Janeiro, November 1994.

[4] Fayad, F., Douglas Schmidt, Object-Oriented Application
Frameworks, Communications of the ACM, Special Issue on
Object-Oriented Application Frameworks, Vol. 40, No. 10,
October 1997.

[5] Fischer, G. - "Seeding, Evolutionary Growth and Reseeding:
Constructing, Capturing and Evolving Knowledge in Domain-
Oriented Design Environments", IFIP WG 8.1/13.2 Joint Working
Conference, A. Sutcliffe, D. Benyon and F. van Assche (eds):
"Domain Knowledge for Interactive System Design", Chapman &
Hall, pp 1-16, May 1996.

[6] Fowler, M. - Analysis Patterns - Reusable Object Models -
Addison Wesley, 1997

[7] Gamma E. et al - Design Patterns: Reuse of Object Oriented
Design Addison Wesley, 1994

[9] Gomaa, H et al - A Knowledge-Based Software Engineering
Environment for Reusable Software Requirements and
Architectures - Automated Software Engineering 3(3/4): 285-
307, August 1996

[10] Jacobson, I.; Griss, M.; Jonsson, P. , "Software Reuse:
Architecture, Process and Organization for Business Success",
Addison Wesley Longman, May 1997

[11] Klingler, C. D.,Schwarting, D. - A Practical Approach to Process
Definition, Proceedings of the Seventh Annual Software
Technology Conference, Utah, April 1995

[12] Lowry, M., Van Baalen J., "Meta-Amphion: Synthesis of
Efficient Domain-Specific Program Synthesis Systems",
Automated Software Engineering, 4, pp. 199-241, 1997.

[13] Euzenat J., Corporate Memory through cooperative creation of
knowledge based and hyper-documents, Proocedings of
KAW’96, 1996

[14] Object Management Group Adopts Unified Modeling Language
and Meta Object Facility Specifications at
http://www.omg.org/news/pr97/umlpr.htm

[15] Tracz, W., Batory, D. David McAllester, Lou Coglianese,
Domain Modeling in Engineering of Computer-Based Systems. In
Proceedings of the 1995 International Symposium and Workshop
on Systems Engineering of Computer Based Systems, Tucson,
Arizona, February 1995.

[16] Studer, R.; Angele J. Fensel D.: Domain and Task Modeling in
MIKE. In: A. Sutcliffe, D. Benyon, F. van Assche (Eds.): Domain
Knowledge for Interactive System Design, Proceedings of IFIP
8.1/13.2 Joint Working Conference, Geneva, May 1996.

[17] Braga, Regina; Werner, Claudia; Mattoso, Marta – A Reuse
Infrastructure Based on Domain Models, Proceedings of ICCI’98,
Canada, June, 1998

[18] Oliveira, K; Towards a Domain-Oriented Software Development
Environment for Cardiology, Proceedings of CaiSE’98, Italy,
1998

Integrating Automated Verification into Interactive Systems Development

José C. Campos�

HCI Group, Department of Computer Science, University of York, York, UK
Jose.Campos@cs.york.ac.uk

Abstract

Our field of research is the application of automated rea-
soning techniques during interactor based interactive sys-
tems development. The aim being to ensure that the de-
veloped systems embody appropriate properties and princi-
ples. In this report we identify some of the pitfalls of current
approaches and propose a new way to integrate verification
into interactive systems development.

1. Introduction

The widespread use of computers puts increasing de-
mands on user interfaces. On the one hand, systems must
be intuitive and easy to use, on the other hand they must
ensure safety and avoid risk. Due to their increasing com-
plexity, reasoning about systems behaviour has become in-
creasingly hard. This raises the question of how to ensure
quality during development.

The use of formal methods has long since been proposed
as a solution to this problem. The advantages are two-fold:
they enable better design understanding and communica-
tion; and mathematical reasoning can be used to validate the
design. This last point is especially useful when we think of
ensuring system quality, as it allows us to assess the system
from early stages in the development process.

Because reasoning about specifications of complex sys-
tems will be a complex and error prone exercise in itself,
ways of automating the reasoning process have been sought.
Two well established approaches to automated reasoning
are model checking [7] and theorem proving. While these
techniques have been used mainly in the field of hardware
verification [8], their application to the verification of reac-
tive systems in general is also being studied [18].

Despite being a particular case of reactive systems, in-
teractive systems have specific concepts and concerns. So,
novel approaches have been sought. In this context, the no-

�José Campos is supported by Fundac¸ão para a Ciˆencia e a Tecnologia
(FCT, Portugal) under grant PRAXIS XXI/BD/9562/96.

tion of Interactor [12, 20] has been introduced as a way to
structure specifications of interactive systems.

Our field of research is the application of automated rea-
soning techniques during interactor based interactive sys-
tems development. The aim being to ensure that the devel-
oped systems embody appropriate properties and principles.

2. Review

Four major approaches to the formal (automated) veri-
fication of interactive systems have been identified so far
[4, 6]. Three use model checking: Abowd, Wang & Monk
[1] use SMV [19], Patern´o [20] uses the Lite tool-set [17],
d’Ausbourg, Durrieu & Roche [9] use a model checking
related technique based on Lustre; and one uses theorem
proving: Bumbulis [3] uses the HOL theorem prover.

In order to better compare these approaches we have de-
fined a framework with which to compare them [6]. It iden-
tifies three entities involved in interaction:User, User In-
terface, and anUnderlying System. Interaction proceeds
through interaction mechanisms:Eventsand Status Phe-
nomenaare atomic,Task, andModeare used to structure
the user interface. The framework identifies also three ba-
sic types of properties to be verified:Visibility, Reachabil-
ity, andReliability. Table 1 summarises the results of the
review in terms of what each approach addresses (X), par-
tially addresses (�), or does not address (�).

The conclusions drawn from the review are two-fold. At
the technological level, it was seen that both model check-
ing and theorem proving have difficulties when dealing with
the added complexity introduced by interactive systems.

At the methodological level, there is a need to further in-
vestigate what should/can be proved of interactive systems
using automated reasoning tools. Previous approaches have
tried to map what could be expressed in traditional verifi-
cation tools into theinteractive systems space. In order to
make the most of automated reasoning we must try to do the
opposite: identify what properties are interesting and map
them into automated verification tools.

If we combine the above two concerns, we can identify
a third issue that needs addressing: when should we do the

Table 1. Summary of the comparison
SMV Lotos Lustre HOL

Entities Users � � � �

User Interf. � X X X

Underl. Sys. � � � �

Inter. Events � X X �

Mech. Stat. phenom. � � X �

Modality � X � �

Task � � � �

Mode � � � �

Prop. Visibility � X X �

Reachability X X X �

Reliability X � � �

proofs? — i.e., at what level of abstraction, and at what
stage of development should we be working? Tradition-
ally, verification has been used to assess design against ab-
solute measures of quality. Regarding HCI, matters are not
so clear cut. Furthermore, if we are using principled design,
it would be useful to test the design decisions against the
appropriate principles as soon as possible.

The challenge, then, is trying to make the best of the
available verification technology by means of defining an
appropriate methodological framework which will allow us
to identify how and when verification should be applied.

3. The Thesis

In view of the complexity of the systems, and of the lim-
itations of the available technology, the best approach to
achieve the goals set forth above is to allow for a flexible
scheme of verification. With this in mind we established
the following objectives:

� non commitment to a specific technique — we want to
be able to use model checking and theorem proving as
appropriate, and not to be tied to a particular verifica-
tion strategy.

� use of partial models — models that try to address
all relevant aspects of an interactive system are too
complex; instead, we want to use partial models, each
model focusing on different design aspects (cf. [13]).

These two points, together with the observation that
identifying (let alone proving) interesting properties in “fin-
ished” models becomes difficult, lead us to the realization
that instead of being used as apost factocheck on the qual-
ity of the specification, verification should be used to inform
design decisions during development [5]. This can be done
by using partial models that highlight the design features
under consideration, and allows us to use the most appro-
priate verification technique for each model.

All the above leads to the definition of four lines of work:

� verification as a support to design — verification
should be used to inform design decisions rather than
to check the final design;

� understanding properties — we need to establish a
framework that enables us to reason about how to go
from design principles to verifiable properties;

� model checking for interactor specifications — we
need to determine how model checking can be applied
to interactor based specifications;

� theorem proving for interactor specifications — simi-
larly, we need to determine how theorem proving can
be applied to interactor based specifications;

and the definition of the central proposition of the thesis as:
Formal verification techniques (automated reasoning tools
in particular) can be used to inform design decisions during
interactive systems development.

A novel approach to the integration of automated veri-
fication into interactive systems development will be pro-
posed, and it will be shown how model checking and theo-
rem proving can be used in the context of the approach.

4. Progress

In this section, we briefly describe the work done so far.

4.1. The role of formal verification

We propose that verification should be used to inform
design choices during development, and not only as a check
on the correctness of the specified system. The complete
rationale behind this proposal is presented in [5]. Some of
the points that are made are: that the role properties play
depends not only on the system under consideration, but
also on the particular specification that is adopted; that it
is difficult to base design decisions on prescriptive theories
alone, so the possibility of early assessment of design de-
cisions would be useful; that seeing the verification step as
a final step in the development process, and trying to use
off the shelfproperties, might lead us to end up looking at
properties of the specification instead of the system; and
finally, that the particular specification style adopted influ-
ences which verification tools can be used.

The use of verification to inform design can be achieved
by using, not a monolithic specification which tries to en-
compass all of the system, but a set of models each focusing
on particular features of the system. This type of approach
has a number of benefits. Namely: we use verification to
validate the choices that are made in relation to what is im-
portant of the system, not its specification; we are able to

apply the most appropriate verification technique in each
case; conversely, we can develop each model in the most
suitable way, regarding the tool that will be used; also, us-
ing models that focus on properties means we will be able
to verify properties that otherwise would be too difficult to
check; finally, we might be able to reuse the proofs when
thinking of related properties of different systems.

4.2. Using model checking

We are exploring the use of model checking in the verifi-
cation of interactor based specifications. This is being done
at two levels: using a traditional model checker (SMV [19]),
and using the�-calculus model checker in PVS.

4.2.1 SMV

A compiler has been developed (see [5]) that enables us to
analyse Interactors specifications in SMV. For an introduc-
tion to Interactors see [12]. In short, interactors are objects
which allow their state to be perceived through some pre-
sentation (cf.visible clause below). Interactors provide a
framework for specification and do not prescribe a particu-
lar notation.

In the present case, we are using Modal Action Logic
(MAL) [21] to specify interactors behaviour. In the input
language accepted by the compiler, an interactor describing
whether a window is mapped on the screen looks like this:

interactor window

attributes
mapped : boolean

visible
mapped

actions
map; unmap

axioms
1. []: mapped

2. : mapped) [map]next(mapped)
3. mapped) [unmap]: next(mapped)

Besides the clauses shown in the example, the interactor
notation allows for three additional clauses:importing (al-
lows inheritance),fairness (allows the definition of a fair-
ness expression to be used by SMV), anddefine (enable us
to give names to expressions as can be done in SMV). Mul-
tiple interactor specifications can be written by organising
interactors in a hierarchy. In order to translate these hierar-
chies of interactors into SMV, we use the notion of module.
So, each interactor will be a module in SMV.

To test properties of the specification, a further clause
was introduced in the language:test . It is used to specify a
CTL formula whose validity is to be verified by SMV.

In [5] it is shown how the compiler and SMV can be used
to reason about different design possibilities in the develop-
ment of an e-mail client.

4.2.2 PVS

PVS comes with a theory that defines the CTL operators in
terms of the�-calculus. Alternatively we can define tempo-
ral operators for other logics. In [6, Appendix C] we have
defined the operators for ACTL.

In order to use the model checker, the specification needs
to be structured as a predicate over pairs of states, where
the state type must be finite. We can then use the temporal
operators to write putative theorems. PVS performs BDD
simplification over the finite-state machine defined by the
predicate over pairs of states, rewrites the temporal opera-
tors in terms of�-calculus, and runs the resulting state ma-
chine and�-calculus predicate in the model checker.

The present approach to model interactors and properties
in this way is still tentative. We plan to expand on it in
order to explore how the combination of theorem proving
and model checking can be used to enhance the analytic
power of both techniques.

4.3. Using theorem proving

While theorem provers do not have facilities to perform
temporal reasoning, they are better than model checkers
when it comes to reasoning over more information oriented
features of systems. At the moment, three possible uses for
theorem proving are envisaged: the validation of the ade-
quacy of perceptual operators as suggested in [11] (see be-
low), using it as an additional layer over model checking,
and embedding a temporal logic in PVS (c.f. [16]).

4.3.1 Perceptual operators

The type of analysis described in [11] has to do mainly with
symbolic manipulation of expressions in order to prove their
equality. The basic idea is that properties that are proved of
an abstract specification must also be shown to held at the
level of the concrete presentation of the system. To do this
we represent both a model of the abstract specification of
the system and a model of the concrete presentation that is
proposed as PVS theories, and then use PVS to determine
if predicates over the abstract model are equivalent to cor-
responding predicates over the presentation model.

In [10] we apply this line of reasoning to the analysis
of an aircraft air speed indicator, regarding its fitness to as-
sist the pilot in the task of maintaining the correct aircraft
configuration during landing (cf. [15]). Three PVS theo-
ries were developed. One to specify the logical model of
the air speed indicator as well as the logical operators that
support the task; another to specify the concrete circular air
speed indicator, with its needle and speed bugs (which in-
dicate at which air speeds the aircraft configuration should
be changed), and the mapping from the logical to the per-
ceptual level; and finally a third theory which introduces the

conjectures to be verified. As an example we present here
one of the conjectures which is analysed in [10]:

configuration change task : CONJECTURE
configChangeCheck(abs asi) =
asiConfigCheck(�(abs asi))

What this conjecture expresses is that checking for the
need to change the aircraft configuration should yield the
same result regardless of the check being done at the log-
ical level (configChangeCheck) or at the perceptual level
(asiConfigCheck). � is the mapping from the logical to the
perceptual level.

In [10] we show how performing this type of consistency
check improves our understanding of the specification, and
allows us to identify assumptions about the system which
are embedded in the representation but not made explicitly
represented anywhere. As an example, during the proof of
the conjecture above, we were led to realize how, at the pre-
sentation level, the speed bugs implicitly acquire the func-
tion of indicating the aircraft current configuration.

5. Conclusion

We have motivated the field of formal (automated) ver-
ification of interactive systems, and identified the main ap-
proaches to the area (see [4] for a more detailed review).

We have identified some of the pitfalls of the current ap-
proaches and proposed a new way to integrate verification
into interactive systems development.

We have also briefly described the work done so far (see
also [6, 5, 10] for more details).

References

[1] Gregory D. Abowd, Hung-Ming Wang, and Andrew F.
Monk. A formal technique for automated dialogue develop-
ment. InProceedings of the First Symposium of Designing
Interactive Systems - DIS’95, pages 219–226. ACM Press,
August 1995.

[2] F. Bodart and J. Vanderdonckt, editors.Design, Specification
and Verification of Interactive Systems ’96, Springer Com-
puter Science. Springer-Verlag/Vien, June 1996.

[3] Peter Bumbulis.Combining Formal Techniques and Proto-
typing in User Interface Construction and Verification. PhD
thesis, University of Waterloo, 1996.

[4] José C. Campos and Michael D. Harrison. Formal verifica-
tion of interactive systems: A review. In Harrison and Torres
[14], pages 109–124.

[5] José C. Campos and Michael D. Harrison. The role of ver-
ification in interactive systems design. InDesign, Specifi-
cation and Verification of Interactive Systems ’98, Springer
Computer Science, pages 155–170. Eurographics, Springer-
Verlag/Wien, 1998.

[6] José Creissac Campos. Formal verification of interactive sys-
tens. 1st year qualifying dissertation, Department of Com-
puter Science, University of York, June 1997.

[7] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic
verification of finite-state concurrent systems using tempo-
ral logic specifications.ACM Transactions on Programming
Languages and Systems, 8(2):244–263, April 1986.

[8] Edmund M. Clarke and Jeannette M. Wing. Formal meth-
ods: state of the art and future directions.ACM Computing
Surveys, 28(4):626–643, December 1996.

[9] Bruno d’Ausbourg, Guy Durrieu, and Pierre Roche. Deriv-
ing a formal model of an interactive system from its UIL
description in order to verify and to test its behaviour. In
Bodart and Vanderdonckt [2], pages 105–122.

[10] G. Doherty, J. C. Campos, and M. D. Harrison. Represen-
tational reasoning and verification. InProceedings of the
BCS-FACS Workshop: Formal Aspects of the Human Com-
puter Interaction, pages 193–212. Computing Research Cen-
tre, Sheffield Hallam University, September 1998.

[11] Gavin Doherty and Michael D. Harrison. A representational
approach to the specification of presentations. In Harrison
and Torres [14], pages 273–290.

[12] David J. Duke and Michael D. Harrison. Abstract interaction
objects.Computer Graphics Forum, 12(3):25–36, 1993.

[13] Bob Fields, Nick Merriam, and Andy Dearden. DMVIS:
Design, modelling and validation of interactive systems. In
Harrison and Torres [14], pages 29–44.

[14] M. D. Harrison and J. C. Torres, editors.Design, Specifi-
cation and Verification of Interactive Systems ’97, Springer
Computer Science. Springer-Verlag/Vien, June 1997.

[15] E. Hutchins. How a cockpit remembers its speed.Cognitive
Science, 19:265–288, 1995.

[16] Pertti Kellomäki. Mechanical Verification of Invariant Prop-
erties of DisCo Specifications. PhD thesis, Tampere Univer-
sity of Technology, 1997.

[17] José A. Mañas et al. Lite User Manual. LOTOSPHERE
consortium, March 1992. Ref. Lo/WP2/N0034/V08.

[18] Zohar Manna and Amir Pnueli.Temporal Verification of Re-
active Systems: Safety. Springer, 1995.

[19] K. L. McMillan. The SMV system. Carnegie-Mellon Univer-
sity, draft edition, February 1992.

[20] Fabio Patern´o. A Method for Formal Specification and Ver-
ification of Interactive Systems. PhD thesis, Department of
Computer Science, University of York, 1995.

[21] Mark Ryan, Jos´e Fiadeiro, and Tom Maibaum. Sharing ac-
tions and attributes in modal action logic. In T. Ito and A. R.
Meyer, editors,Theoretical Aspects of Computer Software,
volume 526 ofLecture Notes in Computer Science, pages
569–593. Springer-Verlag, 1991.

Automated Modeling of Real-Time Implementation

Peter Krogsgaard Jensen
Aalborg University

Department of Computer Science
Fr. Bajersvej 7E, 9220 Aalborg Ost, Denmark

pkj@cs.auc.dk

Abstract

This paper describes ongoing work on the automatic
construction of formal models from Real-Time implemen-
tations. The model construction is based on measurements
of the timed behavior of the threads of an implementation,
their causal interaction patterns and external visible events.
A specification of the timed behavior is modeled in timed
automata and checked against the generated model in or-
der to validate their timed behavior.

1. Introduction

When developing a Real-Time application it is a problem
to obtain precise information about how much CPU time is
needed to complete the jobs of the application. A widely
used way to make schedulability analysis is to use an of-
fline worst case execution time (WCET) calculation. How-
ever, when several processes (or threads) interact via shared
data, this calculation often becomes extremely complicated.
This problem has been addressed in [9] using a framework
where the offline analysis is extended with some applica-
tion dependent knowledge and use of priority inheritants
protocol. The work described in this paper is directed to-
wards automatic collection of application dependent knowl-
edge, resulting in less manual (and error prone) work to do
schedulability analysis.

Besides schedulability, the logical correctness is also im-
portant to Real-Time applications. A number of formal
tools are already available to support the correctness anal-
ysis during the design phase of such applications, but there
is still a gap between design and implementation - and this
may cause human errors. One approach is automatic code
generation, but often the formal method is used only for es-
sential algorithms and to model parallel composition. This
makes it impossible to auto-generate the complete imple-
mentation. The work described here attempts to bridge the
gap from implementation to design, by automatic synthe-

sis of a formal model, which incorporates the actual (mea-
sured) timing behavior of the application. The model can
then be fully analyzed by existing automated tools like e.g.
UPPAAL [5].

In this work, we suggest a semi-automated iterative way
to attack the above problems: First an initial implementa-
tion is developed and instrumented with the logging of rel-
evant events; then a series of runs are logged and three dif-
ferent models are synthesized - including a timing diagram;
finally the models are analyzed by using an automated real-
time model checker and timing errors are corrected in the
next iteration. The corrections may be validated by a new
iteration.

It is our plan to implement tool support for the above
method at a prototype level and to evaluate its feasibil-
ity through realistic case studies. In the present paper we
present an preliminary result, i.e. we present our event log-
ging tool and the tool for generating timing diagrams. Also,
we sketch how to derive the models to be used by the model
checker, and we present the preliminary experiences on a
non-trivial case study. The prototype tool does not support
testing, but assumes that the log stream it experiences is suf-
ficient for creating a complete model.

A result obtained with the prototype tool, is the au-
tomatic calculation of the average case execution time
(ACET). ACET is calculated as the average of a set of exe-
cution times, between f.ex. job start and job end. The ACET
therefore becomes a number for how much CPU a particular
job needs. Another result is the deducting of timed behav-
ior which is pictured in a timing diagram, called execution
time graph (ETG), this is done to present an overview of
the interaction pattern between threads. The ETG is in fact
an annotated message sequence diagram, where both syn-
chronous and asynchronous interaction is pictured. This is
the current state of the prototype tool.

The work done in by Havelund, Skou & Larsen in [3]
indicates that it is possible to verify time requirements in
a single processor interleaved system, and in this way an
alternative to offline schedulability analysis is obtained.

The work described here is based on a series of tests of an
industrial process control application, performed on a single
CPU system using the RT-Mach micro kernel. The soft- and
hardware system is described in section 2. In section 3 is a
description of the necessary analysis to generate the imple-
mentation model, which still remains to be fully defined.
Finally, in section 4 is located a plan for the future work.

2. The RT Test System

The target system is a single CPU running an RT-Mach
micro kernel extended with event logging on both kernel
and user level. The software system consist of four parts:
event logging subsystem, submarine test application with
testbed, ACET analysis prototype tool, and the UPPAAL

model checker. The event logging subsystem, the proto-
type tool and the UPPAAL model checker are application
independent, and will analyze any instrumented application
running on RT-Mach. Figure 1 shows the data flow in the
software system, but before going through this the main
components are described individually.

The event logging subsystemis a part of the RT-Mach mi-
cro kernel, and can log scheduling- and user-events with a
time stamp local to the machine. The event logging subsys-
tem is developed by the RT-Mach group at CMU, and has
been used by several tools. The system has been customized
by the author to connect it to the prototype tool. The log-
ging is fast and best effort, but congestion and packet loss is
handled by dropping affected sub-traces during analysis.

The submarine test applicationis a 4000 lines multi
threaded program set. It is a small process control system,
where an unmanned submarine is directed from a ship. The
submarine system handles a variety of periodic jobs auto-
matically, and it receives sporadic commands from an op-
erator at the command bridge. The application has been
instrumented with a small number of system calls for log-
ging. A testbedcontrols the input to the application under
test, making it possible to simulate different types of situa-
tions and errors in the submarine environment. This work is
trying to improve test analysis, by automating critical tasks,
therefore we assume that the application is put through a
sufficiently thorough test. The log information we analysis
is then assumed to come from such test. In out example
the testbed is used to drive the application through a real-
istic series of runs, such that all types of jobs are executed,
and the different input is impressed on the application many
times with random intervals. We will not further elaborate
on what a sufficient test is, as this is not the scope of the
paper.

The ACET analysis prototype toolis used to observe the
system. Job knowledge, originating from the log informa-
tion, is used to deduct job-patterns and to book the time
spent to the correct job. How to produce a formal imple-

mentation model is described in section 3.

The UPPAAL model checkeris an automatic model
checker working on timed automata (TA). It incorporates
Real-Time clocks as well as discrete analysis. This highly
specialized tool is described in [5].

In figure 1 the dashed line divide application dependent
and independent parts of the system. The dotted line is the
network boundary, where the left part is executed on the
target computer, the right part is spread on the adjacent net-
work. All arrows are dataflow. The application exchanges
directions, commands, information and alive signals with
the testbed. The testbed is controlled by an operator, ei-
ther interactively or it can be programmed to operate au-
tomatically. Via the system calls made by the test appli-
cation, the kernel generates logging events and ship these
of the local host. The stream of log events are received
by the prototype tool which can store, calculate and dis-
play information about the logging events received. The
tool can run in both automatic and manual mode. In manual
mode a designer can take interactive control and generate
ETG diagrams, and job- and thread-level models. The job-
and thread-models are combined with the selected platform
model and an operator defined requirement model in UP-
PAAL. The complete model can now be checked against its
requirements by the analyst which is interactive with UP-
PAAL.

UPPAAL

Console
(testbed)

Submarine
test
application Command

interface

Simulator
(testbed)

Application
dependent

Application
independent

Command
interface

Logging
subsystem
(RTMach)

ACET
analysis
tool

Command
interface

Command
interface

system
calls

thread
Job and

model

boundary
Network

Designer

Platform

Target

Commands

Information

Directions

Alive signal

Operator

Operator

Information

Logpackages

Logfiles Disk

Logfile

Analyst

Requirement
model

Disk

model

Figure 1. Dataflow in the experimental sys-
tem.

3. Building the model

The complete model consist of a requirement, an imple-
mentation and a platform-model. The requirement model
contains external observable events and their timing con-
strains. An implementation model has two levels: job-
and thread-level. The job level maintains information about
the period or mean arrival time (MAT) for each job exe-
cuted during test. The thread level describes the ACET and
causal interaction patterns. The platform level contains the
scheduling algorithm if needed.

The practical analysis performed in the prototype tool
is divided in two layers, job analysis where job behavior
is described in the job model, and ETG analysis where
threads and interaction patterns are described in the thread
model. The requirement- and platform-model are more
static and will be created manually, once for each applica-
tion/platform.

3.1. Application assumptions

In order to make the analysis we must assume that the
application is a set of threads each responsible for one or
a set of clearly defined task(s) - like “listen on network”,
“transmit on network”, or “do calculation A”. We also as-
sumes that the application will solve a job, by using the
same threads in the same sequence for each repetition of
the job. Furthermore we assume that a thread, which uses
a resource, will use the same resource for each repetition
of the job. These assumptions enables us to view the work
done by a Real-Time application as a set of skeletons, and
the analysis described here will synthesis these skeletons.
Further it will calculate how often a skeleton is used, how
much CPU it consumes, and what resources it accesses.

3.2. Job Model

To describe the job behavior of an arbitrary Real-Time
application, a connection must be established between the
threads of the implementation and the specification defin-
ing the job requirements. This is done by instrumentation,
such that a thread, during execution, will state which job it
is working on, and further log important (external observ-
able) events. A job trace is created when events are assem-
bled from all the threads participating in the job execution.
For each job type the job model must know the frequency,
and it is found by calculating the period, or MAT and stan-
dard deviation from time stamping of the job traces. This
is enough information to produce a job model which will
reflect the series of runs the application experienced.

3.3. Thread Model

To describe each thread of the application, its ACET and
interaction with other threads must be modeled. The ACET
is needed to model the CPU consumption, and the interac-
tion patterns between threads are needed because they will
restrict the computation. From a job trace a skeleton of the
interaction can be extracted, be examining the use of mu-
texes and semaphores, the message passing, and the IPC.
All job traces with the same skeleton are concentrated into
one ETG, using the ACET - in place of the WCET - as
the measure for how much CPU a certain job needs. It is
now possible to create an automaton for each thread (in the
ETG), and the set of automata will describe the interaction
of the threads when they are working for a certain job.

When this is done for all jobs in the application, the
behavior of each thread is completely described, and the
thread model will constrain the model checking such that
only the implemented behavior is possible.

3.4. Model checking

To complete the description of our Real-Time system, a
platform model is needed. It will be application indepen-
dent, but must incorporate the scheduling algorithm. With
this method it is possible to use different scheduling algo-
rithms and even verify the implementation model on a non-
existing platform.

The model checking is done on a requirement model,
consisting of a set of timed automata which define the end-
to-end time requirement with respect to the external observ-
able events. Figure 2 shows an example model, where a
sporadic event must be answered within 1.0 second. A ques-
tion to the model is whether it is possible thatMSG-OUT is not
done before t equals 1.0 - or even worse is it possible that
MSG-IN can happen withoutMSG-OUT happens afterwards.

Msg-In ?
t := 0

t < 1.0
Msg-Out !

Figure 2. Requirement model expressed as
a timed automaton for a time requirement
where a sporadic event MSG-IN must be an-
swered with MSG-OUT within 1.0 second. The
implementation model is responsible for gen-
erating the matching events as the model is
synchronous.

During model checking the job model is responsible for
initiating jobs, the thread model restrict sequences of in-
teraction, the platform model restrict CPU usage, and the
requirement model defined the questions that must be ex-
amined. Finally it is left to the model checker to go through
all allowed computations, and possible finding erroneous,
or perhaps more efficient computations, that those actually
seen during test.

4. Future work

Work is currently done, to automate the generation of the
implementation model. The logging and analysis of traces
is completed, while the interaction patterns remains to be
incorporated. The logging subsystem must reveal detailed
information about mutex access and the type of thread-to-
thread call. In particular the thread-to-thread call is inter-
esting because several different types of synchronous and
asynchronous call/messages are possible. A plausible solu-
tion is to create a piece of middleware through which the
applications must call to interact with each other. This en-
ables an application independent logging.

Having seen that it is feasible to log information from a
running Real-Time application, we must address the ques-
tion of how our observation changes the original system. It
is changed in two ways: extra code complexity during de-
velopment of the application, and extra CPU cycles during
execution. The overhead added to the design phase is small
calculated as extra lines of code. The CPU overhead still
remains to be measured, as we are still making changes to
the RT-Mach kernel.

5. Acknowledgement

The described work is going on at Aalborg University
under supervision of Professor Arne Skou.

References

[1] C. M. Chen Lee, Katsuhi Yosida and R. Rajkumar. Pre-
dictable communication protocol processing in real-time
mach. Proceedings of Real-Time Application Symposium,
1996.

[2] D. Haban and K. G. Shin. Application of real-time mon-
itoring to scheduling tasks with random execution times.
IEEE Transaction on Software Engineering, 16(12), Decem-
ber 1990.

[3] K. Havelund, A. Skou, and K. G. Larsen. Formal verification
of an audio/video power controller using the real-time model
checkerUPPAAL. Work in progress, 1998.

[4] C. A. Healy, D. B. Whalley, and M. G. Harmon. Integrat-
ing the timing analysis of pipelining and instruction caching.
Proceedings of Real-Time Systems Symposium, December
1995.

[5] K. G. Larsen, J. Bengtsson, F. Larsson, P. Pettersson, and
W. Yi. UPPAAL - a tool suite for automatic verification of
real-time systems.Proceedings of the 4th DIMACS Work-
shop on Verification and Control of Hybrid Systems, October
1995.

[6] C. W. Mercer, S. Savage, and H. Tokuda. Processor capacity
reserves: Operating system support for multimedia applica-
tions. Proceedings of the IEEE International Conference on
Multimedia Computing and Systems, May 1994.

[7] J. E. Sasinowski and J. K. Strosnider. Artifact: A platform
for evaluating real-time window system designs.Proceed-
ings of Real-Time Systems Symposium, December 1995.

[8] L. Sha, R. Rajkumar, and J. Lehoczky. Priority inheritance
protocols: An approach to real-time synchronization.IEEE
Transactions on Computers, 39(7), 1990.

[9] L. Sha, R. Rajkumar, and S. S. Sathaye. Generalized rate-
monotonic scheduling theory: A framework for developing
real-time systems.Proceedings of the IEEE, 82(1), January
1994.

[10] H. Tokuda and P. Rao. Real-time mach: Towards a pre-
dictable real-time system.Proceedings of the USENIX Mach
Workshop. Burlington, Vermont: The USENIX Association,
1990.

[11] A. Wellings and A. Burns.HRT-HOOD: A Structured De-
sign Method for Hard Real-Time Ada Systems. ELSEVIER,
Amsterdam, Netherlands., 1995.

Tool Support for Requirement Level
Change Management and Impact Analysis

Author: Simon Lock (s.lock@lancaster.ac.uk)
Affiliation: Lancaster University, UK

Abstract

Change management is an important yet often problematic
stage of the software development lifecycle. Even with
substantial knowledge of a system, managing it’s change and
evolution is by no means straightforward. This is
particularly true for requirement level entities which are by
necessity expressed in an abstract manner. For this reason,
most current research has concentrated on later design and
implementation level artifacts where more concrete
information is plentiful. This paper considers an approach
and support tool for performing change management at the
requirement level and focuses particularly on the
identification and visualisation of change impact.

1 Introduction

It is generally recognised that the process of managing
requirements change can be expensive and time-consuming
[1]. Indeed, it has been shown that the largest proportion of
requirement costs can often be traced to change management
[2]. Current change management techniques have focused
largely on design and code level artifacts, rather than
requirements level entities [3,4,5,6,7,8]. The main reason for
this is that the artifacts from the later stages of development
are more concrete and provide developers with more
information required for change management. Ignoring
requirement change management often leads to systems that
fail to meet the real business needs of the system procurer.

The main purpose of this work is to develop a
requirement centred impact analysis technique that allows
engineers to rapidly and accurately enact and assess
proposed changes. In summary, this work aims to:
• Develop an interactive technique for visualising

requirement change impact
• Investigate how previous change knowledge can be

accommodated in the approach and used to inform on
intended changes

• Develop a mechanism for adapting the technique to
existing requirements engineering methods

• Produce tool support for the technique

 2 The problem

Change is inherent in the development of most software
systems. Software requirements change and evolve even as
they are formulated. These changes can affect both the

system function and the wider business goals of the
organisation for which the software is being developed. For
these reasons it is important that changes in requirements are
carefully traced, analysed and their effects on the system
operation, and the wider business goals properly assessed.
Change results from the need to take into account new or
altered requirements caused by the following factors:
• Changes in operational environment/application domain
• Improved client understanding of the domain or system
• The introduction or installation of the system into its

operational environment
• Changes in the business objectives of the client
As a result of the large amount of information and complex
relationships involved, tracking and assessing the effect of a
requirement change can be expensive, time consuming and
error-prone. Current techniques for change management
have aimed to minimise the occurrence of change rather than
accommodate it [9]. By delaying or "freezing" change out of
the development process it is hoped that the problems of
change assessment and integration can be avoided [10]. This
has resulted in systems that do not adequately address real
user needs.

An approach that integrates traceability extraction and
visualisation may provide a powerful alternative to the
current techniques for assessing the impact of change, a
number of which are discussed in the next section.

3 Current impact analysis techniques

In order to perform impact analysis, extensive traceability
information regarding the system must first be obtained.
Traceability links indicate a potential relationship between
the components which make up a system. These
relationships can cause a change in one component to be
propagated to another. By collecting these traceability
relationships is should be possible to identify the paths of
impact propagation within a given system.

The following list gives a brief description of some of the
techniques currently employed for extracting traceability
information from software systems:
i) Pre-recorded traceability analysis approaches - Pre-

recorded traceability information consists of the
accumulated details of relationships between the various
components which make up a system. Such traceability
information is termed ’pre-recorded’ because it is
manually identified and collected over the entire
development life cycle of the system and documented in

an appropriate manner by the developers.
ii) Dependency analysis approaches - In dependency

analysis approaches, the relationships between system
components are extracted by analysing pre-existing
development artifacts (e.g. source code, system models,
formal specifications etc.) [11].

iii) Knowledge based approaches - The aim of a knowledge
based approach is to extract traceability information
about system components by analysing the impact effects
of previous change enactions. In order to achieve such
evaluation, data concerning changes made to a system
and their impact effects must first be recorded. Once this
has been done it is then possible to identify traceability
relationships within the system by analysing this
information.

iv) Probability based approaches - Probability based
approaches aim to provide additional information about
existing component links. These approaches depend upon
estimated probabilities of traceability relationships within
a system. We can assign traceability relationships a
’conductivity’ (or impact strength [4]) value which
represents the probability that the target of the
relationship is traceable from the source [3].

4 Limitations of current practice

Many of the current approaches to traceability extraction
have significant flaws. The following list briefly outlines
some of those deficiencies:
i) Dependency based methods provide detailed analysis for

formalised information, but have little support for
informal, natural language documents (e.g. requirement
definitions) [12].

ii) Although pre-recorded traceability analysis provides
support for all levels of formalism, it does not provide as
in-depth analysis as dependency based approaches due to
the generally vague nature of the pre-recorded
relationships. [12] This is because the informal and loose
definition of much of this observed traceability data
makes important relationships hard to distinguish.
Additionally, the transitive closure algorithm used to
identify possible impacted components in pre-recorded
traceability approaches is inefficient for most non-trivial
systems. This is due to the potentially huge number of
components and vast number of pre-recorded traceability
links between them.

iii) Matrix structures often used to collect traceability
information quickly become very large and are thus
impractical for most non trivial systems. In addition,
matrices do not provide the requirements engineer with
an obvious mechanism for assessing the impact of
proposed changes, but only the propagation of existing
impacts [13].

iv) During the learning stage of knowledge based
approaches, little traceability analysis can take place.
This is because a knowledge base of previous change
integrations must first be built before full knowledge
based analysis can take place.

v) The propagation values used by probability based

approaches are inherently inaccurate due to the fact that
they must either be estimated or are calculated from
metrics with uncertain reliability. Due to the fact that
probability techniques only provide additional
information about identified impacts, they can not be
used on their own for impact analysis.

vi) No individual method is guaranteed to identify every
single traceability link within a system. In addition to
this, all methods will identify traceability links which do
not necessarily imply an impact propagation path.

Taking a wider view of the entire change management and
impact analysis processes, many of these techniques suffer
from the following limitations:
i) The techniques cannot be introduced until the system

integration phase of system development [14]
ii) In a significant number of methods alterations are

restricted, rather than supported by, the change
management scheme [9]

iii) Most of the techniques are dependent on formal, low
level artifacts for impact analysis

iv) They provide little support for managing the evolution of
proposed changes themselves

v) The support provided for visualisation of traceability and
impact information is often minimal

5 Proposed solution

The following sections describe a tool based approach
that is currently under development which supports the ideas
presented in this paper. Figure 1 shows the general structure
of the tool, incorporating all the main operational
components.

Figure 1 Structure of the support tool

The impact analysis capabilities which form the core of
the tool are able to operate in any situation where traceability
rich information is available. This implies that, provided
suitable traceability extraction rules are at hand, the approach
described in this paper can be integrated into any existing
requirement elicitation technique.

5.1 The change management process

The availability of a change management mechanism for
use at the requirements stage is particularly useful because it
allows change management to be introduced very early on in

Requirements

Traceability extraction

Impact Analysis

Visualisation

Method dependant traceability extraction rules

Traceability networks

Propagation trees

Change requests

Prerecorded
traceability

analysis

Dependency
traceability

analysis

Past
experience

analysis

Probability
and certainty

analysis

Hybrid
analysis

Plugability
interface

Proposed
technique

Any suitable
method

the development lifecycle. This means that support is
available for change integration plus conflict and impact
identification while the system is still very young. Such
support will help to prevent the introduction of mistakes and
omissions which could be expensive to fix at a later date. In
addition, continuity is offered by the application of a change
management mechanism that may be extended for use
throughout the entire development life cycle.

Rather than restricting the evolution of components, a
more suitable approach is to allow fluid alterations. This is
supported by a change control scheme which works in the
background assisting, but not constraining evolution. By
allowing finer grained change management we can allow the
system to evolve more naturally, rather than in quantum
version steps.

The approach described in this paper uses the notion of
viewpoints [15] as a mechanism for classifying and
managing both requirements and changes. Fundamentally,
viewpoints allow the explicit identification of the different
perspective of a system from the point of view of interactors,
stake holders, domain entities or other interested parties.

5.2 Assessing proposed changes

An important aim of the tool is to provide a mechanism
for analysing the propagation of change impact through the
set of components representing the system. To facilitate this,
the tool supports the collection and management of many
items of information which may be of use in performing such
analysis. Once this has been done, a number of traceability
extraction mechanisms can be used to identify the potential
propagation paths of the proposed change. Finally, the results
of this analysis can then be graphically visualised to assist
the engineer in assessing the full potential impact of
proposed changes.

Due to the fact that changes are usually enacted in
batches, there is often a time delay between the initial impact
assessment and final enaction of a particular change. In such
a situation, it is probable that the system on which the change
is to be enacted will have altered during the delay. Thus the
system which the proposed change is actually enacted upon
is not identical to that against which it was analysed.

To compensate for this phenomenon when the impact of a
change is initially assessed, in addition to the system itself,
we must also perform analysis of all currently accepted but
as yet unenacted changes. By considering these changes as
additional system components, it is possible to gain an
analysable ’vision’ of the state of the system after their
enaction.

5.3 Traceability extraction

The tool employs the following mechanisms for
extracting traceability information about a particular system:
i) Pre-recorded traceability - The support tool employs

mechanisms to allow collection of much pre-recorded
traceability information. This includes items such as the
relationships between the following:

• The different versions of each component

• Conflicting and harmonic requirements
• The direct impacts of changes
• Parent and sub requirement relationships
• Functional requirements with overlapping system

functionality
• Constraining relationships between functional and

non functional requirements
ii) Dependency analysis - As an example of the type of

requirements specification techniques suitable for impact
analysis, the proposed tool employs finite state event
scenario diagrams to represent the desired system
functionality. These semi-formal representations not only
allow developers and potential users to understand and
validate the requirements, but they also allow formal
dependency analysis to take place while remaining at the
abstract level mandated by requirements level analysis.

iii) Past experience analysis - The tool allows the capture of
traceability information regarding the effect of past
alterations which may then be used to shed light on the
potential impact of future changes. The tool supports two
types of past experience analysis:

• Analysis of previously recorded impacts to produce
a list of actual components which could be
impacted by a particular change.

• Analysis of ’Inference cube’ data structures which
record classes of system component and
propagation paths between those classes. This type
of analysis produces a list of classes of component
which could be impacted by a proposed change.
Inference cube analysis is considered in more detail
in the following section.

iv) Inference cube experience analysis - To try to predict the
impact effect of a proposed change, the tool maintains a
classification structure of all previous changes. The two
main methods which exist for deriving impact
predictions from this ’Inference cube’ knowledge are:

• Direct inference - A newly proposed change is first
classified and then the classification structure is
analysed to identify all of the previous classes
impacted by changes of this class. All components
which are members of the identified classes are
then collected and presented as potential impacts.

• Fuzzy inference - This approach is similar to direct
inference except that it makes use of knowledge
relating to the proposal of similar, rather than
exactly matching change requests.

 The complete inference analysis technique employed by
the tool is achieved by combining the fuzzy and direct
inference approaches. This allows us to gain the benefits
and overcome the drawbacks of the individual methods.
The use of fuzzy inference techniques contributes a large
data set, while the employment of direct inference
techniques ensures that analysis has sufficient focus.

v) Probability analysis - Each analysis method produces it’s
own estimates of the probability of the propagation of
impact along particular paths based on the individual
metrics of that method.

vi) Certainty analysis - In addition the probability of impact
propagation, the certainty of propagation can also be

calculated. This value indicates the certainty with which
a propagation prediction can be made and is assess by
combining the following two metrics:

• Degree of definition - The degree to which the
components are specified

• Certainty of definition - An estimated level of
confidence in the correctness of the data which is
held

 These features are included to help combat
incompleteness and incorrectness in the specification of
the system and proposed changes.

vii) Hybrid analysis - To overcome many of the problems
associated with individual methods, it is possible to
combine a number of different complementary
techniques to produce a hybrid approach.

5.4 Impact visualisation

Once the potential impact propagation paths have been
identified, this information can be transformed into one of a
number of visualisations. These can then be used to present
and examine the effect of the changes in a graphical manner.
This has the following advantages:
• System end users, procurers and developers may easily

appreciate the full effect of a proposed change. Plain
numerical data can often be hard to interpret, therefore
this can make the job of assessing impact much simpler.

• It becomes possible to perform fast visual comparisons of
alternative evolution paths and change proposals.

• Graphical visualisation allows for direct manipulation
and investigation of the proposed system by members of
the development team.

• The tool allows the user to experiment with changes
proposals and to view their consequences without the
overhead of costly implementation.

It is the intention of this project to perform a wide ranging
comparison of visualisation techniques in order to try and
identify those most appropriate and effective. This will
include the exploration of composite technique as well as
common single paradigm methods.

6 Expected benefits

This project promises to generate the following potential
benefits:
i) Support for the extension of the change management

process to the entire system life cycle
ii) A more fluid change management process, allowing

flexibility of system evolution
iii) Support for impact analysis and management of changes

as well as for requirements
iv) Efficient impact demonstration and change

experimentation via graphical impact visualisation
v) ’Plugability’ of both method and support tool facilitated

by requirements elicitation method independence
vi) Enhanced hybrid traceability extraction mechanism

incorporating:
• Dependency analysis based approaches
• Pre-recorded traceability based techniques

• Knowledge based analysis and prediction
incorporating fuzzy inference mechanisms

• Supplementary information depth provided by
probability and certainty measures

7 Current state of research

A survey of existing techniques has been performed to
identify useful approaches and techniques which could be
employed in an improved change management process.
These included change management processes, traceability
extraction techniques, impact assessment approaches and
visualisation schemes. Once this survey was complete, the
most appropriate methods were identified for inclusion in the
new process.

At the present time, work on the project is currently
concentrating on the primary implementation of the change
management tool. To assist with implementation, a series of
worked examples and test applications will be used to assess
tool practicality. The results of these studies will allow us to
incrementally improve and enhance both the tool and method
during the development process.

References

1. G. Kotonya; I. Sommerville “Viewpoints for Requirements
Definition”, Software Engineering Journal, Vol. 7 (6), Nov 1992,
pp375-387

2. S. J Andriole, “Managing Systems: Requirements, Methods, Tools
and Cases”, McGraw-Hill, 1996

3. S. Ajila. “Software Maintenance: An Approach to Impact Analysis
of Objects Change”, Software-Practice and Experience vol. 25 (10),
pp1155-1181

4. T. Goradia, “Dynamic Impact Analysis: A cost-effective Technique
to Enforce Error-propagation”, Proceedings of the 1993 Int.
Symposium on Software Testing and Analysis, pp171-181

5. L. Li; A. J. Offutt, “Algorithmic Analysis of the Impact of Changes
to Object-Oriented Software”, Proceedings of the International
Conference on Software Maintenance, pp171-184, Montery, CA

6. D. S. McCrickard; G. D. Abowd, “Assessing the Impact of Changes
at the Architectural level: A case study on Graphical Debuggers”,
Proceedings of the International Conference on Software
Maintenance, pp59-67, Montery, CA

7. M, Moriconi; T. C. Winkley, “Approximate reasoning about the
effects of program changes”, IEEE Transactions on Software
Engineering vol 16 (9), pp980-992

8. J. Han, “Supporting Impact Analysis and Change Propagation in
Software Engineering Environments”, Proceedings of the Eighth
IEEE International Workshop on Software Technology and
Engineering Practice, pp172-182, London

9. S. D. P. Harker; K. D. Eason; J. E. Dobson, “The Change and
Evolution of Requirements as a Challenge to the Practice of
Software Engineering”, Proceedings of the IEEE International
Symposium on Requirements Engineering, Jan 1993, pp266-271,
SanDiego, CA

10. I. Sommerville, “Software Engineering”, Addison-Wesley, 5th
edition pp552-554

11. S. A. Bohner; R. S. Arnold, Preface to “Software Change Impact
Analysis”, IEEE Computer Society, pp ix-xii

12. S. A. Bohner; R. S. Arnold, Introduction to “Software Change
Impact Analysis”, IEEE Computer Society, pp1-26

13. G. O. Kotonya, “Project proposal report: Managing RE Change
Through Visualisation”, unpublished report, pp1-8

14. J. K. Buckle, “Software Configuration Management”, Macmillan,
p15 and p55

15. G. O. Kotonya; I. Sommerville, “Requirements Engineering”, John
Wiley and Sons, Chapter 5

Towards an Explicit Intentional Semantics for Evolving Software

Kim Mens
Vrije Universiteit Brussel

Programming Technology Lab (PROG)
Pleinlaan 2, B-1050 Brussel, Belgium

kimmens@vub.ac.be

Abstract

The subject of my PhD work is the study of software engi-
neers’intentionsand the importance of using the informa-
tion provided by such intentions during the software engi-
neering (SE) process. More specifically, we will study how
automated reasoning about explicit software intentions can
facilitate many software engineering activities, and soft-
ware evolution in particular.

1. Introduction

It is generally acknowledged that a lot of software1 today
is difficult to understand, maintain or adapt, hard to reuse,
difficult to evolve, and so on [1, 5, 6]. This is partly due to
the fact that most software contains a lot of hidden assump-
tions. The software reveals onlyhow things will work, and
(implicitly) what will happen, but provides little or no in-
formation on theintentionsof the engineers that built the
software (e.g.why something was constructed in a certain
way). Even when the software does contain such informa-
tion it is most often implicit or described informally in the
software documentation [13].

Our contribution will be to make a first step towards a
kind of intentional ‘semantics’ for software in which this
kind of information can be expressed explicitly, preferably
in a computable and declarative way, and to show how au-
tomated SE tools can use this information to make software
more ‘manageable’. We donot intend to develop a com-
plete formal semantic model, but rather to study the use of
intentions in automated SE tools.

To restrict the scope a bit, we focus on the domain of
evolution of object-oriented (OO) software2, and set out to

1We explicitly use the term ‘software’ throughout this paper instead
of the word ‘code’ or ‘program’, because we believe the same research
problems and solutions are also relevant to artifacts in other phases of the
software life cycle such as requirements, architecture, analysis and design.

2We choose evolution and OO because of our background in these

prove the following thesis:

Thesis: Automated reasoning about explicit
information on the intentions of software en-
gineers allows to build more powerful tools
for software evolution. (More powerful in the
sense that they can draw stronger conclusions
by reasoning not only about the software but
also about higher level conceptual information,
i.e. the software intentions.)

We admit that this thesis is still somewhat too broad and
needs to be made more precise. For example, the kind of
software evolutiontools we are particularly interested in
are tools for detecting evolution conflicts. We will try to
show that conflict detection tools using intentional informa-
tion can be made more powerful in the sense that they can
detect more conflicts. Also, we need to make more precise
how intentional information willallow todo this.

2. Intentions

When constructing a software artifact, a software engi-
neer constantly makes important and less important choices
and decisions. These decisions are typically based on and
motivated by various assumptions about the problem do-
main, about the software requirements (functional as well as
non-functional), about other software artifacts with which
the artifact under construction should co-operate or upon
which it should build, and so on...

All these assumptions and the associated intentions of
a software engineer when making decisions, usually are
not captured explicitly in the software. Only the results of
the decisions that were made can be found in the software.
In the best case an engineer writes down his or her inten-
tions on paper or in the software documentation in natu-
ral language, or uses certain conventions, software patterns

domains [12] and because they pose some non-trivial and important
problems.

or style guidelines from which some intentions can be de-
rived implicitly. (For example, using a strategy design pat-
tern might express a designer’s intention to make an impor-
tant algorithm easily replaceable by a variant [4], or “best
programming patterns” might be used to communicate pro-
gramming intentions [2].) Most intentions however, e.g.
whysoftware was constructed in a certain way, are difficult
or impossible to extract from the software. (As opposed to
information onwhat the software does, andhow it works,
which usually can be derived implicitly or explicitly from
the software.) Therefore, we think there is a need for mak-
ing these intentions explicit.

Intuitively, we could define a software intention as any
kind of information on the purpose of the software, that
is not explicitly contained in the software itself. In other
words, an intention is a meta description of the software
that motivates why the software is constructed in a certain
way. But not any meta description is a software intention:
only those meta descriptions that link software artifacts to
the ‘hidden assumptions’ are software intentions.

Definition: A software intention is a meta de-
scription of the software that links software ar-
tifacts to the ‘hidden assumptions’ made by a
software engineer (about the problem domain,
about the software requirements, about the pur-
pose of related and co-operating software arti-
facts,...).

One of the reasons why software engineers are unable
to adequately document their intentions is that SE tools and
notations provide insufficient support for expressing inten-
tions in a more explicit, formal and disciplined manner. We
feel that such information can play an important role to fa-
cilitate SE activities in general, and software evolution in
particular. However, although we want to express intentions
in a formal way, we want a notation that is simple enough
to be used and accepted in practice, and easy to be manip-
ulated in tools. We claim that a need exists for building
SE tools that can reason automatically about such explicit
intentions.

Our claim is supported, amongst others, by [9], where
it is argued that software evolution currently suffers from
a lack of intentional information: when the original soft-
ware engineers’ intentions are insufficiently documented,
their continued involvement is needed to enable later engi-
neers to learn their way through the software system and to
better understand the assumptions behind the system’s de-
sign. This may be too time-consuming or simply impossible
when the original software engineers are not available any-
more Lehman3 also agrees that software engineers’ hidden

3Lehman studies thelaws of software evolutionand their implications
to improve software processes dealing with evolution.

assumptions should be made explicit in the software, prefer-
ably in a structured and machine-processable form, to facil-
itate change management during software evolution [8]. He
argues that at all stages of the software life cycle,“attempts
must be made to recognize, capture and record assumptions,
whether explicit or implicit, in design and implementation
decisions, as must any dependencies and relationships be-
tween them”.

Therefore, we assume the following research hypothesis.

Research hypothesis: Many SE activi-
ties (such as software maintenance, adaptation,
evolution, reuse, re-engineering, reverse engi-
neering,...) benefit by intentional information
of the software engineer.

We motivate this research hypothesis, by arguing that
some of the technical problems that hinder these activities
could be solved more easily if one would have more inten-
tional information of the software engineer. Some of the
technical problems are:

1. understanding4 the purpose of software artifacts, as
well as why they were constructed in a certain way;

2. understanding the dependencies and relationships be-
tween different software artifacts;

3. detecting and solving conflicts when changing, adapt-
ing, evolving or reusing software artifacts;

4. traceability of software artifacts.

It is clear that the first two problems immediately benefit
by more intentional information. Solving the second prob-
lem is important to be able to assess the impact of mak-
ing changes to certain software artifacts on the other soft-
ware artifacts. The third problem is a special case of the
more general problem ofcompliance checking: checking
whether some evolved software artifact conforms to what is
expected from it, i.e. does it work together correctly with
other software artifacts, are the assumptions that it makes
and that are made about it valid, does the software artifact
respect the original intentions, ... ? It should be at least
intuitively clear that compliance checking can benefit by
more intentional information. Finally,traceabilityproblem
comes down to“justifying the existence of a given result by
tying it back to the stated goals and objectives” [11]. This
information could be expressed by explicit intentions.

We will try to validate this research hypothesis in prac-
tice by showing that automated reasoning about software
intentions does not only make it possible and easy to build

4Although we think that software intentions can clearly contribute to
the research domain of software comprehension, our focus will be more
on the use of intentions to enhance software evolution tools.

automated SE tools (and tools for checking evolution con-
flicts in particular), but also allows us to draw stronger con-
clusions than without that information. This immediately
proves our thesis as well.

3. Approach

We will follow a “bottom-up approach with a top-down
vision”. Our ultimate goal is to show that automated SE
tools can use explicit intentional information to make soft-
ware more manageable. However, to simplify things at
first, we limit the scope by looking at the problem of evo-
lution of OO software. Later we broaden the scope again
and show that the results are also valid for other SE ac-
tivities (than software evolution) and other programming
paradigms (than OO).

Instead of immediately trying to build a general formal
model of software intentions, we focus on a particular kind
of intentions first and study what extra power they can pro-
vide. Although we still have to complete our literature study
and make a categorization of the kinds of intentions that are
most promising, we think it would be interesting to look at
those intentions that can be expressed in terms ofclassifica-
tionsand relationships between these classifications.

3.1. Classifications

The idea of aclassificationis to group a collection of
software artifacts together because they ought to be consid-
ered as a whole (from an intentional point of view). All
artifacts in a classification typically share some important
feature. For example, in a financial application it could be
interesting to group all software artifacts dealing with “han-
dling deposits” together in a single classification. This clas-
sification expresses the intention that all these software ar-
tifacts cooperate in achieving the functionality of handling
deposits.

A software artifact can belong to different classifications
and a single classification can contain many different kinds
of software artifacts. A classification does not necessar-
ily correspond to the classifications that can typically be
found in the software. The only requirement is that the soft-
ware artifacts in a classification share some functional (e.g.
handling deposits) or non-functional (e.g. aspects such as
“persistency” or “distribution”) feature. As such, classi-
fications express part of a software engineer’s intentions,
because they provide conceptual classifications of software
items that may not be found in the software itself. Depen-
dencies and relationships between classifications (“part of”,
“is a”, causal relationships as well as negative relationships
stating independencies) can provide even more important
intentional information.

Intentional information on which software artifacts are
grouped according to which classifications and what the de-
pendencies between the different classifications are could
be used in tools for dealing with software evolution con-
flicts. For example, if there is a conceptual dependency
between two classifications, one could expect that this de-
pendency is reflected in some way by the artifacts that are
contained in those classifications. If this dependency struc-
ture is accidentally invalidated upon evolution, there is an
evolution conflict.

3.2. Validation

After having chosen a particular kind of intentions to in-
vestigate in more detail, we perform some experiments to
validate whether the proposed approach actually works (i.e.
that intentional information based on classifications and de-
pendencies between them can really be used to solve new
and interesting evolution conflicts). We will build a proto-
type of an automated SE tool (more specifically, a tool for
detecting evolution conflicts) and apply it to an industrial
case study. We will try to merge our theory and tool with
the existing reuse contracts methodology [12, 10], which is
a proven methodology for dealing with evolution conflicts
in OO software. We plan the following validation experi-
ment:

1. identify and declare some classifications as explicit
intentional tags about the case;

2. identify and declare dependencies between classifica-
tions as intentional information about the case;

3. implement and test conflict detection and compliance
checking rules based on this information;

4. analyze how this approach extends the reuse contracts
model (i.e. how it makes it more powerful).

Whereas the purpose of this experiment is to show that
software evolution tools benefit by more intentional infor-
mation, we also need to investigate what happens when the
intentions themselves evolve.

3.3. Generalization

To generalize the obtained results we will study which
other kinds of intentions can be expressed and how they can
be used to build more powerful software evolution tools.
Next we broaden the scope and try to show that the results
are also valid for other SE activities (than software evolu-
tion) and other programming paradigms (than OO). To con-
clude the thesis we hope to be able to show the generality
of our research results by showing that existing “hard” se-
mantic techniques which also declare a kind of intentional
semantics, can be expressed with our approach as well.

4. Related Work

4.1. Program Comprehension Research

Program comprehension research results might provide
interesting clues as to which kinds of intentions are useful to
enhance the evolvability of software. Although current pro-
gram comprehension research fails to provide a clear pic-
ture of comprehension processes with respect to specialized
tasks such as software evolution, some existing research re-
sults do indicate which kind of information is considered
important by engineers when trying to understand software
constructed by other engineers [14]:

� Software-specific knowledgerelating to functionality,
software architecture, the way algorithms and objects
are implemented, and so on.

� Information on thewhat, how and why of software
artifacts.

� Used styles and conventions(‘rules of discourse’)
such as coding standards, algorithm implementations,
expected use of data structures, and so on.

� Information on thecontrol flowand other dependen-
cies (e.g. data flow) in the software.

4.2. Intentional Programming

The concept of ‘intentional programming’, seems
closely related to our work, as it is also based on mak-
ing intentions explicit in the software. [13] agrees with us
that “much of what makes programming5 costly and time-
consuming, including the declaration of design intentions,
the identification of invariants, the alternatives which were
not chosen, the overall structure, the dependencies ... and
so on are either not encoded at all, or not encoded in a ma-
chine understandable form”. However, whereas we see in-
tentions as a kind of meta description on top of the software,
[13] introduces intentions as a new programming abstrac-
tion which can actually be executed.

4.3. Features

We informally definedclassificationsas collections of
software artifacts that need to be considered as a whole,
because they share an important ‘feature’. So classifica-
tions can be identified by identifying the important features.
[6] provides some examples of (functional) features and de-
fines a ‘feature’ as “any distinguishing characteristic of a

5Note that we did not focus on the programming level only, but also on
the other phases of the software life cycle.

software system that customers or reusers can use to se-
lect between available options”. The FODA methodology
[7] considers distinct types of features: operational, non-
functional, development,... [3] defines a feature as “the
difference that makes the difference” and provides some
guidelines for identifying features.

4.4. Other Related Work

In the research areas of program understanding, design
theory and knowledge based SE, many systems have been
described that represent programming knowledge in one
way or another. We need to investigate how these kinds
of knowledge relate to software intentions.

References

[1] M. Aksit, B. Tekinerdogan, L. Bergmans, K. Mens,
P. Steyaert, C. Lucas, and K. Lieberherr. Adaptability in
object-oriented software development. InECOOP’96 Work-
shop Reader, pages 5–52. dpunkt.verlag, 1997.

[2] K. Beck. Smalltalk Best Practice Patterns. Prentice Hall,
1997.

[3] R. Creps, C. Klinger, M. Simos, L. Lavine, and D. Alle-
mang. Organization domain modeling (odm) guidebook ver-
sion 2.0, 1996. Technical report for Software Technology for
Adaptable, Reliable Systems. STARS-VC-A025/001/00.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design
Patterns. Addisson-Wesley, 1994.

[5] D. Garlan, R. Allen, and J. Ockerbloom. Architectural mis-
match: Why reuse is so hard.IEEE Software, November
1995.

[6] I. Jacobson, M. Griss, and P. Jonsson.Software Reuse: Ar-
chitecture, Process and Organization for Business Success.
Addisson-Wesley, 1997.

[7] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and
A. S. Peterson. Feature-oriented domain analysis (foda) fea-
sibility study. Technical report, Carnegie-Mellon University
Software Engineering Institute, November 1990.

[8] M. Lehman. Software’s future: Managing evolution.IEEE
Software, January/February:40–44, 1998.

[9] K. Lieberherr. Workshop on adaptable and adaptive soft-
ware. InAddendum to the OOPSLA’95 proceedings, pages
149–154. ACM Press, 1995.

[10] C. Lucas. Documenting Reuse and Evolution with Reuse
Contracts. PhD thesis, Department of Computer Science,
Vrije Universiteit Brussel, Belgium, 1997.

[11] K. Rubin and A. Goldberg. Object behaviour analysis.Com-
munications of the ACM, 35(9):48–62, September 1992.

[12] P. Steyaert, C. Lucas, K. Mens, and T. D’Hondt. Reuse con-
tracts: Managing the evolution of reusable assets. InPro-
ceedings OOPSLA ’96, pages 268–285. ACM Press, 1996.

[13] C. Symonyi. Intentional programming — innovation in the
legacy age, 1996. Presentation notes IFIP WG 2.1 meeting.

[14] A. von Mayrhauser and A. M. Vans. Program compre-
hension during software maintenance and evolution.IEEE
Computer, 28(8):44–55, August 1995.

Real-Time Reactive System Development -
A Formal Approach Based on UML and PVS�

D. Muthiayen
Department of Computer Science

Concordia University
Montréal, Québec H3G 1M8, Canada

d muthi@cs.concordia.ca

Abstract

The maturation of a methodology for formal develop-
ment of Real-Time Reactive Systems of industrial scale
broaches issues including automated development of soft-
ware specification, design, analysis, and synthesis. Auto-
mated software engineering methods should be grounded
on rigorous principles and not on ad hoc approaches. Our
approach integrates the recently published industrial stan-
dard graphic notation UML (Unified Modeling Language),
for object-oriented modeling, and PVS (Prototype Verifica-
tion System), for automated reasoning.

1. Introduction

This paper proposes a methodology that synthesizes
object-oriented and real-time technologies for reactive sys-
tem development. We first formalize UML [7] semantics,
and embed the notation in PVS [6]. We then develop meth-
ods for consistency checking across design specifications
and for verifying system properties in a design. The for-
malization of UML is undertaken to fulfill the need for a
sound foundation for requirements modeling and rigorous
design analysis in the context of safety-critical systems. The
methodology forms the basis for the process model for reac-
tive system development shown in Figure 1. In this iterative
process, we develop a UML model from system require-
ments, translate the graphical design into PVS theories, an-
alyze the design for consistency, simulate the design speci-
fications for validation, and verify desired system properties
in the design, before proceeding to an implementation. The
motivation for this work comes from two fronts: (i) the wide
acceptance of UML in industry, as a unified modeling nota-

�This work is supported by a fellowship from Natural Sciences and
Engineering Research Council, Canada. I acknowledge the support of my
thesis advisor, Prof. V.S. Alagar, in conducting this research.

Consistency

Analysis
Checking /

Rose 98
UML Model

Formal
Verification

Generation /

Rational PVS

Animation
Tool

Validation

Code

Formalization

Specifications
PVS

Implementation

Incompleteness

Incorrect Design

Debug / Redesign
Inconsistency

Augment Model

Fix Time Constraints

Figure 1. Iterative process model.

tion applicable in a broad spectrum of domains, and (ii) the
use of PVS for formal design analysis of large scale appli-
cations, as reported in NASA guidebooks [4, 5].

2. Research Goals

The main goal of this research is to develop a methodol-
ogy for rigorous software development in industrial context.
Figure 2 shows major aspects of a specification and verifi-
cation environment based on the methodology. Rigorous
modeling and analysis methods can only be established af-
ter providing formal semantics, and instituting mechanisms
for checking designcompletenessandconsistency. Formal-
izing the modeling technique involves the following steps.

1. Select components of UML notation suitable for spec-
ification of real-time reactive systems, and relate these
components in a consistent way.

2. Provide formal semantics for the components and their
relationships using PVS specification language, with
focus on application to reactive systems.

Collaboration

Requirements

TranslationUML-PVS

Properties

PVS

Theories

Design
in

PVS

Diagrams

Statechart

Semantics

UML

Design ValidationFormal Verification
System

for
Theories

Static
Structure

Diagrams
Case

Diagrams

Use

Sequence

Diagrams

Diagrams

System

PVS

UML Model

System Modeling

Specifying

Properties

Dynamic Model

Static Model

Figure 2. Reactive system development.

3. Develop a formalism incorporating the components for
modeling objects and subsystems.

Milestones in the research work are:

1. Formalization of UML notation. In developing UML
formal semantics, we specify PVS type definitions
for UML model elements, based on the abstract syn-
tax available in UML class diagrams. We then spec-
ify PVS predicates and lemmas for (i) constraints and
well-formedness rules on UML model elements, avail-
able in OCL (Object Constraint Language), (ii) UML
semantics, available in natural language, and (iii) rela-
tionships among UML components.

2. Adaptation of the verification methodology described
in [3] for formally verifying safety and liveness proper-
ties in design specifications within the PVS verification
environment.

3. Proposed Methodology

Easterbrook et al. [2] give an extensive experience report
on requirements modeling and analysis based on a method-
ology incorporating OMT (Object Modeling Technique)
and PVS. This approach does not integrate the graphic nota-
tion of OMT with the formal specification language of PVS;
it uses the notations to complement each other. While the
OMT model provides a high level structural view of require-
ments, the PVS model gives a detailed view and supports
rigorous behavioral analysis. It is not apparent how corre-
spondence is established between the OMT diagrams and
the PVS specifications. Our primary goal is to provide pre-
cise methods based on formal semantics to translate UML
design models into PVS theories.

3.1. Components of UML Notation to Formalize

We focus on a subset of UML notation suitable for mod-
eling objects, subsystems, their static structure, and their
dynamic behavior, in the context of real-time reactive sys-
tem development.Static structure diagramsdescribe the
object model; object and class diagrams capture relation-
ships among objects and classes in a system. Inuse case
diagrams, use cases give abstract descriptions of tasks per-
formed by cooperating objects, and actors symbolize roles
played by external objects interacting with a system.Se-
quence diagramscapture sequences of messages exchanged
among objects in an interaction, as well as timing con-
straints on responses to stimuli. Incollaboration diagrams,
a collaboration describes associations among cooperating
objects, showing the context for the purpose of the cooper-
ation; messages exchanged among the objects constitute an
interaction that is superimposed on the collaboration.State-
chart diagramsspecify the states in which an object can be,
possible transitions between states, the event labeling each
transition, entry and exit points for complex states, and cer-
tain timing constraints on transitions.

3.2. The Choice of PVS - Justification

There is an increasing demand on the construction of
provably correct software systems in strategically important
areas, such as the aerospace industry and NASA projects.
The current status of formal method integration in industrial
software development includes application in areas such as
avionics, telecommunications, and nuclear power plants.
PVS is being groomed for use in the integration of formal
methods in the development process of mission critical sys-
tems. Experience gained from these studies are reported in
two NASA guidebooks [4, 5].

PVS consists of a specification language based on
higher-order logic, and an interactive proof checker that
uses powerful arithmetic decision procedures. The lan-
guage allows the definition of predicate subtypes, and de-
pendent types, with constraints attached to type definitions.
Specifications can be written as parameterized theories,
with constraints on the parameters. PVS supports specifi-
cation of abstract data types in a concise and efficient way,
with automatic generation of axioms and functions captur-
ing intended properties of the data types. The higher-order
logic and its type system bring lot of expressive power to
the specification language. This makes it suitable for for-
mally describing semantics of complex structures, and the
abstract syntax and well-formedness rules of UML.

PVS implements a set of powerful primitive inference
rules, and a mechanism for composing proof strategies
based on frequently used patterns of inference steps. The
reasoning system supports a wide range of decision proce-

dures, provides an extensive set of proof commands clas-
sified asprimitive rules, defined rules, andstrategies, and
supports interactive proof construction. These features
make PVS well-suited for verifying the inherence of proper-
ties in design specifications. For instance, Shankar [8] gives
a theory of time, and a computational model for specifica-
tion and verification of real-time systems.

3.3. Methodology for Formalizing UML Notation

Providing formal semantics implies identifying attri-
butes and properties of model elements relevant to the ap-
plication domain, and describing their meaning in a mathe-
matical notation. The semantics must ensurecompleteness
in the sense that sufficient number of axioms describing at-
tributes and properties of the model are included for a pre-
cise understanding of expected behaviors. This may involve
the construction of a formal object constraint language.

We adopt the following procedure in providing a formal
semantics for UML notation. We identify the model ele-
ments described in UML class diagrams comprising meta-
classes and their relationships, and specify each model el-
ement in PVS. We give a PVS specification for each well-
formedness rule for the metaclass describing a model ele-
ment, and formulate invariants and constraints on the model
element as lemmas. These need to be proved in checking
the well-formedness of a diagram including instances of the
model element. We flatten the class hierarchy to obtain all
the attributes and well-formedness rules for a model ele-
ment. We translate the informal description of the seman-
tics for each UML logical package into PVS predicates and
lemmas. We specify relationships and constraints identified
among UML components as lemmas involving predicates
on instances of model elements.

3.4. Static and Dynamic Models

In modeling system requirements, the first step is to cap-
ture the static structure of the system by abstracting objects,
and their relationships in collaborating to perform a task.
For instance, entities may require complex data structures
to capture their functionalities. Relationships among ob-
jects and classes include associations, aggregations, com-
position aggregations, generalizations and specializations.
These features of a model must be properly specified before
describing the dynamic behavior of entities.

The two types of object interaction relevant to the design
of embedded systems aresequential composition, andcon-
currency. We use UML icons [1] forarrival pattern and
synchronization patternto indicate different kinds of mes-
sage flow between interacting objects. An arrival pattern
icon can be combined with a synchronization pattern icon
to capture two orthogonal dimensions.

A collaboration represents a set of objects and relation-
ships among the objects; the relationships shown are those
that are meaningful to the purpose of the collaboration. We
define aprojectionof a collaborationC as a representation
of a subset of the objects inC , and the relationships present
in C , among the objects in the subset. For a collaboration
C , and an operationop, there exists a collaboration diagram
Cop, such that (i)Cop is empty, orCop is a projection ofC
superimposed with a message sequence, and (ii) it can be
provedthat the effect of an interaction based onCop is the
performance of operationop.

3.5. Requirements Modeling and Design Analysis

Achieving design consistency is a major issue when us-
ing a notation with several interleaving components. It is
imperative that consistency is obtained within diagrams to
determine the satisfaction of system properties, as well as
across diagrams to ensure that components of the notation
are compatible with each other. We identify relationships
among components of UML notation, and describe corre-
sponding constraints in specifying reactive systems. These
constraints are formally stated, so that if a property exists at
one level, we can conclude whether it exists at another level.
Satisfaction of invariants capturing these relationships im-
plies that semantics of constructs in different components
of the notation are consistent with each other.

Completeness in Data Type SpecificationsThe PVS
specification of an abstract data type is concise, with a
set of constructorsalong with associatedaccessorsand
recognizers. When the data type is type-checked, a new the-
ory is generated, providing axioms relating the constructors,
accessors, and recognizers, as well as induction principles
needed to ensure that the data type is the initial algebra de-
fined by the constructors. For instance,extensionalityand
etaaxioms are generated to define equality on instances of
the data type. Other axioms define well-foundedness rules,
and support well-founded subterm ordering relations and
strong forms of induction. The functionseveryandsome
are generated to establish the truth value of a predicate in
existentially and universally quantified formulas on the data
type. Functions are included to define a genericmapon the
data type. These generated axioms and functions must often
be augmented with additional ones capturing other proper-
ties of the data type to ensurecompletenessof the specifica-
tion. A data type specification iscompleteif every intended
property of the data type can be deduced from the axioms.

The rich type system of PVS is supported by the gener-
ation of proof obligations, calledtype constraint conditions
(TCC’s). In proving a theorem, subproofs may require dis-
charging some of these obligations. This can be achieved by
invoking predicates used in subtyping, axioms generated for

abstract data type definitions, and user-defined axioms cap-
turing additional properties of these data types. If a proof
cannot be discharged, it is due to the incompleteness of the
specification.

Consistency in Design SpecificationsFor each UML de-
sign specification, we use the formal semantics to formu-
late a corresponding PVS specification. A relationshipR
between two UML design components is stated in the form
of a set of theorems in a parameterized theoryTR. The theo-
rems in theoryTR instantiated with two actual design spec-
ifications must be proved in order to establishconsistency
between the two designs. Checking for consistency of de-
sign specifications may not be possible without sufficient
axioms capturing properties of data types in the specifica-
tions. Consequently, consistency cannot be assured without
completeness of abstract data types.

Consistency:Let d1 andd2 be two design specifications
in UML; let p1 and p2 be their corresponding PVS spec-
ifications. There exists a parameterized theoryTR, corre-
sponding to the relationshipR between the designsd1 and
d2. If a proof can be constructed for every theorem in the
instanceTR(p1; p2) of the theory, then design specifications
d1 andd2 are consistent.

3.6. Verifying System Properties

The goal of verification is to establish that a design spec-
ification satisfies properties included in requirements spec-
ifications. Specifications for a reactive system and its envi-
ronment are given in terms ofaxiomsandinference rulesfor
reasoning. These specifications can be used to verify prop-
erties, such assafetyproperties andlivenessproperties. To
accomplish this analysis task, we need alogic, such as tem-
poral logic. Requirements can be formally described within
the logical semantics, providing aBehavioral Specification
(BS)of the system. Static and dynamic properties of the
design are stated as axioms and rules of inference, giving
a Design Specification (DS)of the system. For instance, a
design specification can include a description of the state
transitions due to the occurrence of internal and external
events. We need a verification methodology based on these
specifications. To demonstrate that a design satisfies the re-
quirements, it is sufficient to show that every formula inBS
is a logical consequence ofDS.

In the PVS model of a system, we include axioms for
transitions, timing constraints, and arrival and synchroniza-
tion patterns, based on the formal semantics. Each axiom
expresses either a system status or a time constrained ac-
tivity causing a change in system status. The property to
be verified in the design is stated in a semi-formal notation,
which is translated into a set of invariance assertions. Based
on the UML model, each invariance assertion is translated

into a PVS formula. We use Shankar’ssinceoperator [8]
to specify durational expressions in axioms and invariance
assertions. The given property is formally proved in the de-
sign if we can construct a proof for each lemma specifying
an invariance assertion in design theories.

A straightforward approach to formal verification is to
follow Shankar’s methodology [8]. We intend to investigate
an approach in which formulas involving thesinceoperator
over state predicates are transformed into linear inequali-
ties. Axioms and lemmas are transformed into a system of
linear inequalities involving logical variables denoting ab-
solute times. Proving a lemma is thus reduced to proving
the consistency of a set of linear inequalities. Since PVS
has a rich set of rewrite rules for inequalities over reals, we
expect the verification process to be less complex than the
straightforward approach. Certain aspects of this methodol-
ogy, such as formally specifying invariance assertions from
the semi-formal description of a property, cannot be fully
automated. However, several steps such as transforming a
formula using thesinceoperator over state predicates into a
linear inequality over logical variables, can be mechanized.

References

[1] B. P. Douglass.Real-Time UML - Developing Efficient Ob-
jects for Embedded Systems. Addison-Wesley, Reading, MA,
1998.

[2] S. Easterbrook, R. R. Lutz, R. Covington, J. Kelly, Y. Ampo,
and D. Hamilton. Experiences using lightweight formal meth-
ods for requirements modeling.IEEE Transactions on Soft-
ware Engineering, 24(1):4–14, January 1998.

[3] D. Muthiayen. Animation and formal verification of real-time
reactive systems in an object-oriented environment. Master’s
thesis, Department of Computer Science, Concordia Univer-
sity, Montréal, Canada, October 1996.

[4] NASA. Formal Methods Specification and Verification
Guidebook for Software and Computer Systems, Vol. 1: Plan-
ning and Technology Insertion. Report NASA-GB-002-95.
NASA Office of Safety and Mission Assurance, Washington
D.C., 1995.

[5] NASA. Formal Methods Specification and Analysis Guide-
book for the Verification of Software and Computer Systems,
Vol. 2: A Practitioner’s Companion. Report NASA-GB-001-
97. NASA Office of Safety and Mission Assurance, Washing-
ton D.C., 1997.

[6] S. Owre, J. M. Rushby, N. Shankar, and F. von Henke. For-
mal verification for fault-tolerant architectures: Prolegomena
to the design of PVS.IEEE Transactions on Software Engi-
neering, 21(2):107–125, February 1995.

[7] Rational Software Corporation.UML Notation Guide, and
UML Semantics, Version 1.1, September 1997.

[8] N. Shankar. Verification of real-time systems using PVS. In
Costas Courcoubetis, editor,Proceedings of Computer Aided
Verification, CAV’93, volume 697 ofLecture Notes in Com-
puter Science, pages 280–291, Elounda, Greece, June 1993.
Springer Verlag.

Automating migration of Fortran programs �

Christophe Roudet
INRIA Sophia Antipolis - BP 93
06902 Sophia Antipolis - France

Christophe.Roudet@sophia.inria.fr

Abstract

We present TrfL, a language independent transformation
system based on syntactic rewriting rules working on ab-
stract syntax trees, with semantic constraints. The aim of
TrfL is to ease the maintenance of large systems by au-
tomating transformation tasks such as restructuring, port-
ing, documenting. We describe the integration of TrfL in
Foresys, a Fortran engineering environment developed by
SIMULOG.

1. Identification of the problem

The Year 2000 problem has posed significant problems
that are being addressed using automated software engi-
neering tools. The current legacy systems and the large
software systems of the future will be too large to main-
tain without program transformation tools [3]. A first level
of user assistance is provided by simple textual tools, like
the search/replace tool available in all interactive text edi-
tors, or batch tools likesedor awk. Even very simple trans-
formation like swapping array indices for a given common
variable requires some understanding of the language syn-
tax and typing rules. The difficulty of performing semantic
analysis using character-based tools is the most serious lim-
itation of the Unix shell script approach. Transformation
systems rather work with abstract syntax trees that make
analysis easier and can also be used to hook results on rele-
vant nodes.

We propose a program transformation system, TrfL, that
emphasizes the expressiveness of tree transformations, can
be easily connected to other tools and provides a frame-
work to build and apply transformations. Our description
will be based on a Fortran environment. In the first section,
we try to classify program transformation systems. The
solution described in sections 3 and 4 is a language inde-
pendent transformation system based on syntactic rewrit-

�This work is partially supported by SIMULOG

ing rules working on abstract syntax trees, with semantic
constraints. Section 5 describes the integration of TrfL in
Foresys1 (a Fortran engineering environment), developed
by SIMULOG, then section 6 points out one simple exam-
ple of transformation. Section 7 deals with the different
approaches to re-structure Fortran code.

2. Related work

Program transformation systems can be found in several
systems and domains and here is a tentative of classifica-
tion:

� Environment generators. These kinds of tools generate
syntax directed editor for a special language from for-
mal specifications of this language. Centaur [4] and the
Cornell Synthesizer Generator [26] are in that family.
These tools give a transformation system to edit and
manipulate interactively programs by means of menus.
Transformations are syntactic, expressed with two pat-
terns (the source and target patterns) based on the ab-
stract syntax of the language.

� Program synthesis tools. Purpose of these tools is
to obtain efficient code from formal specification by
successively applying semantic preserving transforma-
tions. KIDS [27], CIP [2, 19], PROSPECTRA [21],
ZAP [12], and POPART [10] are systems of this do-
main. This was the first domain where program trans-
formations were used. These systems come with a base
of predefined transformations.

� Compiler tool kits. These systems include several tools
such as parser and lexer generators, attribute gram-
mar evaluators and attributed tree transformation sys-
tem. The transformations involved are optimization,
code generation and translation. Puma [17, 18], Gen-
tle [30, 29], FNC-2 [23] and Optran [25] fall in this
category. These tools work in batch mode and only
accept a restricted form of pattern matching to some

1http://www.simulog.fr/foresys

1

fixed region near the root of terms. Backend genera-
tors (Beg [11], Twig [1], Burg [15], Iburg [16]) can be
included in this domain. These tools are dedicated to
generating machine code and even offer mechanisms
to specify registers allocation.

� Functional programming languages. Most of the mod-
ern functional languages (Hope, SML, Caml, Miranda)
allow pattern matching. So these languages can be
used as a transformation language. Trafola-H [20] was
designed to express complex tree transformations in a
short and suggestive formulation. It enhances pattern
matching in allowing distributed patterns [14].

� Transformation systems. TXL (Turing eXtender Lan-
guage) [9] and TAMPR [5, 28, 6] are special purpose
languages to express transformations. These two tools
work in batch mode and patterns are expressed on the
abstract syntax of the manipulated language. TrfL falls
in this category.

All these systems have restrictions: only accept basic forms
of pattern matching, work only in batch mode or interactive
mode, do not accept non semantic preserving transforma-
tions, do not use contextual information (data flow graph,
symbol table, ...), can not extend the transformations base,
some of them use a wide spectrum language and programs
must first be translated in this language before applying
transformations, ... These restrictions were kept in mind
in the design of TrfL.

3. TrfL scope and applications

TrfL is a generic rule-basedTr ansformationLanguage.
TrfL is generic, as it is not dedicated to one language.
TrfL is a language to assist engineers in maintaining pro-
grams. TrfL can cover several tasks of the maintenance pro-
cess: documenting, restructuring, translating or porting pro-
grams. For instance, TrfL has been used to document Lisp
programs and TrfL is bootstrapped in TrfL. For that pur-
pose, TrfL provides an expressive pattern language, facili-
ties to be connected with analysis tools and a collection of
tools to build and perform transformations. We focus in this
paper on using this language in a Fortran environment. We
want an open restructuring tool, where transformations can
easily be added and performed. TrfL intends to be used by
both Fortran programmers and Fortran transformation ex-
perts (who know typing and contextual informations, For-
tran and TrfL). A user can specify simple transformations
with little effort, since transformation like adding/removing
a parameter in function definitions/calls doesn’t require a
great level of knowledge. More complex transformations
like moving from a programming convention to another or
from Fortran77 to Fortran90 have to be specified by an ex-
pert.

4. Description of TrfL

The first goal was to design a language to express com-
plex tree transformations, and the second to provide an en-
vironment with a wide collection of tools. These tools can
be divided in two. The first ones are to build and modify
transformations in an easy way by using structured manipu-
lation to build patterns, and the second ones are in the appli-
cation of transformations. The system should support both
interactive and batch transformations with different strate-
gies, and functional or side-effect (translations) transforma-
tions. A TrfL specification is a set of transformation rules.
Roughly, a transformation consists of asource pattern, a
target patternand anapplication condition. Source and tar-
get patterns2 are abstract syntax trees (AST) with metavari-
ables (place-holders that represent arbitrary pieces of source
code). An abstract syntax tree is a structured representa-
tion of a program that omits all unnecessary information
like keywords. The application condition is a predicate that
must be true in order for the rule to be fired. The target pat-
tern is a replacement for the source code when the source
pattern has matched the source code, the metavariables
have been instantiated and the application condition veri-
fied. Compared to other transformation languages which
generally allow a very restricted form of pattern matching,
TrfL enhances this mechanism (feature found in [14]). In
these transformation languages, a pattern can only match
near the root of a tree term or it can only select fixed num-
ber of items in list structured trees. The user only describes
the shape of the subtree he wants to find, and not where
and how such a subtree should be found. Thus it becomes
easier to describe a pattern that find nested loops for exam-
ple. It is a fact that non-trivial program transformations re-
quire program analysis. For example a transformation that
deletes unreachable code, needs control flow analysis infor-
mation in order to identify code fragments that can never be
reached. So most transformation systems work with anal-
ysis tools. Patterns represent the syntactic part of the rule
and the application condition can refer to non local and se-
mantic information (symbol table, control flow graph, etc)
in order to restrict the applicability of rules. This informa-
tion is called contextual information. A TrfL rule can be
thought of as a function that takes as input a tree and con-
textual information, and returns a transformed tree or fails.
A rule is applicable when both the pattern matches the input
tree and the application condition is evaluated to true. Side
effects are allowed, for example to update contextual infor-
mation or emit an error message to the user. The TrfL sys-
tem (Fig. 1) consists of anengineand anenvironment. The
engine takes a source program, searches for pieces of code

2The pattern are presented here in concrete syntax for reason of read-
ability (the system is able to display the patterns in both abstract or concrete
syntax).

that match a transformation, and checks the application con-
dition of that rule. If the condition is verified, the selected
code is replaced with the instantiated target pattern. If the
condition is not, the current transformation rule is not used
and the engine has to find a new transformation rule for the
same piece of code, look for a new piece of code, etc. The
engine has several decisions to make during the transfor-
mation process: How the source code should be searched?,
Which rule should be fired if more than one is applicable?,
Should rules be re-applied?, etc. A program transforma-
tion system can be fully automatic, or semi-automatic (with
somebody guiding the transformation process). This is why
we want to provide an environment. The environment sup-
ports two functions:

1. it embeds the engine. One may want to perform the
transformation process in batch mode without interac-
tion, in this case some parameters (to control the strate-
gies listed above) must be set before starting the pro-
cess and the engine can work alone. In another way the
user can interact on the process, 1) by guiding or con-
trolling the engine, 2) by choosing a piece of code and
then the engine gives the list of valid transformations,
3) by choosing a transformation and then the engine
shows where this transformation can be applied.

2. it provides a framework to build or modify transfor-
mations. Patterns are abstract syntax trees, but a user
is more familiar with the concrete syntax than with
the abstract syntax and then building transformations
could be a hard task. This can be made easier with
an interactive building of a transformation from a tem-
plate code, and pattern can be derived from a source
code.

�
�
�
�

����

provided

->
applCond

eq(a, b)

Transformation factory

Engine

lt(func_call(...

��
��
��
��

�
�
�
�

����

����

��������

�
�
�
�

��
��
��
��

�
�
�
�
�
�
�
�

����

�
�
�
�

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�
�
�
�
�
�

��

�
�
�
�

�
�
�
�

��

Source code Target code

......

... (a .eq. b) ...

......

......

......

......

......

......

......

Environment

add

template

pattern

(10.0 * spacing(a)))

Analysing
Parsing

meta-variable

(abs(a -b) .lt.

AST ASTAST

Pretty printing

Rules base

......

......

......

......

......

EqApproxima

Figure 1. The transformation system

5. Transforming Fortran programs

The need of transformations in Fortran is a recurrent sub-
ject, and tools that automate (fully or partially) the process

are welcome and useful. A list of tasks that a Fortran trans-
formation system can support includes parallelization, in-
strumentation, restructuring, optimization and documenta-
tion. A text editor with a string regular expression “query-
replace” function or a script (Perl, awk, ...) is often not
enough and is somehow error prone. The simplicity of reg-
ular expressions often does not allow a programmer to ex-
press the desired query and does not exploit the underlying
tree structure of the program (on the other side, processing
comments or non syntactically correct code is easier). More
over program analysis is not performed on the textual rep-
resentation but rather on the abstract syntax tree. Foresys
is an engineering system dedicated to Fortran. The Foresys
package provides project engineers with tools that allow to
apply all modern development rules to legacy Fortran code
(re-engineering, parallelization, maintenance, quality assur-
ance, etc). Foresys comes with a full Fortran90/95 envi-
ronment, including parser, several analyzers, and a pretty-
printer. Foresys analyzers run on any size of Fortran source
code to automatically create a global information database
called ForLib. The first goal was to provide a fully auto-
matic transformation system to automate the porting of For-
tran70 code to Fortran90. The integration of TrfL in Foresys
is to instantiate the TrfL system for Fortran, that is provide
an API to access the structures that analyzer tools produce
(symbol table, typing information, control flow graph) and
derive an engine to perform transformations on generated
ForLibs. The four steps of the transformation process are:

1. Foresys parses the Fortran program, it gives a syn-
tax abstract tree on which transformations can be per-
formed,

2. then it runs analysis tools and creates a ForLib. This
gives the contextual information.

3. transformations can be performed using the TrfL en-
gine and finally

4. the transformed tree is pretty-printed.

The engine only works in batch mode and offers several
tree walks :bottom-up, i.e. the tree is visited in postorder,
or top-down, i.e. the tree is visited in preorder. In addition
to the vertical direction, the user can choose the horizontal
direction: left-to-right or right-to-left. This determines in
which order the children of a given node are visited. For ex-
ample, in case of a bottom-up left-to-right traversal, the tree
is walked through inspecting the leftmost leaf first. The tree
walk can be declaredmonotonousor strictly monotonous.
In the first case, it guarantees that, after a transformation ap-
plication, the next entry point in the tree is the transformed
code, in the second case the root of the transformed code is
not searched for a new transformation.

When the engine is running, it must find the current valid
symbol table in order to pick up some contextual informa-
tions. Some of the analysis results are global, i.e. they are

valid for the whole program, and some are local to a special
fragment of the program. This is the case for symbol tables.
The scope of symbol tables is restricted to precise pieces of
program. So symbol tables are hooked on the root the tree
where they are valid.

6. Example

This simple transformation replaces an equality test
where the two operands are of floating type with an approx-
imation equality test. For instance a small sample code:

if (a .eq. b)
...

and the transformed code:

if (abs(a - b) .lt. (10.0 * spacing(a)))
...

The source (or left) pattern matches equality tests
and bounds the left and right subtrees that represent the
operands of the test, respectively to X and Y, two metavari-
ables. This transformation is mostly syntactic, although
typing information is needed to check the applicability
of the rule. The application condition checks that both
operands are of floating type, calling the predicateisFloat-
ing that returns true or false. This predicate is part of the
API that gives an access to contextual information com-
puted by Foresys analyzers. When both the left pattern
matches the input tree and the application condition is eval-
uated to true, the matched tree is replaced with the target
pattern.

-- the source pattern: (X.eq.Y)
eq(X, Y)
provided #:fsys:isFloatingType(X) &

#:fsys:isFloatingType(Y)
->

-- the target pattern: (abs(X - Y) .lt. (10.0 * spacing(X)))
lt(func_call(name "abs", l_exp(sub(X, Y))) ,

mul(real_cst "10.0", func_call(name "spacing", l_exp(X))))

7. Discussion

Program transformations is still largely confined to re-
search laboratories. In the past, the main interest in program
transformation has been the generation of programs from
specifications [13, 21]. But since the Year 2000 problem
and legacy code problem, industrial use of program trans-
formation has emerged mostly in software maintenance ap-
plications [22, 28].
In our case, i.e. the restructuring of Fortran programs, we
can find several points why the use of a program transfor-
mations system is relevant. What are the questions to ask

when you want to transform a program: How many time
will it take to design a transformation ?, How many time
will it take to apply this transformation ?, Can we re-use this
transformation ?, Will it be easy to design and then apply a
transformation ?, etc. An user has three possibilities: 1) he
can use a text-based editor with a string-search-replace ca-
pability or tool like awk or sed, 2) he can develop his own ad
hoc transformations in his favorite programming language
or 3) he can use a special purpose language for transforma-
tion. Let’s list the advantages and disadvantages of the three
approaches:

1. text-based tools
Advantages : Regular expressions are easy to use and
since these tools are based on text processing you don’t
need a parser that builds an abstract syntax tree; also
you can process non correct programs. Text editors
or shell scripts are suitable for small low level syntac-
tic transformations which need to be performed effi-
ciently.
Drawbacks : With text-based patterns you don’t see
the underlying tree structure of the program, and so
specifying a complex pattern may be difficult and
error-prone. Complex transformations require contex-
tual information; with an editor, the user is the only
source of contextual information (at the condition that
he understands the program!), and if the user needs to
confirm the application of the transformation, it may
be time consuming and error-prone (the user may loose
vigilance on a repetitive task). With a script, he must
program the analysis. Transformations specified using
these tools are not really re-usable. It will be difficult
to derive a new transformation from the formers.

2. hand-coded transformations
Advantages : the user uses his favorite language, he
does not need to learn a new language. The transfor-
mation will be really adapted to the user needs and op-
timized.
Drawbacks : the time of design and programming
may be important if the user needs a parser, abstract
tree manipulation functions and analysis tools. These
tools may be built once, but in this case let’s built a
program transformation system. The code of the trans-
formation may not be re-usable if the programmer is
the only one who understands what the transformation
does.

3. Domain Specific Language approach
Advantages : the language is a special purpose lan-
guage dedicated to the specification of transforma-
tions, it has qualities and facilities to build and apply
transformations: high-level patterns description, high-
level transformations description, integrated environ-
ment (analysis tools, parser, pretty-printer), batch and
interactive transformation engines, re-usable libraries

of transformations.
Drawbacks : the user must learn a new language and
get familiar with the environment. For complex trans-
formations, the help of an expert is required.

The first two approaches can not be applied in an indus-
trial context, since they do not fit software engineering cri-
teria: minimize time and cost of development and mainte-
nance, enhance modularity and re-usability. The third ap-
proach can be used in any process of the software life cy-
cle : from requirement analysis you obtain specifications,
from specifications you derive code, and then, code can be
documented and maintained.

8. Conclusion

Software maintenance is the first widespread use of pro-
gram transformations technology [7, 8, 24]. Scientific For-
tran codes live for decades and so Fortran code to trans-
form can be counted in millions of lines; a manual process
is inconceivable in terms of time and reliability. Moreover,
Fortran programmers are in general, not from the software
engineering community. The need of transformation tools
that automate or semi-automate the transformation tasks is
obvious. Our contribution is TrfL, a high-level language to
specify program transformations and a batch oriented trans-
formation process that can be integrated in other environ-
ments. Future work includes:

1. providing an interactive engine, to build and apply
transformations. Some transformations, like optimiza-
tion, had to be done in an interactive way, so that the
user can proceed by trial and error, in order to choose
the right transformation. The features that will help
will be undo/redo, history of applied transformations,
and user customizable engine. Some experiences have
been carried out in building interactively transforma-
tion rules in the Centaur system, and we planned to
soon implement this feature for TrfL;

2. build up a larger transformation library. A large For-
tran program has many authors and a lifetime of many
years. Code can be inherited from other projects. Dif-
ferences in style, in management and in the available
programming tools lead to the creation of a dusty code.
So other transformations of interest are code instru-
mentation, change of programming style and conven-
tion, and documentation. Re-structuring and docu-
mentation are closely linked, since one may change the
other.

In the next few years, transformation technology will inte-
grate many software engineering processes.

Acknowlegments: I would like to thank Laurent Hill
(from SIMULOG) and Isabelle Attali (from INRIA) for

their help and support.

References

[1] A. V. Aho, M. Ganapathi, and S. W. K. Tjiang. Code
generation using tree matching and dynamic programming.
ACM Transactions on Programming Languages and Sys-
tems, 11(4):491–516, Oct. 1989.

[2] F. L. Bauer, R. Berghammer, M. Broy, W. Dosch, F. Geisel-
brechtinger, R. Gnatz, E. Hangel, W. Hesse, B. Krieg-
Brückner, A. Laut, T. Matzner, B. Möller, F. Nickl,
H. Partsch, P. Pepper, K. Samelson, M. Wirsing, and
H. Wössner. The Munich Project CIP, Vol. 1: The Wide
Spectrum Language CIP-L.Springer LNCS 183, 1985.

[3] I. Baxter and C. Pidgeon. Software change through design
maintenance. In I. Press, editor,Proceedings of Interna-
tional Conference on Software Maintenance ‘97, 1997.

[4] P. Borras, D. Clément, T. Despeyroux, J. Incerpi, G. Kahn,
B. Lang, and V. Pascual. Centaur: the System. InThe
Third Symposium on Software Development Environments
(SDE3), Boston, 1988. ACM SIGSOFT’88. Also appears as
Inria Research Report no. 777 (December 1987).

[5] J. Boyle. A transformational component for programming
language grammar. Technical Report Technical Report
ANL-7690, Argonne National Laboratory, Argonne, Illi-
nois, 1970.

[6] J. Boyle. Abstract programming and program transforma-
tions - an approach to reusing programs. In T. Biggerstaff,
editor, Software Reusability, pages 361–413. ACM Press,
1989.

[7] J. M. Boyle and M. N. Muralidharan. Program reusabil-
ity through program transformation.IEEE Transactions on
Software Engineering, 10(5):574–588, Sept. 1984.

[8] S. Burson, G. B. Kotik, and L. Z. Markosian. A pro-
gram transformation approach to automating software re-
engineering. InProceedings. Fourteenth Annual Inter-
national Computer Software and Applications Conference,
pages 314–22, Chicago, IL, 31 Oct.–2 Nov. 1990. IEEE.

[9] J. R. Cordy, C. D. Halpern, and E. Promislow. TXL: A rapid
prototyping system for programming language dialects. In
Proceedings of The International Conference of Computer
Languages, pages 280–285, Miami, FL, Oct. 9-13 1988.

[10] D. W. D. Popart: Producer of parsers and related tools sys-
tem builders’manual. Technical report, USC/Information
Sciences Institute, Nov 1993.

[11] H. Emmelmann, F.-W. Schröer, and R. Landwehr. BEG
- A generator for efficient back ends. In B. Knobe,
editor, Proceedings of the SIGPLAN ’89 Conference on
Programming Language Design and Implementation (SIG-
PLAN ’89), pages 227–237, Portland, OR, USA, June 1989.
ACM Press.

[12] M. S. Feather. A system for assisting program transforma-
tion. ACM Transactions on Programming Languages and
Systems, 4(1):1–20, Jan. 1982.

[13] M. Feathers. A survey and classification of some program
transformation approaches and techniques. In L. Meertens,
editor, Program specification and transformation, pages
165–195. North-Holland, 1987.

[14] C. Ferdinand. Pattern matching in a functional transfor-
mation language using treeparsing. In I. P. Deransart and
J. Mauszynski, editors,Programming Language Implemen-
tation and Logic Programming, pages 358–371, Aug. 1990.
Linköping, Sweden.

[15] C. Fraser, R. Henry, and T. Proebsting. BURG – fast opti-
mal instruction selection and tree parsing.ACM SIGPLAN
Notices, 27(4):68–76, Apr. 1992.

[16] C. W. Fraser, D. R. Hanson, and T. A. Proebsting. Engi-
neering a simple, efficient code-generator generator.ACM
Letters on Programming Languages and Systems, 1(3):213–
226, Sept. 1992.

[17] J. Grosch. Puma - A generator for the transformation of
attributed trees. Compiler Generation Report No. 27, GMD,
Forschungsstelle an der Universität Karlsruhe, Nov. 1991.

[18] J. Grosch. Transformation of attributed trees using pat-
tern matching. Compiler Generation Report No. 26, GMD,
Forschungsstelle an der Universität Karlsruhe, July 1991.

[19] T. C. S. Group.The Munich Project CIP, Vol. 2: The Pro-
gram Transformation System CIP-S. Springer LNCS 292,
1987.

[20] R. Heckmann. A functional language for the specification of
complex tree transformations. In2nd European Symposium
on Programming, Nancy, pages 175–190. Springer-Verlag,
New York, NY, 1988. Lecture Notes in Computer Science
300.

[21] B. Hoffmann and B. Krieg-Brueckner.Program Develop-
ment by Specification and Transformation. Number 680 in
LNCS. Springer-Verlag, Berlin, 1993.

[22] S. S. Inc. Coboltransformer–peek under the hood, 1997.
Available at http://www.siber.com/sct/tech-paper.html.

[23] M. Jourdan and D. Parigot. Internals and externals of
the fnc-2 attribute grammar system. In H. Alblas and
B. Melichar, editors,Attribute Grammars, Applications and
Systems, volume 545 ofLecture Notes in Computer Science,
pages 485–504. Springer-Verlag, New York–Heidelberg–
Berlin, June 1991. Prague.

[24] G. B. Kotik and L. Z. Markosian. Program transformation:
the key to automating software maintenance and reengineer-
ing. In IEEE Trans. Software Eng., volume 16(9), pages
1024–1043, 1990.

[25] P. Lipps, U. Möncke, and R. Wilhelm. OPTRAN:
A language/system for the specification of program
transformations—system overview and experiences. In
D. Hammer, editor,Compiler Compilers and High Speed
Compilation, volume 371 ofLecture Notes in Computer Sci-
ence, pages 52–65. Springer-Verlag, New York–Heidelberg–
Berlin, Oct. 1988. Berlin.

[26] T. Reps and T. Teitelbaum.The Synthsizer Generator: A
System for Constructing Language-Based Editors. Springer-
Verlag, NY, 1988.

[27] D. R. Smith. Kids: A knowledge-based software develop-
ment system. In E. M. Lowry and R. McCartney, editors,
Automating Software Design, pages 483–514. MIT Press,
1991.

[28] P. M. T. Harmer and J. Boyle. Using knowledge-based trans-
formations to reverse engineer cobol programs. InIn 11th
Knowledge-Based Software Engineering Conference. IEEE-
CS-Press, 1996.

[29] J. Vollmer. The compiler construction system GENTLE
– manual and tutorial. GMD – Bericht 508, GMD
Forschungsstelle an der Universität Karlsruhe, Feb. 1991.

[30] J. Vollmer. Experiences with Gentle: Efficient compiler con-
struction based on logic programming. In J. Maluszyński
and M. Wirsing, editors,Proc. 3rd International Sympo-
sium on Programming Language Implementation and Logic
Programming (PLILP 91), number 528 in Lecture Notes in
Computer Science, pages 425–426. Springer Verlag, Aug.
1991. system demonstration.

8 0/)R U P D OL] D W LR Q D Q G 7U D Q V IR U P D W LR Q ' LV V H U W D W LR Q 3 U R S R V D O $ E V W U D F W

-H oU H \ (� 6 P LW K
1 R U W K H D V W H U Q 8 Q LYH U V LW \� % R V W R Q � 0$

MV P LW K #F R H �Q H X �H G X

$ E V W U D F W

8VLQJ FRPSXWHU�DLGHG� IRUPDOO\ GHYHORSHG VSHFLp�
FDWLRQV WR EXLOG DQG YHULI\ VRIWZDUH OHDGV WR SURYDEO\
FRUUHFW FRGH� GHHSHU FRQVLVWHQF\ FKHFNLQJ DQG VSHFL�
pFDWLRQ UHXVDELOLW\� 7KH SUREOHP ZLWK DSSO\LQJ WKLV
DSSURDFK LV LWV ULIW ZLWK PDLQVWUHDP FRPPHUFLDO VRIW�
ZDUH HQJLQHHULQJ WRROV DQG GHYHORSPHQW�VSHFLpFDWLRQ
PHWKRGRORJLHV� 7KH SULPDU\ JRDO RI WKLV UHVHDUFK LV
WR EULGJH WKLV ULIW� 7KH SXUSRVH RI P\ UHVHDUFK LV WR
FRQVWUXFW IRUPDO DQG &$6(GHYHORSPHQW PHWKRGV E\
IRUPDOL]LQJ WKH FRPPRQ &$6(JUDSKLFDO VSHFLpFDWLRQ
ODQJXDJH� L�H� WKH 8QLpHG 0RGHOLQJ /DQJXDJH �80/��
DQG DXWRPDWLQJ WKH WUDQVIRUPDWLRQ IURP 80/ GLD�
JUDPV WR D IRUPDO UHSUHVHQWDWLRQ�

� � ,Q W U R G X F W LR Q

,W KDV EHHQ VKRZQ WKDW WKH 7UDQVIRUPDWLRQDO 3UR�
JUDPPLQJ 3DUDGLJP �733� RI GHYHORSLQJ� YHULI\LQJ
DQG PDLQWDLQLQJ VRIWZDUH DW WKH VSHFLpFDWLRQ OHYHO
OHDGV WR WKH GHYHORSPHQW RI SURYDEO\ FRUUHFW FRGH�
GHHSHU FRQVLVWHQF\ FKHFNLQJ DQG VSHFLpFDWLRQ UHXVDELO�
LW\� 7KH SUREOHP ZLWK DSSO\LQJ WKLV DSSURDFK LV LWV
ULIW ZLWK PDLQVWUHDP FRPPHUFLDO VRIWZDUH HQJLQHHU�
LQJ WRROV DQG GHYHORSPHQW�VSHFLpFDWLRQ PHWKRGROR�
JLHV� 7KH SULPDU\ JRDO RI WKLV UHVHDUFK LV WR EULGJH WKLV
ULIW E\ PDSSLQJ IURP D SRSXODU &RPSXWHU�$LGHG 6RIW�
ZDUH (QJLQHHULQJ �&$6(� WRRO PRGHOLQJ ODQJXDJH WR
D IRUPDO PHWKRGV ODQJXDJH�)RUPDO PHWKRGV LQYROYHV
WKH VSHFLpFDWLRQ RI D IRUPDO V\QWD[DQG VHPDQWLFV WR
VSHFLI\ V\VWHP EHKDYLRU VR WKDW FRQVLVWHQF\� FRPSOHWH�
QHVV DQG FRUUHFWQHVV RI FRPSOH[V\VWHPV FDQ EH DV�
VHVVHG V\VWHPDWLFDOO\�

3ULRU UHVHDUFK KDV GHPRQVWUDWHG WKH SRVVLELOLW\ RI
DXWRPDWLQJ WKH 733 E\ GHULYLQJ D WHFKQLTXH WR WUDQV�
ODWH 207 �2EMHFW 0RGHOLQJ 7HFKQLTXH� GLDJUDPV WR D
IRUPDO UHSUHVHQWDWLRQ WKDW OHQGV LWVHOI IRU XVH ZLWK WRROV
WKDW VXSSRUW WKHRUHP SURYLQJ DQG DXWRPDWHG FRGH JHQ�
HUDWLRQ� 6RPH RI WKLV 207 IRUPDOL]DWLRQ UHVHDUFK ZDV

FDWHJRU\ WKHRU\ DQG DOJHEUDLF EDVHG� DQG GUHZ IURP
GLYHUVH WKHRUHWLFDO IRXQGDWLRQV� 7KH SXUSRVH RI P\
UHVHDUFK LV WR FRQVWUXFW D QHZ 733 E\ FKDQJLQJ WKH
SDUDGLJP IRU WKH PRUH FRPSUHKHQVLYH 80/ DQG GHYHO�
RSLQJ D SDWK WR DXWRPDWLQJ WKH 80/ WR IRUPDO UHSUH�
VHQWDWLRQ WUDQVIRUPDWLRQ�

� � 3 U R E OH P

7KHUH DUH WZR SULPDU\ FRPSXWHU�DLGHG VRIWZDUH GH�
YHORSPHQW WHFKQLTXHV LQ FRQWHPSRUDU\ XVH IRU GHYHORS�
LQJ UREXVW DSSOLFDWLRQV� 2QH WHFKQLTXH VXSSRUWV DQG
HQIRUFHV PRGHUQ JUDSKLFDO�EDVHG VRIWZDUH HQJLQHHULQJ
PHWKRGRORJLHV ZLWK D &$6(WRRO� :KLOH &$6(WRROV
GR KHOS ZLWK WKH FRQVWUXFWLRQ RI GLDJUDPV DVVRFLDWHG
VRIWZDUH HQJLQHHULQJ GHYHORSPHQW PHWKRGRORJLHV �H�J�
207� 80/� %RRFK� 6WDWHFKDUWV� HWF��� OLEUDU\ OHYHO
FRGH JHQHUDWLRQ DQG V\QWDFWLF OHYHO HUURU FKHFNLQJ� WKH\
FRPH ZLWK GLVDGYDQWDJHV WKDW SUHFOXGH WKHLU H[FOXVLYH
XVH LQ FULWLFDO VRIWZDUH GHYHORSPHQW� 7KHVH GLVDGYDQ�
WDJHV LQFOXGH DPELJXRXV VHPDQWLFV DQG V\QWD[� LQFRQ�
VLVWHQF\ EHWZHHQ GLoHUHQW GLDJUDPPDWLF YLHZV RI WKH
VDPH V\VWHP DQG WKH LQDELOLW\ WR JHQHUDWH PRUH WKDQ
KHDGHU pOH VRIWZDUH�

7KH RWKHU SULPDU\� EXW OHVV XVHG� WHFKQLTXH LV
FRPSXWHU�DLGHG VXSSRUW RI IRUPDO PHWKRGV� 7KLV WHFK�
QLTXH RYHUFRPHV PDQ\ RI WKH DPELJXLW\ DQG LQFRQVLV�
WHQF\ SUREOHPV DVVRFLDWHG ZLWK WKH &$6(�EDVHG WHFK�
QLTXH� 7KHUH KDYH EHHQ PDQ\ LPSHGLPHQWV WR WKLV DS�
SURDFK� GHVSLWH LWV SRWHQWLDO IRU PRUH YHULpDEOH VRIWZDUH
GHYHORSPHQW� 7KHVH SUREOHPV LQFOXGH WKH �� 7RZHU RI
%DEHO RI VXSSRUWHG ORJLFV� WRROV DQG IRUPDO ODQJXDJHV�
�� ODFN RI GHYHORSHUV DQG HQG�XVHUV WUDLQHG LQ IRUPDO
PHWKRGV� �� ULIW EHWZHHQ PRGHUQ REMHFW�RULHQWHG DUFKL�
WHFWXUH�GHVLJQ DQG IRUPDO PHWKRGV EDVHG FRGH JHQHU�
DWLRQ DQG �� DSSDUHQW QRQ�VFDODELOLW\ RI FXUUHQW IRUPDO
PHWKRGV EDVHG VRIWZDUH VXFFHVVHV FRPSDUHG WR WKH VL]H
RI ODUJH�VFDOH DSSOLFDWLRQV DVVRFLDWHG ZLWK PLVVLRQ FULW�
LFDO VRIWZDUH�

)RUWXQDWHO\� &$6(WRRO YHQGRUV DUH FRQYHUJLQJ RQ D
JUDSKLFDO VRIWZDUH HQJLQHHULQJ PHWKRGRORJ\ VWDQGDUG

WKDW HQFRPSDVVHV WKH SUHYLRXVO\ PHQWLRQHG SRSXODU
GLDJUDPPDWLF PHWKRGV� 7KLV VWDQGDUG LV 80/� ,I D
IRUPDO 80/ V\QWD[DQG VHPDQWLFV ZHUH GHpQHG� RQH
FRXOG EULGJH WKH JDS EHWZHHQ WKH GHVFULEHG FRPSXWHU�
DLGHG VRIWZDUH GHYHORSPHQW WHFKQLTXHV E\ WUDQVODWLQJ
EHWZHHQ WKH ZHOO GHpQHG &$6(WRRO IURQW�HQG WR D IRU�
PDO VRIWZDUH GHYHORSPHQW HQYLURQPHQW� FUHDWLQJ WKH
EHVW RI ERWK DSSURDFKHV� 0\ UHVHDUFK ZLOO WDNH D PD�
MRU VWHS LQ EXLOGLQJ WKLV EULGJH�

� � &X U U H Q W 6 R OX W LR Q V

0HWKRGV IRU GHULYLQJ DOJHEUDLF VSHFLpFDWLRQV IURP
REMHFW PRGHO GLDJUDPV KDYH EHHQ GHVFULEHG EDVHG RQ
207 GLDJUDPV� %RXUGHDX DQG &KHQJ �)LJXUH ��D�
XVHG �� LQVWDQFH GLDJUDPV� IRUPDOL]HG DV DOJHEUDV� WR
SURYLGH D JUDSKLFDO GHpQLWLRQ RI VHPDQWLFV IRU REMHFW
PRGHOV DQG �� WKH RULJLQDO REMHFW PRGHOV� IRUPDOL]HG
DV DOJHEUDLF VSHFLpFDWLRQV� WR SURYLGH DQ DOJHEUDLF GHI�
LQLWLRQ RI VHPDQWLFV�

,W LV DUJXHG WKDW HLWKHU PHWKRG IRU GHULYLQJ VHPDQ�
WLFV RI WKH REMHFW PRGHO ZLOO \LHOG WKH VDPH VHW RI DO�
JHEUDV� VLQFH)LJXUH ��D FRPPXWHV� :DQJ� 5LFKWHU DQG
&KHQJ ODWHU H[SDQGHG WKLV UHVHDUFK WR LQFOXGH G\QDPLF
DQG IXQFWLRQDO PRGHOV� GHpQLQJ D VHW RI VHPDQWLFV IRU
WKH FRPSOHWH 207 PRGHO�

'H/RDFK �)LJXUH ��E� FRQWLQXHG D VLPLODU UHDVRQ�
LQJ SURFHVV� XVLQJ FDWHJRULHV DV WKH VSHFLpFDWLRQ UHS�
UHVHQWDWLRQ� +LV QRWLRQ ZDV WR XVH FDWHJRU\ DUURZV
WR PDS IURP WKH LQWHUQDO VWUXFWXUH EHWZHHQ FDWHJRU\
REMHFWV �REMHFWV LQ WKH FDWHJRU\ RI LQWHUHVW�� VR VSHF�
LpFDWLRQ PRUSKLVPV FDQ PDS WKH D[LRPV LQ D VSHFLp�
FDWLRQ WR WKHRUHPV RI WKH GHULYHG VSHFLpFDWLRQ� +LV
UHVHDUFK XVHG D VLPLODU FRPPXWDWLYH GLDJUDP PHWKRG
WR FKHFN WKH FRQVLVWHQF\ RI UHVXOWV� ,Q KLV UHVHDUFK�
'H/RDFK KDG VKRZQ WKH FRPSOHWHQHVV DQG HrFDF\ RI
KLV 207 IRUPDOLVP DSSURDFK WKURXJK IRUPDO UXOHV GH�
VFULELQJ KRZ WR PDS EHWZHHQ D GHULYHG JHQHULF 207
$67� DQ 2�6ODQJ $67 �2�6ODQJ LV DQ REMHFW�RULHQWHG
YDULDQW RI 6ODQJ� WKH UHSUHVHQWDWLRQ FRPSDWLEOH ZLWK
6SHFZDUH Fq� GHYHORSHG WR FDSWXUH FODVVHV DV DOJHEUDLF
VSHFLpFDWLRQV DQG FODVV UHODWLRQVKLSV DV FDWHJRU\ RS�
HUDWLRQV� DQG 207 VHPDQWLFV� 7KH 207 VHPDQWLFV
'H/RDFK GHVFULEHG ZDV EDVHG RQ IRUPDO DSSURDFKHV
GHVFULEHG IRU WKH VWDWLF REMHFW� IXQFWLRQDO PRGHO DQG
G\QDPLF PRGHO�

)UDVHU GHVFULEHG D IUDPHZRUN RI RUJDQL]LQJ DQG FODV�
VLI\LQJ VWUDWHJLHV IRU LQFRUSRUDWLQJ IRUPDO VSHFLpFDWLRQV
LQWR WKH VRIWZDUH GHYHORSPHQW SURFHVV IRU WKH SXUSRVH
RI�

�� LGHQWLI\LQJ FRPPRQDOLWLHV DQG GLoHUHQFHV EHWZHHQ
VWUDWHJLHV�

object types

formalized as

algebraic
specifications

OMT semantics
instance
diagrams

algebrasalgebraic semantics

formalized as
indirectly
formalized as

 a. Bourdeau/Cheng Approach

b. DeLoach Approach

restricted object,
dynamic,functional
types

formalized as

algebraic/category-based
specifications (axioms)

OMT/dynamic/functional semantics
models of restricted
object, dynamic,
functional types

derived specification (theorems)
specification morphisms

formalized as

Figure 1. Specification Formalization
Methodologies

�� DVVHVVLQJ WKHLU DSSOLFDELOLW\ LQ GLoHUHQW FRQWH[WV�

�� PDNLQJ VHQVH RI FRPSHWLQJ SURSRVDOV IRU XVLQJ IRU�
PDO PHWKRGV LQ WKH VRIWZDUH GHYHORSPHQW SURFHVV�

�� LGHQWLI\LQJ WKH DGYDQWDJHV DQG GLVDGYDQWDJHV RI
HDFK SURSRVDO DQG

�� LGHQWLI\LQJ WKH JDSV LQ SURSRVHG VWUDWHJLHV�

)UDVHU
V WZR�GLPHQVLRQDO IUDPHZRUN LGHQWLpHV IRXU
JHQHULF VWUDWHJLHV� GLUHFW XQDVVLVWHG� GLUHFW FRPSXWHU
DVVLVWHG� WUDQVLWLRQDO XQDVVLVWHG DQG WUDQVLWLRQDO FRP�
SXWHU DVVLVWHG� 7KH GLUHFW FDWHJRU\� L�H� ZKHUH VRIW�
ZDUH GHYHORSHUV PRYH GLUHFWO\ IURP LQIRUPDO WR IRU�
PDO VSHFLpFDWLRQV ZLWKRXW JRLQJ WKURXJK DQ\ LQWHUPH�
GLDWH VHPLIRUPDO UHSUHVHQWDWLRQ� LV FRQWUDVWHG ZLWK WKH
WUDQVLWLRQDO FDWHJRU\� WKDW GRHV XVH DQ LQWHUPHGLDWH
UHSUHVHQWDWLRQ�)UDVHU GHpQHV WZR VXEW\SHV RI WUDQ�
VLWLRQDO FDWHJRULHV� VHTXHQWLDO DQG SDUDOOHO VXFFHVVLYH
UHpQHPHQW� ,Q D VHTXHQWLDO WUDQVLWLRQDO DSSURDFK� WKH
VHPL�IRUPDO VSHFLpFDWLRQV DUH IXOO\ GHpQHG DQG WKHQ
WUDQVIRUPHG LQWR D IRUPDO VSHFLpFDWLRQ� ,Q WKH SDU�
DOOHO VXFFHVVLYH UHpQHPHQW DSSURDFK� WKH VHPL�IRUPDO
DQG IRUPDO VSHFLpFDWLRQV DUH SURGXFHG DQG UHpQHG VL�
PXOWDQHRXVO\� 7KH XQDVVLVWHG FDWHJRU\� ZKHUH DOO WKH
WUDQVODWLRQ LV SHUIRUPHG PDQXDOO\� LV FRQWUDVWHG E\

�

Formalization Support

Formalization Process Unassisted Computer assisted

Direct Kemmerer
Wing

Miriyala & Harandi

Transitional

Sequential

Parallel
Successive
Refinement

Andrews & Gibbins
Kung

Conger et al

Babin, Lustman & Shoval

Fraser, Kumar & Vaishnavi

Cheng et al

Robbins et al

Paredes et al

DeLoach

Proposed Research

Figure 2. Formal Methods Strategies

WKH FRPSXWHU�DVVLVWHG FDWHJRU\� ZKHUH FRPSXWHU�EDVHG
WUDQVIRUPDWLRQ WRROV KHOS WKH GHYHORSHU�

, XVH)UDVHU
V IUDPHZRUN WR FDWHJRUL]H P\ UHVHDUFK
VR , FDQ FRPSDUH WKH PRVW DSSOLFDEOH RI SRUWLRQ WKLV
EURDG EDVH RI UHVHDUFK� 7KLV UHVHDUFK IDOOV LQWR WKH
ERUGHU EHWZHHQ WKH WUDQVLWLRQDO�VHTXHQWLDO FRPSXWHU�
DVVLVWHG DQG WKH WUDQVLWLRQDO�SDUDOOHO VXFFHVVLYH UHpQH�
PHQW FRPSXWHU�DVVLVWHG FDWHJRULHV� &RPSXWHU DVVLVWHG
EHFDXVH RI WRRO VXSSRUW ZLWK WKH WUDQVODWLRQ RI D IRU�
PDOL]HG� FRQVWUDLQHG 80/ WR D IRUPDO ODQJXDJH DQG
ZLWK VWHSZLVH UHpQHPHQW� FRPSRVLWLRQ DQG WKHRUHP
SURYLQJ� 0\ ZRUN LV WUDQVLWLRQDO EHFDXVH RI WKH XVH
RI VHYHUDO OHYHOV RI LQWHUPHGLDWH UHSUHVHQWDWLRQV� YL]�
80/ � 80/ $67�%1) � 80/�6ODQJ � 6ODQJ� ,W
LV VHTXHQWLDO LQ WKH VHQVH WKDW WKH SURFHVV EHJLQV ZLWK D
VHPL�IRUPDO 80/ VSHFLpFDWLRQ� EXW DOVR VXFFHVVLYH UH�
pQHPHQW LQ WKDW , GR SURYLGH IRU FRQVLVWHQF\ FKHFNLQJ
EHWZHHQ SDUDOOHO 80/ YLHZV RI VRIWZDUH GHVLJQ�)LJ�
XUH � VKRZV H[DPSOHV RI)UDVHU
V FODVVLpFDWLRQ� ZLWK
SRLQWHUV WR FRPSDUDEOH UHVHDUFK LQ P\ VHOI�DVVHVVHG
FODVVLpFDWLRQ�

� � $ S S U R D F K

$ 80/ IRUPDOL]DWLRQ SURFHVV RYHUYLHZ LV SRUWUD\HG
LQ)LJXUH �� 7KH DEVWUDFW V\QWD[RI ERWK 80/ DQG
IRUPDO ODQJXDJH GRPDLQ WKHRULHV ZLOO EH PDSSHG WR

GHULYHG 80/)RUPDO 6HPDQWLFV WR SURYLGH D IRUPDO
V\VWHP WKDW ZHOO�IRUPHG QRWDWLRQV FDQ EH SURYHG LQ�
6KRZLQJ WKH PDSSLQJ UXOHV DUH FRQVLVWHQW ZLOO EH DF�
FRPSOLVKHG E\ GHPRQVWUDWLQJ WKDW FHQWHU SRUWLRQ RI
)LJXUH � FRPPXWHV�

Graphical-based
domain theory
(UML diagrams
/structure)

Formal semantics
(rules defining
meaning of UML
components)

Theory-based
object model

(object classes &
relationships)

Domain
specification
(UML AST)

Theory-based
specification
(O-Slang AST/
structure)Translation rules

Equivalence
rules

Formal
specification
(Slang)

Figure 3. UML Formalization Process

7KH 80/ WR IRUPDO PHWKRGV PDSSLQJ ZLOO EH DF�
FRPSOLVKHG E\ WKH VWHSV OLVWHG LQ)LJXUH ��

� � 2E MH F W LYH V � &R Q W U LE X W LR Q V

$V PHQWLRQHG HDUOLHU� WKH JRDO RI WKLV UHVHDUFK LV WR
IRUPDOL]H ERWK 80/� DQG WKH VRIWZDUH GHULYHG IURP
80/� LQ DQ H[WHQVLEOH DQG DXWRPDWDEOH PHWKRG WKDW
VXSSRUWV VSHFLpFDWLRQ FRPSRVLWLRQ DQG &$6(WRRO LQ�
WHURSHUDELOLW\� ,Q SDUWLFXODU� WKH REMHFWLYHV WKDW IROORZ
IURP WKLV JRDO DUH HQXPHUDWHG LQ)LJXUH �� DORQJ ZLWK
P\ SURSRVHG FRQWULEXWLRQV IRU HDFK RI WKH HQXPHUDWHG
UHVHDUFK REMHFWLYHV�

� � 6 X P P D U \

0\ GLVVHUWDWLRQ �DW IWS�FRH�QHX�HGX� �LQFRP�
LQJ�XVHUV�MVPLWK�SDSHU�SV� SURSRVDO UHSUHVHQWV P\
SODQV� DQG DVVRFLDWHG H[DPSOHV� WKDW , SURSRVH WR FRP�
SOHWH IRU P\ DFWXDO GLVVHUWDWLRQ� 0\ SULPDU\ PRWLYD�
WLRQ LV WR EXLOG WKDW IUDPHZRUN WKDW FRPELQHV WKH DG�
YDQWDJHV RI &$6(WRROV ZLWK WKH DGYDQWDJHV RI IRUPDO
PHWKRGV V\VWHPV E\�

�

 Task Name Task Description
1. UML Syntax Construct ASTs of the constrained UML, developed in the UML

 Semantics Task, to build a concise, unambiguous, text form of generic
 UML, independent of any specific CASE tool

2. UML Semantics Construct the formal semantics of UML, derived from the semi-formal
 semantics and relevant UML formal representation research

3. Theory-based Construct an object-oriented, theory-based intermediate representation,
 Intermediate compatible with tools that support theorem proving, software generation
 Representation composition and refinement

4. Mapping Rules Derive formal rules that permit mapping between UML syntax/semantics
 and the theory-based intermediate representation, serving as a completeness
 check and verification of each of these three UML representations

5. Automation Define and implement the automation process, i.e. translate exemplary
 UML forms of a software specification, to representations compatible with

a software tool that utilizes the theory-based intermediate representation

Figure 4. Research Summary Descriptions

s IRUPDOL]LQJ WKH SRSXODU &$6(WRRO JUDSKLFDO VSHF�
LpFDWLRQ ODQJXDJH� 80/�

s WUDQVODWLQJ WKH IRUPDOL]HG 80/ WR D IRUPDO ODQ�
JXDJH XVH E\ D WRRO VXSSRUWLQJ WKHRUHP SURYLQJ�
VRIWZDUH FRPSRVLWLRQ� FRGH JHQHUDWLRQ DQG UHpQH�
PHQW DQG

s SURYLQJ WKDW WKH WUDQVODWLRQ EHWZHHQ WKH JUDSKLFDO
VSHFLpFDWLRQ DQG WKH UHVXOWLQJ IRUPDO WUDQVODWLRQ
LV YLDEOH�

7KLV UHVHDUFK ZLOO FRQWULEXWH WR IXWXUH HYROXWLRQV RI
80/ DQG KHOS EULQJ IRUPDO PHWKRGV LQWR WKH PDLQ�
VWUHDP RI FRPPRQ VRIWZDUH HQJLQHHULQJ SUDFWLFH�

Objective Contribution
1. Development of method to support composition of Development of techniques to ensure
 software specifications, logical theories and consistency of object-oriented specification
 formalizations so that larger entities may be composition (based on forming colimits of
 constructed from smaller components and checked the category-based components derived
 for consistency, completeness and redundancy from UML components)

2. Development of method to support interoperability Formalization of the translation from
 with other CASE tool modeling languages and UML to an algebraic specification
 other formal methods systems

3. Construction of framework to permit formalizations Incorporation of object-oriented and
 to be extended when new features are added to the type extensions to the theorem
 CASE tool modeling language prover/code generation tool

4. Minimization of the human effort needed to create Automation of translation from UML
 formal models & to an algebraic specification

5. Improvement of UML understandability through Construction of formal UML syntax
 unambiguous syntactic diagrams and explicit, and semantic contributions to future
 verifiable semantics versions of UML

6. Development of a technique to reduce errors in the Development of a technique to formally
 translation from graphical specification to software prove correct translation of CASE spec-

ified models to formal methods systems

Figure 5. Contributions Associated with Each
Objective

�

Dependence Analysis for
Software Architectures

Judith A. Stafford
Software Engineering Research Laboratory

Department of Computer Science
University of Colorado, Boulder

judys@cs.colorado.edu

1. Introduction

Software architectures model systems at high levels of
abstraction. They capture information about a system’s
components and how those components are interconnected.
Some software architectures also capture information about
the possible states of components and about the compo-
nent behaviors that involve component interaction; behav-
iors and data manipulations internal to a component are typ-
ically not considered at this level.

Formal software architecture description languages al-
low one to reason about the correctness of software systems
at a correspondingly high level of abstraction. Techniques
have been developed for architecture analysis that can re-
veal such problems as potential deadlock and component
mismatches [2, 9, 12, 17].

In general, there are many kinds of questions one might
want to ask at an architectural level for purposes as varied as
reuse, reverse engineering, fault localization, impact anal-
ysis, regression testing, and even workspace management.
These kinds of questions are similar to those currently asked
at the implementation level and answered through static de-
pendence analysis techniques applied to program code. It
seems reasonable, therefore, to apply similar techniques at
the architectural level, either because the program code may
not exist at the time the question is being asked or because
answering the question at the architectural level is more
tractable than at the implementation level.

This research introduceschaining, a dependence analy-
sis technique for software architectures. In chaining, links
represent the direct dependence relationships that exist in
an architectural specification that, when collected together,
produce a chain of dependencies that can be followed dur-
ing analysis. The traditional view of dependence analysis is
based on control and data flow relationships associated with
functions and variables [1, 5, 8, 15, 19, 20]. This research
takes a broader view of dependence relationships that is

more appropriate to the concerns of architectures and their
attention to component interactions. In particular, both the
structural and the behavioral relationships among compo-
nents expressed in current-day formal architecture descrip-
tion languages, such as Rapide [11] and Wright [2] are con-
sidered.

2. Related Research

This work builds on previous and related work in three
primary areas: traditional dependence analysis techniques,
novel approaches to slicing, and applications of static con-
currency analysis tools to architecture descriptions.

ProDAG [21] is a program dependence analysis tool
set that performs statement-level dependence analysis.
ProDAG allows one to create and access various prede-
fined relationships originally identified by Podgurski and
Clarke [20]. The technique of chaining, the dependence
analysis technique proposed as a focus of this research,
raises these ideas to the architectural level, as well as in-
corporating the notion of structural dependence.

Chaining is similar in nature to Weiser’s concept of pro-
gram slicing [24]. Korel and Rilling recently proposed slic-
ing at the module level as an aid to program comprehen-
sion [10]. Tip has provided a survey of traditional program
slicing techniques [23]. Sloane and Holdsworth [22] sug-
gest advanced applications for slicing, in which the basis
for analysis includes aspects other than traditional data and
control flow. They present a concept of syntactically based
generalized slicing for use in slicing of non-imperative pro-
grams. I agree with the spirit of this work and, in some
sense, am pursuing a similar goal, but in the particular con-
text of software architectures.

Oda and Araki [18] first introduced the concept of static
specification slicing for specifications written in Z. Chang
and Richardson [4] extend this work with the introduction
of techniques for creating dynamic slices. Both these ap-

1

proaches use traditional slicing criteria, whereas this work
involves exploring relationships at the architectural level,
where the concept of a variable is abstracted away.

Zhao, Cheng, and Ushijima [25] propose the system
dependence net (SDN) as a representation of concurrent
object-oriented programs. The SDN is used to find slices
of CC++ (Concurrent C++) programs.

Zhao [26] has recently begun work in the area of depen-
dence analysis of formally described software architectures.
The work described in this initial paper is similar in nature
to my proposal but is preliminary and the details are un-
stated.

Naumovich et al. [17] apply INCA and FLAVERS, two
static concurrency analysis tools used for proving behav-
ioral properties of concurrent programs, to an Ada trans-
lation of a description of the gas station problem that was
written in the Wright ADL [3]. Their approach is to create
a concurrent program that can simulate the intended con-
current behavior of the system. My work is aimed at de-
veloping general dependence analysis techniques that may,
in fact, contribute to the enhancement of the static analyses
already provided by these tools.

Other work relevant to my thesis work includes the work
by Medvidovic [13] on the classification of ADLs, Craigen,
Gerhart and Ralston [7], that of Clarke and Wing [6] on
the state of acceptance of formal methods, and work in the
area of software architecture recovery (e.g. Murphy, Notkin
and Sullivan’s [16] work on reflection models, and the work
being done by Mendonca and Kramer [14] on software ar-
chitecture recovery).

3. Methodology

Initial research has been done in the areas of identifica-
tion of dependence relations among components and ques-
tions that are appropriate and interesting at an architectural
level as well as the development of an architectural level
dependence analysis technique called chaining.

Dependence relationships at the architectural level arise
from the connections among components and the con-
straints on their interactions. These relationships may in-
volve some form of control or data flow, but generally they
involve structureandbehavior. Examples of structural re-
lationshipsIncludes, Import/Export, Inheritanceand exam-
ples of behavioral relationships areTemporal, Causal, In-
put,Output. Both structural and behavioral dependencies
are important to capture and understand when analyzing an
architecture. I am investigating the ways in which architec-
tural dependencies are influenced by the primitive features
of the architecture description language.

There are a variety of questions that should be answer-
able by an examination of a formal architecture descrip-
tion. Several architecture-level dependence related ques-

tions have been identified and will be used as a basis for
validating this work. As examples:

1. Are there any components of the system that are never
needed by any other components of the system?

2. If this component is communicating through a shared
repository, with what other components does it com-
municate?

3. If the source specification for a component is checked
out into a workspace for modification, which other
source specifications should also be checked out into
that workspace?

4. If a change is made to this component, what other
components might be affected?

5. If a change is made to this component, what is the
minimal set of test cases that must be rerun?

6. If a failure of the system occurs, what is the mini-
mal set of components of the system that must be in-
spected during the debugging process?

These questions share the theme of identifying the compo-
nents of a system that either affect or are affected by a par-
ticular component in some way.

In chaining, chains represent dependence relationships in
an architectural specification. Individual chain-links within
a chain associate components and/or component elements
of an architecture that are directly related, while a chain
of dependencies associates components and/or component
elements that are indirectly related. To build a chain one
determines a component or element to use as the origin
of the chain and a relationship type that will help answer
the question at hand. For instance, if the analyst is trying
to discover why an error message was incorrectly emitted,
then the chain would be constructed based on the event that
generates the error message and the caused-by relationship.
The chain that is produced will contain the reduced set of
elements that could have been involved in the generation of
the error message.

A language independent tabular representation for ar-
chitectures has been developed to capture the relationships
among architectural elements. The chaining algorithm is
applied to this representation in order to discover chains of
related component. Chaining has been used to help localize
faults and discover anomalies in descriptions of a version
of the well known gas station example as well as IBM’s
ADAGE avionics system. Both of these descriptions were
written in the Rapide ADL. The gas station example is quite
simple while the ADAGE example is large and complex.

Language constructs of various ADLs will be in-
vestigated in order to determine their implications for

architecture-level dependence analysis. The chaining tech-
nique is being implemented in an analysis support tool
called Aladdin. At the highest level of abstraction, Al-
addin’s architecture is composed of three components, the
language specific table builder, the language independent
chain builder and the user interface. The table builder must
be constructed for each ADL in order to determine the re-
lationships that exist among the architectural elements. The
table builder maps the elements modeled in the specific lan-
guage to relationships known to Aladdin. The chain builder
performs a transitive analysis over the table. The technique
and the tool will be refined over the course of the next year.
Work will also continue in the evaluation of dependence re-
lationships that exist in architectural descriptions and the
effectiveness of chaining in educing these sets of related el-
ements from systems. Other issues to be studied are inter-
level mappings, as well as scalability, modularity and incre-
mentality of chaining.

As with any software engineering research, the ultimate
usefullness of the technique is always a question. With re-
spect to this work, in fact, historically subprogram slices,
which are based on a concept similar in nature to chain-
ing, have not been shown to be significantly smaller than
the original program. Computing statement level slices for
large systems is impractical, whereas architecture-level slic-
ing may prove a good alternative. I intend to compare
the characteristics of large and small systems to determine
whether the level of coupling tends to be lower in larger
systems. If this is true, the savings from applying such tech-
niques will be greatest when applied to large systems.

Historically testing has concentrated on the implemen-
tation of the system, which has meant that it is considered
fairly late in the development process. Eventually I intend
to incorporate chaining into a complete life cycle software
analysis and testing environment. My goals for this research
are less ambitious however and include only the building of
Aladdin which is intended to be used to support other auto-
mated analyses.

4. Evaluation of Results

Evaluation of this work will be accomplished as follows:
I will choose three languages that contain a variety of the

previously identified dependence relationships. I will deter-
mine mappings between relationships modeled in each lan-
guage and the relationships known to Aladdin, then apply
chaining to specifications written in each of the languages.

The questions listed in the Methodology section are im-
portant questions for software engineers. I will obtain,
or create, formal architectural descriptions of systems for
which architecture based questions of these types is appro-
priate. Specific questions will be formulated for each archi-
tecture and Aladdin will be used to answer the questions.

When selecting systems for this part of the evaluation, I will
balance size against complexity so that the chosen systems
are small enough to be understandable and for me to de-
scribed formally in a reasonable amount of time if need be,
yet complex enough to demonstrate the effectiveness of the
tool.

Finally, an experiment will be performed involving the
use of chaining to perform analyses of an architecture of
an implemented, industrial system. Some companies’ soft-
ware development process involves a lengthy specification
and peer review process before implementation is begun.
The goal of this process is to uncover requirements and de-
sign flaws prior to the implementation phase. I will eval-
uate the effectiveness of automated dependence analysis in
accomplishing this same goal. The purpose of the experi-
ment is to show that time can be saved in the development
process through the use of automated dependence analysis.
The steps of the experiment are 1) Write a formal descrip-
tion of the system architecture based on the requirements
documents provided for the system. 2) Determine what
types of problems might be expected of the particular sys-
tem based on a) prior experience of the company, or other
companies who have had experience in the development of
similar systems and b) expected functionality stated in the
requirements documentation. 3) Determine which types of
chains would reveal expected faults. 4) Apply Aladdin to
the formal description of the system. 5) Compare the faults
that are discovered automatically with those that were dis-
covered by the design team during peer review.

References

[1] H. Agrawal, R. A. DeMillo, and E. H. Spafford. An
Execution-Backtracking Approach to Debugging.IEEE
Software, pages 21–26, May 1991.

[2] R. Allen and D. Garlan. Formalizing Architectural Connec-
tion. In Proceedings of the 16th International Conference
on Software Engineering, pages 71–80. IEEE Computer So-
ciety, May 1994.

[3] R. Allen and D. Garlan. A Formal Basis for Architectural
Connection. ACM Transactions on Software Engineering
and Methodology, 6(3):213–249, July 1997.

[4] J. Chang and D. Richardson. Static and Dynamic Specifica-
tion Slicing. InProceedings of the Fourth Irvine Software
Symposium, Irvine, CA, April 1994.

[5] J. Cheng. Slicing Concurrent Programs — A Graph-
Theoretical Approach. Lecture Notes in Computer Sci-
ence, Automated and Algorithmic Debugging, pages 223–
240, 1993.

[6] E. Clarke and J. Wing. State of the Art and Future Direc-
tions. Technical Report CMU-CS-96-178, Carnegie Mellon
University, August 1996.

[7] D. Craigen, S. Gerhart, and T. Ralston. Formal Methods Re-
ality Check: Industrial Usage. 21(2):90–98, February 1995.

[8] S. Horwitz, T. Reps, and D. Binkley. Interprocedural Slicing
Using Dependence Graphs.ACM Trans. Prog. Lang. Syst.,
22(1):26–60, January 1990.

[9] P. Inverardi, A. Wolf, and D. Yankelevich. Checking As-
sumptions in Component Dynamics at the Architectural
Level. In Proceedings of the Second International Con-
ference on Coordination Models and Languages, number
1282 in Lecture Notes in Computer Science, pages 46–63.
Springer-Verlag, Sept. 1997.

[10] B. Korel and J. Rilling. Program Slicing in Understanding
of Large Programs. InSixth International Workshop on Pro-
gram Comprehension, pages 145–152, Ischia, June 1998.

[11] D. Luckham, J. Kenney, L. Augustin, J. Vera, D. Bryan, and
W. Mann. Specification and Analysis of System Architec-
ture Using Rapide.IEEE Transactions on Software Engi-
neering, 21(4):336–355, Apr. 1995.

[12] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Dis-
tributed Software Architectures. InProceedings of the Fifth
European Software Engineering Conference, number 989
in Lecture Notes in Computer Science, pages 137–153.
Springer-Verlag, Sept. 1995.

[13] N. Medvidovic. A Framework for Classifying and Com-
paring Architecture Description Languages. InProceed-
ings of the Sixth European Software Engineering Confer-
ence together with Fifth ACM SIGSOFT Symposium on the
Foundations of Software Engineering, pages 60–76, Zurich,
Switzerland, September 1997.

[14] N. Mendonca and J. Kramer. Developing an Approach for
the Recovery of Distributed Software Architectures. InPro-
ceedings of the Sixth International Workshop on Program
Comprehension, pages 28–36, June 1998.

[15] C. Moore, T. O’Malley, D. Richardson, S. Aha, and D. Brod-
beck. ProDAG: A Program Dependence Graph System.
Arcadia Technical Report UCI-90-25, Department of Infor-
mation and Computer Science, University of California at
Irvine, 1990.

[16] G. Murphy, D. Notkin, and K. Sullivan. Software Reflexion
Models: Bridging the Gap Between Source and High-level
Models. InProceedings of the Third ACM SIGSOFT Sym-
posium on the Foundations of Software Engineering, pages
18–28. ACM Press, October 1995.

[17] G. Naumovich, G. Avrunin, L. Clarke, and L. Osterweil. Ap-
plying Static Analysis to Software Architectures. InPro-
ceedings of the Sixth European Software Engineering Con-
ference, number 1301 in Lecture Notes in Computer Sci-
ence, pages 77–93. Springer-Verlag, 1997.

[18] T. Oda and K. Araki. Specification Slicing in Formal Meth-
ods of Software Development. InProceedings of the Seven-
teenth Annual International Computer Software and Appli-
cations Conference, pages 313–319. IEEE Computer Soci-
ety Press, November 1993.

[19] H. Pande, W. Landi, and B. Ryder. Interprocedural Def-
Use Associations for C Systems with Single Level Pointers.
IEEE Transactions on Software Engineering, 20(5):385–
403, May 1994.

[20] A. Podgurski and L. Clarke. A Formal Model of Program
Dependencies and its Implications for Software Testing, De-
bugging, and Maintenance.IEEE Transactions on Software
Engineering, 16(9):965–979, Sept. 1990.

[21] D. Richardson, T. O’Malley, C. Moore, and S. Aha. Devel-
oping and Integrating ProDAG in the Arcadia Environment.
In SIGSOFT ’92: Proceedings of the Fifth Symposium on
Software Development Environments, pages 109–119. ACM
SIGSOFT, Dec. 1992.

[22] A. Sloane and J. Holdsworth. Beyond Traditional Program
Slicing. In Proceedings of the 1996 International Sympo-
sium on Software Testing and Analysis (ISSTA ’96), pages
180–186. ACM SIGSOFT, Jan. 1996.

[23] F. Tip. A Survey of Program Slicing Techniques.Journal of
Programming Languages, 3:121–189, 1995.

[24] M. Weiser. Program Slicing. InProceedings of the 5th Inter-
national Conference on Software Engineering, pages 439–
449. IEEE Computer Society, Mar. 1981.

[25] J. Zhao. Static Slicing of Concurrent Object-Oriented Pro-
grams. InProc. 20th IEEE Annual International Computer
Software and Applications Conference (COMPSAC’96),
pages 312–320, Seoul, Korea, August 1996.

[26] J. Zhao. Using Dependence Analysis to Support Software
Architecture Understanding.New Technologies on Com-
puter Software, pages 135–142, September 1997.

Dynamic Modeling in Forward and Reverse Engineering of Object-Oriented
Software Systems

Tarja Systä
Department of Computer Science

University of Tampere
P.O. Box 607, FIN-33101 Tampere, Finland

cstasy@cs.uta.fi

Abstract

A prototype tool called SCED is used for modeling the dy-
namic behavior of object-oriented software as scenario dia-
grams and state diagrams. In SCED state diagrams can be
synthesized automatically from scenario diagrams. When
reverse engineering existing software, a parser and a de-
bugger are used for extracting static and dynamic informa-
tion, respectively. The parsed information is viewed as a
nested graph using a reverse engineering environment Rigi.
The debugged information is shown as SCED scenario dia-
grams and state diagrams. Static and dynamic views to the
software can be improved and insured by comparing partly
overlapping informationgenerated by the parser and the de-
bugger.

1. Introduction

Object-Oriented Analysis and Design (OOAD) method-
ologies support the designer in designing, visualizing, and
documenting artifacts in object-oriented software systems.
These methodologies provide notations and guidance to
model both the static structure of the program and the dy-
namic behavior of the objects.

Variations of scenario diagrams and finite state machines
are used in several OOAD methodoligies for dynamic mod-
eling. In The Unified Modeling Technique (UML) [1] the
corresponding diagrams are called sequence diagrams and
statechart diagrams, respectively. In The Object Modeling
Technique (OMT) [2] they are called event trace diagrams
and state diagrams. A scenario diagram shows an object in-
teraction arranged in time sequence during a particular ex-
ecution of the system. Participating objects or classes are
drawn as vertical lines and the interaction between them
with horizontal arcs. A scenario diagram can also have
participants outside of the system border, for example, a

user giving inputs to the system. A state diagram shows
the sequences of states that an object or an interaction goes
through during its life in response to received stimuli, to-
gether with its responses and actions.

SCED [3] is a prototype environment built to support the
dynamic modeling of object-oriented applications. SCED
uses the OMT methodology as a guideline, although the re-
sulting system could be useful for other methods as well,
particularly for methods with a scenario driven approach.
Despite the different purposes of scenario diagrams and state
diagrams, they share common information. Hence, con-
structing one from the other can be partly automated. One
of the basic observations behind SCED is that constructing
scenario diagrams and fusing them into a state diagram can
be supported by automated tools far more than is currently
practiced. In [4], it has been demonstrated how a minimal
state machine, which is able to execute all the given sce-
narios with respect to a certain object, can be synthesized
automatically. This algorithm with few modifications has
been implemented in SCED. On the other hand, scenario di-
agrams can be generated by animating the interaction of ob-
jects througha set of collaboratingstate diagrams. However,
in contrast to conventional animation systems, in SCED one
can add new behavior to the system during the animation
process. This technique could be characterized as design-
by-animation. By using state diagram synthesis and design-
by-animation techniques in turns, the dynamic model can
be refined semi-automatically: each iteration gives a more
comprehensive set of scenario diagrams and more complete
state diagrams.

Several tools are available for reverse engineering the
dynamic behavior and static structure of existing software.
Tools that focus on static aspects of the target system usually
use parsers for extracting the software artifacts and their de-
pendencies. Rigi [5] is an extensible and tailorable reverse
engineering environment. The parsing system of Rigi sup-
ports several programming languages, and new parsers can

easily be added to it. The parsed information can be viewed
as a directed graph using Rigi editor. Rigi also supports pro-
gram slicing and building abstractions for the static views.
These features are used for increasing the understandability
and readability of the views.

The dynamic behavior of software can be extracted, e.g.,
by using a debugger, a profiler, or instrumenting the source
code. Typical behavioral aspects to be extracted are: ob-
ject and thread interaction, exceptions and errors, garbage
collection, memory leaks, etc. A scenario is a natural, de-
scriptive, and powerful way to record the object interaction.
However, scenarios tend to grow rapidly when the target
system gets more complicated. One way to deal with the
scenario explosion is to detect behavioral patterns from the
event trace. The automatic state diagram generation prop-
erty of SCED provides another efficient way to deal with
large event traces, to view the total behavior of a class of in-
terest in a single view, and to examine its run-time behavior
separately from the rest of the system.

2. Forward engineering

Most user interaction with SCED involves two indepen-
dent editors: a scenario diagram editor and a state diagram
editor. At any time while editing the scenario diagram, the
user can select one participatingobject and synthesize a state
diagram automatically for this object using a single menu
command. The synthesis can be done for one scenario dia-
gram only or for a specified set of scenario diagrams. More-
over, scenario diagrams can be synthesized into an existing
state diagram.

When synthesizing a state diagram for an object, each
scenario diagram is traversed from top to bottom from the
point of view of a participant corresponding to that object.
Each received event is mapped to a transition in the state
diagram. Sent events are regarded as primitive actions that
are associated with states. The synthesis algorithm attaches
states to all actions and places at most one action into a sin-
gle state. This is a restriction when OMT state diagram no-
tation is considered. Hence, SCED provides algorithms for
generating OMT state diagram notation for a synthesized
and/or edited state diagram to simplify the state diagram
while preserving its information. The generated OMT state
diagram allows several actions placed into a state, actions
attached to transitions, entry and exit actions of states, etc.

SCED scenario diagram notation differs slightly from
UML or OMT ones. Some new concepts have been added
in order to make SCED scenario notation more expressive.
Like subroutines, a scenario diagram may consist of parts
that have their own aims and characterizations. Such parts
can be placed into a separate subscenario in SCED. These
subscenarios can then be “called” instead of repeating their
contents. SCED scenario notation also lacks some UML se-

quence diagram concepts, and some of the concepts have
different graphical representations. For example, focus-of-
control regions and timing constraints are not included in
SCED scenario notation. The extended scenario diagram
notation of SCED does not cause any major changes to the
synthesis algorithm.

While the state diagram synthesis technique uses a set of
scenario diagrams for generating a state diagram, design-by-
animation technique uses a set of state diagrams for gener-
ating a scenario diagram. The state diagrams can simulate
system behavior, sending events to each other and chang-
ing states according to received events. As long as external
stimuli is not needed and the state diagram set represents a
complete system, the event trace can be automatically gen-
erated. If that is not the case, the event tracing process halts
whenever such undefined events are needed. In these cases
the user helps the event tracing process to go on by provid-
ing the unknown behavior. Hence the resulting scenario dia-
gram contains both automatically generated events and user
defined events.

By using the state diagram synthesis and design-by-
animation techniques in turns, a powerful design tool can
be achieved. The dynamic modeling process is smoothly
changed from a “water fall” type of modeling (first scenario
diagrams, then state diagrams) to a more spiral and incre-
mental way of modeling; the dynamic models for objects
can be constructed semi-automatically by refining the state
diagrams using a growing set of scenario diagrams and ex-
tending the scenario diagram set based on communicating
state diagrams. Each iteration hence gives a more compre-
hensive set of scenario diagrams and a more complete state
diagrams for the objects to be modeled. Each iteration also
increases the degree of automation. The method is espe-
cially suited for modeling the behavior of one new compo-
nent using the known behavior of other, predefined, and pre-
sumably correctly implemented components. For example,
such predefined components could be classes belonging to a
graphical user interface framework.

As a counterbalance to the state diagram synthesis prop-
erty, scenario diagrams can also be desynthesized from the
state diagram: the state diagram is updated by removing
parts that correspond only to the scenario diagram to be
desynthesized. Some support for consistency checking be-
tween scenario and state diagrams is available as well.

3. Reverse engineering

For fully understanding existing software both static and
dynamic information need to be extracted. Static informa-
tion includes typically software artifacts and their relations.
In Java, for example, such artifacts could be classes, in-
terfaces, methods, variables etc. The relations might in-
clude extending relationships between classes or interfaces,

method calls between methods, containment relationships
between classes and methods or variables etc. Dynamic in-
formation contains software artifacts as well. In addition, it
contains sequential information, information about concur-
rency and code coverage, etc.

Reverse engineering is not only applied to old legacy sys-
tems, it always needs to be part of forward engineering as
well. In software development, reverse engineering the cur-
rent static structure of the software helps the engineer to in-
sure that the architectural guidelines are followed, to get an
overall picture of the software, to document the implemen-
tation steps and so on. Reverse engineering the run-time
behavior during the software development phase is essen-
tial. If the system seems to be irregularly unstable, tracing
the bugs is possible only if the history and order of occured
events is known.

The extracted information is not useful unless it can be
shown in a readable and descriptive way. There are basically
three kinds of views that can be used: static views, dynamic
views, and merged views. The extracted information often
consists of a large amount of detailed and low level software
artifacts. Hence good views for showing the information is
not usually enough, abstractions need to be build for making
the views more clear and understandable. Figure 1 shows
the main aspects of the problem.

Figure 1. Different aspects of reverse engi-
neering object-oriented software.

Rigi views static information in a form of a (nested)
graph. It offers a graph editor and provides an extensible set
of layout algorithms and algorithms used for program slic-
ing and analyzing the software. Nested graphs enable show-
ing the static structure of the whole system in a single view,
and provide flexibility in browsing between different levels
of abstractions built for the graph. This is an advantage com-
pared to traditionally used class diagrams.

The state diagram synthesis facility of SCED provides an

efficient way to view the total run-time behavior of one par-
ticipant in a single view. The resulting state diagrams can
then be used in design-by-animationapproach when extend-
ing the design of the target system or designing another sys-
tem that partly uses same classes as the current system.

When both static and dynamic information is extracted,
also merged views can be used. Such views are usually
formed by extending the static view by adding dynamic in-
formation into it. For example, code coverage information
can be shown against a static view by giving weights for the
corrensponding parts in the static view according their run-
time usage. Merging static and run-time information has
several advantages. First, the quality of the view can be in-
sured by combining static and dynamic information. If both
the parser and the debugger produces same source code ar-
tifacts and relations, the engineer can be quite confident that
the artifacts are the right ones and the parser and the debug-
ger works correctly. Second, the differencies between static
and dynamic artifacts can be used to improve the views. For
example, the parser cannot generate all default constructors
if they are not explicitely written in the source code. The de-
bugger can provide this piece of information. Third, merg-
ing information provides extended ways to do program slic-
ing. For instance, based on dynamic information parts that
are not used at run-time can be filtered out from the view.
Slicing can also be made according to example scenarios.

Building abstractions for the views can be partly but not
fully automated. Object-oriented languages support encap-
tulation. Such language structures can be used to build static
abstractions automatically. For example, examing Java soft-
ware by observing classes and their relations might clear the
overall structure of the software, compared to studing it at
the level of class members. In Rigi such abstractions can
be built by collapsing all class method and variable nodes
into a single class node, hence making the graph consider-
ably smaller. Examing the structure in the class level might
still contain too detailed information. The next step could
be collapsing all classes and interfaces into packages, etc.
Object-oriented metrics can also be applied for reasoning
potential subsystems. Such subsystems could be groups of
classes that are highly cohesive and have low coupling with
other classes.

Dynamic abstractions typically differ from static ones.
Building dynamic abstractions usually focuses on defining
behavioral patterns and use cases. For example, initializa-
tion of a dialog might contain a sequence of events that
are executed in a row every time the dialog is opened. In-
stead of repeated the whole event sequence, one single “di-
alog initialization” event could be considered. An exam-
ple of a use case might be “withdrawing money using an
ATM”. Such abstractions simplify sequence diagrams ver-
tically: the number of events is decreased. Sequence dia-
grams can also be simpified horizontally by decreasing the

number of participants. This can be done by using the ab-
stracted static model; sequence diagrams could show inter-
action between high level static compenents.

Building abstractions for merged views can be difficult,
since the differencies between the static and the dynamic
artifacts and their relations are not always complementary.
For example, when overriding super class methods, poly-
morfism causes different method to be called than is actually
written in the source code. Sequential information is often
difficult to show in the same view with static information. In
UML, collaboration diagrams can be used but the diagram
gets difficult to read when the target software gets bigger.
In general, the more information is added into a single view,
the less readable it gets loosing its descritive power. Finally,
building abstractions for merged views gets ambigious be-
cause dynamic and static abstractions usually differ consid-
erably. When dynamic abstractions usually are behavioral
patterns or use cases, static abstractions are subsystems. For
example, most of the classes used by two use cases “with-
drawing money using an ATM” and “paying a bill using an
ATM” are the same and may belong to a single subsystem
“ATM”.

4. Current state of the research and future
work

SCED is used for dynamic modeling in forward engineer-
ing of object-oriented software. The state diagram synthesis
and design-by-animation features raise the level of automa-
tion in construction of the dynamic model. A prototype en-
vironment for reverse engineering Java software has been
built. A Java source code parser is used for extracting static
code artifacts and their relations for the target Java appli-
cation or applet. The extracted information is viewed with
Rigi editor. Rigi environment is also used for building ab-
stractions and for program slicing. A Java source code de-
bugger produces event traces consisting of basic object in-
teractions. These event traces are shown as SCED scenario
diagrams. The total behavior of an object can be viewed as
a synthesized state diagram. Synthesized state diagrams can
then be used in design-by-animationapproach when design-
ing new features for the target system. Some dynamic infor-
mation is added to the static Rigi graph as well. The graph is
extended with code coverage information and artifacts gen-
erated by the debugger but not recognizeded by the parser.
Figure 2 shows the overall structure of the current system.

The emphasis in the future work is on examing how the
dynamic and static views could contribute each other and
when merged views could be used. Furthermore, the func-
tionality of the Java debugger needs to be extended. Cur-
rently, the debugger produces method calls, constructor in-
vocations, and thrown exceptions. However, the user should
be given an option to choose information to be generated

Figure 2. Current solution for reverse engi-
neering Java software.

into the scenario diagrams. For example, in addition to cur-
rently generated events, the set of options might include:
class variable assignments or accesses, if-else structures,
repetition structures etc.

SCED has been built in a research project in co-operation
with the University of Tampere, Tampere University of
Technology, and several Finnish industrial partners. It is
freely available at http://www.uta.fi/�cstasy/scedpage.html
or via ftp (ftp.cs.uta.fi, in directory /pub/sced). Rigi has been
conducted by researchers in the Department of Computer
Science at the University of Victoria. Rigi can be down-
loaded from http://www.rigi.csc.uvic.ca/.

I wish to thank Kai Koskimies and Hausi Müller for su-
pervising my work. The SCED project has been financially
supported by the Center for Technological Development in
Finland (TEKES), the Nokia Research Center, Valmet Au-
tomation, Stonesoft, Kone, and Prosa Software. My cur-
rent research is financially supported by Tampere Graduate
School and Academy of Finland.

References

[1] Rational Software, Unified Modeling Language, version 1.1,
[http://www.rational.com/uml/documentation.html], 1998.

[2] J. Rumbaugh et al, Object-Oriented Modeling and Design,
Prentice Hall, 1991.

[3] K. Koskimies, T. Männistö, T. Systä, and J. Tuomi, “Auto-
mated Support for Modeling OO Software”, IEEE Software,
15, 1, January/February 1998, pp. 87–94.

[4] K. Koskimies and E. Mäkinen, “Automatic Synthesis of State
Machines from Trace Diagrams”, Software—Practice & Ex-
perience, 24, 7, pp. 643–658, 1994.

[5] H. Ml̈ler, K. Wong, and S. Tilley, “Understanding soft-
ware systems using reverse engineering technology”, In The
62nd Congress of L’Association Canadienne Francaise pour
l’Avancement des Sciences Proceedings (ACFAS), 1994.

Vorlon: A Visual Object-Oriented Approach to Parallel Application
Development

Jim Webber (James.Webber@ncl.ac.uk)
Department of Computing Science,

The University of Newcastle upon Tyne, UK

Abstract
Software engineering is about to undergo a
fundamental change. Compelled by ever-expectant
users and the impending problem of Moore’s Second
Law, the reliance on increasingly powerful hardware
to support increasingly demanding software must soon
end. To keep abreast of the demand for increasingly
responsive and functionality rich applications,
software engineers must look to ways of creating
programs which are insulated from the effects of
Moore’s Second Law through the application of
parallelism. The Vorlon programming language
conceals the detail of complicated parallel hardware
by using an abstract, machine independent, visual
approach to developing applications. Development is
underpinned by the object-oriented methodology and
supported by a CASE-style tool that bears the
responsibility for producing parallel code from Vorlon
graphs. Vorlon sets out to demonstrate the
combination of a powerful programming paradigm
(object-oriented) together with the application of
computer graphics can enable engineers to design and
build parallel applications to the same level of
engineering that sequential applications enjoy.

1. Introduction

As the field of computing evolves, society has come to
expect ever more ambitious and powerful software to
support its activities. From the user’s perspective, there
should be no reason why software should not continue
to evolve in terms of functionality and responsiveness.
Software itself has become reliant on increasingly
powerful hardware to deliver functionality in a timely
fashion. Presently, software practitioners are supported
in meeting user requirements by continual substantial
increases in performance from hardware.
Unfortunately, this almost euphoric atmosphere within
which modern software is developed and used may
soon end. Already hardware manufacturers have begun
to experience the effects of Moore’s Second Law as
the price of chip fabrication facilities increases with

each decrease in component size. If hardware follows
an evolutionary rather than revolutionary development
path, it is a reasonable assumption that the economic
repercussions which prevent an continuous
improvement in hardware performance must impact
software at some point in the near future. In effect,
software will be stretched between ever more
demanding users and a reduction in the rate of increase
in power from hardware.
It is paramount that the end user is not aware of the
existence of the “software stretch” and can continue to
enjoy the benefits of increased application
functionality and response. As hardware seems
destined to be unable to provide continual performance
improvement to the user, the burden must fall to the
software community. Whilst at first glance the future
for software practitioners looks somewhat austere,
there is hope in that although hardware will continue to
evolve upwards at a greatly reduced rate, single
processor performance gains are not the only way to
achieve faster computation. One possible solution for
counteracting the software stretch would be the
deployment of multiprocessor computer systems, a
vision already embraced by some within the scientific
computing field[1].

Software
outstrips
hardware
performance

Hardware
outstrips
software
requirements

Past Future

Increasing
Technology

The gap which
software must
“stretch” across
between user
performance
expectation and
hardware power

Hardware Power

User Expectation

Present Day ~2015

Figure 1 – The “Software Stretch”
To date, the majority of parallel computing
applications have not been developed using a software
process. Correspondingly, little parallel technology has

been adopted by mainstream software engineers,
though the field itself remains an active research topic
[2].
The present low level of software engineering
techniques applied to traditional parallel computing
problems is excusable, in that the majority of parallel
computing platforms are currently used to solve
computationally intensive problems whose
functionality is often limited to a single, highly
domain-specific problem. It is entirely feasible that for
such projects, the application of any kind of software
engineering technique would be unnecessary because
the problem domain is well known and solutions can
be largely implemented immediately. Furthermore, as
the goal of such applications is to solve a problem as
rapidly as possible, low-level programming techniques
which contravene “best software practice” are often
used to optimise programs. Moreover, the developers
of such software are rarely interested in creating well-
engineered software. For such users the program is
merely a means to an end, and not an end in itself.
Similarly, software which is rich in functionality has
tended to be computationally less intensive often
performing computation only in response to user
requests, and thus largely obviating the need for
explicit parallelism. This is a situation which will not
continue. As user expectation continues to grow at a
constant rate, the software which users run will
become increasingly computationally intensive. Indeed
there are already several classes of application, notably
image processing, CAD, and gaming which are already
able to utilise vast amounts of processing power.
It is an obvious question then, “Why has software
engineering failed to embrace key parallel
technologies?” The answer is twofold and simple: Up
to now there has been little need to utilise parallel
processing to deliver required functionality to the user,
and perhaps most obviously that parallel applications
are complicated to build, particularly in the absence of
any high-level development models for parallel
applications.

2. Developing Parallel Applications with
the Vorlon Programming Language

Firstly, and probably most fundamentally, the
underlying object-oriented paradigm empowers Vorlon
above levels of its contemporaries [3-6] by offering a
structured method of analysis, design, implementation
and code re-use. In particular, re-use in parallel
applications is of even greater importance than in
sequential applications due to the high costs and
potentially higher failure rate of re-writing parallel
code. To date, no similar system has been built on such
a powerful development paradigm. Instead, visual

systems for developing parallel applications have been
based upon paradigms that are aimed entirely at
supporting the implementation phase of the
development lifecycle, concentrating largely upon on
low-level aspects whilst ignoring higher level
activities.
The Vorlon approach to parallel application
development relies on a visually based environment
within which applications are developed from
inception to release. Vorlon takes a dual-level
approach to developing object-oriented parallel
applications, where each level utilises a hybrid
graphical-textual language for modelling and
programming respectively. At the higher level, there is
the class model, loosely based upon the UML class
model, which provides a repository of types that will
be used within programs. At the lower level, there
exists a method graph that stipulates method
functionality for each method declared in the class
model. In effect, the class model provides type
declarations, and the method models provide the
definitions of those types.
The visual nature of Vorlon enables developers to
visualise parallel execution in a straightforward way.
Programming in two dimensions, as opposed to the
single dimension offered by textual programming
languages, naturally suits parallel programming where
there may be more than one concurrent flow of control
at any given moment. In addition, Vorlon also
separates control flow and computation components of
an application. Unlike textual parallel programming
languages where complicated parallel control flow
mechanisms reduce the clarity of code, all control flow
in Vorlon is expressed graphically. The dichotomy
between computation and control flow ensures that
each remains uncontaminated by the other.

2.1 Analysis and Design: Vorlon Class Models

vectorostream
1

T

Sieve

1

Sieve(counter,int)
~Sieve()
sieve(int,vector)

int value
int stop

Main

vector<int> values
int start
int end

Counter()
void incr()
void decr()
void noMoreSieves()

Counter

int count

Figure 2 – A Typical Vorlon Class Model

The class model in Vorlon is where the developer
performs problem domain analysis and high-level
design stages of the software lifecycle. At this level,

3

there is no mention of parallelism, the user merely
analyses and designs software in accordance with
appropriate object-oriented analysis and design
strategies.
Relations for inheritance, dependency, composition
and uses are available to the developer. Though based
upon the UML class model, Vorlon’s class model
more appropriately reflects the fact that one of the
main axioms underpinning development with Vorlon is
to produce high-performance, parallel applications,
and as such its expressiveness is slightly reduced. The
inclusion of a richer set of modelling primitives would
certainly jeopardise this one fundamental goal and
there has thus been a trade-off between expressiveness
and run-time efficiency. However, it is believed that
the level of support provided will be sufficient for the
majority of applications as it is as expressive as
previous work in the area of object modelling, such as
the Coad-Yourdon, and Booch notations. In addition to
the fact that Vorlon class models are somewhat keener
than their UML equivalents, aspects which reflect the
executable nature of Vorlon programs, such as a main
class-and-object[7, 8] , are also included.

2.2 Implementing Vorlon Methods

ÿþþ üûúùúø ÷úþúöúõ

�ú��

�ú�ö�� ��ûöû�þûø�öû��

üûúùú ��þ�úø

��� üûúùú

����öú�

��ö��ö �úø�þöø

���� � �õú

üû��þú �øú
�ú�øûøö��ö �� �

� �� ��ö�öû� �
� �õú���õûöû���þ

ú�ú��öû�� ûø
�þ��û�ûúõ �ûö�
� ��� �þ�øöú�û���

� �ú�öú �ú�
�� � ú�ö

ÿø� ��
�úö� �õ ��þþ

ü� ��� �� �� �ø
�úö� �õ ��þþ

üû��
� �úö��� ö �
ú�ùû����ú�ö�

ü����ú
� õ�ö� �� ��
ú�ùû�� ��ú�ö�

ü��� �ú
� þ���þ øö�öú�

Figure 3 – A Vorlon Method

The Vorlon method model is somewhat more intricate
than the class model. Method graphs are superficially
similar to dataflow graphs, though unlike dataflow
graphs it is not values that are transmitted along arcs,
but object handles, which may be used to call methods
on objects, and as parameters to method calls. As
several handles to one object may be present on the
graph at any one time, there are concurrency issues
pertaining to the simultaneous method calls on that
object. Such issues are resolved automatically by the
object itself according to a relaxed version of the

active-object model [9]. The relaxation adopted by
Vorlon is that methods which do not update object
state (those identified asconst on within the class
model) are free to execute in parallel, whilst methods
which may update object state must run sequentially.
Each method graph consists of a set of special and
general-purpose nodes connected by arcs which
demonstrate control flow dependencies between those
nodes. Parallel activity, including pipelined and task
parallelism is implicit within the structure of the
graphs, thus freeing the developer from the task of
explicitly instigating parallel activity and
synchronising concurrent processes. The only
exception to this is data-parallel activity which must be
explicitly programmed by the developer using the
appropriate nodes types. In practice, the explicit data-
parallel programming may not prove to be a great
burden on the programmer, as when data-parallelism is
required it is often obvious.
Method graphs are read top to bottom and may be
hierarchically decomposed in a top-down fashion to
aid navigation and limit information density on any
particular graph. Hierarchical decomposition is not a
means by which design is carried out, unlike
contemporary systems which rely only upon top-down
design, top-down decomposition is used only as a
readability aid.
Like the data-flow model, it is the arrival of
appropriate object handles at a node that cause its
execution to begin. Vorlon clarifies exactly which of
the handles arriving will cause the node to execute by
insisting on the simplest of firing rules: all arcs must
present an object handle before execution will
commence. This has the effect of simplifying the
semantics of the nodes, and clarifying the graph in that
conditional execution is based purely on the arrival or
non-arrival of handles, and not on some arbitrary
combination of the two which has been to the
detriment of other similar languages.
Once a node fires, the handles present at the head of
the arcs involved are consumed. Node operation is
generally synchronous in that for each set of input
handles consumed there will be one output produced
after computation has completed, though there exists
an asynchronous method call facility which can be
used when results are not required from method
invocations. Correspondingly, there exists and event
wait node which offers synchronization at the sub-
graph level. The event wait node will delay the
progress of any object handles which flow into it until
a condition on a local data member is met.
Within each of the nodes, there exists a piece of
sequential C++ which determines the actual
functionality of the node. Depending on whether the
node is general or special purpose, the developer is at

4

liberty to change certain aspects of that code. Within a
general-purpose node, any sequential C++ can be
embedded, whilst in the special purpose nodes, only
parameters can be changed. In both cases, Vorlon
automatically binds graph components to objects in the
textual source code, which seamlessly integrates the
textual and graphical components of the application.

3. Conclusions and Further Work

The application of object-oriented programming to
parallelism is not new, nor is the concept that visual
programming can reduce the inherent complexity of
parallel programs. However, supporting the entire
parallel application development process with object-
oriented technology, using visual programming
techniques to abstract away the complexities inherent
within parallel architectures, and wrapping the whole
system within an automated CASE environmentis
novel. It is believed that only by simplifying parallel
programming and absorbing it into a software
engineering process that its use will become accepted,
and Vorlon provides a first attempt at satisfying these
goals. It is the intention to develop Vorlon to a fully
working prototype system and investigate the
feasibility of the approach by tackling complicated
applications normally not undertaken by visual parallel
programming languages whose usage largely
concentrates on algorithms already satisfactorily built
with textual programming languages. Vorlon’s success
thus depends not on the attainment of speedup per se,
but on the more subjective goal of supporting the
developer in constructing properly engineered parallel
software.
Less visibly, there are several ideas for altering the
underlying execution model. One method of achieving
greater speedup relies on the fact that Vorlon
subgraphs declare which local data members are to be
used within their scope. Using the information on
scoping, it may be possible to execute several write-
methods concurrently, without causing corruption.
Under this model, methods that are independent in
terms of the state that they access would be able to
execute in parallel. Whilst the concurrency
mechanisms are more complicated under these
circumstances, there may be improvements in
performance where the level of parallelism exploited is
greater than the cost of implementing those
concurrency mechanisms. Verification of this would
require experimentation, though to the developer, there
is the advantage that the language itself remains
unchanged.
The method model component of the language could
also be made to support the development of fault
tolerant parallel applications without change to syntax

or semantics. Arcs connecting nodes could be made to
be transactional, and nodes themselves could be
automatically replicated without explicit programmer
intervention [10]. Furthermore, as well as describing
normal control flow dependencies between nodes, a
second view could be provided which would show
exceptional program behaviour. The syntax and
semantics of the exceptional behaviour would be
identical to the standard control flow, thus supporting
the construction of robust applications with a single
programming paradigm.
Whilst Vorlon is unlikely to envelop fault-tolerance
and optimistic method execution strategies in the
prototype version, its development model could clearly
assimilate them. It is hoped that future research based
on Vorlon will lead to the development of a robust,
general-purpose language for developing high-
performance applications, which will enable future
software to bridge the user-hardware gap.

4. References

[1] K. Kennedy et al, “A Nationwide Parallel Computing
Environment,” Communications of the ACM, vol. 40, pp.
63-72, 1997.

[2] I. Jelly et al, Software Engineering for Parallel and
Distributed Systems: Chapman and Hall, 1996.

[3] R. S. Allen, “A Graphical System for Parallel
Software Development,” Department of Computing
Science, The University of Newcastle upon Tyne, 1998.

[4] J. W. Harley, “Dataflow Development of Medium
Grained Parallel Software,” Department of Computing
Science, The University of Newcastle upon Tyne, 1993

[5] J. C. Browne et al, “Visual Programming and
Debugging for Parallel Computing,”IEEE Parallel and
Distributed Technology, pp. 7583, 1995.

[6] P. Newton and J. Dongarra, “Overview of VPE: A
Visual Environment for Message-Passing Parallel
Programming,” The University of Tennesse, Knoxville,
Knoxville, Technical Report ut-cs-94-261, 1994.

[7] P. Coad and E. Yourdon,Object-Oriented Design:
Yourdon Press, 1991.

[8] P. Coad and E. Yourdon,Object-Oriented Analysis:
Yourdon Press, 1991.

[9] R. G. Lavender and D. C. Schmidt, “Active Object:
An Object Behavioural Pattern for Concurrent
Programming,” inPattern Languages of Program Design 2,
J. Vlissides, J. Coplien, and N. Kerth, Eds.: Addison-
Wesley, 1996.

[10] O. Babaoglu et al, “Paralex: An Environment for
Parallel Programming in Distributed Systems,” presented at
6th ACM International Conference on Supercomputing,
1992.

Improving Reusability in the Process of Method Engineering

Zheying Zhang
Department of Computer Science and Information Systems

University of Jyväskylä, PL 35, FIN-40351 Jyväskylä, Finland
Email: zhezhan@cc.jyu.fi

Abstract

This research proposal examines how to improve method
component reuse in a customizable CASE environment.
Software reuse is an old topic that began from the end of
the 1960s, while the component reuse in method engi-
neering is relatively new. In my research work, the major
objective is to study method component reusability in
method engineering rather than general software compo-
nent reuse. The research begins with an exploratory
qualitative analysis of possibility and necessity of compo-
nent reuse from both managerial and technical viewpoints
based on a literature review. Afterward, it deals with
method component reuse in a specific customizable CASE
environment called MetaEdit+. The results highlight the
importance of component reuse in customizable CASE
environment.

1. Introduction

Software reuse was first touted as an approach to over-
coming the software crisis at the end of 1960s [1, 2]. At
the beginning, the interest in reusable software stemmed
from the realization that one way to increase productivity
during the production of a particular system is to produce
less software for that system while achieving the same
functionality [2]. In recent years, software reuse sup-
ported by object-oriented programming techniques and
network techniques has become a technology whereby
proven components can be cataloged, identified for reuse
to improve system reliability and to reduce system cost.

Although the study of software reuse covers a wide re-
search area and has achieved few promising results, cur-
rent CASE tools and method engineering environment
rarely provide a methodical and systematic approach to
reuse in information system development. In order to im-
prove component reusability in a customizable CASE
environment, this study takes MetaEdit+, a configurable
CASE and CAME environment [3, 4], as a platform to
study component reusability in the customizable CASE
environment.

This paper is arranged as follows. The necessity of re-
use in customizable CASE environment is first presented
in section 2; the possibilities for reuse are then analyzed
based on four facets of reuse techniques in section 3; fi-
nally, the proposed research questions, feasible research
approaches and expected contributions are outlined in the
last section.

2. Necessity of reuse in CASE environment

Information system development (ISD) is a change
process taken with respect to an object system in an envi-
ronment by a development group using tools and an or-
ganized collection of methods to produce a target system
[5]. Normally, the set of methods is integrated into the
computer aided software engineering (CASE) environ-
ment to support ISD. A method is a set of steps or rules
that define how a representation of an information system
(IS) is derived and handled. To be able to successfully
specify and present methods, we need tools and tech-
niques on another level called method development level
to describe the method’s conceptual structures, which
form a computer aided method engineering (CAME) envi-
ronment. Method engineering is a discipline to design,
construct and adapt methods, techniques and tools for
systems development [6]. It needs support on two levels:
ISD level and information system development methodol-
ogy (ISDM) level. CASE and CAME are two corre-
sponding environments to support these two levels of
method engineering.

A customizable CASE environment provides facilities
for method engineering process to construct homegrown
methods or adapt existing methods to cater for specific
ISD requirements. Normally, a method is made up of sev-
eral components describing its structure, function, be-
havior or other unfunctional aspects. It is obvious that
such a customizable environment stores a large number of
components to specify diverse methods based on the same
semantics. Furthermore, the number of components grows
relatively large due to the continuous method develop-
ment. Reapplying existing components to support the
method specification processes is a way arising spontane-
ously, which introduces the concept of reuse. In general,

reuse is the reapplication of various kinds of knowledge
about one system to another similar system in order to
reduce the effort of development and maintenance of the
other system. In a customizable CASE environment, reuse
can be understood at least on two levels. On ISD level,
the different system development applications can be re-
used by reapplying the knowledge such as architecture
structures, requirements, code, and so on; on ISDM level,
the method components can be reused by adapting their
semantic specifications. In this study, I will make re-
searches on component reusability on ISDM level.

3. Possibility of component reuse

A major impediment to reuse of software has been a
mindset of always thinking in terms of new development
[7]. The organizations do not take reuse into account in
software process and method engineering process as well,
although it is clear that reuse is an effective way to im-
prove the quantity and quality of software product. The
major reason is the deficiency in commercial environ-
ments where class libraries and efficient tools such as
intelligent browsers and application generators can be
integrated to effectively support the reuse process.

Although component reuse is not widely used in
CAME environment, possible techniques supporting re-
use exist. The diverse approaches and techniques can be
found from the literature or industrial applications. Al-
though most reuse processes belong to the system devel-
opment process rather than the process of method engi-
neering, the notions and techniques are still useful. The
different reuse processes share a commonality that is they
all have four basic facets: abstraction, selection, speciali-
zation and integration [1]. If possible tools can be pro-
vided to support the four facets of reuse, method compo-
nent reuse is not a so difficult process. In the following,
the possible techniques supporting component reuse are
discussed based on these four facets.

3.1. Abstraction

Abstraction is closely related to software reuse. Every
abstraction describes a related collection of reusable com-
ponents and every related collection of reusable compo-
nents determines an abstraction. Besides providing a con-
cise description to each component, the issues regarding
component management are too important to be ignored.
Method component categorization and identification is
related to the conceptual framework for IS and IS model-
ling [8-12]. In this proposal, I review briefly to the con-
ceptual framework for IS and reference models [11, 12].

Conceptual Model for IS
The framework developed by Iivari [8-12] is a typical

conceptual framework for IS. It is based on three levels of
abstractions: organizational, conceptual /infological and

datalogical/technical level. These three levels can be re-
garded as the requirement specification, system analysis
and design, and implementation process in ISD. On each
level, the abstractions describe its feature from three as-
pects such as structure, function and behavior.

The similar description for IS also appears in studies of
ontological foundations for IS modelling which describe
the system using things and properties (structure), sys-
tems (function) and dynamics (behavior) [13]. These
three concepts in turn correspond to the three aspects of
abstraction in Iivari’s conceptual framework. Therefore, it
is reasonable and feasible that an information system is
viewed from these three aspects. They can accordingly be
taken as three main viewpoints to category the compo-
nents in the repository. Besides, other more detailed fea-
tures describing each level of IS modelling [9], such as
the goal structure, environment interaction, allocation
aspect and so on, can be taken as the complementary fac-
ets for method component specification.

Reference Model
Besides using conceptual frameworks to specify IS

modelling, reference models are widely used in under-
standing the business process. It describes a frame of ref-
erence for one or more standards. A frame of reference
can be thought of as a set of conceptual entities, and their
relationships, plus a set of rules that govern their interac-
tion [14]. Reference model is usually not a standard
model implemented by each user without modification,
but a data model that usually requires some adaptation to
the specific situation. For example, the reference model is
a blueprint to describe the business process in SAP R/3
system [11, 12]. It is a description of a business domain
acting as frame of reference for one or more standards.
There are five kinds of models: process model, interaction
model, data model, organization model and component
model [11, 12]. The various models or viewpoints con-
tained in the reference model address specific aspects of a
company’s real situation which supports the system de-
velopment more easily and makes the interactions of peo-
ple within an organization more effective. The reference
model for business process provides detailed descriptions
on the level of system development, but it lacks descrip-
tions on the conceptual level, which limits its applications
to a special system. Anyway, the basic concepts of refer-
ence model, combined with conceptual framework, can be
applied to model the framework to support method engi-
neering process. It should improve component reusability
in the method engineering process.

3.2. Selection

Abstracted reusable components are typically stored in
a repository for future locating, comparing and selecting.
Techniques supporting component retrieval have prolifer-
ated in recent years. The most widely used are keyword

search, full text retrieval, structured classification sche-
mata, and hypertext [15]. The first three are traditional
approaches based on the classification of repository ob-
jects. Hypertext is a revolutionary technique based on
navigational metaphors. Component selection can be
achieved in conjunction with a variety of techniques such
as visual presentation, which are useful references to
component reuse in method engineering process.

3.3. Specialization and integration

Often, potentially reusable components only match
partially to the functionality required. Although the intui-
tive approach is to adapt the component found, one might
end up by doing far too much work for adaptation and
integration. There are normally three techniques to handle
the selected components to the proposed requirements
[16-18]: composition-based reuse, generation-based reuse
and derivation-based reuse. These techniques provide
feasible ways to reuse the revised components.

In the four facets of software reuse described above,
abstraction plays a central and oftentimes limiting role in
each of the other facets. In this study, I will concentrate
on constructing conceptual framework and managing the
diverse method components to support method engineer-
ing process by reusing existing method components.

4. Improving component reuse in MetaEdit+

In this section, the research questions, approaches and
expected contributions will be outlined on the basis of a
specific customizable CASE environment, MetaEdit+ [3].

4.1. MetaEdit+: a configurable CASE and CAME
environment

Due to diverse requirements for method development,
improving the quality and productivity of methods has
become an important issue. Accordingly, many meta-
CASE environments, such as MetaView [19], Tool-
Builder [20] and MetaEdit+ [3], have been developed to
aid the process of method engineering and ISD. For ex-
ample, MetaEdit+ is a configurable multi-method and
multi-tool platform for both CASE and CAME. As a
CASE tool it establishes a versatile and powerful multi-
tool environment which enables flexible creation, mainte-
nance, manipulation, retrieval and representation of de-
sign information among multiple developers. As a CAME
environment it offers an easy-to-use yet powerful envi-
ronment for method specification, integration, manage-
ment and reuse [3].

As shown on the left side of Figure 1, MetaEdit+ is
based on three levels of abstraction: ISD level, ISD meta
level and ISD meta-meta level. The most abstract and
highest level is meta-meta level that contains a set of
primitive types needed as a language to specify methods

on meta level. Different methods are specified and pre-
sented using the metamodeling language. Each method is
made up of several method components, for example, an
object diagram to specify the static objects and their rela-
tionships, a state transition diagram to present the behav-
ior of a system in a time dimension, or others to specify
the features of information systems. Different methods
can be selected to support project modelling.

Figure 1 Reuse architecture for method compo-
nents in MetaEdit+

4.2. Component management and reuse

As discussed, component reuse will improve the pro-
ductivity and quality of system development. In MetaE-
dit+, a new method can be constructed and represented by
reusing other methods’ components instead of beginning
from scratch. As shown on the right side of Figure 1, a
new method Mn+1 is made up of three components, two of
which are adapted from the components in M2 or Mn di-
rectly. Such reuse process reduces the efforts and im-
proves the efficiency in method engineering process. Be-
sides, the issue regarding component management should
be taken as a foundation for efficient component reuse.
Component management is a corner stone for the whole
reuse process as discussed above. Being inspired from the
reference models in business engineering process, we
propose categorizing the method components into several
typical sets and constructing reference models to specify
the sets of components, the related components and their
relationships to support method engineering process. As
shown in Figure 1, the reference model takes a role to
manage the components on the meta level of ISD.

Using reference models to support method engineering
is a relatively new topic. The key issue concerns how to
categorize the method components to effectively support
component retrieval and further reuse. The reference
models should present the way by which various models
interact in the process of method engineering. They
should guide engineers from the beginning, including
component selection, evaluation and analysis, to the final
stages of integration. And also, they should provide a
comprehensive view of all the components and their in-

teraction in the repository. The followings are the re-
search questions:
§ How can important features of each component be
identified for classification?
§ What are the relationships among components?
§ What is the suitable way to harmonize the notational
conflicts among the components from different methods
by using reference models?
§ How can user’s requirements be identified to conduct
the whole reuse process?

4.3. Research approaches

In this study, it is indispensable to take system devel-
opment as one of the research methods. Research ques-
tions should be formed in the course of observation such
as survey and case studies, and then to be confirmed and
generalized through analysis, which is called theory
building. Both observation and theory building are the
necessary parts to support the research work. Especially,
theory building takes a central role to guide the
prototyping in system development. In my research work,
three approaches will be applied: observation, theory
building and system development and evaluation.

4.4. Expected contributions

The research work would increase the reuse potential
of previously developed specifications and specialize
them for new system requirements. The proposed frame-
work will organize the method components based on sev-
eral aspects of the component abstraction; the reference
model will present the relationship and interaction be-
tween different component models and their semantic
features. Based on a detailed categorization and descrip-
tion, the components in the repository can be easily re-
trieved and adapted for reuse, which will decrease the
effort to new method development.

It should be noted that although the research work will
be carried out on the base of a specific customizable
CASE environment, the principles and theory can be gen-
eralized and applied in the field of software engineering
and method engineering.

Acknowledgments

I wish to express my sincere gratitude to my supervisor
Professor Kalle Lyytinen and the members of MetaPHOR
project for their encouragement, and guidance to this
work.

References

[1] Krueger, C.W., Software Reuse. ACM Computing Sur-
veys, 1992. 24(2): p. 131 - 183.

[2] Neighbors, J.N., Draco: A Method for Engineering Reus-
able Software Systems, in Software Reusability,1989. p.
295--319.

[3] Kelly, S., K. Lyytinen, and M. Rossi. MetaEdit+: a Fully
Configurable Multi-User and Multu-Tool CASE and
CAME Environment. in Advanced Information Systems
Engineering, 1996: Springer-Verlag.

[4] Lyytinen, K., et al., MetaPHOR: Metamodelling, Princi-
ples, Hypertext, Objects and Repositories. Technical Re-
port TR-7, 1994, University of Jyväskylä, Finland.

[5] Lyytinen, K., A Taxonomic Perspective of Information
Systems Development: Theoretical Constructs and Rec-
ommendations, in Critical Issues in Information Systems
Research, 1987, John Wiley & Sons Ltd. p. 3 - 41.

[6] Brinkkemper, S., Method engineering: engineering of
information systems development methods and tools. In-
formation & Software Technology, 1996. 38(6): p. 275--
280.

[7] Hooper, J.W. and R.O. Chester, Software Reuse: Guide-
lines and Methods. Software Science and Engineering, ed.
R.A. DeMillo. 1991, Plenum Press. 180.

[8] Iivari, J., Levels of abstraction as a conceptual framework
for an information system, in Information System Con-
cepts: An In-depth Analysis, 1989, Amsterdam North-
Holland. p. 323 - 352.

[9] Essink, L.J.B., ed. A Conceptual Framework for Informa-
tion Systems Development Methodologies, 1988, Elsevier
Science Publishers B.V.

[10] Basili, V.R., G. Caldiera, and G. Cantone, A Reference
Architecture for the Component Factory. ACM Transac-
tions on Software Engineering and Methodology, 1992.
1(1): p. 53-80.

[11] Curran, T. and G. Keller, SAP R/3 Business Blueprint:
Understanding the Business Process Reference Model.
1998: Prentice Hall. 288.

[12] Scheer, A.-W., Business Process Engineering: Reference
Models for Industry Enterprises. 1994: Springer-Verlag
Berlin. Heidelberg. 770.

[13] Wand, Y., Ontology as a Foundation for meta-modelling
and Method Engineering. Information and Software Tech-
nology, 1996. 38(4): p. 281 - 287.

[14] Averill, E., Reference Models and Standards. Standard-
View, 1994. 2(2): p. 96 - 109.

[15] Isakowitz, T. and R.J. Kauffman, Supporting Search for
Reusable Software Objects. IEEE Transactions on Soft-
ware engineering, 1996. 22(6): p. 407 - 423.

[16] Ransom, K.J. and C.D. Marlin, Supporting software reuse
within an integrated software development environment.
Proc. ACM SIGSOFT Symposium on Software Reusabil-
ity, 1995: p. 233 - 237.

[17] Wohlin, C. and P. Runeson, Certification of Software
Components. IEEE Transactions on Software Engineering,
1994. 20(6): p. 494 - 499.

[18] Biggerstaff, T.J. and A.J. Perlis, eds. Software Reusability,
1989, ACM Press: New York.

[19] Sorenson, P.G., J.P. Tremblay, and A.J. McAllister, The
MetaView System for many Specification Environment.
IEEE Software, 1988. 14(3): p. 30 - 38.

[20] Alderson, A., Meta-CASE Technology, in Software Devel-
opment Environments and CASE Technology, 1991,
Springer-Verlag: Berlin. p. 81 - 91.

