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About the Doctoral Symposium

The Doctoral Symposium at ASE'98 isintended to bring together PhD students working on foundations,
techniques, tools and applications of automated software engineering technology and give them the
opportunity to present and to discuss their research in a constructive and international atmosphere. The
goals of the symposium are;

e To provide a setting for mutual feedback on participants’ current research, and guidance on future
research directions

e Todevelop asupportive community of scholars and a spirit of collaborative research

«  To contribute to the conference goal s through interaction with other researchers and conference events.

The main part of the Doctoral Symposium was held on October 13, 1998, the day before the main
conference. This day took the form of a one day workshop, in which selected students each presented their
work, with constructive feedback from one another, and from a panel of advisors. The workshop also
included two invited talks on topics relevant to the process of completing a PhD and writing athesis. In
addition to the one-day workshop, participants of the Doctoral Symposium were encouraged to present
their work as posters.

Twenty PhD students from nine different countries submitted papers to the symposium. The submissions
were all of an excellent quality. Of these, seven students were invited to present their work at the
symposium. Due to the high quality of all the submissions, al twenty students were invited to participate in
the symposium and have their paper printed in the proceedings, whether they were presenting or not. By
including al the students, we hope to foster acommunity of research students, and to continue interaction
beyond the conference itself.

I would like to thank the members of the doctoral symposium panel for their work in reviewing the students
abstracts, and for participating in the symposium and providing feedback to the students. The panel
members were Perry Alexander (University of Cincinnati), John Penix (NASA Ames), Michael Lowry
(NASA Ames), and Louis Hoebel (GE Research & Development Center).

Steve Easterbrook
Doctoral Symposium Chair
October 6, 1998
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Softwar e Under standing through Automated Visual Presentations

Rogelio Adobbati
Computer Science Department / Information Sciences Ingtitute
Universty of Southern Cdifornia
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Marinadd Rey, CA 90292-6695
+1 310822 1511
rogelio@is .edu

Abstract

It iswell known that visual presentations can facilitate the
understanding of software. However, effective visual
presentations can be difficult to generate and maintain. In
this paper | describe my work on PESCE [Presentation
Engine for Software Comprehension and Explanation], a
system that addresses this problem via automatic
generation of visual explanations of software. The system
uses a model of what the user knows about the system, the
user's task, and a set of visualization rules to build
consistent visual presentations about software objects.

1. Introduction

The importance of visua representations in
understanding complex systems has been well established
[19]. Inthe particular case of software systems, conceptual
visualization becomes critical due to the absence of
physical parts. As such systems grow in complexity,
textual explanations get more difficult to understand; here
iswhere graphical representations prove their worth.

Static, predefined diagrams have been used as
documentation for complex software systems. The
dynamic nature of software, and the different
characteristics of users trying to perform software
understanding conspire to lessen the utility of static

instead make use of content selection developed by other
members of our research project at |Sl.

Dynamically generating presentations for software
artifacts represents a difficult challenge. First of all,
software artifacts are complex objects of arbitrary
dimension [18], and software understanding requires the
ability to understand these objects from different views
and the ability to map between these views (multiple
dimensionality) [12,15]. Moreover, any selected
information about these artifacts needs to be tailored to fit
different user levels of expertise and tasks [10]. The visual
component adds extra complexity to the problem since the
mechanisms for conceptual comprehension of graphical
depictions are not well understood [17]. In addition,
visually displaying the information introduces extra
implementation constraints due to the limited amount of
graphical resources available at any given time [11].

To address these problems, | have identified certain
key components to automatically generate visual
explanations of software systems[1]. These are;

- Relevant information about software objects

- Amodel of user knowledge of the system and current

user task

- Arepository of visual presentation methods

- A presentation engine/planner to coherently apply

those methods

- Heurigtics and rules for the layout of visual

presentations

diagrams.  Dynamically generated presentations are In order to generate a presentation for a particular user,
therefore highly desirable. the problem has been divided in two main stages:

- Soatial layout of the presentation (the diagram itself)
2. Theproblem - Temporal layout (the animation and diagram view

transitions)

The resulting presentation must show the information
relevant to the user in a series of steps in correct logical
order. Furthermore, it needs to comply with pedagogical
prerequisites and user model restrictions, to achieve a
series of communicative goals.

The task of generating presentations can roughly be
broken down into two steps: select what information to
show (content selection), and how to show it (presentation
generation) [22]. The focus of my work is the latter step; |
am not investigating the content selection problem, but



3. Rdated work

Severa systems have been developed that address the
problem of automatically generating visual presentations.
Some of these systems deal with the visuaization of
mainly quantitative information in the form of tables,
graphs, etc. (e.g. SAGE [13], BOZ [5]). These scientific
visualization systems do not provide the adequate
techniques to represent abstract relationships between
concepts, a feature that proves critica in software
understanding.

PESCE that includes a few simple visualization rules and
presentation methods to generate software explanations for
different users.
| am also developing a formal framework for solving

the spatial and temporal problems mentioned in section 2.
For that purpose, | am investigating what characteristics
make a visual presentation clear and useful; this is a
difficult task since visual representation has been
traditionally more of an art than a science. Nevertheless, |
have been testing different rules for proper presentation
generation based on the work of Tufte [19, 20, 21], Albers
[2], and Bertin [4], and specific methods for graph layout

Other systems generate planned multimodal
presentations from some underlying representation (e.g.
WIP [3], COMET [8]). These systems have been
successfully used to generate instructions for technical
devices, a task that is similar to the explanation of
software artifacts. On the other hand, they have not been
used in the domain of software engineering, and it is not
clear that they could provide the multiple integrated views
needed for a clear understanding of conceptual relations
between software objects.

Stasko’s work to visualize program execution through
automated animations provides tools for understandings 1 The presentation engine
and debugging programs (LENS[14], GROOVE[9]).

Nonetheless, the presentations generated are designed The main component of PESCE is the presentation
towards program debugging; their focus has not been tQ,ngine: its first implementation is written in Perl. This
provide high-level, abstract visualization of the different ,oqule receives relevant content information from
components of a complex software system. , MediaDoc’s explanation engine in response to a particular

Another example is the RIGI system [15], a visual yser query. That information is in a SGML-like format
software understanding tool that provides different ihat can be easily parsed into individual objects and
conceptual views of complex software systems. It doesig|ationships: it also has the advantage of making it easier

not, however, allow different conceptual views of & {4 jnterface PESCE to other software engineering systems
complex system to be shown at the same time and, morgasiges MediaDoc.

importantly, does not provide the display over time of —
multiple diagrams and animated presentations. 1 40 S

inspired by [16, 6].
5. Current implementation of PESCE

The core components of PESCE are a repository of
visualization rules for software objects and relationships, a
presentation engine that applies those rules to generate
visual directives to display some given information about
a software system, and a diagram generator that realizes
those directives on the user’s screen (see figure 1).

Zhou and Feiner's IMPROVISE [23] is a knowledge- EQHE.:- il s ekl
based system that can automatically generate coherent ,—H:, — I
visual discourse using a top-down, hierarchical- ’
decomposition, partial-order planner. Their approach
seems to be suitable to be applied to the software PERCE
understanding problem, even though they have not tried BeE
such an application. m—
-rll-ﬂ- Yrarraks
1_1 -Tmrk.'r:-:-..‘:*‘:"

4. Direction of my work P |
~ T:" :-L.“:,h:f., e ik lien

. . . . i L Hudes
To provide a solution for the presentation generation

problem, | am currently working on PESCErésentation
Engine for Software Comprehension andexplanation).
PESCE is a component of MediaDoc [7], a software
engineering tool being developed at ISI that uses both From the information given, PESCE builds a data
textual and graphical presentations for software structure that will be searched to solve the presentation
explanation. | have completed a first implementation of problem. For each object (or relationship) type, a list of

Figure 1: The MediaDoc Architecture



visualization methods and their constraints is retrieved circular_node(), square_node(), star(), arrows(),
from the rule repository. An element is added to a working network(), state_machine(), venn_diagram(), top_down(),
memory structure containing descriptive information about animated_message(), nested(), and animated_sequence().
the object, the list of methods that may be used to A fair amount of software explanations can be generated
visualize it, and the constraints inherent to each of the from this set of methods, including data flows, control
methods. flows, software dependencies, general architecture of a
Besides constraints related to presentation methods, system or part of it, functional diagrams, message passing

PESCE relies on several global constraints to tailor a  petween objects, state diagrams, object and class
visual presentation to the current user. MediaDoc’s user  hijerarchies, etc.

model is accessed by PESCE and the appropriate global
constraints are pushed into a constraint stack, e.g., color-

based coding should be avoided when generating diagrams —— teeseiy [ Lm—
for color-blind people, etc. The user model stores a set of s crtation -
global constraints for each particular type of user and task; Eelatiorship I‘- bbals ik = Xew (L0%
this information is represented in an SGML-like format, T Xib>Xin (18
giving PESCE the potential to be easily interfaced to Mestedib,a) Wil = Y (L%
different user models outside of MediaDoc. (1 Yik=Yin 4l
T =
Once this linked data structure is completed, it has to c-hl-rﬁln-hl-}

be traversed to generate the visualization of all its

components, paying special attention to their constraints. o part-of b) Vib<¥ou (L8
This is done through a forward-chaining mechanism that Top-downih,a) Yih- Vi o
(2]

backtracks when a method sets a conflicting constraint. TR Xoa A
After all the elements. in the structure are r.eallze'd “Calorit - Colertal |
successfully, the resulting set of visual directives is L
spemally formatte_d an.d sent to a diagram generator Figure 2: PESCE's internal representation of the Part-of
(Diagen) for graphical display. relationship and two of its visualization rules

In choosing a traversal sequence, a heuristic is needed
to try to minimize backtracking. | have chosen a heuristic ~ Rules and constraints have values related to them to
based on the complexity of the data elements and theihelp in the traversal and backtracking process. Rules for a
connections; in my experience, more densely connectedarticular object type are ranked by some arbitrary style
objects will lead to more spatial constraints, which are preference; during the forward chaining, rules are tried in
difficult to resolve once other constraints related to severalthe order assigned. Constraints have an associated
simpler objects have been instantiated. By instantiating thedmportance value to select which one to relax when a
more complex objects first, the level of backtracking is conflict arises; it ranges from O (irrelevant constraint) to 1
reduced up to the simpler ones. The content selection(mandatory constraint). | currently treat that value as a
system can override this heuristic by providing a particular binary (1.0 is mandatory, anything else is non-mandatory),
order of rethorical importance for the software objects to since | am still investigating a principled way to assign the
be visualized, in which case the given order is used toright values to non-mandatory constraints.
guide the search.

5.3 Thediagram generator
5.2 Thevisualization rules
The Diagram Generator, or Diagen, is a Java applet

Visual rules are used by the presentation engine tothat represents objects and relationships through a
generate graphical representations of an object orgraphical layout on aweb page. Diagen is used to provide
relationship (figure 2). Each rule has 3 main components: agraphical element to MediaDoc through PESCE, but has

- The object/relationship type it realizes also been interfaced to several other packages.

- The presentation method to be called in order to  The diagram is generated from an SGML-like
display the object/relationship (including any description (MAP —Markup language forAuthoring
required arguments) Presentations-) provided by the applet server's machine.

- One or more links to spatial (size, position), temporal The applet requests the file from the server (PESCE in
(order, duration), or style constraints for the MediaDoc) and interprets the MAP description to create
presentation method and display the diagram at the client site. Foreground

Methods that have been implemented already or thatobjects and actions can be specified on top of the graph to

are in the process of being implemented include: null(), create time-sequenced animations; the user can



interactively control these animations.
6. Futurework and conclusons

| am building a system that automatically generates a
series of visual representations to form a coherent
explanation about the components of a software system
and their underlying relationships. For that purpose, |
have integrated into the system a user model and a
diagram visualization tool, both developed for MediaDoc,
aset of visual rules derived from current literature, and an
algorithm to instantiate these rules and check their
inherent congtraints. | have been testing several examples
of visual presentations in response of user queries about a
software system.

Currently, | am working on defining a larger, more
general set of visual rules to address a wider range of
software visualization cases, and on testing different
heuristics to efficiently instantiate those presentation rules
and their corresponding constraints for every object and
relationship. | am aso trying to define an evaluation plan
to measure the usability of the visualization rules, and the
scalability of the presentation generation algorithm.
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Odyssey: A Reuse Environment Based on Domain Models

Regina M. M. Braga Claudia M. L. Werner Marta Mattoso
{regina, werner, marta}@cos.ufrj.br
Computer Science Department- COPPE/UFRJ
Federal University of Rio de Janeiro — Brazil

KeyWords: Reuse Software Development Environments, process. To accomplish this, we wlksmain agent tooland
Component-based development, Domain Analysis, Object-domain models specification and evolution todbr
Orientation, Software Architecture, Frameworks, Patterns,specification and knowledge evolution of domains. The
Mediators. domain models are presented to users using a hypermedia
1. Introduction interface. Also, all domain models should be stored in a
Reuse is a promising way to help improving distributed and heterogeneous way using the mediation
software development. One of the most encouraging reuséechnology.
technigues available is the component-based software The main users of the environment are the domain
development. The component-based software developmengngineer, the domain specialist and the software engineer
employs interrelations between preexisting components andesponsible for the development of applications within that
the reuse of components that have been exhaustively testaetbmain. The domain engineer and the specialist use the
to reduce complexity and costs of software developmentenvironment mainly to specify and enlarge the concepts of
[10]. the domain. The software engineer uses it to gain an
To meet this requirement, reuse must be applied tounderstanding of the application domain and to reuse this
all phases during the development process. Therefore, thanderstanding in the specification of his/her application.
domain concepts that were considered as reusable in th€he software engineer interacts with Odyssey through the

initial development phases must be closely related to thanformation Agent- that aids the him/her while getting
code components that will be used during application fymiliar with the domain- and through theérchitectural

:jmplementaﬂon.t A reuieleQV|rt%nmefr;t ?ased olr_1 "’:pStra?l'ransformation Agent which allows the transformation of
omain concepts can help in the efiecive applicalion Oly,q jnitial domain concepts, selected by the information

reuse during software development, since it can F?rov'deagent, to a specific architectural model. These tools use the
methods, tools and procedures for the specification of

services of the mediation layer to access the domain models

¢ knowledae that i ble of add . I th Stored at the domain sources. The mediation layer plays a
0 our knowledge thal IS capablé of addressing a esekey feature in this environment since it provides a uniform

aspects together. The works found in the technical "teraturerepresentation and manipulation for all the domains
[9]’tr[112]’ [13], generally concentrate on one aspect Or y,erefore facilitating the encompassment of the whole
ano er.l der to | th ductivit d red th development cycle. The main objective of this layer is to

h oraer 1o increase the productivity and reduce IN€ 54,y the integration of information from various domains

COSF of sotftware éjee/)((ajlopmenthwgrhpropo_se ; at reus?that are stored in heterogeneous and distributed data
environment, name yssey [17]. The main feature Ofsources, in a way that the user of this information has

Odyssey s its ability to encompass the whole cycle fromycceqs 1o it in a transparent and uniform way. In this aspect,

conceptual models to component implementation. Odyssey presents an advantage when compared to similar

is th Th(:)_mat!n corf1tr|but|ontof fthe (Cj)d_yssey enV|ro?rl;1ent tructures, such as KBSs, that generally use file systems to
5 T com |tna|gndo concepts found in component-baselyq e gata, resulting in redundant information storage and
evelopment and domain engineering. poor performance.

2. An Overview of Odyssey 3. Representation of Domain Models

The main goal of Odyssey is to provide 3.1 - Representation of conceptual models
mechanisms for software development based on the concept In the representation of conceptual models, we must

of reuse. To attain this goal, Odyssey has been conceived "’}%y special attention to the understanding and recognition

a hframework d.Wh?re conc_eptual d TOdQIS sqfftv(x;a;e of concepts and functionalities by the Odyssey users. Thus,
architecturesandimplementation modelare specified for "t of expressing the domain concepts and

previously selec.t(_ad application domg_ms. Thesc_e domaing, ctionalities  are important. The functionalities are
models are specified and further modified according to theimportant because they are the base for reusable

activities defined in the DE method, based on the DEcomponents creation. The domain concepts are equally



important since they provide users with an understanding ofepresentation of architectural models. The generic

the domain as a whole, besides facilitating the architectures- the architectural styles that are relevant for

understanding of the interaction between reusablethe domain- are represented by structures similar to
components internal typesThe main conceptual models Byshmann'’s [2] architectural patterns and also by Gamma’s

used by Odyssey are: design patterns [7].

« Domain Context Diagram: The context diagram Based on the conceptual domain use cases, OO
situates the domain in relation to its scope, limits, models, and on the advice given by the architectural and
relationships with other domains and main actors design patterns, the architectural diagrams are composed.
involved. Its objective is to provide a general overview The main characteristic of this model is that it is partitioned
of the domain and situate it in the organization context; by components. Each component specifies a domain task

« Domain Use Cases and related OO models: Shows hovand how this task can be architected. The connections
the domain concepts are represented in domainbetween the components are also described. So, the main

3.2 - Representation of architectural models

applications. Use Cases are used mainly to capture th@rchitectural models are:

main functionalities of the domain in a way that should .
be possible to derive other OO models. Use Cases can
also help in the identification of the reusable
components that are described in more detail in other
OO models (class diagrams, interaction diagrams, etc),
Several use cases are created in a domain, some are
generic enough and others are specific to certain
domain applications, many are very similar to each
other, other may have some inconsistencies. So, it is
necessary to abstract and merge these use cases,
generating the domain use cases.

Feature Diagram: presents, in an abstract level, the
relationships among the functionalities and concepts of
the domain, trying to explain what are the meanings of.
the main concepts of the domain and its relationships,
that facilitates the understanding of the domain as a
whole, because the OO (types) models related to
domain use cases don't provide this general vision. It
only provides a snapshot of the domain. However, for a
complete understanding of the domain concepts, its
synonyms, restrictions, among others, the feature
model by itself is not enough. Thus, it is necessary that
we have some construction that permits the linking of
these terms and other related issues. This complete
understanding is an essential characteristic to the
development of domain applications. In Odyssey we
use, for this detailed description of the domain
concepts, a structured template that describes the
domain concepts in more detail. This structure is

Services (interfaces) Model of the components: This
model presents each component as a type that
possesses a series of services that are visible by the
other components.

Architectural Collaboration Model between domain
components and support components: This model is
mainly worried with the definition of a global
architecture of the domain, including the interaction
among the components of the domain and support
components that deal with issues such as persistence,
distribution, parallelism, among others. These support
components can be acquired by vendors and could be
shared by several applications of several domains.
Classes model and state diagram for each participant
type of components: the definition of the internal
component design deals with the definition, in greater
detail, of the internal structure of each component. All
the conceptual collaboration models related to the
component are refined. This stage tries "to improve"
the conceptual collaboration models in the architectural
sense, taking into consideration performance and
optimization issues, among others. For that, new types
can be added to the components and the modeling of
the types can also be modified for the production of
more robust, flexible and extensible models. For this, a
base of design patterns can be consulted " to improve”
the modeling of component internal types. In Odyssey,
a tool that uses Case-Based Reasoning (CBR) to aid in
this activity is used.

denominated Ontological Pattern. It is also important to 3 3 _ Representation of implementation models

point out that all these models are connected through a

This model is formed by a set of code components

trace relationship, i.e., if the user is examining a certainthat are related based on a CORBA protocol. The
model, this model has connections with the other components are more general, but they can be specialized

models that describe the same subject, thus the user cagy using techniques such as

parametrization, class

examine the other related models. Odyssey providesspecialization, etc. We use a CORBA protocol for the

automated support for this " traceability ".

interoperability between components. For that, we have two
strategies that can be followed:

i) codification of

We also use the concept of patterns in the components in an OO programming language; ii) use of
legacy components.

! We used the type notion, as it is proposed by the OMG and ODMG

4. Specification and Use of Domain Models (Domain

models, as a reference to an object or class of an 00 model. The type iENgineering)

the object in a high abstraction level

Along with the representation of domain models,



Odyssey must provide tools that allow users to specify andntegration of concepts, preserving the semantics. However,
use these domain models. In this sense, tools for elicitingvhat we can notice is that, in general, the information is
requirements, pattern management, reusable componenttored in a great variety of data sources, using the most
management and others should be provided. varied data models, access mechanisms and platforms.
We briefly describe below each tool used in Odyssey: Further, most times, the domain information is distant
« The pattern and component management system argeographically, resulting in a difficulty on its manipulation.
generic tools that are responsible for the creation, deletion ~ Thus, a possible solution of access to the domain
and modification of the pattern and components. Theinformation is the use of a software layer that allows the
components could also be generated by some type ointegration of different domain databases (distributed
automatic code generators. and/or heterogeneous). A mediation technique [2] may be
« Requirements Elicitation Tool: This tool is responsible used in this case. Mediators are programs that make the
for the acquisiton of domain information. The connection between distributed data bases, heterogeneous
information can be knowledge of domain expert, domain data models, and the users of these data, providing the
documentation and domain applications (legacy domaininformation in an adequate format to the user.
applications must first be submitted to a reengineering  In the context of Odyssey, where the access to domain
process). The main model that is used in the acquisitionnformation is an essential requirement, the use of
process is the use case model. The use case template winnediators allows that this access to information can be
guide the acquisition, helping in the organization of the carried independent of the format and the operational
other models. The domain engineer helps organizing theplatform where this information is stored.

mformauoq in a better way. . , Another interesting feature of the mediators use in
Information Agent Tool: This tool serves as a guide 0 gqgyssey is that the reusable information is naturally
the search for specific domain information. The models gjyiged by domain, which facilitates the search for domain
are interrelated as a hypermedia web. When the usepqncents; since only the domain data will be accessed in a
notifies some interest in a concept, the tool seeks th&earch, Moreover, the use of mediators in the environment
related concepts and other related information such as Usgyntext allows the aggregation of information already
cases, OO models, etc. Thus, besides using a hypermediggreq in legacy databases, without the necessity of
interface, there should be a way to dynamically guide they 5 stormations in the original database format. In order to
navigation. This guidance should show the best paths for,ijitate the correct choice of mediators for a given
navigating and the type of knowledge that better S“it_s,t_hedomain, the Odyssey mediation layer provides specific
needs of the user. It should be based on the initialy,s|0gies for each domain. These ontologies are specified
requirements of the userThis tool uses the concept of by domain specialists [18], facilitating thus the searching
intelligent link, where invoking the link provides {5 ghecific components, since the ontology definition is
additional knowledge (as in rule-based expert systems Oljirectly connected to domain specific concepts. This
a set of related cases) embedded within the informationgi,ctire conforms to the Wiederhold latest idea of

space to guide the selection of destination data. New datﬂqtelligent mediators partitioned by domains [2].
can be added to the domain repository and the intelligenty related Works

link will be capable of referencing the new data. In Related works can be found in the technical
addition, the intelligent links can be invoked based on theiiarature that have something in common with ours.
user objectives. Nonetheless, most of them deals with only a few aspects of

* Architectural ~ Transformation =~ Tool: This = tool, Qgdyssey. None of them treats with the same emphasis each
considering the advice of architectural and designgne of the several activities and technologies that are
patterns, helps in the transformation of the conceptualimportam for the development of component-based
models to architectural components models. Once moreggfiware, as we do in our work.
the technique used is CBR. Despite of CBR use, the Regarding the specification of environments to
software engineer has an active role in the transformatlonsupport component-based software development, there are
since this is not a trivial taks. _ some interesting approaches. The domain modeling in [5]

5. Using a Mediator Layer to Store Domain Models uses Al techniques. By comparing this work with Odyssey,

One of the key questions in our project is how t0 e opserve that it is mostly concerned with the
enable the management of domain models, according to thegpresentation of conceptual models. However, no attention
activities defined in the DE method, in an integrated andig paid to the description of a detailed method for
efficient way. Therefore, for the effective implementation strycturing its knowledge base. Moreover, all the design
of the technologies involved in the specification of enyironments reported until now are specific to predefined

Odyssey, we need a component that allows for thegomains, and cannot be used to store knowledge about

other application domains.

%Since this kind of guidance is directed to application developers The work of Gomaa et al [9] focus on the creation




of a reuse environment based on the automation of its DBhe early stages of the application development process.

method, the EDLCEvolutionary Domain Life Cycjethus

creating a generic environment named KBSKRovledge

Based Software Engineering EnvironmerKBSEE has

some points in common with our work, such as: thelll

adoption of a method to systematize the domain
engineering; and the specification of domain models in|y
various abstraction levels, using mainly the object-oriented
paradigm. However, when we consider the aspect of data3l
storage, KBSEE requires transformations between different
representations and databases. This results in redundagy
information storage and poor performance. Moreover, the
semantic gap is increased. In this aspect, our proposal
differs from Gomaa’s, since it is based on the use of a ]
generic and standard model to store domain models. Thi&
standard is compatible with UML, using the structure of
mediation layer, that leads to a better performance.

7. Final Considerations

In this work, we presented some requirements tog)
support CBD, through the specification of a reuse

environment based on domain models (Odyssey). (7]

The implementation of Odyssey environment is a 9]
great effort. Therefore, there are several people who aré
involved in this project (i.e., two PHD students, three
master students, and one undergraduate student). CurrentIY
we have an operational prototype of the environment that*0!
provides some basic functionalities, such as an OO diagram
editor, designed specifically to deal with Odyssey models[11]
and their traceability, and a tool that helps to configure DE
acquisition process to specific projects. The mediation Iayer[lz]
is under development and the information agent tool is also
being specified.

Odyssey environment brings some interesting [13]
contributions, mainly in the following points:

» Identification of technologies and specification of [14]
components capable of addressing various stages
involved in CBD; [15]

* A DE method to support all phases of the process,

including a viability analysis stage, the purpose of which

is to validate the viability of applying model oriented

reuse in that domain; [16]
Systematic use of high-level OO constructs, such as

patterns, and its insertion into a DE method;

Systematization of the transition between conceptual ang, 7

architectural models.

Approaches that are similar to ours [5] [9] [8] [12],
although presenting concrete results, do not specify all thd!8
aspects addressed by Odyssey when supporting the
component-based development. Such proposals present
results in certain aspects of the component-based
development, but these results are isolated from a wider
context. The innovative approach of Odyssey reduces the
semantic gap between the specification and the software
development. Therefore, with the help of Odyssey, the
software developer is able to apply reuse techniques from

The other approaches instead, generally put emphasis on
just one of the phases of the process.
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Abstract tion of Interactor [12, 20] has been introduced as a way to
structure specifications of interactive systems.

Our field of research is the application of automated rea-  Our field of research is the application of automated rea-
soning techniques during interactor based interactive sys- soning techniques during interactor based interactive sys-
tems development. The aim being to ensure that the detems development. The aim being to ensure that the devel-
veloped systems embody appropriate properties and princi-oped systems embody appropriate properties and principles.
ples. In this report we identify some of the pitfalls of current
approaches and propose a new way to integrate verification o Review
into interactive systems development.

Four major approaches to the formal (automated) veri-
fication of interactive systems have been identified so far
1. Introduction [4, 6]. Three use model checking: Abowd, Wang & Monk
[1] use SMV [19], Paterm T20] uses the Lite tool-set [17],

The widespread use of computers puts increasing de-d/Ausbourg, Durrieu & Roche [9] use a model checking

mands on user interfaces. On the one hand, systems mudglated technique based on Lustre; and one uses theorem
be intuitive and easy to use, on the other hand they must*rVing: Bumbulis [3] uses the HOL theorem prover.
ensure safety and avoid risk. Due to their increasing com- N order to better compare these approaches we have de-

plexity, reasoning about systems behaviour has become infined a framework with which to compare them [6]. It iden-

creasingly hard. This raises the question of how to ensurelil1€S three entities involved in interactiolser, User In-
quality during development. terface and anUnderlying System Interaction proceeds

The use of formal methods has long since been proposedhrough |nteracthnTmechargiﬂmﬁventsanddStatus Phe-
as a solution to this problem. The advantages are two-fold:Nomenaare atomic, ask andModeare used to structure

they enable better design understanding and communicath€ user interface. The framework identifies also three ba-

tion; and mathematical reasoning can be used to validate thé!C tYPES Of properties to be verifielfisibility, Reachabil-
design. This last point is especially useful when we think of |ty,.and'ReI|ab|I|ty. Table 1 summarises the results of the
ensuring system quality, as it allows us to assess the systenrlev'ew in terms of what each approach addresggs gar-
from early stages in the development process. ually addresses-;(), or does not addresgﬁ.

Because reasoning about specifications of complex sys- The conclu§ lons dravyn from the review are two-fold. At
tems will be a complex and error prone exercise in itself, Fhe technological Ieve;l, Itwas seen that both modgl chepk-
ways of automating the reasoning process have been sough g and theorem proving have d|ﬁ|cuIF|es Whgn dealing with
Two well established approaches to automated reasonindhe added complexity introduced by interactive systems.

are model checking [7] and theorem proving. While these A.t the methodological level, there is a'need to'further In-
vestigate what should/can be proved of interactive systems

technigues have been used mainly in the field of hardware” ™ " ted i tools. Previ hes h
verification [8], their application to the verification of reac- using attomated reasoning toois. Frevious approaches have
tive systems in general is also being studied [18] tried to map what could be expressed in traditional verifi-
Despite being a particular case of reactive s;llstems in_cation tools into thénteractive systems spacén order to
teractive systems have specific concepts and concerns. Somake t.he. most 9f automated reasoning we mus_,t tryto do the
novel approaches have been sought. In this context, the nogpposne. identify what properties are interesting and map
' ' them into automated verification tools.
* Jo8 Campos is supported by Fundagara a Gificia e a Tecnologia If we combine the above two concerns, we can identify

(FCT, Portugal) under grant PRAXIS XXI/BD/9562/96. a third issue that needs addressing: when should we do the




. All the above leads to the definition of four lines of work:
Table 1. Summary of the comparison

SMV | Lotos | Lustre | HOL e verification as a support to design — verification
Entities | Users X X X X should be used to inform design decisions rather than
User Interf. ~ v v v to check the final design;
Underl. Sys. ~ X X x
Inter. Events ~ v v ~ e understanding properties — we need to establish a
Mech. | Stat. phenom|| ~ X v ~ framework that enables us to reason about how to go
Modality X v X X from design principles to verifiable properties;
Task ~ ~ X X
Mode x x x x e model checking for interactor specifications — we
Prop. Visibility x v v x need to determine how model checking can be applied
Reachability v v v X to interactor based specifications;
Reliability v ~ ~ ~
e theorem proving for interactor specifications — simi-
larly, we need to determine how theorem proving can
be applied to interactor based specifications;
proofs? — i.e., at what level of abstraction, and at what

stage of development should we be working? Tradition- and the definition of the central proposition of the thesis as:

ally, verification has been used to assess design against ag=ormal verification techniques (automated reasoning tools

solute measures of quality. Regarding HCI, matters are notin particular) can be used to inform design decisions during

so clear cut. Furthermore, if we are using principled design, interactive systems development.

it would be useful to test the design decisions against the A novel approach to the integration of automated veri-

appropriate principles as soon as possible. fication into interactive systems development will be pro-
The challenge, then, is trying to make the best of the posed, and it will be shown how model checking and theo-

available verification technology by means of defining an "€M proving can be used in the context of the approach.

appropriate methodological framework which will allow us

to identify how and when verification should be applied. 4. Progress

3. The Thesis In this section, we briefly describe the work done so far.

In view of the complexity of the systems, and of the lim- 4-1. The role of formal verification
itations of the available technology, the best approach to - _
achieve the goals set forth above is to allow for a flexible ~ We propose that verification should be used to inform

scheme of verification. With this in mind we established design choices during development, and not only as a check
the following objectives: on the correctness of the specified system. The complete

_ -~ . rationale behind this proposal is presented in [5]. Some of

e non commitment to a specific technique — we wantto the points that are made are: that the role properties play
be able to use model checking and theorem proving asgepends not only on the system under consideration, but
appropriate, and not to be tied to a particular verifica- 4150 on the particular specification that is adopted; that it
tion strategy. is difficult to base design decisions on prescriptive theories

« use of partial models — models that try to address alone, so the possibility of early assessment of design de-
all relevant aspects of an interactive system are too cisions would be useful; that seeing the verification step as
complex; instead, we want to use partial models, each® final step in the development process, and trying to use

model focusing on different design aspects (cf. [13]). off the ;helfproperties,.might Iegd us to end up looking at
properties of the specification instead of the system; and

These two points, together with the observation that finally, that the particular specification style adopted influ-
identifying (let alone proving) interesting properties in “fin- ences which verification tools can be used.
ished” models becomes difficult, lead us to the realization = The use of verification to inform design can be achieved
that instead of being used apast factocheck on the qual- by using, not a monolithic specification which tries to en-
ity of the specification, verification should be used to inform compass all of the system, but a set of models each focusing
design decisions during development [5]. This can be doneon particular features of the system. This type of approach
by using partial models that highlight the design features has a number of benefits. Namely: we use verification to
under consideration, and allows us to use the most approvalidate the choices that are made in relation to what is im-
priate verification technique for each model. portant of the system, not its specification; we are able to



apply the most appropriate verification technique in each4.2.2 PVS

case; conversely, we can develop each model in the most ) ] ]
suitable way, regarding the tool that will be used: also, us- PVS comes with a theory that defines the CTL operators in

ing models that focus on properties means we will be able €'MS of theu-calculus. Alternatively we can define tempo-
to verify properties that otherwise would be too difficult to '@l Operators for other logics. In [6, Appendix C] we have
check: finally, we might be able to reuse the proofs when defined the operators for ACTL.

thinking of related properties of different systems. In order to use the model checker, the specification needs
to be structured as a predicate over pairs of states, where
4.2. Using model checking the state type must be finite. We can then use the temporal

operators to write putative theorems. PVS performs BDD

We are exp]oring the use of model Checking in the verifi- Simplification over the finite-state machine defined by the
cation of interactor based specifications. This is being donePredicate over pairs of states, rewrites the temporal opera-

attwo levels: using a traditional model checker (SMV [19]), tors in terms ofu-calculus, and runs the resulting state ma-

and using the:-calculus model checker in PVS. chine andu-calculus predicate in the model checker.
The present approach to model interactors and properties
421 SMV in this way is still tentative. We plan to expand on it in

order to explore how the combination of theorem proving
A compiler has been developed (see [5]) that enables us taand model checking can be used to enhance the analytic
analyse Interactors specifications in SMV. For an introduc- power of both techniques.
tion to Interactors see [12]. In short, interactors are objects
which allow their state to be perceived through some pre-
sentation (cf.visible clause below). Interactors provide a
framework for specification and do not prescribe a particu-
lar notation.

In the present case, we are using Modal Action Logic
(MAL) [21] to specify interactors behaviour. In the input
language accepted by the compiler, an interactor describin
whether a window is mapped on the screen looks like this:

4.3. Using theorem proving

While theorem provers do not have facilities to perform
temporal reasoning, they are better than model checkers
when it comes to reasoning over more information oriented
eatures of systems. At the moment, three possible uses for
heorem proving are envisaged: the validation of the ade-
guacy of perceptual operators as suggested in [11] (see be-
interactor window low), using it as an additional layer over model checking,

attributes and embedding a temporal logic in PVS (c.f. [16]).
mapped : boolean
visible
mapped 4.3.1 Perceptual operators
actions
map, unmap The type of analysis described in [11] has to do mainly with
axioms symbolic manipulation of expressions in order to prove their
1. []= mapped equality. The basic idea is that properties that are proved of
2. - mapped = [map|next(mapped) an abstract specification must also be shown to held at the
3. mapped = [unmap]— next(mapped) level of the concrete presentation of the system. To do this
Besides the clauses shown in the example, the interactoive represent both a model of the abstract specification of
notation allows for three additional claus@sporting (al-  the system and a model of the concrete presentation that is

lows inheritance)faimess (allows the definition of a fair- ~ proposed as PVS theories, and then use PVS to determine
ness expression to be used by SMV), asfine (enableus  if predicates over the abstract model are equivalent to cor-
to give names to expressions as can be done in SMV). Mul-responding predicates over the presentation model.
tiple interactor specifications can be written by organising  In [10] we apply this line of reasoning to the analysis
interactors in a hierarchy. In order to translate these hierar-Of an aircraft air speed indicator, regarding its fitness to as-
chies of interactors into SMV, we use the notion of module. SiSt the pilot in the task of maintaining the correct aircraft
So, each interactor will be a module in SMV. qonﬁguratlé)n dlurm% landing (cf. [1.5]).hTh|re(_a Pl\/S tgelo-f
To test properties of the specification, a further clause ries were developed. One to specify the logical model o

introduced in the | . d . the air speed indicator as well as the logical operators that
was introduced in the languagest. Itis used to specify a 501t the task; another to specify the concrete circular air

CTL formula whose validity is to be verified by SMV. speed indicator, with its needle and speed bugs (which in-
In [5] itis shown how the compiler and SMV can be used dicate at which air speeds the aircraft configuration should

to reason about different design possibilities in the develop-be changed), and the mapping from the logical to the per-

ment of an e-mail client. ceptual level; and finally a third theory which introduces the



conjectures to be verified. As an example we present here [6] Jos Creissac Campos. Formal verification of interactive sys-
one of the conjectures which is analysed in [10]:

configuration_change_task : CONJECTURE
configChangeCheck(abs_asi) =
asiConfigCheck(p(abs_asi))

What this conjecture expresses is that checking for the
need to change the aircraft configuration should yield the [g
same result regardless of the check being done at the log-
ical level configChangeCheck) or at the perceptual level
(asiConfigCheck). p is the mapping from the logical to the
perceptual level.

In [10] we show how performing this type of consistency
check improves our understanding of the specification, and

allows us to identify assumptions about the system which [10

are embedded in the representation but not made explicitly
represented anywhere. As an example, during the proof of
the conjecture above, we were led to realize how, at the pre-
sentation level, the speed bugs implicitly acquire the func-

tion of indicating the aircraft current configuration.

5. Conclusion

(7]

(9]

tens. 1st year qualifying dissertation, Department of Com-
puter Science, University of York, June 1997.

E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic
verification of finite-state concurrent systems using tempo-
ral logic specificationsACM Transactions on Programming
Languages and Systen®§2):244—-263, April 1986.

Edmund M. Clarke and Jeannette M. Wing. Formal meth-
ods: state of the art and future directio®sCM Computing
Surveys28(4):626—643, December 1996.

Bruno d’Ausbourg, Guy Durrieu, and Pierre Roche. Deriv-
ing a formal model of an interactive system from its UIL
description in order to verify and to test its behaviour. In
Bodart and Vanderdonckt [2], pages 105-122.

] G. Doherty, J. C. Campos, and M. D. Harrison. Represen-
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[12]

We have motivated the field of formal (automated) ver-
ification of interactive systems, and identified the main ap- [13]
proaches to the area (see [4] for a more detailed review).

We have identified some of the pitfalls of the current ap-
proaches and proposed a new way to integrate verification14]
into interactive systems development.

We have also briefly described the work done so far (see

also [6, 5, 10] for more details).
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Abstract sis of a formal model, which incorporates the actual (mea-
sured) timing behavior of the application. The model can
This paper describes ongoing work on the automatic then be fully analyzed by existing automated tools like e.g.
construction of formal models from Real-Time implemen- UppPAAL [5].
tations. The model construction is based on measurements In this work, we suggest a semi-automated iterative way
of the timed behavior of the threads of an implementation, to attack the above problems: First an initial implementa-
their causal interaction patterns and external visible events. tion is developed and instrumented with the logging of rel-
A specification of the timed behavior is modeled in timed evant events; then a series of runs are logged and three dif-
automata and checked against the generated model in or-ferent models are synthesized - including a timing diagram;
der to validate their timed behavior. finally the models are analyzed by using an automated real-
time model checker and timing errors are corrected in the
next iteration. The corrections may be validated by a new
1. Introduction iteration.
It is our plan to implement tool support for the above
When de\/e|opingaRea|-Time app"caﬁon it isaprob|em method at a prototype level and to evaluate its feasibil-
to obtain precise information about how much CPU time is ity through realistic case studies. In the present paper we
needed to complete the jobs of the application. A widely presentan preliminary result, i.e. we present our event log-
used way to make schedulability analysis is to use an of-ding tool and the tool for generating timing diagrams. Also,
fline worst case execution time (WCET) calculation. How- We sketch how to derive the models to be used by the model
ever, when several processes (or threads) interact via shareghecker, and we present the preliminary experiences on a
data, this calculation often becomes extremely complicated.non-trivial case study. The prototype tool does not support
This problem has been addressed in [9] using a frameworktesting, but assumes that the log stream it experiences is suf-
where the offline analysis is extended with some applica- ficient for creating a complete model.
tion dependent knowledge and use of priority inheritants A result obtained with the prototype tool, is the au-
protocol. The work described in this paper is directed to- tomatic calculation of the average case execution time
wards automatic collection of application dependent knowl- (ACET). ACET is calculated as the average of a set of exe-
edge, resulting in less manual (and error prone) work to docution times, between f.ex. job startand job end. The ACET
schedulability analysis. therefore becomes a number for how much CPU a particular
Besides schedulability, the logical correctness is also im- job needs. Another result is the deducting of timed behav-
portant to Real-Time applications. A number of formal ior which is pictured in a timing diagram, called execution
tools are already available to support the correctness analtime graph (ETG), this is done to present an overview of
ysis during the design phase of such applications, but therethe interaction pattern between threads. The ETG is in fact
is still a gap between design and implementation - and thisan annotated message sequence diagram, where both syn-
may cause human errors. One approach is automatic codéhronous and asynchronous interaction is pictured. This is
generation, but often the formal method is used only for es-the current state of the prototype tool.
sential algorithms and to model parallel composition. This ~ The work done in by Havelund, Skou & Larsen in [3]
makes it impossible to auto-generate the complete imple-indicates that it is possible to verify time requirements in
mentation. The work described here attempts to bridge thea single processor interleaved system, and in this way an
gap from implementation to design, by automatic synthe- alternative to offline schedulability analysis is obtained.



The work described here is based on a series of tests of amentation model is described in section 3.
industrial process control application, performed on a single
CPU system using the RT-Mach micro kernel. The soft-and  The UPPAAL model checkelis an automatic model
hardware system is described in section 2. In section 3 is achecker working on timed automata (TA). It incorporates
description of the necessary analysis to generate the impleReal-Time clocks as well as discrete analysis. This highly
mentation model, which still remains to be fully defined. specialized tool is described in [5].

Finally, in section 4 is located a plan for the future work.
In figure 1 the dashed line divide application dependent

and independent parts of the system. The dotted line is the
network boundary, where the left part is executed on the
target computer, the right part is spread on the adjacent net-
The target system is a single CPU running an RT-Mach work, All arrows are dataflow. The application exchanges
micro kernel extended with event logging on both kernel gjrections, commands, information and alive signals with
and user level. The software system consist of four parts:the testbed. The testbed is controlled by an operator, ei-
event logging subsystem, submarine test application withther interactively or it can be programmed to operate au-
testbed, ACET analysis prototype tool, and therdAL tomatically. Via the system calls made by the test appli-
model checker. The event logging subsystem, the proto-cation, the kernel generates logging events and ship these
type tool and the BPAAL model checker are application  of the local host. The stream of log events are received
independent, and will analyze any instrumented applicationpy the prototype tool which can store, calculate and dis-
running on RT-Mach. Figure 1 shows the data flow in the pay information about the logging events received. The
software system, but before going through this the main to0| can run in both automatic and manual mode. In manual
components are described individually. mode a designer can take interactive control and generate
The eventlogging subsystéa part of the RT-Mach mi-  ETG diagrams, and job- and thread-level models. The job-
cro kernel, and can log scheduling- and user-events with agnd thread-models are combined with the selected platform
time stamp local to the machine. The event logging subsys-model and an operator defined requirement model # U
tem is developed by the RT-Mach group at CMU, and has paaL. The complete model can now be checked against its

been used by several tools. The system has been customize@quirements by the analyst which is interactive with-U
by the author to connect it to the prototype tool. The log- paal .

ging is fast and best effort, but congestion and packet loss is

2. The RT Test System

handled by dropping affected sub-traces during analysis.

Network

The submarine test applicatios a 4000 lines multi Target bounday
threaded program set. It is a small process control system, Direcions
PR . —~ [ =
where an unmanned submarine is directed from a ship. The &7
interface

submarine system handles a variety of periodic jobs auto-
matically, and it receives sporadic commands from an op-
erator at the command bridge. The application has been
instrumented with a small number of system calls for log-
ging. A testbectontrols the input to the application under
test, making it possible to simulate different types of situa-
tions and errors in the submarine environment. This work is
trying to improve test analysis, by automating critical tasks,
therefore we assume that the application is put through a
sufficiently thorough test. The log information we analysis
is then assumed to come from such test. In out example
the testbed is used to drive the application through a real-
istic series of runs, such that all types of jobs are executed,
and the different input is impressed on the application many
times with random intervals. We will not further elaborate
on what a sufficient test is, as this is not the scope of the
paper.

The ACET analysis prototype taslused to observe the
system. Job knowledge, originating from the log informa-
tion, is used to deduct job-patterns and to book the time
spent to the correct job. How to produce a formal imple-

Information

Figure 1. Dataflow in the experimental sys-
tem.



3. Building the model 3.3. Thread Model

To describe each thread of the application, its ACET and

me-lr—lrt]:ti(;?]mapr:gtz ml(;?filrgqcizfésdt;f a}l'rheglrjclarellji]rirrlrt{e?]rt] Ir:]c?(lji-l interaction with other threads must be modeled. The ACET
. P ' quiremen is needed to model the CPU consumption, and the interac-
contains external observable events and their timing con-

strains.  An implementation model has two levels:  iob- tion patterns between threads are needed because they will
) P : R eS| restrict the computation. From a job trace a skeleton of the
and thread-level. The job level maintains information about

. X ) . interaction can Xtr xamining th f mu-
the period or mean arrival time (MAT) for each job exe- teraction can be extracted, be exa g the use of mu

: ) texes and semaphores, the message passing, and the IPC.
cuted d'urmg te'st. The thread level describes the AC'.ET andA“ job traces with the same skeleton are concentrated into
causal interaction patterns. The platform level contains the

scheduling algorithm if needed one ETG, using the ACET - in place of the WCET - as

i . ' ] the measure for how much CPU a certain job needs. It is
~ The practical analysis performed in the prototype tool oy possible to create an automaton for each thread (in the
is divided in two layers, job analysis where job behavior £TG) and the set of automata will describe the interaction

is described in the job model, and ETG analysis where of the threads when they are working for a certain job.
threads and interaction patterns are described in the thread \yhen this is done for all jobs in the application, the

model. The requirement- and platform-model are more papayior of each thread is completely described, and the
static and will be created manually, once for each applica- thread model will constrain the model checking such that
tion/platform. only the implemented behavior is possible.

3.1. Application assumptions 3.4. Model checking

| der t ke th vsi ¢ that th To complete the description of our Real-Time system, a

"l order 1o make the analysis we must assume tha L:pla'[form model is needed. It will be application indepen-

application is a set' of threads eagh re§pon5|ble for one o dent, but must incorporate the scheduling algorithm. With

iset of_tclearlytdeflﬂned ta}%k(s) I lIITet' I|st2'r,1 S\r; neltwork ' this method it is possible to use different scheduling algo-

ransmit on nEWwork’, or “do caicuiation . We a0 as~ iy, ms and even verify the implementation model on a non-
sumes that the application will solve a job, by using the

: > xisting platform.
same threads in the same sequence for each repetition oef gp

. ) The model checking is done on a requirement model,
the job. Furthermore we assume that a thread, which usesconsisting of a set of timed automata which define the end-

a resource, will use the same resource for ea_ch reDEEtItlor‘to-endtime requirement with respect to the external observ-
of the job. These assumptions enables us to view the work

done by a Real-Time application as a set of skeletons andable events. Figure 2 shows an example model, where a
y PP ' sporadic event must be answered within 1.0 second. A ques-

the ana{y&; described here will synthesis these SkeIemnstionto the model is whether it is possible thvatc-OuT is not
Further it will calculate how often a skeleton is used, how

much CPU it consumes. and what resources it 4ccesses done before t equals 1.0 - or even worse is it possible that
' " MsecIN can happen withouwd se-Out happens afterwards.

3.2. Job Model Msg-In ?

t:=0

To describe the job behavior of an arbitrary Real-Time
application, a connection must be established between the
threads of the implementation and the specification defin- o
ing the job requirements. This is done by instrumentation, Msg-Out !
such that a thread, during execution, will state which job it
is working on, and further log important (external observ-  Figure 2. Requirement model expressed as
able) events. A job trace is created when events are assem- a timed automaton for a time requirement
bled from all the threads participating in the job execution.  where a sporadic event Msc-IN must be an-
For each job type the job model must know the frequency, swered with Msc-Out within 1.0 second. The

and it is found by calculating the period, or MAT and stan-  implementation model is responsible for gen-
dard deviation from time stamping of the job traces. This erating the matching events as the model is
is enough information to produce a job model which will synchronous.

reflect the series of runs the application experienced.



During model checking the job model is responsible for [5]
initiating jobs, the thread model restrict sequences of in-
teraction, the platform model restrict CPU usage, and the
requirement model defined the questions that must be ex-
amined. Finally it is left to the model checker to go through 6
all allowed computations, and possible finding erroneous, [6]
or perhaps more efficient computations, that those actually
seen during test.

(7]
4. Future work
Work is currently done, to automate the generation of the (8]
implementation model. The logging and analysis of traces
is completed, while the interaction patterns remains to be [g]
incorporated. The logging subsystem must reveal detailed
information about mutex access and the type of thread-to-
thread call. In particular the thread-to-thread call is inter-
esting because several different types of synchronous and10]
asynchronous call/messages are possible. A plausible solu-
tion is to create a piece of middleware through which the
applications must call to interact with each other. This en-
ables an application independent logging.

Having seen that it is feasible to log information from a
running Real-Time application, we must address the ques-
tion of how our observation changes the original system. It
is changed in two ways: extra code complexity during de-
velopment of the application, and extra CPU cycles during
execution. The overhead added to the design phase is small
calculated as extra lines of code. The CPU overhead still
remains to be measured, as we are still making changes to
the RT-Mach kernel.

[11]
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Abstract

Change management is an important yet often problematic
stage of the software development lifecycle. Even with

system function and the wider business goals of the
organisation for which the software is being developed. For
these reasons it is important that changes in requirements are
carefully traced, analysed and their effects on the system

substantial knowledge of a system, managing it's change and?Peration, and the wider business goals properly assessed.
evolution is by no means straightforward. This is Change results from the need to take into account new or

particularly true for requirement level entities which are by atered requirements caused by the following factors:

necessity expressed in an abstract manner. For this reason;
most current research has concentrated on later design and’
artifacts where more concrete *
information is plentiful. This paper considers an approach

and support tool for performing change management at the® / >
the Asaresult of the large amount of information and complex

implementation level

requirement level and focuses particularly on
identification and visualisation of change impact.

1 Introduction

It is generally recognised that the process of managing
reguirements change can be expensive and time-consuming
[1]. Indeed, it has been shown that the largest proportion of
reguirement costs can often be traced to change management
[2]. Current change management techniques have focused
largely on design and code level artifacts, rather than
requirements level entities [3,4,5,6,7,8]. The main reason for
this is that the artifacts from the later stages of development
are more concrete and provide developers with more
information required for change management. Ignoring
requirement change management often leads to systems that
fail to meet the real business needs of the system procurer.

The main purpose of this work is to develop a
requirement centred impact analysis technique that allows
engineers to rapidly and accurately enact and assess
proposed changes. In summary, this work aims to:

» Develop an interactive technique for visualising
reguirement change impact

e Investigate how previous change knowledge can be
accommodated in the approach and used to inform on
intended changes

« Develop a mechanism for adapting the technique to
existing requirements engineering methods

*  Produce tool support for the technique

2 The problem
Change is inherent in the development of most software

systems. Software requirements change and evolve even as
they are formulated. These changes can affect both the

Changes in operational environment/application domain
Improved client understanding of the domain or system
The introduction or installation of the system into its
operational environment

Changes in the business objectives of the client

relationships involved, tracking and assessing the effect of a
requirement change can be expensive, time consuming and
error-prone. Current techniques for change management
have aimed to minimise the occurrence of change rather than
accommodate it [9]. By delaying or "freezing" change out of
the development process it is hoped that the problems of
change assessment and integration can be avoided [10]. This
has resulted in systems that do not adequately address real
user needs.

An approach that integrates traceability extraction and
visualisation may provide a powerful alternative to the
current techniques for assessing the impact of change, a
number of which are discussed in the next section.

3 Current impact analysistechniques

In order to perform impact analysis, extensive traceability
information regarding the system must first be obtained.
Traceability links indicate a potential relationship between
the components which make up a system. These
relationships can cause a change in one component to be
propagated to ancther. By collecting these tracesbility
relationships is should be possible to identify the paths of
impact propagation within a given system.

The following list gives a brief description of some of the
techniques currently employed for extracting traceability
information from software systems:

i) Prerecorded traceability analysis approaches - Pre-
recorded traceability information consists of the
accumulated details of relationships between the various
components which make up a system. Such traceability
information is termed ’‘pre-recorded’ because it is
manually identified and collected over the entire
development life cycle of the system and documented in



an appropriate manner by the developers.

ii) Dependency analysis approaches - In dependency
analysis approaches, the relationships between system
components are extracted by analysing pre-existing
development artifacts (e.g. source code, system models,
formal specifications etc.) [11].

iii) Knowledge based approaches - The aim of a knowledge
based approach is to extract traceability information
about system components by analysing the impact effects
of previous change enactions. In order to achieve such
evaluation, data concerning changes made to a system
and their impact effects must first be recorded. Once this
has been done it is then possible to identify traceability
relationships within the system by anaysing this
information.

Probability based approaches - Probability based

approaches aim to provide additional information about

existing component links. These approaches depend upon
estimated probabilities of traceability relationships within

a system. We can assign traceability relationships a

‘conductivity’ (or impact strength [4]) value which

represents the probability that the target of the

relationship is traceable from the source [3].

iv

~

4 Limitations of current practice

Many of the current approaches to traceability extraction
have significant flaws. The following list briefly outlines
some of those deficiencies:

i) Dependency based methods provide detailed analysis for
formalised information, but have little support for
informal, natural language documents (e.g. requirement
definitions) [12].

ii) Although pre-recorded traceability analysis provides
support for al levels of formalism, it does not provide as
in-depth analysis as dependency based approaches due to
the generally vague nature of the pre-recorded
relationships. [12] This is because the informal and loose
definition of much of this observed traceability data
makes important relationships hard to distinguish.
Additionally, the transitive closure algorithm used to
identify possible impacted components in pre-recorded
traceability approaches is inefficient for most non-trivial
systems. This is due to the potentially huge number of
components and vast number of pre-recorded traceability
links between them.

iii) Matrix structures often used to collect traceability
information quickly become very large and are thus
impractical for most non trivia systems. In addition,
matrices do not provide the requirements engineer with
an obvious mechanism for assessing the impact of
proposed changes, but only the propagation of existing
impacts [13].

iv) During the learning stage of knowledge based
approaches, little traceability analysis can take place.
This is because a knowledge base of previous change
integrations must first be built before full knowledge
based analysis can take place.

v) The propagation values used by probability based

approaches are inherently inaccurate due to the fact that
they must either be estimated or are calculated from
metrics with uncertain reliability. Due to the fact that
probability  techniques only provide additional
information about identified impacts, they can not be
used on their own for impact analysis.

vi) No individual method is guaranteed to identify every
single traceability link within a system. In addition to
this, all methods will identify tracesbility links which do
not necessarily imply an impact propagation path.

Taking a wider view of the entire change management and

impact analysis processes, many of these techniques suffer

from the following limitations:

i) The techniques cannot be introduced until the system
integration phase of system development [14]

ii) In a significant number of methods alterations are
restricted, rather than supported by, the change
management scheme [9]

iii) Most of the techniques are dependent on formal, low
level artifacts for impact analysis

iv) They provide little support for managing the evolution of
proposed changes themselves

V) The support provided for visualisation of traceability and
impact information is often minimal

5 Proposed solution

The following sections describe a tool based approach
that is currently under development which supports the ideas
presented in this paper. Figure 1 shows the general structure
of the tool, incorporating all the main operational
components.

N ~
‘ Visualisation ‘

* Propagation trees

‘ Impact Analysis ‘

+ Traceabilty networks

Traceability extraction

Prerecorded
traceability
analysis

Past
experience
analysis

Dependency
traceability
analysis

Probability
and certainty

analysis

Plugabiity|
interface

‘ Method dependant traceability extraction rules ‘

f t

‘ Requirements

Any suitable
method

‘ ‘ Change requests ‘

Figure 1 Structure of the support tool

The impact analysis capabilities which form the core of
the tool are able to operate in any situation where traceability
rich information is available. This implies that, provided
suitable traceability extraction rules are at hand, the approach
described in this paper can be integrated into any existing
requirement elicitation technique.

5.1 Thechange management process
The availability of a change management mechanism for

use at the requirements stage is particularly useful because it
allows change management to be introduced very early on in



the development lifecycle. This means that support is
available for change integration plus conflict and impact
identification while the system is till very young. Such
support will help to prevent the introduction of mistakes and
omissions which could be expensive to fix at a later date. In
addition, continuity is offered by the application of a change
management mechanism that may be extended for use
throughout the entire development life cycle.

Rather than restricting the evolution of components, a
more suitable approach is to alow fluid alterations. This is
supported by a change control scheme which works in the
background assisting, but not constraining evolution. By
allowing finer grained change management we can allow the
system to evolve more naturally, rather than in quantum
version steps.

The approach described in this paper uses the notion of
viewpoints [15] as a mechanism for classifying and
managing both requirements and changes. Fundamentally,
viewpoints allow the explicit identification of the different
perspective of a system from the point of view of interactors,
stake holders, domain entities or other interested parties.

5.2 Assessing proposed changes

An important aim of the tool is to provide a mechanism
for analysing the propagation of change impact through the
set of components representing the system. To facilitate this,
the tool supports the collection and management of many
items of information which may be of use in performing such
analysis. Once this has been done, a number of traceability
extraction mechanisms can be used to identify the potential
propagation paths of the proposed change. Finaly, the results
of this analysis can then be graphically visualised to assist
the engineer in assessing the full potential impact of
proposed changes.

Due to the fact that changes are usually enacted in
batches, there is often a time delay between the initial impact
assessment and final enaction of a particular change. In such
asituation, it is probable that the system on which the change
is to be enacted will have altered during the delay. Thus the
system which the proposed change is actually enacted upon
is not identical to that against which it was analysed.

To compensate for this phenomenon when the impact of a
change is initially assessed, in addition to the system itself,
we must also perform analysis of all currently accepted but
as yet unenacted changes. By considering these changes as
additional system components, it is possible to gain an
analysable 'vision’ of the state of the system after ther
enaction.

5.3 Traceability extraction

The tool employs the following mechanisms for
extracting traceability information about a particular system:
i) Pre-recorded traceability - The support tool employs

mechanisms to allow collection of much pre-recorded

traceability information. This includes items such as the
relationships between the following:
¢ Thedifferent versions of each component

Conflicting and harmonic requirements

The direct impacts of changes

Parent and sub requirement relationships

Functional requirements with overlapping system

functionality

e Congraining relationships between functional and
non functional requirements

ii) Dependency analysis - As an example of the type of
reguirements specification techniques suitable for impact
analysis, the proposed tool employs finite state event
scenario diagrams to represent the desired system
functionality. These semi-formal representations not only
allow developers and potential users to understand and
validate the requirements, but they also alow formal
dependency analysis to take place while remaining at the
abstract level mandated by requirements level analysis.

iii) Past experience analysis - The tool allows the capture of
traceability information regarding the effect of past
alterations which may then be used to shed light on the
potential impact of future changes. The tool supports two
types of past experience analysis:

* Analysis of previously recorded impacts to produce
a list of actual components which could be
impacted by a particular change.

e Analysis of 'Inference cube’ data structures which
record classes of system component and
propagation paths between those classes. This type
of analysis produces a list of classes of component
which could be impacted by a proposed change.
Inference cube analysisis considered in more detail
in the following section.

iv) Inference cube experience analysis - To try to predict the
impact effect of a proposed change, the tool maintains a
classification structure of all previous changes. The two
main methods which exist for deriving impact
predictions from this 'Inference cube’ knowledge are:

» Direct inference - A newly proposed change is first
classified and then the classification structure is
analysed to identify al of the previous classes
impacted by changes of this class. All components
which are members of the identified classes are
then collected and presented as potential impacts.

e Fuzzy inference - This approach is similar to direct
inference except that it makes use of knowledge
relating to the proposal of similar, rather than
exactly matching change requests.

The complete inference analysis technique employed by
the tool is achieved by combining the fuzzy and direct
inference approaches. This allows us to gain the benefits
and overcome the drawbacks of the individual methods.
The use of fuzzy inference techniques contributes a large
data set, while the employment of direct inference
technigques ensures that analysis has sufficient focus.

v) Probability analysis - Each analysis method produces it’s
own estimates of the probability of the propagation of
impact along particular paths based on the individual
metrics of that method.

vi) Certainty analysis - In addition the probability of impact
propagation, the certainty of propagation can also be



calculated. This value indicates the certainty with which
a propagation prediction can be made and is assess by
combining the following two metrics:
e Degree of definition - The degree to which the
components are specified
e Certainty of definition - An estimated level of
confidence in the correctness of the data which is
held
These features ae included to help combat
incompleteness and incorrectness in the specification of
the system and proposed changes.
vii)Hybrid analysis - To overcome many of the problems
associated with individual methods, it is possible to
combine a number of different complementary
techniques to produce a hybrid approach.

5.4 Impact visualisation

Once the potential impact propagation paths have been
identified, this information can be transformed into one of a
number of visualisations. These can then be used to present
and examine the effect of the changes in a graphical manner.
This has the following advantages:

e System end users, procurers and developers may easily
appreciate the full effect of a proposed change. Plain
numerical data can often be hard to interpret, therefore
this can make the job of assessing impact much simpler.

* It becomes possible to perform fast visual comparisons of
aternative evolution paths and change proposals.

» Graphical visualisation allows for direct manipulation
and investigation of the proposed system by members of
the development team.

e The tool alows the user to experiment with changes
proposals and to view their consequences without the
overhead of costly implementation.

It is the intention of this project to perform a wide ranging

comparison of visualisation techniques in order to try and

identify those most appropriate and effective. This will
include the exploration of composite technique as well as
common single paradigm methods.

6 Expected benefits

This project promises to generate the following potential
benefits:
i) Support for the extension of the change management
process to the entire system life cycle
ii) A more fluid change management process, alowing
flexibility of system evolution
iii) Support for impact analysis and management of changes
aswell asfor requirements
iv) Efficient  impact demonstration  and
experimentation via graphical impact visualisation
v) ’Plugability’ of both method and support tool facilitated
by requirements elicitation method independence
vi) Enhanced hybrid traceability extraction mechanism
incorporating:
« Dependency analysis based approaches
¢ Pre-recorded traceability based techniques

change

e Knowledge based analysis and prediction
incorporating fuzzy inference mechanisms

e Supplementary information depth provided by
probability and certainty measures

7 Current state of research

A survey of existing techniques has been performed to
identify useful approaches and techniques which could be
employed in an improved change management process.
These included change management processes, traceability
extraction techniques, impact assessment approaches and
visualisation schemes. Once this survey was complete, the
most appropriate methods were identified for inclusion in the
New process.

At the present time, work on the project is currently
concentrating on the primary implementation of the change
management tool. To assist with implementation, a series of
worked examples and test applications will be used to assess
tool practicality. The results of these studies will allow us to
incrementally improve and enhance both the tool and method
during the development process.
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Abstract prove the following thesis:

The subject of my PhD work is the study of software engi- Thesis: Automated reasoning about explicit
neers’intentionsand the importance of using the informa- information on the intentions of software en-
tion provided by such intentions during the software engi- gineers allows to build more powerful tools
neering (SE) process. More specifically, we will study how for software evolution. (More powerful in the
automated reasoning about explicit software intentions can sense that they can draw stronger conclusions
facilitate many software engineering activities, and soft- by reasoning not only about the software but
ware evolution in particular. also about higher level conceptual information,

i.e. the software intentions.)

. We admit that this thesis is still somewhat too broad and
1. Introduction needs to be made more precise. For example, the kind of
software evolutiorntools we are particularly interested in

Itis generally acknowledged that a lot of softwateday are tools for detecting evolution conflicts. We will try to
is difficult to understand, maintain or adapt, hard to reuse, show that conflict detection tools using intentional informa-
difficult to evolve, and so on [1, 5, 6]. This is partly due to tion can be made more powerful in the sense that they can
the fact that most software contains a lot of hidden assump-detect more conflicts. Also, we need to make more precise
tions. The software reveals ontpwthings will work, and howintentional information willallow to do this.

(implicitly) whatwill happen, but provides little or no in-

formation on thententionsof the engineers that built the 2 |ntentions

software (e.g.why something was constructed in a certain
way). Even when the software does contain such informa-
tion it is most often implicit or described informally in the
software documentation [13].

Our contribution will be to make a first step towards a
kind of intentional ‘semantics’ for software in which this
kind of information can be expressed explicitly, preferably
in a computable and declarative way, and to show how au-
tomated SE tools can use this information to make software
more ‘manageable’. We doot intend to develop a com-
plete formal semantic model, but rather to study the use of
intentions in automated SE tools.

To restrict the scope a bit, we focus on the domain of
evolution of object-oriented (O0) softwdreand set out to

When constructing a software artifact, a software engi-
neer constantly makes important and less important choices
and decisions. These decisions are typically based on and
motivated by various assumptions about the problem do-
main, about the software requirements (functional as well as
non-functional), about other software artifacts with which
the artifact under construction should co-operate or upon
which it should build, and so on...

All these assumptions and the associated intentions of
a software engineer when making decisions, usually are
not captured explicitly in the software. Only the results of
the decisions that were made can be found in the software.
In the best case an engineer writes down his or her inten-
Iwe explicitly use the term ‘software’ throughout this paper instead tions on paper or in the software documentation in natu-

of the word ‘code’ or ‘program’, because we believe the same research ral language, or uses certain conventions, software patterns

problems and solutions are also relevant to artifacts in other phases of the

software life cycle such as requirements, architecture, analysis and designdomains [12] and because they pose some non-trivial and important
2We choose evolution and OO because of our background in theseproblems.




or style guidelines from which some intentions can be de- assumptions should be made explicit in the software, prefer-
rived implicitly. (For example, using a strategy design pat- ably in a structured and machine-processable form, to facil-
tern might express a designer’s intention to make an impor-itate change management during software evolution [8]. He
tant algorithm easily replaceable by a variant [4], or “best argues that at all stages of the software life cycle,“attempts
programming patterns” might be used to communicate pro- must be made to recognize, capture and record assumptions,
gramming intentions [2].) Most intentions however, e.g. whether explicit or implicit, in design and implementation
why software was constructed in a certain way, are difficult decisions, as must any dependencies and relationships be-
or impossible to extract from the software. (As opposed to tween them”.

information onwhatthe software does, arttbw it works, Therefore, we assume the following research hypothesis.

which usually can be derived implicitly or explicitly from

the software.) Therefore, we think there is a need for mak- Research hypothesis:  Many SE activi-

ing these intentions explicit. ties (such as software maintenance, adaptation,
Intuitively, we could define a software intention as any evolution, reuse, re-engineering, reverse engi-

kind of information on the purpose of the software, that neering,...) benefit by intentional information

is not explicitly contained in the software itself. In other of the software engineer.

words, an intention is a meta description of the software ) ] ) ]
that motivates why the software is constructed in a certain W& motivate this research hypothesis, by arguing that
way. But not any meta description is a software intention: SOMe of the technical problems that hinder these activities

only those meta descriptions that link software artifacts to c0uld be solved more easily if one would have more inten-
the ‘hidden assumptions’ are software intentions. tional information of the software engineer. Some of the

technical problems are:

Definition: A software intention is a meta de-
scription of the software that links software ar-
tifacts to the ‘hidden assumptions’ made by a

1. understandirfgthe purpose of software artifacts, as
well as why they were constructed in a certain way;

software engineer (about the problem domain, 2. understanding the dependencies and relationships be-
about the software requirements, about the pur- tween different software artifacts:

pose of related and co-operating software arti-

facts,...). 3. detecting and solving conflicts when changing, adapt-

ing, evolving or reusing software artifacts;

One of the reasons why software engineers are unable

to adequately document their intentions is that SE tools and
notations provide insufficient support for expressing inten-
tions in a more explicit, formal and disciplined manner. We
feel that such information can play an important role to fa-
cilitate SE activities in general, and software evolution in

4. traceability of software artifacts.

Itis clear that the first two problems immediately benefit
by more intentional information. Solving the second prob-
lem is important to be able to assess the impact of mak-

ficular, H ithouah £ intenti ing changes to certain software artifacts on the other soft-
particular. However, although we wantto express Intentions, a e artifacts. The third problem is a special case of the
in a formal way, we want a notation that is simple enough

. ) . more general problem afompliance checkingchecking

to be u'_sed and accepte_d in practice, and easy to be_m_an'Rivhether some evolved software artifact conforms to what is
ulated in tools. We claim that a need exists for bundm.g. expected from it, i.e. does it work together correctly with
SE tools that can reason automatically about such eprICItother software artifacts, are the assumptions that it makes

mtentlonls.. . h h and that are made about it valid, does the software artifact
Our claim is supported, amongst others, by [9], where \oshect the original intentions, ... 2 It should be at least

it is argued that software evo_lutl.on currently suffers from 4 jitively clear that compliance checking can benefit by
a lack of _|ntent|f)|_"|al mformatlon_. Wh?”_ the original soft- more intentional information. Finallyraceabilityproblem
ware engineers’ intentions are insufficiently documented, comes down to%justifying the existence of a given result by

their conltinuedri]nyolvemint is Eeﬁded to enable later engi-tymg it back to the stated goals and objectives” [11]. This
neers to learn their way through the software system and 0y, mation could be expressed by explicit intentions.

better understand the assumptions behind the system's de-\ye il try to validate this research hypothesis in prac-
sign. This may be too time-consuming or simply impossible .o showing that automated reasoning about software

when the original software engineers are not available any-j,antions does not only make it possible and easy to build
more Lehmap also agrees that software engineers’ hidden

4Although we think that software intentions can clearly contribute to
3Lehman studies thiaws of software evolutioand their implications the research domain of software comprehension, our focus will be more
to improve software processes dealing with evolution. on the use of intentions to enhance software evolution tools.




automated SE tools (and tools for checking evolution con-  Intentional information on which software artifacts are
flicts in particular), but also allows us to draw stronger con- grouped according to which classifications and what the de-
clusions than without that information. This immediately pendencies between the different classifications are could
proves our thesis as well. be used in tools for dealing with software evolution con-
flicts. For example, if there is a conceptual dependency
between two classifications, one could expect that this de-
pendency is reflected in some way by the artifacts that are
contained in those classifications. If this dependency struc-
We will follow a “bottom-up approach with a top-down  ture is accidentally invalidated upon evolution, there is an
vision”. Our ultimate goal is to show that automated SE evolution conflict.
tools can use explicit intentional information to make soft-
ware more manageable. However, to simplify things at 3.2. Validation
first, we limit the scope by looking at the problem of evo-
lution of OO software. Later we broaden the scope again  After having chosen a particular kind of intentions to in-
and show that the results are also valid for other SE ac-vestigate in more detail, we perform some experiments to
tivities (than software evolution) and other programming validate whether the proposed approach actually works (i.e.
paradigms (than OO). that intentional information based on classifications and de-
Instead of immediately trying to build a general formal pendencies between them can really be used to solve new
model of software intentions, we focus on a particular kind and interesting evolution conflicts). We will build a proto-
of intentions first and study what extra power they can pro- type of an automated SE tool (more specifically, a tool for
vide. Although we still have to complete our literature study detecting evolution conflicts) and apply it to an industrial
and make a categorization of the kinds of intentions that arecase study. We will try to merge our theory and tool with
most promising, we think it would be interesting to look at the existing reuse contracts methodology [12, 10], which is
those intentions that can be expressed in ternctaskifica- a proven methodology for dealing with evolution conflicts

3. Approach

tionsand relationships between these classifications. in OO software. We plan the following validation experi-
ment:
3.1. Classifications 1. identify and declare some classifications as explicit

intentional tags about the case;

The idea of aclassificationis to group a collection of
software artifacts together because they ought to be consid-
ered as a whole (from an intentional point of view). All
artifacts in a classification typically share some important 3. implement and test conflict detection and compliance
feature. For example, in a financial application it could be checking rules based on this information;
interesting to group all software artifacts dealing with “han-
dling deposits” together in a single classification. This clas-
sification expresses the intention that all these software ar-
tifacts cooperate in achieving the functionality of handling ~ Whereas the purpose of this experiment is to show that
deposits. software evolution tools benefit by more intentional infor-

A software artifact can belong to different classifications mation, we also need to investigate what happens when the
and a single classification can contain many different kinds intentions themselves evolve.
of software artifacts. A classification does not necessar-
ily correspond to the classifications that can typically be 3.3. Generalization
found in the software. The only requirement is that the soft-
ware artifacts in a classification share some functional (e.g. To generalize the obtained results we will study which
handling deposits) or non-functional (e.g. aspects such asther kinds of intentions can be expressed and how they can
“persistency” or “distribution”) feature. As such, classi- be used to build more powerful software evolution tools.
fications express part of a software engineer’s intentions,Next we broaden the scope and try to show that the results
because they provide conceptual classifications of softwareare also valid for other SE activities (than software evolu-
items that may not be found in the software itself. Depen- tion) and other programming paradigms (than OO). To con-
dencies and relationships between classifications (“part of”, clude the thesis we hope to be able to show the generality
“is @”, causal relationships as well as negative relationshipsof our research results by showing that existing “hard” se-
stating independencies) can provide even more importanimantic techniques which also declare a kind of intentional
intentional information. semantics, can be expressed with our approach as well.

2. identify and declare dependencies between classifica-
tions as intentional information about the case;

4. analyze how this approach extends the reuse contracts
model (i.e. how it makes it more powerful).



4. Related Work software system that customers or reusers can use to se-
lect between available options”. The FODA methodology

4.1. Program Comprehension Research [7] considers distinct types of features: operational, non-
functional, development,... [3] defines a feature as “the

Program comprehension research results might providedlf'ference that makes the difference” and provides some

interesting clues as to which kinds of intentions are useful to guidelines for identifying features.
enhance the evolvability of software. Although current pro-

gram comprehension research fails to provide a clear pic—4'4' Other Related Work
ture of comprehension processes with respect to specialized In th h f derstanding. desi
tasks such as software evolution, some existing research ret-h nthe rdeiearcl greas 0 Srg%ram un erstan Inhg, eslgn
sults do indicate which kind of information is considered €Oy and knowiedge base » many systems have been

important by engineers when trying to understand softwaredescrlbed that represent programming knowledge in one
constructed by other engineers [14]: way or another. We need to investigate how these kinds

of knowledge relate to software intentions.

¢ Software-specific knowledgelating to functionality,
software architecture, the way algorithms and objects References
are implemented, and so on.
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Abstract Foc i G
Rational P ——] PVS
The maturation of a methodology for formal develop- e o
ment of Real-Time Reactive Systems of industrial scale — Incompletencss
broaches issues including automated development of soft- Augment Modd
ware specification, design, analysis, and synthesis. Auto- " .U .
mated software engineering methods should be grounded | "™z Inconsistency Antmetion
on rigorous principles and not on ad hoc approaches. OUr | specifications| "2} 9" validation
approach integrates the recently published industrial stan-
dard graphic notation UML (Unified Modeling Language),
for object-oriented modeling, and PVS (Prototype Verifica- Cosie ey Code
tion System), for automated reasoning. Checking / Generation /
Analysis Implementation|
1. Introduction Figure 1. Iterative process model.

This paper proposes a methodology that synthesizedion applicable in a broad spectrum of domains, and (i) the
object-oriented and real-time technologies for reactive sys-use of PVS for formal design analysis of large scale appli-
tem development. We first formalize UML [7] semantics, cations, as reported in NASA guidebooks [4, 5].
and embed the notation in PVS [6]. We then develop meth-
ods for consistency checking across design specification®2. Research Goals
and for verifying system properties in a design. The for-
malization of UML is undertaken to fulfill the need for a The main goal of this research is to develop a methodol-
sound foundation for requirements modeling and rigorous ogy for rigorous software development in industrial context.
design analysis in the context of safety-critical systems. TheFigure 2 shows major aspects of a specification and verifi-
methodology forms the basis for the process model for reac-cation environment based on the methodology. Rigorous
tive system development shown in Figure 1. In this iterative modeling and analysis methods can only be established af-
process, we develop a UML model from system require- ter providing formal semantics, and instituting mechanisms
ments, translate the graphical design into PVS theories, anfor checking desigegompletenesandconsistencyFormal-
alyze the design for consistency, simulate the design speciizing the modeling technique involves the following steps.
fications for validation, and verify desired system properties
in the design, before proceeding to an implementation. The
motivation for this work comes from two fronts: (i) the wide
acceptance of UML in industry, as a unified modeling nota-

1. Select components of UML notation suitable for spec-
ification of real-time reactive systems, and relate these
components in a consistent way.

*This work is supported by a fellowship from Natural Sciences and 2. Provide formal semantics for the components and their

Engineering Research Council, Canada. | acknowledge the support of my relationships _USir_‘g PVS Sp?Ciﬁcation language, with
thesis advisor, Prof. V.S. Alagar, in conducting this research. focus on application to reactive systems.



UM Model 3.1. Components of UML Notation to Formalize

Static Model

Static Use

Sueture Case We focus on a subset of UML notation suitable for mod-
: eling objects, subsystems, their static structure, and their

""""""""""""""""""""""" R dynamic behavior, in the context of real-time reactive sys-

Dynamic Model

Cottaboratidy___/ sequence tem development.Static structure diagramsescribe the
|\ _Diagrams Diagrams/ | object model; object and class diagrams capture relation-

System | Modeling

Requirementy B \ / ships among objects and classes in a systenusécase
. Steoreme diagrams use cases give abstract descriptions of tasks per-
“::;-gmg I UMVT. """""" . formed by cooperating objepts, anq acto'rs symbolize roles
Properties 0 \ played by external objects interacting with a systefe-
e H guence diagramsapture sequences of messages exchanged

[ R "N o\ among objects in an interaction, as well as timing con-
: for Formal Verification : Design ! Design Validation Semantics| ! . . . . .

P\ system AN in ) straints on responses to stimuli. dollaboration diagrams
Properties ,"‘ PVS

, a collaboration describes associations among cooperating
e objects, showing the context for the purpose of the cooper-
ation; messages exchanged among the objects constitute an
interaction that is superimposed on the collaboratiate-
chart diagramsspecify the states in which an object can be,
3. Develop a formalism incorporating the components for possible transitions between states, the event labeling each

modeling objects and subsystems. transition, entry and exit points for complex states, and cer-
tain timing constraints on transitions.

Figure 2. Reactive system development.

Milestones in the research work are:

1. Formalization of UML notation. In developing UML 3-2. The Choice of PVS - Justification
formal semantics, we specify PVS type definitions
for UML model elements, based on the abstract syn- There is an increasing demand on the construction of
tax available in UML class diagrams. We then spec- provably correct software systems in strategically important
ify PVS predicates and lemmas for (i) constraints and areas, such as the aerospace industry and NASA projects.
well-formedness rules on UML model elements, avail- The current status of formal method integration in industrial
able in OCL (Object Constraint Language), (i) UML software development includes application in areas such as
semantics, available in natural language, and (iii) rela- avionics, telecommunications, and nuclear power plants.
tionships among UML components. PVS is being groomed for use in the integration of formal
i o ) methods in the development process of mission critical sys-
2. Adaptation of the verification methodology described (ems. Experience gained from these studies are reported in
in [3] for fqrmally vgnfw_ng safe_:ty_and liveness Proper-  yyo NASA guidebooks [4, 5].
ties in design specifications within the PVS verification PVS consists of a specification language based on

environment. higher-order logic, and an interactive proof checker that
uses powerful arithmetic decision procedures. The lan-
3. Proposed Methodology guage allows the definition of predicate subtypes, and de-

pendent types, with constraints attached to type definitions.

Easterbrook et al. [2] give an extensive experience reportSpecifications can be written as parameterized theories,
on requirements modeling and analysis based on a methodwith constraints on the parameters. PVS supports specifi-
ology incorporating OMT (Object Modeling Technique) cation of abstract data types in a concise and efficient way,
and PVS. This approach does not integrate the graphic notawith automatic generation of axioms and functions captur-
tion of OMT with the formal specification language of PVS; ing intended properties of the data types. The higher-order
it uses the notations to complement each other. While thelogic and its type system bring lot of expressive power to
OMT model provides a high level structural view of require- the specification language. This makes it suitable for for-
ments, the PVS model gives a detailed view and supportsmally describing semantics of complex structures, and the
rigorous behavioral analysis. It is not apparent how corre- abstract syntax and well-formedness rules of UML.
spondence is established between the OMT diagrams and PVS implements a set of powerful primitive inference
the PVS specifications. Our primary goal is to provide pre- rules, and a mechanism for composing proof strategies
cise methods based on formal semantics to translate UMLbased on frequently used patterns of inference steps. The
design models into PVS theories. reasoning system supports a wide range of decision proce-



dures, provides an extensive set of proof commands clas- A collaboration represents a set of objects and relation-
sified asprimitive rules defined rulesandstrategies and ships among the objects; the relationships shown are those
supports interactive proof construction. These featuresthat are meaningful to the purpose of the collaboration. We
make PVS well-suited for verifying the inherence of proper- define aprojectionof a collaboratiorC as a representation
ties in design specifications. For instance, Shankar [8] givesof a subset of the objects 0, and the relationships present

a theory of time, and a computational model for specifica- in C, among the objects in the subset. For a collaboration

tion and verification of real-time systems. C, and an operatioap, there exists a collaboration diagram
Cop, such that (iYCop is empty, orCop is a projection ofC
3.3. Methodology for Formalizing UML Notation superimposed with a message sequence, and (ii) it can be

provedthat the effect of an interaction based @4}, is the

Providing formal semantics implies identifying attri- Performance of operatiaop.
butes and properties of model elements relevant to the ap-
plication domain, and describing their meaning in a mathe- 3.5. Requirements Modeling and Design Analysis
matical notation. The semantics must enstompleteness
in the sense that sufficient number of axioms describing at-  Achieving design consistency is a major issue when us-
tributes and properties of the model are included for a pre-ing a notation with several interleaving components. It is
cise understanding of expected behaviors. This may involveimperative that consistency is obtained within diagrams to
the construction of a formal object constraint language. determine the satisfaction of system properties, as well as

We adopt the following procedure in providing a formal across diagrams to ensure that components of the notation
semantics for UML notation. We identify the model ele- are compatible with each other. We identify relationships
ments described in UML class diagrams comprising meta-among components of UML notation, and describe corre-
classes and their relationships, and specify each model elsponding constraints in specifying reactive systems. These
ement in PVS. We give a PVS specification for each well- constraints are formally stated, so that if a property exists at
formedness rule for the metaclass describing a model ele-one level, we can conclude whether it exists at another level.
ment, and formulate invariants and constraints on the modelSatisfaction of invariants capturing these relationships im-
element as lemmas. These need to be proved in checkinglies that semantics of constructs in different components
the well-formedness of a diagram including instances of the of the notation are consistent with each other.
model element. We flatten the class hierarchy to obtain all
the attributes and weII—fprmedness ru!e; for a model ele'CompIeteness in Data Type SpecificationsThe PVS
ment. We translate the informal description of the seman- gpecification of an abstract data type is concise, with a
tics for each UML logical package into PVS predicates and get of constructorsalong with associate@ccessorsand
lemmas. We specify relationships and c':onstr'alnts 'de_”t'f'edrecognizersWhen the data type is type-checked, a new the-
among UML components as lemmas involving predicates qy is generated, providing axioms relating the constructors,

on instances of model elements. accessors, and recognizers, as well as induction principles
_ _ needed to ensure that the data type is the initial algebra de-
3.4. Static and Dynamic Models fined by the constructors. For instanestensionalityand

etaaxioms are generated to define equality on instances of
In modeling system requirements, the first step is to cap-the data type. Other axioms define well-foundedness rules,
ture the static structure of the system by abstracting objectsand support well-founded subterm ordering relations and
and their relationships in collaborating to perform a task. strong forms of induction. The functioreveryand some
For instance, entities may require complex data structuresare generated to establish the truth value of a predicate in
to capture their functionalities. Relationships among ob- existentially and universally quantified formulas on the data
jects and classes include associations, aggregations, contype. Functions are included to define a generapon the
position aggregations, generalizations and specializationsdata type. These generated axioms and functions must often
These features of a model must be properly specified beforebe augmented with additional ones capturing other proper-

describing the dynamic behavior of entities. ties of the data type to ensurempletenessf the specifica-
The two types of object interaction relevant to the design tion. A data type specification ompletdf every intended

of embedded systems asequential compositigmndcon- property of the data type can be deduced from the axioms.

currency We use UML icons [1] forarrival patternand The rich type system of PVS is supported by the gener-

synchronization patterto indicate different kinds of mes-  ation of proof obligations, calletype constraint conditions
sage flow between interacting objects. An arrival pattern (TCC's). In proving a theorem, subproofs may require dis-
icon can be combined with a synchronization pattern icon charging some of these obligations. This can be achieved by
to capture two orthogonal dimensions. invoking predicates used in subtyping, axioms generated for



abstract data type definitions, and user-defined axioms capinto a PVS formula. We use Shankasimceoperator [8]
turing additional properties of these data types. If a proof to specify durational expressions in axioms and invariance
cannot be discharged, it is due to the incompleteness of theassertions. The given property is formally proved in the de-
specification. sign if we can construct a proof for each lemma specifying
an invariance assertion in design theories.
Consistency in Design Specifications For each UML de- A straightforward approach to formal verification is to
sign specification, we use the formal semantics to formu- follow Shankar's methodology [8]. We intend to investigate
late a corresponding PVS specification. A relationgRip &N @pproach in which formulas involving teceoperator
between two UML design components is stated in the form OVer stgte predicates are transformed mto' linear inequali-
of a set of theorems in a parameterized théfaryThe theo-  1i€S- Axioms and lemmas are transformed into a system of
rems in theorylr instantiated with two actual design spec- linear inequalities involving logical variables denoting ab-
ifications must be proved in order to establigimsistency ~ SOlute times. Proving a lemma is thus reduced to proving
between the two designs. Checking for consistency of de-the consistency of a set of linear inequalities. Since PVS
sign specifications may not be possible without sufficient has a rich set (_)f, revynte rules for inequalities over reals, we
axioms capturing properties of data types in the specifica-EXpeCt the verification process to be less complex than the

tions. Consequently, consistency cannot be assured withoustraightforward approach. Certain aspects of this methodol-
completeness of abstract data types. ogy, such as formally specifying invariance assertions from

ConsistencyLet d; andd, be two design specifications the semi-formal description of a property, cannot be fqlly

in UML; let p; and p; be their corresponding PVS spec- automated.. Howgver, several steps such as t.ransfo.rmmg a

ifications. There exists a parameterized thefigy corre- f'ormul'a usmg.thssmceop.erator over state predicates |n'F0 a

sponding to the relationshig between the desigrds and linear inequality over logical variables, can be mechanized.

dy. If a proof can be constructed for every theorem in the

instanceTr(p1, p2) of the theory, then design specifications References

d; andd, are consistent.
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Abstract ing rules working on abstract syntax trees, with semantic
constraints. Section 5 describes the integration of TrfL in
We present TrfL, a language independent transformation Foresy$ (a Fortran engineering environment), developed
system based on syntactic rewriting rules working on ab- by SIMULOG, then section 6 points out one simple exam-
stract syntax trees, with semantic constraints. The aim ofple of transformation. Section 7 deals with the different
TrfL is to ease the maintenance of large systems by au-approaches to re-structure Fortran code.
tomating transformation tasks such as restructuring, port-
ing, documenting. We describe the integration of TrfL in
Foresys, a Fortran engineering environment developed by2' Related work
SIMULOG.
Program transformation systems can be found in several
systems and domains and here is a tentative of classifica-
1. Identification of the problem tion:
e Environment generators. These kinds of tools generate
The Year 2000 problem has posed significant problems syntax directed editor for a special language from for-
that are being addressed using automated software engi-  mal specifications of this language. Centaur [4] and the
neering tools. The current legacy systems and the large Cornell Synthesizer Generator [26] are in that family.

software systems of the future will be too large to main- These tools give a transformation system to edit and
tain without program transformation tools [3]. A first level manipulate interactively programs by means of menus.
of user assistance is provided by simple textual tools, like Transformations are syntactic, expressed with two pat-
the search/replace tool available in all interactive text edi- terns (the source and target patterns) based on the ab-
tors, or batch tools likeedor awk Even very simple trans- stract syntax of the language.

formation like swapping array indices for a given common e Program synthesis tools. Purpose of these tools is
variable requires some understanding of the language syn-  to obtain efficient code from formal specification by
tax and typing rules. The difficulty of performing semantic successively applying semantic preserving transforma-
analysis using character-based tools is the most serious lim-  tions. KIDS [27], CIP [2, 19], PROSPECTRA [21],
itation of the Unix shell script approach. Transformation ZAP [12], and POPART [10] are systems of this do-
systems rather work with abstract syntax trees that make main. This was the first domain where program trans-
analysis easier and can also be used to hook results on rele-  formations were used. These systems come with a base
vant nodes. of predefined transformations.

We propose a program transformation system, TrfL, that e Compiler tool kits. These systems include several tools
emphasizes the expressiveness of tree transformations, can  Such as parser and lexer generators, attribute gram-

be easily connected to other tools and provides a frame- mar evaluators and attributed tree transformation sys-
work to build and apply transformations. Our description tem. The transformations involved are optimization,
will be based on a Fortran environment. In the first section, code generation and translation. Puma [17, 18], Gen-

we try to classify program transformation systems. The tle [30, 29], FNC-2 [23] and Optran [25] fall in this
solution described in sections 3 and 4 is a language inde- ~ category. These tools work in batch mode and only
pendent transformation system based on syntactic rewrit-  accept a restricted form of pattern matching to some

*This work is partially supported by SIMULOG http://www.simulog.fr/foresys



fixed region near the root of terms. Backend genera- 4. Description of TrfL
tors (Beg [11], Twig [1], Burg [15], Iburg [16]) can be

included in this domain. These tools are dedicated to e first goal was to design a language to express com-
generating machine code and even offer mechanisms ey tree transformations, and the second to provide an en-
to specify registers allocation. vironment with a wide collection of tools. These tools can

¢ Functional programming languages. Most of the mod- e giyided in two. The first ones are to build and modify
ern functionallanguages (Hope, SML, Caml, Miranda) ransformations in an easy way by using structured manipu-
allow pattern matching. So these languages can beyiion to puild patterns, and the second ones are in the appli-
used as a transformation language. Trafola-H [20] was ¢4tjon of transformations. The system should support both
designed to express complex tree transformations in &teractive and batch transformations with different strate-
short and suggestive formulation. It enhances pattegies and functional or side-effect (translations) transforma-
matching in allowing distributed patterns [14]. tions. A TrfL specification is a set of transformation rules.

* Transformation systems. TXL (Turing eXtender Lan- gq,ghly, a transformation consists ofsaurce patterna
guage) [9] and TAMPR [5, 28, 6] are special purpose et patternand arapplication condition Source and tar-
languages to express transformations. These two t00lsyet patterriare abstract syntax trees (AST) with metavari-
work in batch mode and patterns are expressed on theyes (place-holders that represent arbitrary pieces of source
abstract syntax of the manipulated language. TriL falls ¢4qe). An abstract syntax tree is a structured representa-
in this category. tion of a program that omits all unnecessary information

All these systems have restrictions: only accept basic formsIike keywords. The application conditionis a predicate that
y - only P must be true in order for the rule to be fired. The target pat-

of pattern matching, work only in batch mode or interactive :
P 9 y tern is a replacement for the source code when the source

mode, do not accept non semantic preserving transforma, attern has matched the source code, the metavariables
tions, do not use contextual information (data flow graph, b !

symbol table, ...), can not extend the transformations basehave been instantiated and the application condition veri-

. fied. Compared to other transformation languages which
some of them use a wide spectrum language and programs

must first be translated in this language before applying generally allow a very restricted form of pattern matching,

: L . .= TrfL enhances this mechanism (feature found in [14]). In
transformations, ... These restrictions were kept in mind .
. ) these transformation languages, a pattern can only match
in the design of TrfL.

near the root of a tree term or it can only select fixed num-

ber of items in list structured trees. The user only describes
3. TrfL scope and applications the shape of the subtree he wants to find, and not where
and how such a subtree should be found. Thus it becomes

TriL is a generic rule-basetr angormationL anguage. easier to describe a pattern that find nested loops for exam-
TrfL is generic, as it is not dedicated to one language. ple. It is a fact that non-trivial program transformations re-
TrfL is a language to assist engineers in maintaining pro- quire program analysis. For example a transformation that
grams. TrfL can cover several tasks of the maintenance prc,_deletes unreachable code, needs control flow analysis infor-
cess: documenting, restructuring, translating or porting pro- mation in order to identify code fragments that can never be
grams. For instance, TrfL has been used to document Lispregched. So most transformation systemg work with anal-
programs and TrfL is bootstrapped in TriL. For that pur- YSiS tools. P_atte_rns reprg_sent the syntactic part of the rule
pose, TrfL provides an expressive pattern language, facili-and t.he. appllca'qon condition can refer to non local and se-
ties to be connected with analysis tools and a collection of Mantic information (symbol table, control flow graph, etc)
tools to build and perform transformations. We focus in this In order to restrict the applicability of rules. This informa-
paper on using this language in a Fortran environment. wetlion is called contextual information. A TrfL rule can be
want an open restructuring tool, where transformations canthought of as a function that takes as input a tree and con-
easily be added and performed. TrfL intends to be used bytextual information, and returns a transformed tree or fails.
both Fortran programmers and Fortran transformation ex-A rule is applicable when both the pattern matches the input
perts (who know typing and contextual informations, For- tree and the application condition is evaluated to true. Side
tran and TrfL). A user can specify simple transformations eﬁ‘epts are aII_owed, for example to update contextual infor-
with little effort, since transformation like adding/removing Mation or emit an error message to the user. The TrfL sys-
a parameter in function definitions/calls doesn't require a €M (Fig. 1) consists of aengineand arenvironmentThe

great level of knowledge. More complex transformations ©ngine takes a source program, searches for pieces of code
like moving from a programming convention tO another or 2The pattern are presented here in concrete syntax for reason of read-
from Fortran77 to Fortran90 have to be specified by an ex- ajjity (the system is able to display the patterns in both abstract or concrete
pert. syntax).




that match a transformation, and checks the application con-are welcome and useful. A list of tasks that a Fortran trans-
dition of that rule. If the condition is verified, the selected formation system can support includes parallelization, in-
code is replaced with the instantiated target pattern. If thestrumentation, restructuring, optimization and documenta-
condition is not, the current transformation rule is not used tion. A text editor with a string regular expression “query-
and the engine has to find a new transformation rule for thereplace” function or a script (Perl, awk, ...) is often not
same piece of code, look for a new piece of code, etc. Theenough and is somehow error prone. The simplicity of reg-
engine has several decisions to make during the transforular expressions often does not allow a programmer to ex-
mation process: How the source code should be searchedress the desired query and does not exploit the underlying
Which rule should be fired if more than one is applicable?, tree structure of the program (on the other side, processing
Should rules be re-applied?, etc. A program transforma-comments or non syntactically correct code is easier). More
tion system can be fully automatic, or semi-automatic (with over program analysis is not performed on the textual rep-
somebody guiding the transformation process). This is why resentation but rather on the abstract syntax tree. Foresys
we want to provide an environment. The environment sup- is an engineering system dedicated to Fortran. The Foresys
ports two functions: package provides project engineers with tools that allow to
) _ apply all modern development rules to legacy Fortran code
1. it embeds the engine. One may want to perform the (\o_engineering, parallelization, maintenance, quality assur-
transformation process in batch mode withoutinterac- 5nce  etc). Foresys comes with a full Fortran90/95 envi-
tion, in this case some parameters (to control the strate-ronment, including parser, several analyzers, and a pretty-
gies listed above) must be set before starting the pro-printer. Foresys analyzers run on any size of Fortran source
cess and the engine can work alone. In another way thezqde to automatically create a global information database
user can interact on the process, 1) by guiding or con-cqjeq ForLib. The first goal was to provide a fully auto-
trolling the engine, 2) by choosing a piece of code and yatic transformation system to automate the porting of For-
then the engine gives the list of valid transformations, (an70 code to Fortran90. The integration of TrfL in Foresys
3) by choosing a transformation and then the engine s 1, instantiate the TrfL system for Fortran, that is provide
shows where this transformation can be applied. an API to access the structures that analyzer tools produce
2. it pr_owdes a framework to build or modify transfor- (symbol table, typing information, control flow graph) and
mations. Patterns are abstract syntax trees, but a Usefjerive an engine to perform transformations on generated

is more familiar with the concrete syntax than with rqr ihs. The four steps of the transformation process are:
the abstract syntax and then building transformations

could be a hard task. This can be made easier with 1. Foresys parses the Fortran program, it gives a syn-
an interactive building of a transformation from a tem- tax abstract tree on which transformations can be per-
plate code, and pattern can be derived from a source formed,

code. 2. then it runs analysis tools and creates a ForLib. This

gives the contextual information.
. Ewomem 3. transformations can be performed using the TrfL en-
; gine and finally
Rulesbase 4. the transformed tree is pretty-printed.

pattern  — - — — 4 — B eq(a, b) !
| provided EqApproxima \
meta-variable -~ - - 4 - - ~|»="appicond

Transformation factory

add

o The engine only works in batch mode and offers several
someeme | ST A tree walks :bottom-upi.e. the tree is visited in postorder,
' bl or top-down i.e. the tree is visited in preorder. In addition
! % s to the vertical direction, the user can choose the horizontal
R direction: left-to-right or right-to-left. This determines in
| pasng Prety printing - which order the children of a given node are visited. For ex-
N ample, in case of a bottom-up left-to-right traversal, the tree
is walked through inspecting the leftmost leaf first. The tree
walk can be declarethonotonour strictly monotonous
In the first case, it guarantees that, after a transformation ap-
plication, the next entry point in the tree is the transformed
) code, in the second case the root of the transformed code is
5. Transforming Fortran programs not searched for a new transformation.
When the engine is running, it must find the current valid
The need of transformations in Fortran is a recurrent sub-symbol table in order to pick up some contextual informa-
ject, and tools that automate (fully or partially) the process tions. Some of the analysis results are global, i.e. they are

..(a.eq.b).
I
B I Engine

Figure 1. The transformation system



valid for the whole program, and some are local to a specialwhen you want to transform a program: How many time
fragment of the program. This is the case for symbol tables.will it take to design a transformation ?, How many time

The scope of symbol tables is restricted to precise pieces ofwill it take to apply this transformation ?, Can we re-use this
program. So symbol tables are hooked on the root the treeransformation ?, Will it be easy to design and then apply a

where they are valid.

6. Example

This simple transformation replaces an equality test
where the two operands are of floating type with an approx-

imation equality test. For instance a small sample code:

| if (a .eq. b)

and the transformed code:

| if (abs(a - b) .It. (10.0 * spacing(a)))

The source (or left) pattern matches equality tests
and bounds the left and right subtrees that represent the
operands of the test, respectively to X and Y, two metavari-
ables. This transformation is mostly syntactic, although
typing information is needed to check the applicability
of the rule. The application condition checks that both

operands are of floating type, calling the predidakdoat-

ing that returns true or false. This predicate is part of the
API that gives an access to contextual information com-
puted by Foresys analyzers. When both the left pattern
matches the input tree and the application condition is eval-
uated to true, the matched tree is replaced with the target

pattern.

-- the source pattern: (X.eq.Y)

eq(X,Y)

provided #:fsys:isFloatingType(X) &
#:fsys:isFloatingType(Y)

->

-- the target pattern: (abs(X - Y) .It. (10.0 * spacing(X)))

It(func_call(name "abs", |_exp(sub(X, Y))),

mul(real_cst "10.0", func_call(name "spacing", |_exp(X))))

7. Discussion

Program transformations is still largely confined to re-

transformation ?, etc. An user has three possibilities: 1) he
can use a text-based editor with a string-search-replace ca-
pability or tool like awk or sed, 2) he can develop his own ad
hoc transformations in his favorite programming language
or 3) he can use a special purpose language for transforma-
tion. Let’s list the advantages and disadvantages of the three
approaches:

1. text-based tools
Advantages : Regular expressions are easy to use and
since these tools are based on text processing you don’t
need a parser that builds an abstract syntax tree; also
you can process non correct programs. Text editors
or shell scripts are suitable for small low level syntac-
tic transformations which need to be performed effi-
ciently.
Drawbacks : With text-based patterns you don't see
the underlying tree structure of the program, and so
specifying a complex pattern may be difficult and
error-prone. Complex transformations require contex-
tual information; with an editor, the user is the only
source of contextual information (at the condition that
he understands the program!), and if the user needs to
confirm the application of the transformation, it may
be time consuming and error-prone (the user may loose
vigilance on a repetitive task). With a script, he must
program the analysis. Transformations specified using
these tools are not really re-usable. It will be difficult
to derive a new transformation from the formers.

2. hand-coded transformations
Advantages : the user uses his favorite language, he
does not need to learn a new language. The transfor-
mation will be really adapted to the user needs and op-
timized.
Drawbacks : the time of design and programming
may be important if the user needs a parser, abstract
tree manipulation functions and analysis tools. These
tools may be built once, but in this case let's built a
program transformation system. The code of the trans-
formation may not be re-usable if the programmer is
the only one who understands what the transformation

search laboratories. In the past, the main interestin program  does.
transformation has been the generation of programs from 3. Domain Specific Language approach

specifications [13, 21]. But since the Year 2000 problem
and legacy code problem, industrial use of program trans-
formation has emerged mostly in software maintenance ap-

plications [22, 28].

In our case, i.e. the restructuring of Fortran programs, we
can find several points why the use of a program transfor-

Advantages : the language is a special purpose lan-
guage dedicated to the specification of transforma-
tions, it has qualities and facilities to build and apply

transformations: high-level patterns description, high-
level transformations description, integrated environ-
ment (analysis tools, parser, pretty-printer), batch and

mations system is relevant. What are the questions to ask interactive transformation engines, re-usable libraries



of transformations.

Drawbacks : the user must learn a new language and

their help and support.

get familiar with the environment. For complex trans- References

formations, the help of an expert is required.
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proach can be used in any process of the software life cy- 2]
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from specifications you derive code, and then, code can be

documented and maintained.

8. Conclusion

Software maintenance is the first widespread use of pro-
gram transformations technology [7, 8, 24]. Scientific For-

(3]

(4]

tran codes live for decades and so Fortran code to trans-

form can be counted in millions of lines; a manual process
is inconceivable in terms of time and reliability. Moreover,

Fortran programmers are in general, not from the software [5]

engineering community. The need of transformation tools

that automate or semi-automate the transformation tasks is

obvious. Our contribution is TrfL, a high-level language to

specify program transformations and a batch oriented trans- [6]

formation process that can be integrated in other environ-

ments. Future work includes:

1. providing an interactive engine, to build and apply

transformations. Some transformations, like optimiza-
tion, had to be done in an interactive way, so that the
user can proceed by trial and error, in order to choose
the right transformation. The features that will help
will be undo/redo, history of applied transformations,
and user customizable engine. Some experiences have
been carried out in building interactively transforma-
tion rules in the Centaur system, and we planned to
soon implement this feature for TrfL;

. build up a larger transformation library. A large For-

years. Code can be inherited from other projects. Dif-
ferences in style, in management and in the available [
programming tools lead to the creation of a dusty code.
So other transformations of interest are code instru-
mentation, change of programming style and conven-
tion, and documentation. Re-structuring and docu-
mentation are closely linked, since one may change the
other.

In the next few years, transformation technology will inte-
grate many software engineering processes.
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Abstract

Using computer-aided, formally developed specifi-
cations to build and verify software leads to provably
correct code, deeper consistency checking and speci-
fication reusability. The problem with applying this
approach is its rift with mainstream commercial soft-
ware engineering tools and development/specification
methodologies. The primary goal of this research is
to bridge this rift. The purpose of my research is to
construct formal and CASE development methods by
formalizing the common CASE graphical specification
language, i.e. the Unified Modeling Language (UML),
and automating the transformation from UML dia-
grams to a formal representation.

1. Introduction

It has been shown that the Transformational Pro-
gramming Paradigm (TPP) of developing, verifying
and maintaining software at the specification level
leads to the development of provably correct code,
deeper consistency checking and specification reusabil-
ity. The problem with applying this approach is its
rift with mainstream commercial software engineer-
ing tools and development/specification methodolo-
gies. The primary goal of this research is to bridge this
rift by mapping from a popular Computer-Aided Soft-
ware Engineering (CASE) tool modeling language to
a formal methods language. Formal methods involves
the specification of a formal syntax and semantics to
specify system behavior so that consistency, complete-
ness and correctness of complex systems can be as-
sessed systematically.

Prior research has demonstrated the possibility of
automating the TPP by deriving a technique to trans-
late OMT (Object Modeling Technique) diagrams to a
formal representation that lends itself for use with tools
that support theorem proving and automated code gen-
eration. Some of this OMT formalization research was

category theory and algebraic based, and drew from
diverse theoretical foundations. The purpose of my
research is to construct a new TPP by changing the
paradigm for the more comprehensive UML and devel-
oping a path to automating the UML to formal repre-
sentation transformation.

2. Problem

There are two primary computer-aided software de-
velopment techniques in contemporary use for develop-
ing robust applications. One technique supports and
enforces modern graphical-based software engineering
methodologies with a CASE tool. While CASE tools
do help with the construction of diagrams associated
software engineering development methodologies (e.g.
OMT, UML, Booch, Statecharts, etc.), library level
code generation and syntactic level error checking, they
come with disadvantages that preclude their exclusive
use in critical software development. These disadvan-
tages include ambiguous semantics and syntax, incon-
sistency between different diagrammatic views of the
same system and the inability to generate more than
header file software.

The other primary, but less used, technique is
computer-aided support of formal methods. This tech-
nique overcomes many of the ambiguity and inconsis-
tency problems associated with the CASE-based tech-
nique. There have been many impediments to this ap-
proach, despite its potential for more verifiable software
development. These problems include the 1) Tower of
Babel of supported logics, tools and formal languages,
2) lack of developers and end-users trained in formal
methods, 3) rift between modern object-oriented archi-
tecture/design and formal methods based code gener-
ation and 4) apparent non-scalability of current formal
methods based software successes compared to the size
of large-scale applications associated with mission crit-
ical software.

Fortunately, CASE tool vendors are converging on a
graphical software engineering methodology standard



that encompasses the previously mentioned popular
diagrammatic methods. This standard is UML. If a
formal UML syntax and semantics were defined, one
could bridge the gap between the described computer-
aided software development techniques by translating
between the well defined CASE tool front-end to a for-
mal software development environment, creating the
best of both approaches. My research will take a ma-
jor step in building this bridge.

3. Current Solutions

Methods for deriving algebraic specifications from
object model diagrams have been described based on
OMT diagrams. Bourdeau and Cheng (Figure 1.a)
used 1) instance diagrams, formalized as algebras, to
provide a graphical definition of semantics for object
models and 2) the original object models, formalized
as algebraic specifications, to provide an algebraic def-
inition of semantics.

It is argued that either method for deriving seman-
tics of the object model will yield the same set of al-
gebras, since Figure 1.a commutes. Wang, Richter and
Cheng later expanded this research to include dynamic
and functional models, defining a set of semantics for
the complete OMT model.

Del.oach (Figure 1.b) continued a similar reason-
ing process, using categories as the specification rep-
resentation. His notion was to use category arrows
to map from the internal structure between category
objects (objects in the category of interest), so spec-
ification morphisms can map the axioms in a specifi-
cation to theorems of the derived specification. His
research used a similar commutative diagram method
to check the consistency of results. In his research,
DeLoach had shown the completeness and efficacy of
his OMT formalism approach through formal rules de-
scribing how to map between a derived generic OMT
AST, an O-Slang AST (O-Slang is an object-oriented
variant of Slang, the representation compatible with
Specware\”, developed to capture classes as algebraic
specifications and class relationships as category op-
erations) and OMT semantics. The OMT semantics
Deloach described was based on formal approaches
described for the static object, functional model and
dynamic model.

Fraser described a framework of organizing and clas-
sifying strategies for incorporating formal specifications
into the software development process for the purpose
of:

1. identifying commonalities and differences between
strategies,

OMT semantics . a Bourdeau/Cheng Approach
st -
, indectly
formalzedas formalized as formalized &
v
agebraic - - > doehras
specifications agebraic semantics gebr
; . models of restricted
resricted oject, OV Ticynamiclfunctiond semattics pzort
dynamic,functional #fu:m iénz typesy
ypes b. DeLoach Approach
formalized & formalized as
lgebraicicategory-besed — _ > derived speification (theorems)
spesfcations(adons) pecification morphisms

Figure 1. Formalization

Methodologies

Specification

2. assessing their applicability in different contexts,

3. making sense of competing proposals for using for-
mal methods in the software development process,

4. identifying the advantages and disadvantages of
each proposal and

5. identifying the gaps in proposed strategies.

Fraser’s two-dimensional framework identifies four
generic strategies: direct unassisted, direct computer
assisted, transitional unassisted and transitional com-
puter assisted. The direct category, i.e. where soft-
ware developers move directly from informal to for-
mal specifications without going through any interme-
diate semiformal representation, is contrasted with the
transitional category, that does use an intermediate
representation. Fraser defines two subtypes of tran-
sitional categories, sequential and parallel successive
refinement. In a sequential transitional approach, the
semi-formal specifications are fully defined and then
transformed into a formal specification. In the par-
allel successive refinement approach, the semi-formal
and formal specifications are produced and refined si-
multaneously. The unassisted category, where all the
translation is performed manually, is contrasted by
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the computer-assisted category, where computer-based
transformation tools help the developer.

I use Fraser’s framework to categorize my research
so I can compare the most applicable of portion this
broad base of research. This research falls into the
border between the transitional-sequential computer-
assisted and the transitional-parallel successive refine-
ment computer-assisted categories. Computer assisted
because of tool support with the translation of a for-
malized, constrained UML to a formal language and
with stepwise refinement, composition and theorem
proving. My work is transitional because of the use
of several levels of intermediate representations, viz.
UML — UML AST/BNF — UML-Slang — Slang. It
is sequential in the sense that the process begins with a
semi-formal UML specification, but also successive re-
finement in that I do provide for consistency checking
between parallel UML views of software design. Fig-
ure 2 shows examples of Fraser’s classification, with
pointers to comparable research in my self-assessed
classification.

4. Approach

A UML formalization process overview is portrayed
in Figure 3. The abstract syntax of both UML and
formal language domain theories will be mapped to

derived UML Formal Semantics to provide a formal
system that well-formed notations can be proved in.
Showing the mapping rules are consistent will be ac-
complished by demonstrating that center portion of
Figure 3 commutes.

Istructure)
Formal semantics
(rules defining Theory-hased
meaning of UML| object model
Equivalence components)

object classes &

ules ationships)

Theory-hased
specification
(O-Slang AST/
structure)

Domain
specification
(UML AST)

Trandation rules

Formal
specification
(Siang)

Figure 3. UML Formalization Process

The UML to formal methods mapping will be ac-
complished by the steps listed in Figure 4.

5. Objectives/Contributions

As mentioned earlier, the goal of this research is to
formalize both UML, and the software derived from
UML, in an extensible and automatable method that
supports specification composition and CASE tool in-
teroperability. In particular, the objectives that follow
from this goal are enumerated in Figure 5, along with
my proposed contributions for each of the enumerated
research objectives.

6. Summary

My dissertation (at ftp.coe.neu.edu, /incom-
ing/users/jsmith/paper.ps) proposal represents my
plans, and associated examples, that I propose to com-
plete for my actual dissertation. My primary motiva-
tion is to build that framework that combines the ad-
vantages of CASE tools with the advantages of formal
methods systems by:



Task Name Task Destription
LUML Syntax~ Congtruct ASTs of the congtrained UML, developed inthe UML

Semantics Task, to build aconcise, unambiguous, text form of generic
UML, independent of any specific CASE tool

2. UML Semantics Construct the formal semantics of UML, derived from the semi-formal
semanticsand relevant UML formal representation research

3. Theory-based ~ Congtruct an object-oriented, theory-hased intermediate representation,
Intermediate  compatible with tools that support theorem proving, software generation
Representation  composition and refinement

4. Mapping Rules  Derive formal rules that permit mapping between UML syntax/semantics
and the theory-hased intermediate representation, serving as acompleteness
check and verification of each of thesethree UML representations

5. Automation  Define and implement the automation process, i.e. trandlate exemplary

UML forms of a software specification, to representations compatible with
asoftwaretool that utilizes the theory-based intermediate representation

Figure 4. Research Summary Descriptions

e formalizing the popular CASE tool graphical spec-
ification language, UML,

e translating the formalized UML to a formal lan-
guage use by a tool supporting theorem proving,
software composition, code generation and refine-
ment and

e proving that the translation between the graphical
specification and the resulting formal translation
is viable.

This research will contribute to future evolutions of
UML and help bring formal methods into the main-
stream of common software engineering practice.

Objective Contribution

1. Development of method to support composition of - Development of techniquesto ensure
software specifications, logical theoriesand consigtency of object-oriented specification
formalizations so that larger entities may be composition (based on forming calimits of
constructed from smaller components and checked - the category-hased components derived
for congistency, completenessand redundancy ~ from UML components)

2. Development of method to support interoperability - Formalization of the trandlation from
with other CASE tool modeling languagesand ~ UML to an algebraic specification
other formal methods systems

3. Congtruction of framework to permit formalizations Incorporation of object-oriented and
to be extended when new features are added tothe - type extensions to the theorem
CASE tool modeling language prover/code generation tool

4, Minimization of the human effort needed to create - Automation of trandlation from UML
formal models & to an lgebraic specification

5. Improvement of UML understandability through ~ Construction of formal UML syntax
unambiguous syntectic diagrams and explicit, and semantic contributions to future
verifiable semantics versionsof UML

6. Development of atechnique to reduce errorsinthe - Development of atechnique to formally
trandtion from graphical specification to Software prove correct trandation of CASE spec-
ified models to forma methods systems
Figure 5. Contributions Associated with Each
Objective
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1. Introduction more appropriate to the concerns of architectures and their
attention to component interactions. In particular, both the

structural and the behavioral relationships among compo-
nents expressed in current-day formal architecture descrip-
éion languages, such as Rapide [11] and Wright [2] are con-

tS|dered.

Software architectures model systems at high levels of
abstraction. They capture information about a system'’s
components and how those components are interconnecte
Some software architectures also capture information abou
the possible states of components and about the compo-
nent behaviors that involve component interaction; behav-2. Related Research
iors and data manipulations internal to a component are typ-

ically not considered at this level. This work builds on previous and related work in three
Formal software architecture description languages al-primary areas: traditional dependence analysis techniques,
low one to reason about the correctness of software systemgovel approaches to slicing, and applications of static con-
at a correspondingly high level of abstraction. Techniques currency analysis tools to architecture descriptions.
have been developed for architecture analysis that can re- ProDAG [21] is a program dependence analysis tool
veal such problems as potential deadlock and componentet that performs statement-level dependence analysis.
mismatches [2, 9, 12, 17]. ProDAG allows one to create and access various prede-
In general, there are many kinds of questions one mightfined relationships originally identified by Podgurski and
wantto ask at an architectural level for purposes as varied a<Clarke [20]. The technique of chaining, the dependence
reuse, reverse engineering, fault localization, impact anal-analysis technique proposed as a focus of this research,
ysis, regression testing, and even workspace managementaises these ideas to the architectural level, as well as in-
These kinds of questions are similar to those currently askedcorporating the notion of structural dependence.
at the implementation level and answered through static de-  Chaining is similar in nature to Weiser’s concept of pro-
pendence analysis techniques applied to program code. Iyram slicing [24]. Korel and Rilling recently proposed slic-
seems reasonable, therefore, to apply similar techniques aing at the module level as an aid to program comprehen-
the architectural level, either because the program code mayion [10]. Tip has provided a survey of traditional program
not exist at the time the question is being asked or becausslicing techniques [23]. Sloane and Holdsworth [22] sug-
answering the question at the architectural level is moregest advanced applications for slicing, in which the basis
tractable than at the implementation level. for analysis includes aspects other than traditional data and
This research introducehaining a dependence analy- control flow. They present a concept of syntactically based
sis technique for software architectures. In chaining, links generalized slicing for use in slicing of non-imperative pro-
represent the direct dependence relationships that exist irgrams. | agree with the spirit of this work and, in some
an architectural specification that, when collected together,sense, am pursuing a similar goal, but in the particular con-
produce a chain of dependencies that can be followed durtext of software architectures.
ing analysis. The traditional view of dependence analysisis Oda and Araki [18] first introduced the concept of static
based on control and data flow relationships associated withspecification slicing for specifications written in Z. Chang
functions and variables [1, 5, 8, 15, 19, 20]. This researchand Richardson [4] extend this work with the introduction
takes a broader view of dependence relationships that isof techniques for creating dynamic slices. Both these ap-



proaches use traditional slicing criteria, whereas this work tions have been identified and will be used as a basis for
involves exploring relationships at the architectural level, validating this work. As examples:
where the concept of a variable is abstracted away.

Zhao, Cheng, and Ushijima [25] propose the system 1. Arethere any components of the system that are never
dependence net (SDN) as a representation of concurrent needed by any other components of the system?
object-oriented programs. The SDN is used to find slices
of CC++ (Concurrent C++) programs.

Zhao [26] has recently begun work in the area of depen-
dence analysis of formally described software architectures.
The work described in this initial paper is similar in nature 3
to my proposal but is preliminary and the details are un-
stated.

Naumovich et al. [17] apply INCA and FLAVERS, two
static concurrency analysis tools used for proving behav-
ioral properties of concurrent programs, to an Ada trans- 4. If a change is made to this component, what other
lation of a description of the gas station problem that was components might be affected?
written in the Wright ADL [3]. Their approach is to create
a concurrent program that can simulate the intended con- 5. If a change is made to this component, what is the
current behavior of the system. My work is aimed at de- minimal set of test cases that must be rerun?
veloping general dependence analysis techniques that may,
in fact, contribute to the enhancement of the static analyses
already provided by these tools.

Other work relevant to my thesis work includes the work
by Medvidovic [13] on the classification of ADLs, Craigen,
Gerhart and Ralston [7], that of Clarke and Wing [6] on
the state of acceptance of formal methods, and work in the
area of software architecture recovery (e.g. Murphy, Notkin
and Sullivan’s [16] work on reflection models, and the work
being done by Mendonca and Kramer [14] on software ar-
chitecture recovery).

2. If this componentis communicating through a shared
repository, with what other components does it com-
municate?

. Ifthe source specification for a componentis checked
out into a workspace for modification, which other
source specifications should also be checked out into
that workspace?

(o]

. If a failure of the system occurs, what is the mini-
mal set of components of the system that must be in-
spected during the debugging process?

These questions share the theme of identifying the compo-
nents of a system that either affect or are affected by a par-
ticular component in some way.
In chaining, chains represent dependence relationshipsin
an architectural specification. Individual chain-links within
a chain associate components Amrdcomponent elements
of an architecture that are directly related, while a chain
of dependencies associates componentg@ntbmponent
3. Methodology elements that are indirectly related. To build a chain one
determines a component or element to use as the origin
Initial research has been done in the areas of identifica-of the chain and a relationship type that will help answer
tion of dependence relations among components and questhe question at hand. For instance, if the analyst is trying
tions that are appropriate and interesting at an architecturato discover why an error message was incorrectly emitted,
level as well as the development of an architectural level then the chain would be constructed based on the event that
dependence analysis technique called chaining. generates the error message and the caused-by relationship.
Dependence relationships at the architectural level ariseThe chain that is produced will contain the reduced set of
from the connections among components and the con-elements that could have been involved in the generation of
straints on their interactions. These relationships may in-the error message.
volve some form of control or data flow, but generally they A language independent tabular representation for ar-
involve structureandbehavior Examples of structural re-  chitectures has been developed to capture the relationships
lationshipdncludes Import/Export Inheritanceand exam-  among architectural elements. The chaining algorithm is
ples of behavioral relationships afempora) Causal In- applied to this representation in order to discover chains of
putOutput Both structural and behavioral dependencies related component. Chaining has been used to help localize
are important to capture and understand when analyzing arfaults and discover anomalies in descriptions of a version
architecture. | am investigating the ways in which architec- of the well known gas station example as well as IBM's
tural dependencies are influenced by the primitive featuresADAGE avionics system. Both of these descriptions were
of the architecture description language. written in the Rapide ADL. The gas station example is quite
There are a variety of questions that should be answer-simple while the ADAGE example is large and complex.
able by an examination of a formal architecture descrip- Language constructs of various ADLs will be in-
tion. Several architecture-level dependence related quesvestigated in order to determine their implications for



architecture-level dependence analysis. The chaining techWhen selecting systems for this part of the evaluation, | will
nigue is being implemented in an analysis support tool balance size against complexity so that the chosen systems
called Aladdin. At the highest level of abstraction, Al- are small enough to be understandable and for me to de-
addin’s architecture is composed of three components, thescribed formally in a reasonable amount of time if need be,
language specific table builder, the language independenyet complex enough to demonstrate the effectiveness of the
chain builder and the user interface. The table builder musttool.
be constructed for each ADL in order to determine the re-  Finally, an experiment will be performed involving the
lationships that exist among the architectural elements. Theuse of chaining to perform analyses of an architecture of
table builder maps the elements modeled in the specific lan-an implemented, industrial system. Some companies’ soft-
guage to relationships known to Aladdin. The chain builder ware development process involves a lengthy specification
performs a transitive analysis over the table. The techniqueand peer review process before implementation is begun.
and the tool will be refined over the course of the next year. The goal of this process is to uncover requirements and de-
Work will also continue in the evaluation of dependence re- sign flaws prior to the implementation phase. | will eval-
lationships that exist in architectural descriptions and the uate the effectiveness of automated dependence analysis in
effectiveness of chaining in educing these sets of related el-accomplishing this same goal. The purpose of the experi-
ements from systems. Other issues to be studied are interment is to show that time can be saved in the development
level mappings, as well as scalability, modularity and incre- process through the use of automated dependence analysis.
mentality of chaining. The steps of the experiment are 1) Write a formal descrip-
As with any software engineering research, the ultimate tion of the system architecture based on the requirements
usefullness of the technique is always a question. With re-documents provided for the system. 2) Determine what
spect to this work, in fact, historically subprogram slices, types of problems might be expected of the particular sys-
which are based on a concept similar in nature to chain-tem based on a) prior experience of the company, or other
ing, have not been shown to be significantly smaller than companies who have had experience in the development of
the original program. Computing statement level slices for similar systems and b) expected functionality stated in the
large systems is impractical, whereas architecture-level slic-requirements documentation. 3) Determine which types of
ing may prove a good alternative. | intend to compare chains would reveal expected faults. 4) Apply Aladdin to
the characteristics of large and small systems to determinethe formal description of the system. 5) Compare the faults
whether the level of coupling tends to be lower in larger that are discovered automatically with those that were dis-
systems. If this is true, the savings from applying such tech-covered by the design team during peer review.
nigues will be greatest when applied to large systems.
Historically testing has concentrated on the implemen-
tation of the system, which has meant that it is considered
fairly late in the development process. Eventually | intend
to incorporate chaining into a complete life cycle software [1] H. Agrawal, R. A. DeMillo, and E. H. Spafford. ~An
analysis and testing environment. My goals for this research ~ Execution-Backtracking Approach to DebugginglEEE
are less ambitious however and include only the building of Softwarg pages 21-26, May 1991.

Aladdin which is intended to be used to support other auto- [2] R-Allenand D. Garlan. Formalizing Architectural Connec-
mated analyses. tion. In Proceedings of the 16th International Conference

on Software Engineeringages 71-80. IEEE Computer So-

ciety, May 1994.

4. Evaluation of Results [3] R. Allen and D. Garlan. A Formal Basis for Architectural
Connection. ACM Transactions on Software Engineering
and Methodology6(3):213-249, July 1997.

[4] J.Chang and D. Richardson. Static and Dynamic Specifica-
tion Slicing. InProceedings of the Fourth Irvine Software
Symposiumirvine, CA, April 1994.

[5] J. Cheng. Slicing Concurrent Programs — A Graph-
Theoretical Approach. Lecture Notes in Computer Sci-
ence, Automated and Algorithmic Debuggingges 223—

References

Evaluation of this work will be accomplished as follows:

I will choose three languages that contain a variety of the
previously identified dependence relationships. | will deter-
mine mappings between relationships modeled in each lan-
guage and the relationships known to Aladdin, then apply
chaining to specifications written in each of the languages.

The questions listed in the Methodology section are im- 240, 1993,
portant questions for software engineers. | will obtain, [6] E. Clarke and J. Wing. State of the Art and Future Direc-
or create, formal architectural descriptions of systems for tions. Technical Report CMU-CS-96-178, Carnegie Mellon

which architecture based questions of these types is appro- University, August 1996.
priate. Specific questions will be formulated for each archi- [7] D. Craigen, S. Gerhart, and T. Ralston. Formal Methods Re-
tecture and Aladdin will be used to answer the questions. ality Check: Industrial Usage. 21(2):90-98, February 1995.



(8]

El

(10]

(11]

(12]

(14]

(15]

(17]

(18]

[20]

S. Horwitz, T. Reps, and D. Binkley. Interprocedural Slicing
Using Dependence GraphACM Trans. Prog. Lang. Syst.
22(1):26-60, January 1990.

P. Inverardi, A. Wolf, and D. Yankelevich. Checking As-
sumptions in Component Dynamics at the Architectural
Level. In Proceedings of the Second International Con-
ference on Coordination Models and Languagesmber
1282 in Lecture Notes in Computer Science, pages 46—63.
Springer-Verlag, Sept. 1997.

B. Korel and J. Rilling. Program Slicing in Understanding
of Large Programs. I8ixth International Workshop on Pro-
gram Comprehensigmages 145-152, Ischia, June 1998.

D. Luckham, J. Kenney, L. Augustin, J. Vera, D. Bryan, and
W. Mann. Specification and Analysis of System Architec-
ture Using Rapide.lEEE Transactions on Software Engi-
neering 21(4):336-355, Apr. 1995.

J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Dis-
tributed Software Architectures. Proceedings of the Fifth
European Software Engineering Conferencember 989

in Lecture Notes in Computer Science, pages 137-153.
Springer-Verlag, Sept. 1995.

N. Medvidovic. A Framework for Classifying and Com-
paring Architecture Description Languages. Pnoceed-
ings of the Sixth European Software Engineering Confer-
ence together with Fifth ACM SIGSOFT Symposium on the
Foundations of Software Engineeringpges 60—76, Zurich,
Switzerland, September 1997.

N. Mendonca and J. Kramer. Developing an Approach for
the Recovery of Distributed Software ArchitecturesPho-
ceedings of the Sixth International Workshop on Program
Comprehensiompages 28-36, June 1998.

C. Moore, T. O'Malley, D. Richardson, S. Aha, and D. Brod-
beck. ProDAG: A Program Dependence Graph System.
Arcadia Technical Report UCI-90-25, Department of Infor-
mation and Computer Science, University of California at
Irvine, 1990.

G. Murphy, D. Notkin, and K. Sullivan. Software Reflexion
Models: Bridging the Gap Between Source and High-level
Models. InProceedings of the Third ACM SIGSOFT Sym-
posium on the Foundations of Software Engineerjpages
18-28. ACM Press, October 1995.

G. Naumovich, G. Avrunin, L. Clarke, and L. Osterweil. Ap-
plying Static Analysis to Software Architectures. Rmo-
ceedings of the Sixth European Software Engineering Con-
ference number 1301 in Lecture Notes in Computer Sci-
ence, pages 77-93. Springer-Verlag, 1997.

T. Oda and K. Araki. Specification Slicing in Formal Meth-
ods of Software Development. Rroceedings of the Seven-
teenth Annual International Computer Software and Appli-
cations Conferengepages 313-319. IEEE Computer Soci-
ety Press, November 1993.

H. Pande, W. Landi, and B. Ryder. Interprocedural Def-
Use Associations for C Systems with Single Level Pointers.
IEEE Transactions on Software Engineering0(5):385—
403, May 1994.

A. Podgurski and L. Clarke. A Formal Model of Program
Dependencies and its Implications for Software Testing, De-
bugging, and MaintenancéEEE Transactions on Software
Engineering 16(9):965-979, Sept. 1990.

[21]

[22]

(23]

[24]

[25]

[26]

D. Richardson, T. O'Malley, C. Moore, and S. Aha. Devel-
oping and Integrating ProDAG in the Arcadia Environment.
In SIGSOFT '92: Proceedings of the Fifth Symposium on
Software Development Environmergages 109-119. ACM
SIGSOFT, Dec. 1992.

A. Sloane and J. Holdsworth. Beyond Traditional Program
Slicing. In Proceedings of the 1996 International Sympo-
sium on Software Testing and Analysis (ISSTA, §@ges
180-186. ACM SIGSOFT, Jan. 1996.

F. Tip. A Survey of Program Slicing Techniquelurnal of
Programming Language$:121-189, 1995.

M. Weiser. Program Slicing. IRroceedings of the 5th Inter-
national Conference on Software Engineeripgges 439—
449. |IEEE Computer Society, Mar. 1981.

J. Zhao. Static Slicing of Concurrent Object-Oriented Pro-
grams. InProc. 20th IEEE Annual International Computer
Software and Applications Conference (COMPSAGC’96)
pages 312-320, Seoul, Korea, August 1996.

J. Zhao. Using Dependence Analysis to Support Software
Architecture Understanding.New Technologies on Com-
puter Softwargpages 135-142, September 1997.



Dynamic Modeling in Forward and Rever se Engineering of Object-Oriented
Softwar e Systems

TarjaSysta
Department of Computer Science
University of Tampere
P.O. Box 607, FIN-33101 Tampere, Finland
cstasy @cs.uta.fi

Abstract

Aprototypetool called SCED isused for modelingthedy-
namic behavior of object-oriented software as scenario dia-
grams and state diagrams. In SCED state diagrams can be
synthesized automatically from scenario diagrams. When
reverse engineering existing software, a parser and a de-
bugger are used for extracting static and dynamic informa-
tion, respectively. The parsed information is viewed as a
nested graph using a reverse engineering environment Rigi.
The debugged informationis shown as SCED scenario dia-
grams and state diagrams. Static and dynamic viewsto the
software can be improved and insured by comparing partly
overlappinginformationgenerated by the parser and thede-
bugger.

1. Introduction

Object-Oriented Analysis and Design (OOAD) method-
ologies support the designer in designing, visualizing, and
documenting artifacts in object-oriented software systems.
These methodologies provide notations and guidance to
model both the static structure of the program and the dy-
namic behavior of the objects.

Variations of scenario diagrams and finite state machines
are used in severa OOAD methodoligiesfor dynamic mod-
eling. In The Unified Modeling Technique (UML) [1] the
corresponding diagrams are called sequence diagrams and
statechart diagrams, respectively. In The Object Modeling
Technique (OMT) [2] they are called event trace diagrams
and state diagrams. A scenario diagram shows an object in-
teraction arranged in time sequence during a particular ex-
ecution of the system. Participating objects or classes are
drawn as vertical lines and the interaction between them
with horizontal arcs. A scenario diagram can also have
participants outside of the system border, for example, a

user giving inputs to the system. A state diagram shows
the sequences of states that an object or an interaction goes
through during its life in response to received stimuli, to-
gether with its responses and actions.

SCED [ 3] isaprototype environment built to support the
dynamic modeling of object-oriented applications. SCED
usesthe OMT methodology as a guideline, although the re-
sulting system could be useful for other methods as well,
particularly for methods with a scenario driven approach.
Despitethedifferent purposesof scenario diagramsand state
diagrams, they share common information. Hence, con-
structing one from the other can be partly automated. One
of the basic observations behind SCED is that constructing
scenario diagrams and fusing them into a state diagram can
be supported by automated tools far more than is currently
practiced. In [4], it has been demonstrated how a minimal
state machine, which is able to execute al the given sce-
narios with respect to a certain object, can be synthesized
automatically. This algorithm with few modifications has
been implemented in SCED. On the other hand, scenario di-
agrams can be generated by animating the interaction of ob-
jectsthroughaset of collaborating state diagrams. However,
in contrast to conventional animation systems, in SCED one
can add new behavior to the system during the animation
process. This technique could be characterized as design-
by-animation. By using state diagram synthesisand design-
by-animation techniques in turns, the dynamic model can
be refined semi-automatically: each iteration gives a more
comprehensive set of scenario diagrams and more complete
state diagrams.

Severad tools are available for reverse engineering the
dynamic behavior and static structure of existing software.
Toolsthat focus on static aspects of thetarget system usualy
use parsers for extracting the software artifactsand their de-
pendencies. Rigi [5] isan extensible and tailorable reverse
engineering environment. The parsing system of Rigi sup-
ports several programming languages, and new parsers can



easily be added to it. The parsed information can be viewed
asadirected graph using Rigi editor. Rigi a so supportspro-
gram dicing and building abstractions for the static views.
These features are used for increasing the understandability
and readability of the views.

The dynamic behavior of software can be extracted, e.g.,
by using a debugger, a profiler, or instrumenting the source
code. Typica behavioral aspects to be extracted are: ob-
ject and thread interaction, exceptions and errors, garbage
collection, memory leaks, etc. A scenario is a natural, de-
scriptive, and powerful way to record the object interaction.
However, scenarios tend to grow rapidly when the target
system gets more complicated. One way to dea with the
scenario explosion is to detect behavioral patterns from the
event trace. The automatic state diagram generation prop-
erty of SCED provides another efficient way to deal with
large event traces, to view thetotal behavior of aclass of in-
terest in asingleview, and to examine itsrun-time behavior
separately from the rest of the system.

2. Forward engineering

Most user interaction with SCED involvestwo indepen-
dent editors: a scenario diagram editor and a state diagram
editor. At any time while editing the scenario diagram, the
user can sel ect one participating object and synthesizeastate
diagram automatically for this object using a single menu
command. The synthesis can be done for one scenario dia
gram only or for a specified set of scenario diagrams. More-
over, scenario diagrams can be synthesized into an existing
state diagram.

When synthesizing a state diagram for an object, each
scenario diagram is traversed from top to bottom from the
point of view of a participant corresponding to that object.
Each received event is mapped to a transition in the state
diagram. Sent events are regarded as primitive actions that
are associated with states. The synthesis agorithm attaches
statesto all actionsand places at most one actioninto asin-
glestate. Thisisarestriction when OMT state diagram no-
tation is considered. Hence, SCED provides a gorithmsfor
generating OMT state diagram notation for a synthesized
and/or edited state diagram to simplify the state diagram
while preserving itsinformation. The generated OMT state
diagram allows severa actions placed into a state, actions
attached to transitions, entry and exit actions of states, etc.

SCED scenario diagram notation differs dightly from
UML or OMT ones. Some new concepts have been added
in order to make SCED scenario notation more expressive.
Like subroutines, a scenario diagram may consist of parts
that have their own aims and characterizations. Such parts
can be placed into a separate subscenario in SCED. These
subscenarios can then be “called” instead of repeating their
contents. SCED scenario notation also lacks some UML se-

guence diagram concepts, and some of the concepts have
different graphical representations. For example, focus-of-
control regions and timing constraints are not included in
SCED scenario notation. The extended scenario diagram
notation of SCED does not cause any mgjor changes to the
synthesis algorithm.

Whilethe state diagram synthesi s technique uses a set of
scenario diagramsfor generating astatediagram, design-by-
animation technique uses a set of state diagrams for gener-
ating a scenario diagram. The state diagrams can simulate
system behavior, sending events to each other and chang-
ing states according to received events. Aslong as external
stimuli is not needed and the state diagram set represents a
complete system, the event trace can be automatically gen-
erated. If that isnot the case, the event tracing process halts
whenever such undefined events are needed. In these cases
the user hel psthe event tracing process to go on by provid-
ing theunknown behavior. Hence theresulting scenario dia
gram contains both automatically generated events and user
defined events.

By using the state diagram synthesis and design-by-
animation techniques in turns, a powerful design tool can
be achieved. The dynamic modeling process is smoothly
changed from a“water fall” type of modeling (first scenario
diagrams, then state diagrams) to a more spiral and incre-
mental way of modeling; the dynamic models for objects
can be constructed semi-automatically by refining the state
diagrams using a growing set of scenario diagrams and ex-
tending the scenario diagram set based on communicating
state diagrams. Each iteration hence gives a more compre-
hensive set of scenario diagrams and a more compl ete state
diagrams for the objects to be modeled. Each iteration also
increases the degree of automation. The method is espe-
cialy suited for modeling the behavior of one new compo-
nent using the known behavior of other, predefined, and pre-
sumably correctly implemented components. For example,
such predefined components could be classes belongingto a
graphical user interface framework.

As a counterbal ance to the state diagram synthesis prop-
erty, scenario diagrams can aso be desynthesized from the
state diagram: the state diagram is updated by removing
parts that correspond only to the scenario diagram to be
desynthesized. Some support for consistency checking be-
tween scenario and state diagramsis available as well.

3. Reverse engineering

For fully understanding existing software both static and
dynamic information need to be extracted. Static informa-
tion includestypically software artifacts and their relations.
In Java, for example, such artifacts could be classes, in-
terfaces, methods, variables etc. The relations might in-
clude extending rel ationshi ps between classes or interfaces,



method calls between methods, containment rel ationships
between classes and methods or variables etc. Dynamic in-
formation contains software artifacts as well. In addition, it
contains sequential information, information about concur-
rency and code coverage, €tc.

Reverseengineeringisnot only applied to old legacy sys-
tems, it aways needs to be part of forward engineering as
well. In software devel opment, reverse engineering the cur-
rent static structure of the software helpsthe engineer toin-
surethat the architectural guidelinesare followed, to get an
overal picture of the software, to document the implemen-
tation steps and so on. Reverse engineering the run-time
behavior during the software development phase is essen-
tial. If the system seems to be irregularly unstable, tracing
the bugsis possible only if the history and order of occured
eventsis known.

The extracted information is not useful unless it can be
showninareadableand descriptiveway. Therearebasicaly
three kinds of viewsthat can beused: static views, dynamic
views, and merged views. The extracted information often
consistsof alarge amount of detailed and low level software
artifacts. Hence good views for showing the informationis
not usually enough, abstractions need to be build for making
the views more clear and understandable. Figure 1 shows
the main aspects of the problem.
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Figure 1. Different aspects of reverse engi-
neering object-oriented software.

Rigi views static information in a form of a (nested)
graph. It offersagraph editor and provides an extensible set
of layout agorithms and algorithms used for program dlic-
ing and analyzing the software. Nested graphs enable show-
ing the static structure of thewhole system in asingleview,
and provide flexibility in browsing between different levels
of abstractionsbuiltfor thegraph. Thisisan advantage com-
pared to traditionally used class diagrams.

The state diagram synthesisfacility of SCED providesan

efficient way to view thetotal run-timebehavior of one par-
ticipant in asingle view. The resulting state diagrams can
then be used in design-by-animati on approach when extend-
ing the design of thetarget system or designing another sys-
tem that partly uses same classes as the current system.

When both static and dynamic information is extracted,
also merged views can be used. Such views are usudly
formed by extending the static view by adding dynamic in-
formation into it. For example, code coverage information
can be shown against astatic view by givingweightsfor the
corrensponding parts in the static view according their run-
time usage. Merging static and run-time information has
severa advantages. First, the quality of the view can bein-
sured by combining static and dynamicinformation. If both
the parser and the debugger produces same source code ar-
tifactsand rel ations, the engineer can be quite confident that
the artifacts are the right ones and the parser and the debug-
ger works correctly. Second, the differencies between static
and dynamic artifacts can be used toimprovetheviews. For
example, the parser cannot generate all default constructors
if they are not explicitely writtenin the source code. Thede-
bugger can providethis piece of information. Third, merg-
ing informati on provides extended ways to do program slic-
ing. For instance, based on dynamic information parts that
are not used at run-time can be filtered out from the view.
Slicing can also be made according to example scenarios.

Building abstractions for the views can be partly but not
fully automated. Object-oriented languages support encap-
tulation. Such language structures can be used to build static
abstractionsautomatically. For example, examing Java soft-
ware by observing classes and their relationsmight clear the
overall structure of the software, compared to studing it at
the level of class members. In Rigi such abstractions can
be built by collapsing all class method and variable nodes
into asingle class node, hence making the graph consider-
ably smaller. Examing the structure in the class level might
gtill contain too detailed information. The next step could
be collapsing all classes and interfaces into packages, etc.
Object-oriented metrics can aso be applied for reasoning
potential subsystems. Such subsystems could be groups of
classes that are highly cohesive and have low couplingwith
other classes.

Dynamic abstractions typically differ from static ones.
Building dynamic abstractions usually focuses on defining
behavioral patterns and use cases. For example, initidiza-
tion of a dialog might contain a sequence of events that
are executed in arow every time the dialog is opened. In-
stead of repeated the whole event sequence, one single “di-
alog initidization” event could be considered. An exam-
ple of a use case might be “withdrawing money using an
ATM". Such abstractions simplify sequence diagrams ver-
ticaly: the number of eventsis decreased. Sequence dia-
grams can aso be simpified horizontally by decreasing the



number of participants. This can be done by using the ab-
stracted static model; sequence diagrams could show inter-
action between high level static compenents.

Building abstractions for merged views can be difficult,
since the differencies between the static and the dynamic
artifacts and their relations are not always complementary.
For example, when overriding super class methods, poly-
morfism causes different method to be called thanisactually
written in the source code. Sequentia information is often
difficult to show inthesame view with staticinformation. In
UML, collaboration diagrams can be used but the diagram
gets difficult to read when the target software gets bigger.
In general, themoreinformationisadded into asingleview,
thelessreadableit getsloosingitsdescritive power. Finally,
building abstractions for merged views gets ambigious be-
cause dynamic and static abstractions usudly differ consid-
erably. When dynamic abstractions usualy are behaviora
patternsor use cases, static abstractionsare subsystems. For
example, most of the classes used by two use cases “with-
drawing money using an ATM” and “paying a bill using an
ATM” are the same and may belong to a single subsystem
“ATM”.

4. Current state of the research and future
work

SCED isused for dynamic modelingin forward engineer-
ing of object-oriented software. The state diagram synthesis
and design-by-animation features raise thelevel of automa:
tionin construction of the dynamic model. A prototypeen-
vironment for reverse engineering Java software has been
built. A Java source code parser isused for extracting static
code artifacts and their relations for the target Java appli-
cation or applet. The extracted information is viewed with
Rigi editor. Rigi environment is also used for building ab-
stractions and for program dlicing. A Java source code de-
bugger produces event traces consisting of basic object in-
teractions. These event traces are shown as SCED scenario
diagrams. The total behavior of an object can be viewed as
asynthesized statediagram. Synthesized state diagrams can
then be used in desi gn-by-ani mati on approach when design-
ing new featuresfor thetarget system. Some dynamicinfor-
mationisadded to the static Rigi graph aswell. Thegraphis
extended with code coverage information and artifacts gen-
erated by the debugger but not recognizeded by the parser.
Figure 2 showsthe overall structure of the current system.

The emphasisin the future work is on examing how the
dynamic and static views could contribute each other and
when merged views could be used. Furthermore, the func-
tionality of the Java debugger needs to be extended. Cur-
rently, the debugger produces method calls, constructor in-
vocations, and thrown exceptions. However, the user should
be given an option to choose information to be generated
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Figure 2. Current solution for reverse engi-
neering Java software.

into the scenario diagrams. For example, in addition to cur-
rently generated events, the set of options might include:
class variable assignments or accesses, if-else structures,
repetition structures etc.

SCED hasbeen builtin aresearch project in co-operation
with the University of Tampere, Tampere University of
Technology, and several Finnish industria partners. It is
freely available at http://www.utafi/~cstasy/scedpage.html
or viaftp (ftp.cs.utafi, indirectory /pub/sced). Rigi hasbeen
conducted by researchers in the Department of Computer
Science at the University of Victoria. Rigi can be down-
loaded from http://www.rigi.csc.uvic.cal.

| wish to thank Kai Koskimies and Hausi Muller for su-
pervising my work. The SCED project has been financially
supported by the Center for Technological Development in
Finland (TEKES), the Nokia Research Center, Valmet Au-
tomation, Stonesoft, Kone, and Prosa Software. My cur-
rent research isfinancially supported by Tampere Graduate
School and Academy of Finland.
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Abstract

Software engineering is about to undergo a
fundamental change. Compelled by ever-expectant
users and the impending problem of Moore’s Second
Law, the reliance on increasingly powerful hardware
to support increasingly demanding software must soon
end. To keep abreast of the demand for increasingly
responsive and functionality rich applications,
software engineers must look to ways of creating
programs which are insulated from the effects of
Moore’s Second Law through the application of
parallelism. The Vorlon programming language
conceals the detail of complicated parallel hardware
by using an abstract, machine independent, visual
approach to developing applications. Development is
underpinned by the object-oriented methodology and
supported by a CASE-style tool that bears the
responsibility for producing parallel code from Vorlon
graphs. Vorlon sets out to demonstrate the
combination of a powerful programming paradigm
(object-oriented) together with the application of
computer graphics can enable engineers to design and
build parallel applications to the same level of
engineering that sequential applications enjoy.

Introduction

As the field of computing evolves, society has come to
expect ever more ambitious and powerful software to
support its activities. From the user’s perspective, there
should be no reason why software should not continue
to evolve in terms of functionality and responsiveness.
Software itself has become reliant on increasingly
powerful hardware to deliver functionality in a timely
fashion. Presently, software practitioners are supported
in meeting user requirements by continual substantial
increases in performance from hardware.
Unfortunately, this almost euphoric atmosphere within
which modern software is developed and used may
soon end. Already hardware manufacturers have begun
to experience the effects of Moore’s Second Law as
the price of chip fabrication facilities increases with

each decrease in component size. If hardware follows
an evolutionary rather than revolutionary development
path, it is a reasonable assumption that the economic
repercussions which prevent an continuous
improvement in hardware performance must impact
software at some point in the near future. In effect,
software will be stretched between ever more
demanding users and a reduction in the rate of increase
in power from hardware.

It is paramount that the end user is not aware of the
existence of the “software stretch” and can continue to
enjoy the Dbenefits of increased application
functionality and response. As hardware seems
destined to be unable to provide continual performance
improvement to the user, the burden must fall to the
software community. Whilst at first glance the future
for software practitioners looks somewhat austere,
there is hope in that although hardware will continue to
evolve upwards at a greatly reduced rate, single
processor performance gains are not the only way to
achieve faster computation. One possible solution for
counteracting the software stretch would be the
deployment of multiprocessor computer systems, a
vision already embraced by some within the scientific
computing field[1].
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Figure 1 — The “Software Stretch”
To date, the majority of parallel computing

applications have not been developed using a software
process. Correspondingly, little parallel technology has




been adopted by mainstream software engineers,
though the field itself remains an active research topic
[2].

The present low level of software engineering
techniques applied to traditional parallel computing
problems is excusable, in that the majority of parallel
computing platforms are currently used to solve
computationally intensive problems whose
functionality is often limited to a single, highly
domain-specific problem. It is entirely feasible that for
such projects, the application of any kind of software
engineering technique would be unnecessary because
the problem domain is well known and solutions can
be largely implemented immediately. Furthermore, as
the goal of such applications is to solve a problem as
rapidly as possible, low-level programming techniques
which contravene “best software practice” are often
used to optimise programs. Moreover, the developers
of such software are rarely interested in creating well-
engineered software. For such users the program is
merely a means to an end, and not an end in itself.
Similarly, software which is rich in functionality has
tended to be computationally less intensive often
performing computation only in response to user
requests, and thus largely obviating the need for
explicit parallelism. This is a situation which will not
continue. As user expectation continues to grow at a
constant rate, the software which users run will
become increasingly computationally intensive. Indeed
there are already several classes of application, notably
image processing, CAD, and gaming which are already
able to utilise vast amounts of processing power.

It is an obvious question then, “Why has software
engineering failed to embrace key parallel
technologies?” The answer is twofold and simple: Up
to now there has been little need to utilise parallel
processing to deliver required functionality to the user,

and perhaps most obviously that parallel applications 2.1

are complicated to build, particularly in the absence of
any high-level development models for parallel
applications.

Developing Parallel Applications with
the Vorlon Programming Language

Firstly, and probably most fundamentally, the

underlying object-oriented paradigm empowers Vorlon
above levels of its contemporaries [3-6] by offering a
structured method of analysis, design, implementation
and code re-use. In particular, re-use in parallel
applications is of even greater importance than in
sequential applications due to the high costs and
potentially higher failure rate of re-writing parallel

code. To date, no similar system has been built on such
a powerful development paradigm. Instead, visual

systems for developing parallel applications have been
based upon paradigms that are aimed entirely at
supporting the implementation phase of the
development lifecycle, concentrating largely upon on

low-level aspects whilst ignoring higher level
activities.
The Vorlon approach to parallel application

development relies on a visually based environment
within - which applications are developed from

inception to release. Vorlon takes a dual-level

approach to developing object-oriented parallel
applications, where each level utlises a hybrid

graphical-textual language for modelling and

programming respectively. At the higher level, there is
the class model, loosely based upon the UML class
model, which provides a repository of types that will

be used within programs. At the lower level, there

exists a method graph that stipulates method
functionality for each method declared in the class
model. In effect, the class model provides type
declarations, and the method models provide the
definitions of those types.

The visual nature of Vorlon enables developers to
visualise parallel execution in a straightforward way.

Programming in two dimensions, as opposed to the
single dimension offered by textual programming

languages, naturally suits parallel programming where
there may be more than one concurrent flow of control
at any given moment. In addition, Vorlon also

separates control flow and computation components of
an application. Unlike textual parallel programming

languages where complicated parallel control flow
mechanisms reduce the clarity of code, all control flow
in Vorlon is expressed graphically. The dichotomy

between computation and control flow ensures that
each remains uncontaminated by the other.

Analysis and Design: Vorlon Class Models

1

Figure 2 — A Typical Vorlon Class Model

The class model in Vorlon is where the developer
performs problem domain analysis and high-level
design stages of the software lifecycle. At this level,



2.2

there is no mention of parallelism, the user merely
analyses and designs software in accordance with
appropriate  object-oriented analysis and design
strategies.

Relations for inheritance, dependency, composition
and uses are available to the developer. Though based
upon the UML class model, Vorlon’s class model
more appropriately reflects the fact that one of the
main axioms underpinning development with Vorlon is
to produce high-performance, parallel applications,
and as such its expressiveness is slightly reduced. The
inclusion of a richer set of modelling primitives would
certainly jeopardise this one fundamental goal and
there has thus been a trade-off between expressiveness
and run-time efficiency. However, it is believed that
the level of support provided will be sufficient for the
majority of applications as it is as expressive as
previous work in the area of object modelling, such as
the Coad-Yourdon, and Booch notations. In addition to
the fact that Vorlon class models are somewhat keener
than their UML equivalents, aspects which reflect the
executable nature of Vorlon programs, such as a main
class-and-objedt7, 8], are also included.

Implementing Vorlon Methods

=

=D
Figure 3 — A Vorlon Method

The Vorlon method model is somewhat more intricate

than the class model. Method graphs are superficially
similar to dataflow graphs, though unlike dataflow

graphs it is not values that are transmitted along arcs,
but object handles, which may be used to call methods
on objects, and as parameters to method calls. As
several handles to one object may be present on the
graph at any one time, there are concurrency issues
pertaining to the simultaneous method calls on that
object. Such issues are resolved automatically by the
object itself according to a relaxed version of the

active-object model [9]. The relaxation adopted by
Vorlon is that methods which do not update object
state (those identified asonst on within the class
model) are free to execute in parallel, whilst methods
which may update object state must run sequentially.
Each method graph consists of a set of special and
general-purpose nodes connected by arcs which
demonstrate control flow dependencies between those
nodes. Parallel activity, including pipelined and task
parallelism is implicit within the structure of the
graphs, thus freeing the developer from the task of
explicity  instigating  parallel  activity and
synchronising concurrent processes. The only
exception to this is data-parallel activity which must be
explicitly programmed by the developer using the
appropriate nodes types. In practice, the explicit data-
parallel programming may not prove to be a great
burden on the programmer, as when data-parallelism is
required it is often obvious.

Method graphs are read top to bottom and may be
hierarchically decomposed in a top-down fashion to
aid navigation and limit information density on any
particular graph. Hierarchical decomposition is not a
means by which design is carried out, unlike
contemporary systems which rely only upon top-down
design, top-down decomposition is used only as a
readability aid.

Like the data-flow model, it is the arrival of
appropriate object handles at a node that cause its
execution to begin. Vorlon clarifies exactly which of
the handles arriving will cause the node to execute by
insisting on the simplest of firing rules: all arcs must
present an object handle before execution will
commence. This has the effect of simplifying the
semantics of the nodes, and clarifying the graph in that
conditional execution is based purely on the arrival or
non-arrival of handles, and not on some arbitrary
combination of the two which has been to the
detriment of other similar languages.

Once a node fires, the handles present at the head of
the arcs involved are consumed. Node operation is
generally synchronous in that for each set of input
handles consumed there will be one output produced
after computation has completed, though there exists
an asynchronous method call facility which can be
used when results are not required from method
invocations. Correspondingly, there exists and event
wait node which offers synchronization at the sub-
graph level. The event wait node will delay the
progress of any object handles which flow into it until
a condition on a local data member is met.

Within each of the nodes, there exists a piece of
sequential C++ which determines the actual
functionality of the node. Depending on whether the
node is general or special purpose, the developer is at



liberty to change certain aspects of that code. Within a
general-purpose node, any sequential C++ can be
embedded, whilst in the special purpose nodes, only
parameters can be changed. In both cases, Vorlon
automatically binds graph components to objects in the
textual source code, which seamlessly integrates the
textual and graphical components of the application.

Conclusions and Further Work

The application of object-oriented programming to
parallelism is not new, nor is the concept that visual
programming can reduce the inherent complexity of
parallel programs. However, supporting the entire
parallel application development process with object-
oriented technology, using visual programming
techniques to abstract away the complexities inherent
within parallel architectures, and wrapping the whole
system within an automated CASE environmesit
novel. It is believed that only by simplifying parallel
programming and absorbing it
engineering process that its use will become accepted,
and Vorlon provides a first attempt at satisfying these
goals. It is the intention to develop Vorlon to a fully
working prototype system and investigate the
feasibility of the approach by tackling complicated
applications normally not undertaken by visual parallel
programming languages whose usage largely
concentrates on algorithms already satisfactorily built
with textual programming languages. Vorlon’s success
thus depends not on the attainment of speedup per se,
but on the more subjective goal of supporting the
developer in constructing properly engineered parallel
software.

Less visibly, there are several ideas for altering the
underlying execution model. One method of achieving
greater speedup relies on the fact that Vorlon
subgraphs declare which local data members are to be
used within their scope. Using the information on
scoping, it may be possible to execute several write-
methods concurrently, without causing corruption.
Under this model, methods that are independent in
terms of the state that they access would be able to
execute in parallel. Whilst the concurrency
mechanisms are more complicated under these
circumstances, there may be improvements in
performance where the level of parallelism exploited is
greater than the cost of implementing those
concurrency mechanisms. Verification of this would
require experimentation, though to the developer, there
is the advantage that the language itself remains
unchanged.

The method model component of the language could
also be made to support the development of fault
tolerant parallel applications without change to syntax

into a software 4

or semantics. Arcs connecting nodes could be made to
be transactional, and nodes themselves could be
automatically replicated without explicit programmer
intervention [10]. Furthermore, as well as describing
normal control flow dependencies between nodes, a
second view could be provided which would show
exceptional program behaviour. The syntax and
semantics of the exceptional behaviour would be
identical to the standard control flow, thus supporting
the construction of robust applications with a single
programming paradigm.

Whilst Vorlon is unlikely to envelop fault-tolerance
and optimistic method execution strategies in the
prototype version, its development model could clearly
assimilate them. It is hoped that future research based
on Vorlon will lead to the development of a robust,
general-purpose language for developing high-
performance applications, which will enable future
software to bridge the user-hardware gap.
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Abstract

This research proposal examines how to improve method
component reuse in a customizable CASE environment.
Software reuse is an old topic that began from the end of
the 1960s, while the component reuse in method engi-
neering is relatively new. In my research work, the major
objective is to study method component reusability in
method engineering rather than general software compo-
nent reuse. The research begins with an exploratory
qualitative analysis of possibility and necessity of compo-
nent reuse from both managerial and technical viewpoints
based on a literature review. Afterward, it deals with
method component reuse in a specific customizable CASE
environment called MetaEdit+. The results highlight the
importance of component reuse in customizable CASE
environment.

1. Introduction

Software reuse was first touted as an approach to over-
coming the software crisis at the end of 1960s [1, 2]. At
the beginning, the interest in reusable software stemmed
from the realization that one way to increase productivity
during the production of a particular system is to produce
less software for that system while achieving the same
functionality [2]. In recent years, software reuse sup-
ported by object-oriented programming techniques and
network techniques has become a technology whereby
proven components can be cataloged, identified for reuse
to improve system reliability and to reduce system cost.

Although the study of software reuse covers awide re-
search area and has achieved few promising results, cur-
rent CASE tools and method engineering environment
rarely provide a methodical and systematic approach to
reuse in information system development. In order to im-
prove component reusability in a customizable CASE
environment, this study takes MetaEdit+, a configurable
CASE and CAME environment [3, 4], as a platform to
study component reusability in the customizable CASE
environment.

This paper is arranged as follows. The necessity of re-
use in customizable CASE environment is first presented
in section 2; the possibilities for reuse are then analyzed
based on four facets of reuse techniques in section 3; fi-
nally, the proposed research questions, feasible research
approaches and expected contributions are outlined in the
last section.

2. Necessity of reuse in CASE environment

Information system development (ISD) is a change
process taken with respect to an object system in an envi-
ronment by a development group using tools and an or-
ganized collection of methods to produce a target system
[5]. Normally, the set of methods is integrated into the
computer aided software engineering (CASE) environ-
ment to support 1SD. A method is a set of steps or rules
that define how a representation of an information system
(IS) is derived and handled. To be able to successfully
specify and present methods, we need tools and tech-
niques on another level called method development level
to describe the method's conceptual structures, which
form a computer aided method engineering (CAME) envi-
ronment. Method engineering is a discipline to design,
construct and adapt methods, techniques and tools for
systems development [6]. It needs support on two levels:
ISD level and information system development methodol-
ogy (ISDM) level. CASE and CAME are two corre-
sponding environments to support these two levels of
method engineering.

A customizable CASE environment provides facilities
for method engineering process to construct homegrown
methods or adapt existing methods to cater for specific
ISD requirements. Normally, a method is made up of sev-
eral components describing its structure, function, be-
havior or other unfunctional aspects. It is obvious that
such a customizable environment stores a large number of
components to specify diverse methods based on the same
semantics. Furthermore, the number of components grows
relatively large due to the continuous method develop-
ment. Reapplying existing components to support the
method specification processes is away arising spontane-
oudly, which introduces the concept of reuse. In general,



reuse is the regpplication of various kinds of knowledge
about one system to another similar system in order to
reduce the effort of development and maintenance of the
other system. In a customizable CASE environment, reuse
can be understood at least on two levels. On ISD levd,
the different system development applications can be re-
used by reapplying the knowledge such as architecture
structures, requirements, code, and so on; on ISDM level,
the method components can be reused by adapting their
semantic specifications. In this study, | will make re-
searches on component reusability on ISDM level.

3. Possibility of component reuse

A major impediment to reuse of software has been a
mindset of always thinking in terms of new development
[7]. The organizations do not take reuse into account in
software process and method engineering process as well,
although it is clear that reuse is an effective way to im-
prove the quantity and quality of software product. The
major reason is the deficiency in commercia environ-
ments where class libraries and efficient tools such as
intelligent browsers and application generators can be
integrated to effectively support the reuse process.

Although component reuse is not widely used in
CAME environment, possible techniques supporting re-
use exist. The diverse approaches and techniques can be
found from the literature or industria applications. Al-
though most reuse processes belong to the system devel-
opment process rather than the process of method engi-
neering, the notions and techniques are still useful. The
different reuse processes share a commonality that is they
all have four basic facets: abstraction, selection, speciali-
zation and integration [1]. If possible tools can be pro-
vided to support the four facets of reuse, method compo-
nent reuse is not a so difficult process. In the following,
the possible techniques supporting component reuse are
discussed based on these four facets.

3.1. Abstraction

Abstraction is closely related to software reuse. Every
abstraction describes a related collection of reusable com-
ponents and every related collection of reusable compo-
nents determines an abstraction. Besides providing a con-
cise description to each component, the issues regarding
component management are too important to be ignored.
Method component categorization and identification is
related to the conceptual framework for IS and 1S model-
ling [8-12]. In this proposal, | review briefly to the con-
ceptual framework for 1S and reference models[11, 12].

Conceptual Model for IS

The framework developed by livari [8-12] is a typical
conceptua framework for IS. It is based on three levels of
abstractions. organizational, conceptual /infological and

datalogical/technical level. These three levels can be re-
garded as the requirement specification, system anaysis
and design, and implementation process in ISD. On each
level, the abstractions describe its feature from three as-
pects such as structure, function and behavior.

The similar description for IS also appears in studies of
ontological foundations for 1S modelling which describe
the system using things and properties (structure), sys-
tems (function) and dynamics (behavior) [13]. These
three concepts in turn correspond to the three aspects of
abstraction in livari’s conceptua framework. Therefore, it
is reasonable and feasible that an information system is
viewed from these three aspects. They can accordingly be
taken as three main viewpoints to category the compo-
nents in the repository. Besides, other more detailed fea-
tures describing each level of 1S modelling [9], such as
the goa structure, environment interaction, allocation
aspect and so on, can be taken as the complementary fac-
ets for method component specification.

Reference Model

Besides using conceptual frameworks to specify IS
modelling, reference models are widely used in under-
standing the business process. It describes a frame of ref-
erence for one or more standards. A frame of reference
can be thought of as a set of conceptua entities, and their
relationships, plus a set of rules that govern their interac-
tion [14]. Reference model is usualy not a standard
model implemented by each user without modification,
but a data model that usually requires some adaptation to
the specific situation. For example, the reference model is
a blueprint to describe the business process in SAP R/3
system [11, 12]. It is a description of a business domain
acting as frame of reference for one or more standards.
There are five kinds of models: process model, interaction
model, data model, organization model and component
model [11, 12]. The various models or viewpoints con-
tained in the reference model address specific aspects of a
company’s rea situation which supports the system de-
velopment more easily and makes the interactions of peo-
ple within an organization more effective. The reference
model for business process provides detailed descriptions
on the level of system development, but it lacks descrip-
tions on the conceptual level, which limits its applications
to a special system. Anyway, the basic concepts of refer-
ence model, combined with conceptua framework, can be
applied to model the framework to support method engi-
neering process. It should improve component reusability
in the method engineering process.

3.2. Selection

Abstracted reusable components are typically stored in
a repository for future locating, comparing and selecting.
Techniques supporting component retrieval have prolifer-
ated in recent years. The most widely used are keyword



search, full text retrieval, structured classification sche-
mata, and hypertext [15]. The first three are traditional
approaches based on the classification of repository ob-
jects. Hypertext is a revolutionary technique based on
navigational metaphors. Component selection can be
achieved in conjunction with a variety of techniques such
as visual presentation, which are useful references to
component reuse in method engineering process.

3.3. Specialization and integration

Often, potentialy reusable components only match
partialy to the functionality required. Although the intui-
tive approach is to adapt the component found, one might
end up by doing far too much work for adaptation and
integration. There are normally three techniques to handle
the selected components to the proposed requirements
[16-18]: composition-based reuse, generation-based reuse
and derivation-based reuse. These techniques provide
feasible ways to reuse the revised components.

In the four facets of software reuse described above,
abstraction plays a central and oftentimes limiting role in
each of the other facets. In this study, | will concentrate
on constructing conceptua framework and managing the
diverse method components to support method engineer-
ing process by reusing existing method components.

4. Improving component reuse in MetaEdit+

In this section, the research questions, approaches and
expected contributions will be outlined on the basis of a
specific customizable CASE environment, MetaEdit+ [3].

4.1. MetaEdit+: a configurable CASE and CAME
environment

Due to diverse requirements for method development,
improving the quality and productivity of methods has
become an important issue. Accordingly, many meta-
CASE environments, such as MetaView [19], Tool-
Builder [20] and MetaEdit+ [3], have been developed to
aid the process of method engineering and ISD. For ex-
ample, MetaEdit+ is a configurable multi-method and
multi-tool platform for both CASE and CAME. As a
CASE tool it establishes a versatile and powerful multi-
tool environment which enables flexible creation, mainte-
nance, manipulation, retrieval and representation of de-
sign information among multiple developers. Asa CAME
environment it offers an easy-to-use yet powerful envi-
ronment for method specification, integration, manage-
ment and reuse [3].

As shown on the left side of Figure 1, MetaEdit+ is
based on three levels of abstraction: ISD level, ISD meta
level and ISD meta-meta level. The most abstract and
highest level is meta-meta level that contains a set of
primitive types needed as a language to specify methods

on meta level. Different methods are specified and pre-
sented using the metamodeling language. Each method is
made up of severa method components, for example, an
object diagram to specify the static objects and their rela-
tionships, a state transition diagram to present the behav-
ior of a system in a time dimension, or others to specify
the features of information systems. Different methods
can be selected to support project modelling.
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Figure 1 Reuse architecture for method compo-
nents in MetaEdit+

4.2. Component management and reuse

As discussed, component reuse will improve the pro-
ductivity and quality of system development. In MetaE-
dit+, a new method can be constructed and represented by
reusing other methods' components instead of beginning
from scratch. As shown on the right side of Figure 1, a
new method M. is made up of three components, two of
which are adapted from the components in M, or M, di-
rectly. Such reuse process reduces the efforts and im-
proves the efficiency in method engineering process. Be-
sides, the issue regarding component management should
be taken as a foundation for efficient component reuse.
Component management is a corner stone for the whole
reuse process as discussed above. Being inspired from the
reference models in business engineering process, we
propose categorizing the method components into severa
typical sets and constructing reference models to specify
the sets of components, the related components and their
relationships to support method engineering process. As
shown in Figure 1, the reference model takes a role to
manage the components on the meta level of 1SD.

Using reference models to support method engineering
is a relatively new topic. The key issue concerns how to
categorize the method components to effectively support
component retrieval and further reuse. The reference
models should present the way by which various models
interact in the process of method engineering. They
should guide engineers from the beginning, including
component selection, evaluation and analysis, to the final
stages of integration. And also, they should provide a
comprehensive view of al the components and their in-



teraction in the repository. The followings are the re-
search questions:

= How can important features of each component be
identified for classification?

»  What are the relationships among components?

=  What is the suitable way to harmonize the notational
conflicts among the components from different methods
by using reference models?

= How can user’s requirements be identified to conduct
the whole reuse process?

4.3. Research approaches

In this study, it is indispensable to take system devel -
opment as one of the research methods. Research ques-
tions should be formed in the course of observation such
as survey and case studies, and then to be confirmed and
generalized through analysis, which is caled theory
building. Both observation and theory building are the
necessary parts to support the research work. Especidly,
theory building takes a central role to guide the
prototyping in system development. In my research work,
three approaches will be applied: observation, theory
building and system development and evaluation.

4.4, Expected contributions

The research work would increase the reuse potential
of previously developed specifications and speciaize
them for new system requirements. The proposed frame-
work will organize the method components based on sev-
era aspects of the component abstraction; the reference
model will present the relationship and interaction be-
tween different component models and their semantic
features. Based on a detailed categorization and descrip-
tion, the components in the repository can be easily re-
trieved and adapted for reuse, which will decrease the
effort to new method development.

It should be noted that although the research work will
be carried out on the base of a specific customizable
CASE environment, the principles and theory can be gen-
eralized and applied in the field of software engineering
and method engineering.
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