
Automating Precise Data Collection for Code
Snippets with Bugs, Fixes, Locations and Types

Anonymous Authour(s)

I. BACKGROUND

The datasets for bugs and their fixes are essential for
data-driven bug detection and auto-fix, which can be used
for training pattern mining-based bug fix algorithms such as
Getafix [3] and large-language-model based approaches [4].
Precisely locating the bugs and fixes can improve the precision
of trained models, enhance the accuracy of bug detection and
fix. Additionally, the bug types and commit messages reveal
more concrete information of bugs, which could potentially
benefit models for detection and fix, and enhance the efficiency
of the debugging and code reviewing processes.

However, the granularity of current repository-mined bug-
fixing datasets is usually at the function level [1], [2], without
precise bug location and bug types. Thus, an approach for
automatically and precisely mining code snippets with bugs,
its fix, location and types from open-source repositories is still
an open challenge.

II. CHALLENGE

The proposed challenge is automating precise data collec-
tion for code snippets with bugs, fixes, locations, bug types,
and messages from open-source code repositories. It includes
following specific requirements.

Automatic: The whole data collection process should be
automated, with as less human-interaction as possible.

Precise: In the collected data, each data entry should include
five elements (b, f, l, t, m), where:

• b is the buggy code, which is the bug code snippet with
relative context.

• f is the fixing code, which is the bug fix snippet that
correctly fixes the bug.

• l is the location of bug and fix in before code and after
code.

• t is the bug type that might summarized from commits and
merge-request(MR) messages or other potential sources.

• m (optional) is the related message inside the commits or
MR message that describe the fix.

Language-agnostic: It is ideal that the solution is not
designed for a specific programming language, but a language-
agnostic method that fits for multiple programming languages.
A downgrade requirement is that the method should at least be
able to support one of the following programming languages:
C/C++, Java, Python.

III. DELIVERABLES

The final deliverables should contain following two con-
tents.

Fig. 1. An example of one precise data entry. It includes (1) buggy codes, (2)
fixing codes, (3) bug and fix locations, (4) bug types, and (5) related commit
messages.

Methodology. A programming language-agnostic approach
or algorithm that could automatically and precisely mining
code snippets with bugs, fixes, locations types and messages
from open-source repositories. It should include both the text
instructions (a research paper would be preferred) and the tool
implementation.

Dataset. A large dataset that include the precise code
snippets with bugs, fixes, locations, bug types, and related
messages that mined from open-source repositories using the
proposed approach.

REFERENCES

[1] Csuvik, V., and Vidács, L. (2022, May). FixJS: a dataset of bug-fixing
JavaScript commits. In Proceedings of the 19th International Conference
on Mining Software Repositories (pp. 712-716).

[2] Tufano, M., Pantiuchina, J., Watson, C., Bavota, G., and Poshyvanyk,
D. (2019, May). On learning meaningful code changes via neural
machine translation. In 2019 IEEE/ACM 41st International Conference
on Software Engineering (ICSE) (pp. 25-36). IEEE.

[3] Bader, J., Scott, A., Pradel, M., and Chandra, S. (2019). Getafix: Learn-
ing to fix bugs automatically. Proceedings of the ACM on Programming
Languages, 3(OOPSLA), 1-27.

[4] Dawn Drain, Chen Wu, Alexey Svyatkovskiy, and Neel Sundaresan.
2021. Generating Bug-Fixes using Pretrained Transformers. In Proceed-
ings of the 5th ACM SIGPLAN International Symposium on Machine
Programming (MAPS ’21), June 21, 2021, Virtual, Canada. ACM, New
York, NY, USA, 8 pages. https://doi.org/10.1145/3460945. 3464951


