
gRPC-based Dependency Recovery

I. BACKGROUND

Dependency analysis is essentially important during the
code review process for program understanding. Tremendous
efforts have been made to to extract semantic dependencies
within individual programming languages. For example, both
LSIF implementations [6] and Scitools Understand [5] can
index code bases of mainstream languages like C/C++ or
Java, and recover dependency relations like definition,
reference, function call, etc. However, there is little,
if any, static dependency analysis on Remote Procedure Calls
(RPCs for short). In a typical RPC scenario, one procedure
can invoke another procedure in a different address space,
just like a regular function call. gRPC [3] is a high-
performance, open-source universal RPC framework (Figure.
1) widely-used in our company. It allows clients and servers
communicate in a microservice style architecture. Usually, the
communication messages are serialized and deserialized in
Protocol Buffers [2] format (protobuf for short) and RPCs
are processed with the help of gRPC method stubs. To better
understand how such a software system work, we look for a
technique that can statically recover the dependency relations
induced by gRPC-based remote calls.

Figure 1. Clients and server communicate via gRPC

II. TECHNICAL CHALLENGES

The challenges lie in the modeling of the communication
channel operations and the gRPC message specifications.

gRPC uses HTTP/2 to transport. IP addresses and ports are
used to establish and shutdown the channel. This requires the
dependency recovery technique to be aware of the semantics
of gRPC libraries as implemented in C++, Java, Golang.

Meanwhile, gRPC by default uses protobuf for se-
rializing structured messages. It defines service and
message and code will be generated in specific lan-
guages like C/C++, Java, Golang, etc. As an example,
Listing 1 is a protobuf file which contains a service

named HelloWorld and several kinds of messages like
Point, Rectangle. Inside HelloWorld there are four
kinds of RPCs, unary RPC (GetFeature), Server streaming
RPC (ListFeatures), client streaming RPC (RRoute),
and bidirectional streaming RPC (RChat). The signatures of
method stubs and the protobuf compiler protoc determine
the generated code, which depicts how the RPCs are pro-
cessed, together with corresponding gRPC libraries.

1 service HelloWorld {
2 rpc GetFeature(Point) returns (Feature) {}
3 rpc ListFeatures(Rectangle) returns (stream

Feature) {}
4 rpc RRoute(stream Point) returns (RSummary) {}
5 rpc RChat(stream RNote) returns (stream RNote) {}
6 }
7 message Point {
8 int32 x = 1;
9 int32 y = 2;

10 }
11 ...

Listing 1. A simple protobuf code snippet with four different RPCs

III. RELATED WORK

We are not aware of researches on statically recovering
gRPC dependencies, but some related work may be inspir-
ing. For language-specific semantic dependencies, LSIF [6]
specification can be extended for such purpose but existing
LSIF open-source implementations only resolve semantic de-
pendencies within individual languages. [1] [4] dynamically
track dependencies between microservices, and some of the
techniques may also be used.

IV. TECHNICAL REQUIREMENTS

The dependency recover technique should answer 1)
whether two gRPC-based software components, written in
C++, Java, or Golang, may ever invoke remote calls; 2) if
so, show the involved method stubs in both original protobuf
files and generated code. The deliverables include the technical
report and the corresponding implementation. It should cover
80% use cases of gRPC and the time cost should be no more
than 5x of LSIF-based [6] semantic dependency analyzers lsif-
clang, lsif-java, lsif-go.

REFERENCES

[1] S. Esparrachiari, T. Reilly, and A. Rentz. Tracking and controlling
microservice dependencies: Dependency management is a crucial part
of system and software design. Queue, 16(4):44–65, aug 2018.

[2] G. Inc. Protocol buffers documentation. https://protobuf.dev/, 2008.
[3] G. Inc. grpc: A high performance, open-source universal rpc framework.

https://grpc.io/, 8 2016.
[4] S. Luo, H. Xu, C. Lu, K. Ye, G. Xu, L. Zhang, Y. Ding, J. He, and C. Xu.

Characterizing microservice dependency and performance: Alibaba trace
analysis. In SoCC ’21, page 412–426, New York, NY, USA, 2021.

[5] I. Scientific Toolworks. Understand: An ide and static code analysis tool
by scitools. https://www.scitools.com/.

[6] Sourcegraph. Lsif.dev. https://lsif.dev/, 2020.

https://github.com/grpc/grpc/tree/master/src/cpp
https://github.com/grpc/grpc-java
https://github.com/grpc/grpc-go
https://github.com/sourcegraph/lsif-clang
https://github.com/sourcegraph/lsif-clang
https://github.com/microsoft/lsif-java
https://github.com/sourcegraph/lsif-go
https://protobuf.dev/
https://grpc.io/
https://www.scitools.com/
https://lsif.dev/

	Background
	Technical Challenges
	Related Work
	Technical Requirements
	References

