
Challenges in C Program Repair: Test-Independent and
Preprocessor Directives

Anonymous Author(s)
1 INTRODUCTION
As deep learning (DL) has many advantages, such as avoiding the
tedious manual feature extraction, DL-based Automated Program
Repair (APR) has become a hot topic in software engineering in re-
cent years. The powerful generative capabilities of large language
models [1, 2] have opened up new opportunities and brought re-
newed hope to the field of program repair. Despite the promising
results, the program repair still confronts several challenges that
must be addressed to enhance the effectiveness and efficiency of
the repair process.This paper will delve into two critical challenges
in industrial application scenarios: test-independent scenarios and
preprocessor directives in C.

2 CHALLENGES
2.1 Challenge one: new APR approaches for

test-independent scenarios need to be
found.

DL-based APR approaches have exhibited promising performance
in evaluation [3], but most of the approaches are evaluated in the
test-based scenario: the input program has an associated suite of
unit tests with at least a failed one, and the goal is to modify the
program such that all the tests pass. The test suite is usually as-
sumed to contain unit tests, which are repeatedly executed and
each execution takes relatively a short time. This technique is also
utilized in the field of code generation to measure the accuracy of
the generated code, such as CodeX [4].

Apart from that, many bugs are not revealed by tests in practice.
Large IT companies often use multiple methods to detect bugs [5],
such as automatic program analysis tools, interactive program ver-
ification, check logs, and manual code review. These bugs do not
have an associated test. Furthermore, even if there are tests asso-
ciated with the bug, executing them may require a complex, dis-
tributed environment and take a long time, which is infeasible on
the developer’s machine. The industrial sector requires software
that can operate efficiently and safely, but many test-based APR
approaches are not suitable for this purpose. In all the above cases,
we cannot assume a test suite for validating the patches. We call
such scenario test-independent.

There are currently APR techniques that do not rely on test
cases, but they are not yet capable of meeting industrial applica-
tion scenarios. For instance, the R2Fix [6] tool can generate patches
based on user defect reports and templates, but it requires detailed
English reports and can only fix simple defects. Similarly, Leak-
Fix [7] is another non-testing defect repair tool that can use static
analysis techniques to generate patches, but it is limited to repair-
ing specific types of defects. Thus, we need new APR approaches
which can validate candidate patches without test case.

2.2 Challenge two: new approaches for
handling C preprocessor directives need to
be found.

Handling symbols in the codebase is crucial in APR. It can be chal-
lenging to correctly handle the symbols in the C code before pre-
processing, as user-defined preprocessing directives may disrupt
the syntactic structure of the source code.

In existing APR studies in C, it is often assumed that the in-
put program is already pre-processed and the patch is applied to
the pre-processed program [8]. However, we found that in real
industrial settings this assumption may not hold. To obtain the
pre-processed program, it is essential to have access to the entire
source code. Nevertheless, it may be difficult to obtain the com-
plete source code due to company‘s security policy or compliance
restriction.

To correctly handle the symbols in the code before preprocess-
ing, the following difficulties will be encountered in practice. First,
the project may be compiled with complex build directives with
user-defined program transformations, and it is difficult to either
automatically extract symbols from buggy files or ask the end user
to extract the pre-processed program.

Another possibility is to treat the pre-process directives as un-
defined variables or procedures, but due to the complexity of pro-
grams, this approach often fails. Therefore, it is imperative to find
new approaches for handling C preprocessor directives.

REFERENCES
[1] Niklas Muennighoff et al. 2022. Crosslingual generalization through multitask

finetuning. (2022). arXiv: 2211.01786 [cs.CL].
[2] Wang Haining. 2022. Development of natural language processing technology.

ZTE Communications, 28, 02, 59–64.
[3] Qihao Zhu, Zeyu Sun, Yuan-an Xiao, Wenjie Zhang, Kang Yuan, Yingfei Xiong,

and Lu Zhang. 2021. A syntax-guided edit decoder for neural program repair.
In Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, 341–353.

[4] Mark Chen et al. 2021. Evaluating large language models trained on code. arXiv
preprint arXiv:2107.03374.

[5] Jing Han, Tong Jia, Yifan Wu, Chuanjia HOU, and Ying LI. 2021. Feedback-
aware anomaly detection through logs aware anomaly detection through logs
for large for large-scale software systems scale software systems. ZTE Commu-
nications, 19, 88–94.

[6] Chen Liu, Jinqiu Yang, Lin Tan, and Munawar Hafiz. 2013. R2fix: automatically
generating bug fixes from bug reports. In 2013 IEEE Sixth international confer-
ence on software testing, verification and validation. IEEE, 282–291.

[7] Qing Gao, Yingfei Xiong, Yaqing Mi, Lu Zhang, Weikun Yang, Zhaoping Zhou,
Bing Xie, and Hong Mei. 2015. Safe memory-leak fixing for c programs. In 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering. Vol. 1.
IEEE, 459–470.

[8] Yufeng Cheng, Meng Wang, Yingfei Xiong, Zhengkai Wu, Yiming Wu, and Lu
Zhang. 2017. Un-preprocessing: extended CPP that works with your tools. In
Internetware. Hong Mei, Jian Lyu, Zhi Jin, and Wenyun Zhao, (Eds.), 3:1–3:10.

https://arxiv.org/abs/2211.01786

	1 INTRODUCTION
	2 CHALLENGES
	2.1 Challenge one: new APR approaches for test-independent scenarios need to be found.
	2.2 Challenge two: new approaches for handling C preprocessor directives need to be found.


