
Reducing False-positive and False-negative
Warnings in Static Taint Analysis

Anonymous Authour(s)

I. BACKGROUND

Taint analysis is widely used in security tasks. In industrial
scenarios, on one hand, the taint analysis tools report false-
negative warnings due to the complexity of product codes.
For this challenge, we focus on the specific scenario that taint
analysis is performed by specifying members of struct variable
as taints. As an instance, the struct variable may change its
type by calling cast statement where the taint mark of the
struct members would be lost. On the other hand, the taint
analysis tools have serious false-positive problem. For this
challenge, we focus on (1) buffer size-aware scenarios and
(2) path constraint-aware scenarios. We wonder whether there
exists efficient approaches of calculating buffer size and path
constraints to reduce false-positive warnings.

II. CHALLENGE

This challenge is about automating efficient and effective
taint analysis for industry-scale codes. It targets at the follow-
ing specific scenarios.

Case 1: Precise propagation of taint marked on struct
members: How can we optimize the propagation of struct
member taints originally marked by the user, in the process
of interprocedural data flow where over-approximation of type
cast statements exist (including conversion to char *, void *,
or other types of structures, etc.). An example is shown in
Fig 1.

Case 2&3: Buffer size calculation: Program statements
such as for-loop (case 2) statements or type-cast (case 3)
statements seriously restrict the calculation of buffer size.
Example are shown in Fig 2, 3.

Case 4: Path Constraint Calculation: Calculating path
constraints still lacks an efficient and general solution. An
example is shown in Fig 4.

Targeted Language: C/C++.

III. DELIVERABLES

Based on LLVM IR analysis, a solution and demo should
be provided which supports taint analysis to address at least
one of the aforementioned four cases. The solution will not
cause any performance bottleneck in actual projects, i.e., the
overhead should be less than 15%.

Fig. 1. An example of false-negative warning caused by type cast of struct
variable: on line 16, the variable p is cast from char * to Packet, while on
line 25, a member called packet of the struct variable is cast from Packet to
char *. In these cases, the taint is lost during the propagation.

Fig. 2. An example of false-positive warning caused by type cast of struct
variable: on line 19, the size of the 1st parameter is 4 while the size of the
2nd parameter is 8, thus the static analysis tool reports a warning, which is
actually false positive since on line 4, enough memory is allocated for date[4].

Fig. 3. An example of false-positive warning due to over-approximation of
loop statement: on line 13, the size of the 1st parameter is 12 while the size
of the 2nd parameter is 28, thus the static analysis tool reports a warning,
which is actually false positive since on line 13, dest matches with destSize
one by one.

Fig. 4. An example of false-positive warning due to over-approximation of
path constraints: on line 12, the static analysis tool reports a warning, which
is actually false positive if path constraints are considered.


